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ABSTRACT Nowadays, artificial neural networks (ANNs) can outperform the human brain’s ability
in specific tasks. However, ANNs cannot replicate the efficient and low-power learning, adaptation, and
consolidation typical of biological organisms. Here, we present a hardware design based on arrays of SiOx
resistive switching random-access memory (RRAM), which allows combining the accuracy of convolutional
neural networks with the flexibility of bio-inspired neuronal plasticity. In order to enable the combination of
the stable and the plastic attributes of the network, we exploit the spike-frequency adaptation of the neurons
relying on the multilevel programming of the RRAM devices. This procedure enhances the efficiency and
accuracy of the network for MNIST, noisy MNIST (N-MNIST), Fashion-MNIST, and CIFAR-10 datasets,
with inference accuracies of about 99%–89%, respectively. We also demonstrate that the hardware is capable
of asynchronous self-adaptation of its operative frequency according to the fire rate of the spiking neuron, thus
optimizing the whole behavior of the network. We finally show that the system enables fast and accurate filter
retraining to overcome catastrophic forgetting, showing high efficiency in terms of operations per second and
robustness against device non-idealities. This work paves the way for the theoretical modeling and hardware
realization of resilient autonomous systems in dynamic environments.

INDEXTERMS Catastrophic forgetting, complementary learning systems, continual learning, convolutional
neural networks (CNNs), resistive switching random-access memory (RRAM), spike-timing-dependent
plasticity (STDP), supervised learning, unsupervised learning.

I. INTRODUCTION

IN nature, the organisms consolidate and elaborate the
past information through neuropsychological processes

that are in equilibrium with continual refinement and adjust-
ment of the new incoming data. This ability of cohesion
is the basis of the resilience that animals and humans
show throughout their lives. In biological sciences,

the theory of complementary learning systems explains the
mutual contribution of hippocampus and neocortex to both
strengthen the previous information and elaborate on the
new incoming data for better precision and accuracy [1], [2].
In particular, the hippocampus accounts for the fast acqui-
sition of the new experience, whereas the neocortex is spe-
cialized in giving robustness to the previous knowledge [3].
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This mutual effort is what enables the efficient adaptation
of biological organisms to evolving situations, an ability that
goes under the name of ‘‘resilience’’ [4].

The artificial intelligence community has always tried
to seek inspiration in such biological behavior for devel-
oping efficient computing machines. Artificial neural net-
works (ANNs) have recently demonstrated outstanding
breakthroughs in tasks such as natural language process-
ing [5] and object recognition, showing high accuracy in clas-
sification of large datasets [6]. This is mostly achieved by the
supervised training technique based on backpropagation [7],
where each weight of the neural network is progressively
optimized in response to the presentation of labeled training
information. However, since the early years of investigation
on ‘‘deep learning,’’ supervised neural networks appeared too
rigid and static with respect to the biological world since the
high accuracy of recognitionwas related only to specific tasks
previously prepared via time- and power-consuming training
algorithms [8]. This lack of adaptation was summarized in the
expression ‘‘stability-plasticity dilemma,’’ which highlights
the difficulty of cohesion between consolidation and adapta-
tion in ANNs, in contrast to humans and animals [9]. In par-
ticular, deep neural networks, such as feedforward multilayer
perceptron (MLP) networks or convolutional neural networks
(CNNs), suffer from the so-called ‘‘catastrophic forgetting’’
problem, which erases, during the training procedure of the
new information, the previously learned data [10].

Several solutions have been proposed for overcoming
this problem in ANNs, such as: 1) task-specific synaptic
consolidation [11]; 2) replacement of the old redundant
information, useless for achieving better accuracy, with new
one [12]; and 3) allocation of additional neural resources [13].
However, all these techniques still appear too static toward
the creation of real autonomous networks since they require
too great complexity in order to be efficiently implemented
in hardware [14].

The supervised approach to object and pattern classifi-
cation is not the only one pursued in the field of artificial
computing. More precisely, unsupervised bio-inspired Heb-
bian learning has recently known rapid progress in theoretical
and applied research especially with spike-timing-dependent
plasticity (STDP) [15]. The main advantage of Hebbian
STDP is its intrinsic plasticity, at the expense of lower accu-
racy with respect to standard trained networks based on
backpropagation [14]. Furthermore, optimal prediction and
inference of continuously transforming environments seem
to rely on a sort of short-term STDP, thus highlighting the
timing-dependent plasticity as a good way to implement
resilient neuromorphic systems [16]. STDP has been largely
demonstrated in both CMOS technology [17] and memris-
tive devices, such as with phase change memories (PCMs)
[18], [19] and resistive switching random-access mem-
ory (RRAM) [20], [21]. In particular, the memristive devices
used as synaptic elements are of utmost interest for the
machine learning [22], [23], mainly for their compactness,
stacking capability, and multilevel programming feature [24].

In the last few years, there have been some attempts to
merge the supervised and unsupervised learning approaches
in order to exploit the benefits of both stability and plas-
ticity properties. These works offered an artificial approach
to the biological complementary learning of hippocampus
and neocortex [3]. In particular, it has been demonstrated
that the merging of supervised and unsupervised learning
blocks using a static CMOS logic to properly modify the
convolutional results provides resilience to achieve plasticity
inside a CNN [14], [22].

Here, we propose a SiOx RRAM-based network capable
of synthesizing, in hardware, a complementary learning sys-
tem. The architecture relies on matrix-vector-multiplication
(MVM) to accelerate the convolutional section and on bioin-
spired techniques in the unsupervised part, such as STDP and
homeostatic spike-frequency adaptation (SFA). SFA is a bio-
logical neuronal mechanism [25], also studied for neuronal
electrical models [26], which counteracts the intrinsic diver-
gence of the Hebbian learning [27]. Differently, with respect
to these previous works, we propose self-referential hardware
capable of resilience without relying on external control sig-
nals. During inference, the bio-inspired section of the network
clusters the non-trained information in original groups, for
transfer learning. All the elements joining the same group
share a set of common features. Such clustering activity
provides the possibility of partial retraining of some filters to
optimize the classification accuracy. We validate the system
with MNIST, N-MNIST, Fashion-MNIST, and CIFAR-10
datasets via pure analytical simulations, Monte Carlo simu-
lations, and dedicated hardware experiments with respect to
the memristive section of the network. The hardware design
mainly focuses on the synthesis of the filters, the convolution
procedure, and the subsequent unsupervised classification via
STDP. All the results are supported by analysis of circuital
performances with experiments and simulations of the net-
work efficiency in terms of ops/s, throughput, and latency.
We finally demonstrate that the circuit plastically adapts its
operative frequency for power saving and enables continual
learning of up to 50% nontrained classes. This work allows us
to overcome the catastrophic forgetting problem and proposes
a hardware cohesion between the benefits of artificial and
spiking neural networks, paving the way for the theory and
hardware architectures of efficient autonomous neural net-
works. In the Supplementary Material of this work, a detailed
explanation about the experimental setup is proposed along
with further studies with respect to lifelong learning.

II. STRUCTURE OF THE NETWORK
The network relies on the use of multiple arrays of SiOx
RRAM devices, whose cross section is presented in Fig. 1(a).
The RRAM devices are built on 130-nm technology CMOS
wafers in the back end of line (BEOL) between the fourth
and fifth metal layers. First, a TiN bottom electrode (BE) is
created as an inert electrode. Afterward, SiOx is deposited,
followed by: 1) a Ti layer and 2) a TiN layer. The memory
dots are, thus, obtained by etching. Then, a passivation layer
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FIGURE 1. (a) Cross section of the implemented RRAM devices
at the microscope. (b) I–V characteristics at varying compliance
current IC. (c) Modulation of the LRS as a function of the
compliance current during set operation. Note that (d) higher
the average resistive state, (e) higher the standard deviation.

is deposited. Finally, the top electrode (TE) contact is opened,
and the fifth metal line is processed [28]. Fig. 1(b) shows the
I–V characteristics of the devices under increasing conditions
of compliance current IC . The higher IC , the wider the resis-
tive window of the low resistive state (LRS) with respect to
the high resistive state (HRS), as indicated in Fig. 1(c) and (d).
Such window enlargement is proportional to a progressive
reduction of the resistive level variability (e), thus leading to a
better synaptic weight precision. All the measurement results
present device-to-device variations since the neural network
that we propose relies on several kilobits of RRAM elements.

A. CONVOLUTIONAL FILTERS
Fig. 2(a) shows the structure of the novel network from a
high-level algorithmic point of view. The principal idea is
to merge the benefits introduced in terms of accuracy by the
CNN and the resilience typical of unsupervised learning in
spiking neural networks. The first part of the network relies
on two types of convolutional filters whose principal aim is
to extract information from the input dataset: these two types
of filters are named ‘‘class’’ and ‘‘feature’’ [14], [18]. The
class filter is the result of a software training procedure whose
aim is to give as convolutional output a digital ‘‘1’’ if and
only if a specific class of the training dataset appears at the
input; the convolutional training algorithm is implemented on
a single layer convolutional network with max-pooling [see
Fig. 2(b)]; and the only difference with respect to the usual
training algorithm is that the training network is constrained
to give ‘‘1’’ as output when the class corresponding to that
neuron appears as training image at the input.

The feature filters, instead, are taken from a fully convolu-
tional approach, where each filter directly maps a geometrical

FIGURE 2. (a) Schematic of the implemented network to get
continual learning: the system is divided into two main blocks
that correspond to the procedures of supervised learning and
unsupervised learning, respectively. The supervised learning
procedure uses convolutional filters to extract information from
the input image. In particular, (b) class filters are trained to
recognize only one specific class, while (c) feature filters
contain general shapes that, for transfer learning, can be
retrieved even in nontrained images. (d) Split and merge
algorithm enables lifelong learning in neural networks but
requires slower training procedures with respect to standard
cases, hence more training cost. However, once new
information appears at the input, the network is able to classify
it without total retraining of the synaptic weights, thus avoiding
the catastrophic forgetting typical of standard ANNs.

feature (a ray, a curve, an angle, and so on) [see Fig. 2(c)].
All the filters are first trained and then tested in order to
group the best combination for correct inference. Such a
training procedure is more expensive than the usual [see
Fig. 2(d)] since it requires several parallel training processes
and, thus, a worse overhead in terms of energy consumption.
However, this split and merge algorithm gives the possibility
of dividing the classical convolutional training in a set of
simpler procedures specialized in bringing out a specific set
of filters, which is positive in terms of energy consumption
once retraining is taken into consideration, as explained in
Section IV. During testing, in fact, the filters are convolved
with the input in order to get a ‘‘found’’ or ‘‘not found’’
digital response. Such responses will then serve as input to
the subsequent layers of the network in order to provide
classification by exploiting unsupervised resilient STDP.

Note that the algorithm gives the possibility of overcoming
the classical problems related to the static behavior of CNNs
(catastrophic forgetting in presence of new information to
learn) [29].

B. CONVOLUTION WITH RRAM ARRAYS
We used the SiOx RRAM devices as synaptic elements for
mimicking the MVM between the input and the filters. The
MVM enhances the speed of the circuits with respect to
standard CMOS procedures [24], [30]. Each filter is syn-
thesized using binary RRAM devices, i.e., LRS or HRS
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FIGURE 3. (a) Digital implementation of the convolutional weights using 4 RRAM bits. (b) Digital MVM and consequent storage of the results into the
FPGA by using, as a front end, a decoder, an operational amplifier, and an ADC. Once the feature maps are ready, they undergo STDP unsupervised
learning for pattern classification. Note that it is possible to map negative values of the convolutional filters by means of RRAM-based 2’s complement
method.

FIGURE 4. (a) Schematic of the proposed hardware to get continual learning. After MVM, the resulting current is sunk by the transimpedance amplifier
and then converted by the ADC. Once collected in the registers of the FPGA, these responses constitute an original set of responses, which is the new
pattern presented to the STDP learning procedure. Note that the pattern of the STDP is triggered by the spike activity of the postneurons (POSTs).
A further bitline is used to control the uncorrelated input signal that causes background depression [21]. (b) Structure of the CMOS neurons used for the
STDP protocol: the current coming from the bitline is integrated. Once the neuron fires, a further RRAM device is gradually set in order to increase the
threshold of the neuron, thus acting as a homeostatic control mechanism. (c) Top view of the memory array and of the peripheral circuitry. Note that
peripheral electronics can be shared among different neurons in order to save area and power.

[see Fig. 3(a)], to configure a digital word for every weight
of the filter. Note that it is also possible to implement the 2’s
complement method to map positive and negative values of
the synaptic weights. Every bitline is selected by a decoder,
and the read current is sunk by a transimpedance amplifier
[see Fig. 3(b)]. Then, the output voltage values are converted
and processed by a field-programmable gate array (FPGA,
in this case, the Xilinx Zync 7000 system on chip mounted in
the Zedboard development kit), which processes the results
of each bitline (from least to most significant) and executes a
comparison with respect to a fixed threshold. In this way, for
every input pattern, we obtain an original feature map, which
should be ideally constant for those inputs belonging to the
same class.

C. HOMEOSTATIC UNSUPERVISED LEARNING
WITH RRAM ARRAYS
The feature map retrieved in the computation of the FPGA
directly feeds the last layer of the network, which is designed
to satisfy the STDP procedure with SFA, Fig. 4. Note that
the RRAM devices are here used as both excitatory synapses
[see Fig. 4(a)] and the internal state of each classifica-
tion neuron [see Fig. 4(b)], a solution that could enable
autonomous exploration of harsh environments by artificial
agents [31], [32].

The excitatory synapses follow the digitalized STDP learn-
ing procedure: those synapses connecting an active position
of the incoming pattern and the spiking output neuron are

potentiated (set to LRS), while the other synapses (‘‘back-
ground’’ positions) are progressively depressed by using an
uncorrelated signal, usually known as ‘‘noise’’ [21], [22],
interspersed with the input feature map. Note that the internal
state of each output neuron undergoes multilevel program-
ming by proper modulation of the compliance current, IC .
The internal state of each neuron keeps track of the firing
history of that neuron since the resistive value of the device
is progressively increased every time that neuron fires [see
Fig. 4(b)]. In fact, once the LRS gets progressively smaller
in resistance, the threshold value of the neuron increases.
In particular, this procedure: 1) counteracts the divergent
growth of the synaptic weights under Hebbian learning by
tuning the fire rate of the neuron, as it happens in biology [25]
and 2) provides better specialization under winner-take-all
(WTA) classification since every neuron is likely to fire to a
specific pattern for which the STDP excitatory synapses have
been specialized [31].

Note also that the peripheral electronics can be shared
in order to reduce the area and power consumption [see
Fig. 4(b)]. This advantage, considering also the in-memory
computing approach, makes our solution feasible for large
system synthesis, in contrast with pure bio-inspired CMOS-
based approaches.

Considering the best set of filters after training, we achieve
the final accuracies visible in Fig. 5. We also tested the
inference ability of the network for two less-common datasets
with respect to the usual MNIST and CIFAR-10: 1) the
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FIGURE 5. Simulation of the full accuracies of the four datasets
considering the non-idealities of the devices: a lower resistive
window in the convolutional section, the LRS and HRS
variabilities in the digitalized weights, and the switching errors
during Hebbian learning.

N-MNIST, in which 1/9 of the pixels of each MNIST image
is random and 2) the Fashion-MNIST, a collection of clothes
images from Zalando [33].

In particular, the non-idealities of the devices (degradation
of the resistive window in time, variabilities, not successful
programming conditions, and so on) cause a significant drop
in accuracy (from 1% of MNIST to 4.4% of CIFAR-10,
on average), as shown by the distributions of Fig. 5.

III. HARDWARE EFFICIENCY
As shown in Fig. 4, the whole hardware setup works around
the spike frequency block, which is the core element to pro-
vide efficient accuracy and plasticity for continual learning:
whenever a neuron fires, the next feature map is ready to
be presented to the unsupervised section; at the same time,
the internal state of the firing neuron partially sets the cor-
responding control device, thus raising the threshold of that
neuron and causing a progressive reduction of the firing rate.
Thus, the number of operations per second (ops/s) is limited
by the maximum speed of response of the unsupervised block
and by the spike-frequency mechanism that progressively
increases the unsupervised elaboration time of each feature
map. The ops/s are calculated taking into consideration the
synaptic-level MVM computation, and the clock cycles are
needed to elaborate the information and the STDP learning
procedure.

Fig. 6(a) shows the progressive frequency reduction during
Hebbian learning of ten classes, highlighting the very first
step of neuronal specialization (the firing rate decreases in
time). Note that, to resemble the bio-inspired time for each
epoch, the elaboration time should stay around 10 ms [21],
which is too long to provide high throughput under infer-
ence. Reducing the epoch reference time, thus, is funda-
mental to achieve a substantial improvement of the net-
work in terms of operations per second (ops/s). We have
safely set the electronics in order to provide the fastest
neuronal response of 40 µs. Note that this solution makes
more area-efficient our design with respect to previous

FIGURE 6. (a) Decrease in the neuronal firing rate due to the
spike frequency adaptation. (b) Calculated operations
per second (ops/s) of the network during inference: note that
the ops/s decreases at increasing homeostatic efficiency.
(c) Increase in the classification accuracy during inference due
to the spike frequency adaptation mechanism.

CMOS-based works [17] since respecting the biological
timescale implies larger neuronal integration capacitances.
Furthermore, the area consumption of memristors is limited
to the selector, while CMOS synapses require a design with
several transistors [17].

This means that the supervised block must perform the
convolution of 64 filters of dimension 20 × 20, i.e., 81 shifts
on the 28 × 28 input images, in less than 40 µs. Note
that we perform, in parallel, the convolutional steps for each
filter: we directly map the convolutional movement in hard-
ware by programming for each filter its convoluted shape
with respect to the fixed input. Considering also the con-
sequent digitalization of each weight, we get a number of
needed operations for every filter equal to Nfilters × Nbit =
64 × 4 = 256.
Fig. 6(b) shows the estimated ops/s tendencies as a function

of the epoch (i.e., feature map presentation at the input of
the unsupervised block) also considering the further steps of
digital conversion, pooling, and feature map definition. Note
that the SFA block progressively reduces the fire rate toward
a steady-state condition, causing a reduction of ops/s but an
increased classification accuracy and neuronal specialization
[see Fig. 6(c)].

Since the network is operated in a pipeline, we have
a latency per input image in the order of two times the
average response of the firing neurons, as indicated by the
Monte Carlo simulations of Fig. 7(a). Such an approach
enables the testing of the MNIST, Fashion-MNIST, and N-
MNIST in less than 1 s, with an expected throughput of
images in the order of 25 000 patterns/s. Of course, such
result is strongly limited when an RGB dataset is used as a
benchmark, as CIFAR-10, with a substantial increase in the
latency and a consequent reduction of the throughput [see
Fig. 7(b)]. The higher latency is due to both the RGB colors
and the management of more data. Note that our architec-
ture has a slightly lower efficiency in terms of throughput
with respect to fully supervised approaches. However, this is
balanced by the resilient properties of the network that we
propose [30].
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FIGURE 7. Monte Carlo simulations for (a) latency and
(b) throughput of the inference machine as a function of the
dataset under examination. Note that the CIFAR-10 requires a
higher elaboration of data, hence increased latency and
reduced throughput.

IV. DISCUSSION
A. CONTINUAL LEARNING
The plasticity introduced in the network by the STDP
and the homeostatic control mechanism (via SFA) provides
the resilience to accept new incoming feature maps for
which the network has never been trained for (see Fig. 8).
Here, the network has been previously trained with five
classes (5–9), while the others are completely new during
inference. However, these new classes provide original fea-
ture maps [see Fig. 8(a)] for transfer learning of the trained
filters.

Generally, transfer learning refers to the use of previ-
ously acquired information in one specific domain to bring
out a solution to a problem in a novel environment [34].
Standard approaches to transfer learning refer to a large
domain of data that share invariant relational information for
further classification capabilities [35], such as for zero- and
one-shot learnings [36]. On the other hand, transfer learning
is here used to enable a continual and resilient evolution of
the network by exploiting the classification of new patterns
during the unsupervised learning procedure.

For instance, all the images whose label is 4 (nontrained
class) should excite a further output neuron to recognize
the input patterns joining that new class. This procedure
is experimentally demonstrated for the nontrained MNIST
numbers from 0 to 4 in Fig. 8(b) and (c), where the synaptic
time evolutions are shown. Fig. 8(d) also shows the scatter
plot for a limited section of the firing responses. Note that,
when the new patterns appear during inference, they are first
misunderstood since the neurons have not been specialized
yet and each neuronal threshold is randomly low. Once the
fire rate reaches the steady state (lower firing rate since the
neuronal threshold has increased), the errors diminish, and
the accuracy improves, as already discussed in Fig. 6.
Since the new classes are classified by exploiting trans-

fer learning, the feature maps may have slight variations
from image to image. The activated pixels are sparse, and
the corresponding average feature map is slightly blurred,
as visible in the snapshots t1, t2, and t3 of Fig. 9(a) for the

CIFAR-10 dataset. This affects the final accuracy since, for
instance, not every ‘‘deer’’ pattern hits the threshold of the
neuron. Only limited variations (<15% or <20%) of the
feature map density are tolerated by STDP, as indicated
in Fig. 9(b). Such an effect gets more significant as the
number of nontrained classes increases. This is mainly due
to the decreasing efficiency of transfer learning and the
increasing confusion between similar patterns during Heb-
bian learning [14]. Thus, we substantially have a constant
decrease in the accuracy of nontrained classes and in the
global accuracies, as the trained section gets progressively
smaller. However, as indicated in Fig. 9(c), the accuracies of
the nontrained classes were around 77% for MNIST and 65%
for CIFAR-10 datasets, while the global accuracies range
from 88% to 77%, respectively.

B. INCREMENTAL CONTINUAL LEARNING
It is possible to postprocess the filter responses after inference
to get rid of those filters whose activity is not significant for
the definition of the nontrained feature maps. For instance,
if a ‘‘feature filter’’ individuates a particular shape in almost
all the nontrained images, then the information given to the
feature map is not useful. At the same time, a filter that
sometimes gives a positive response for a pattern of a class
and sometimes not for another pattern joining the same class
is a source of confusion for the network (it causes misunder-
standing for the unsupervised procedure and thus subsequent
misclassification [see Fig. 9(b)]). During the continual learn-
ing of MNIST, for example, where the new classes are the
numbers from 0 to 4, we have, on average, the responses
of the convolution for the nontrained classes provided by
the color map of Fig. 10(a). Note that some filters have an
intermediate response (from 30% to 60%) to the filters, thus
resulting as ‘‘unstable points’’ once the feature map of the
corresponding new class arises. Those filters are harmful for
the classification of the new classes since they create compe-
tition and misunderstanding among the nontrained patterns
joining the same class.

Thus, as expressed in Fig. 10(b), we can get rid of some
of those filters and proceed with the retraining in accordance
with the clustered information during testing. Note that the
synaptic retraining is focused on a limited section of the
network since it regards fixed groups of synapses that are used
as filters. Once, after a postprocessing study, a filter has to be
eliminated and substituted, it is enough to erase that part of
memory keeping the others untouched [see Fig.10(b)].

The retraining can be performed using the clustered infor-
mation by the further classification neurons during the last
inference activity. If, for instance, the 95% of responses of
a neuron was due to the pattern joining the same new class,
then those patterns are used to retrain the new filters, thus
creating a set of responses that constitute the block of the con-
tinual learning activity. The global accuracies after retraining
the filters are highlighted in Fig. 10(c), where a substantial
improvement is highlighted. Note that the achieved accuracy
is not the theoretically highest possible since the gradual
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FIGURE 8. (a) Experimental examples of feature maps for five nontrained classes of MNIST with (b) synaptic evolution in time and (c) spike-frequency
modulation effect. (d) Scatter plot of the fire activity of trained and nontrained neurons.

FIGURE 9. (a) Nontrained classes from the CIFAR-10 dataset. Note that the ‘‘deer’’ presents three substantial different patterns at t1, t2, and t3. (b) This
difference in terms of pattern density is the main source of misunderstanding during unsupervised STDP since it could lead to erroneous spiking activity.
(c) Nontrained class accuracy as a function of the number of new classes. (d) Global accuracies as a function of the number of nontrained classes.

FIGURE 10. (a) Average probability of the responses for the
nontrained classes as a function of the filters. Note that some
filters (e.g., 23, 45, and 55) present a blurred response, which
leads to useless information with respect to the classification of
the new classes. Other filters, instead, have a too high
probability of response (e.g., 38); hence, no classification
improvement is obtained. (b) Such a limited number of filters
can be properly reprogrammed to enhance the differentiation
between the nontrained classes. (c) Increase in terms of overall
accuracy after retraining.

retraining of the filters cannot be as efficient as the training
of the entire dataset.

These circuital results suggest that the ability to forget
and retrain is fundamental for the adaptation to changing
environments, as already evidenced by other works under a
pure theoretical framework [37]. However, note that a better
forgetting property would be obtainable by using natural
drifting devices as homeostatic elements, such as PCMs [38].

FIGURE 11. (a) Power consumption depends on the number of
new classes to classify for continual learning. (b) Ratio of the
power consumption of the conditions after and before the filter
retraining. (c) Global accuracy as a function of the number of
filters for the MNIST dataset.

C. EFFICIENCY OF RETRAINING AND IMPROVEMENT
OF THE ACCURACY
Every time a new set of patterns appears at the input, the fur-
ther firing neurons require more energy to get specialization.
However, the consumption levels always tend to come back
to the steady-state condition [see Fig. 11(a)]. The procedure
to achieve optimum continual learning in neural networks
is straightforward since it requires erasing some filters and
reprogram the corresponding devices [see Fig. 10(b)]. Thus,
as evident in Fig. 11(b) by a comparison of the inference
activity before and after the retraining, the average power
consumption remains the same since the network has been
only provided with different combinations of weights. Note
also that the energetic efficiency is in tradeoff with respect to
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the accuracy: the higher the number of filters (i.e., the energy
and the area consumption), the higher the accuracy since
more original feature maps per class are obtained. However,
this trend saturates, as suggested by the simulations of
Fig. 10(c) for the full testing of the MNIST dataset. The
system gets marginal improvements after a certain number
of filters (around 80), getting a final best ideal accuracy 1%
lower with respect to the best achievable with standard neural
networks [39]. This is the worst downside of the type of
network that we propose, which can be directly referred to
as the unsupervised classification accuracy.

D. IMPACT OF THE DEVICE NON-IDEALITIES
The failure of the programming of the devices strongly affects
the behavior of the whole network, as we analyze in the
following for theMNIST dataset. Fig. 12(a) shows the overall
accuracy as a function of the compliance current IC chosen
to program the devices. Note that, as IC lowers too much,
the corresponding resistive window decreases, and the digi-
talized filter accuracy decreases accordingly. This is due to
the fact the synaptic devices are binary weighted, and thus,
greater variability in the resistive error causes a consequent
worse inference.

FIGURE 12. Accuracy for the MNIST dataset as a function of the
compliance current used to program (a) convolutional weights,
(b) number of bits used to map each weight, and (c) number of
intermediate steps to implement the homeostatic increase in
the neuronal threshold.

Increasing the number of bits used to digitalize the filters,
we directly obtain a better accuracy of the network [see
Fig. 12(b)]. On the other hand, the multilevel programming
of the devices referred to the unsupervised section of the
network does not require a precise resistance value, as typ-
ically observed in the neural computation [15], [21]. Note
that, nevertheless, the device must always show a switch-
ing activity that can enable the homeostatic mechanism of
spike frequency adaptation. However, such switching activity
can be either ideally multilevel or binarized since the accu-
racy depends only slightly on the modulation of the internal
thresholds [see Fig. 12(c)].

V. CONCLUSION
We presented a novel SiOx RRAM-based network that com-
bines the efficiency of supervised architectures and the adap-
tation of unsupervised learning to enable lifelong learning
in artificial intelligent systems. The network provides high
accuracies for full testing (almost 99% for MNIST and 89%

for CIFAR10) and learning of up to 50% nontrained classes
using spike-frequency modulation. We validated the results
using ideal simulations, Monte Carlo analysis, and experi-
mental measurements with SiOx RRAM devices. We demon-
strated optimized continual learning and optimum cohesion
of stability and plasticity in the same ANN. The results
highlight robustness against device non-idealities and suggest
the possibility to create fully autonomous systems able to
continually learn throughout their lives.
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