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COMBINED B-PLANE AND PICARD-CHEBYSHEV APPROACH
FOR THE CONTINUOUS DESIGN OF PERTURBED
INTERPLANETARY RESONANT TRAJECTORIES

Alessandro Masat*, Matteo Romano† and Camilla Colombo‡

Orbital resonances have been exploited in different contexts, with the latest in-
terplanetary application being the ESA/NASA mission Solar Orbiter, which uses
repeated flybys of Venus to change the ecliptic inclination with low fuel consump-
tion. The b-plane formalism is a clever framework to represent close approaches
at the boundaries of the sphere of influence of the flyby planet. This representation
is exploited to prune the design of perturbed resonant interplanetary trajectories in
reverse cascade, without patched conics approximation. The design strategy is for-
mulated as a multi-layer optimization problem, whose core numerically integrates
the perturbed orbital motion with the Picard-Chebyshev integration method. The
analytical pruning solution is also used as starting guess to ensure the fast conver-
gence of both the numerical integration and the design algorithm. The proposed
semi-analytical strategy allows to surf complex gravitational perturbing effects
optimizing artificial maneuvers in a computationally efficient way, and can be ex-
tended to account for any other perturbation source. The method is applied to the
design of a Solar Orbiter-like quasi-ballistic first resonant phase with Venus.

INTRODUCTION

Orbital resonances have been exploited in several ways for mission design purposes and in many

different contexts, such as the Earth-Moon case (for example in the works of Topputo et al.,1 Ceriotti

et al.2 and Short et al.3) or the exploration of Jupiter’s and Saturn’s moon systems (for example

the works of Lantoine et al.,4 Campagnola et al.5, 6 and Vaquero et al.7). Other applications also

regard pure interplanetary orbits, for instance the ESA/NASA mission Solar Orbiter8 as the latest

example: resonant trajectories with Venus are exploited to raise the orbital inclination up to almost

30 degrees9 over the ecliptic, to better observe the near-polar regions of the Sun.

In this last case, the use of resonant close encounters allows to save a considerable amount of

fuel because of the repeated sequential flyby maneuvers. Nonetheless, such a phenomenon remains

difficult to accurately model and understand, especially at the boundaries of the planet’s sphere of

influence where none of the two dynamics, planetary or interplanetary, has a dominant role. This

effect is amplified for shallow encounters, where either the small relative velocity with respect to

the flyby planet or the high miss distance worsen the patched conics approximation. However,
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accurate predictions are required for steep close approaches too: a small deviation from the nominal

condition may be amplified of several orders of magnitude during the flyby, making the modeling

crucial or requiring maneuvers not to deviate from the desired condition.

The b-plane formalism presents an analytic theory for the characterization of steep flybys, based

on a manipulation of Öpik’s variables10 originally proposed by Carusi et al.11 Fixed values of the

post-encounter semi-major axis are represented as circles in the b-plane, which can therefore be

targeted a priori as the link with the orbital period is well known.12

The Picard-Chebyshev method is a semi-analytical technique to globally integrate the evolution

of a generic dynamical system accounting for a generic perturbation source. Picard iterations are

performed to update the coefficients of a Chebyshev polynomial interpolation of an initial solution

guess. A derivation of the method can be found in the work of Fukushima.13 Bai and Junkins14, 15

proposed a modified version of the method, making it suitable to GPU computing platforms con-

densing the algorithm steps in a series of matrix operations, in this work implemented following the

formalism adopted by Koblick.16

In the proposed approach, the Picard-Chebyshev integration method is combined with the b-plane

prediction capabilities and applied to the design of multi-flyby trajectories in reverse cascade. The

patched conics approximation is removed, and perturbations from the N-bodies and general rel-

ativity perturbations are included in the dynamical model. The exit requirements of the current

flyby are computed to meet the entrance condition of the next one. They are consequently back-

integrated to obtain a new entrance condition to be targeted, within a dynamic programming-like

backward recursion logic. The proposed method extends the unperturbed design algorithm17 previ-

ously developed by the authors of this work, that exploits the b-plane formalism to design a series

of two body resonant orbits limitedly to the patched conics case. The newly extended version of

the strategy uses the unperturbed b-plane solution is to prune the trajectory design in the perturbed

environment. Starting from the Keplerian initial guesses for the patched conics arcs, a continuity

link between the planetary and interplanetary legs is introduced at the boundaries of the sphere of

influence. The core of the presented approach numerically integrates the full dynamics using the

Picard-Chebyshev method, embedded in a multi-layer optimization problem that aims to minimize

the artificial correction effort at user-specified point in the interplanetary cruise. In particular, the

case of Solar Orbiter’s resonant close approaches with Venus9 is studied, achieving a quasi-ballistic

transfer that surfs the chaotic perturbed environment, requiring an artificial control impulse easily

achievable by today’s low thrust propulsion technologies.

The current implementation of the design strategy only requires a generic two-body patched

conics solution in the b-plane formalism, not necessarily resonant. A generic solution from the

Lambert problem18 with consequent b-plane description of the planetocentric phase would suffice

for the full extension to the design of non-resonant interplanetary arcs. In this work the resonant

case is analysed, since its connection with the b-plane formalism is straightforward12 and the already

available unperturbed design routine.17

As the Picard-Chebyshev method can be parallelized, the whole design strategy is well suited

to be used with high performance computing facilites. In spite of this, the serial execution will be

shown to be already efficient, because of the limited need to read the database for the ephemerides

of the N bodies.

The first steps towards the development of an efficient tool for the continuous design of perturbed

multi-flyby trajectories are made, with particular focus onto the resonant ones. Addressing the
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behavior of the natural dynamics is fundamental before implementing any real-life maneuver design

strategy, which at last would allow to fulfil the primary needs of the analysis of actual missions.

This article is outlined as follows: first, a review of the b-plane representation of flybys is given,

followed by a recap of the Picard-Chebyshev integration method, then the concept of proposed

design algorithm is presented. Finally, the application to a Solar Orbiter-like first resonant phase

with Venus is shown.

CLOSE ENCOUNTERS IN THE B-PLANE

Assuming the planet to follow a circular orbit around the Sun, an intermediate frame is required

before defining the b-plane flyby representation, first introduced by Carusi et al.11 The frame is

centered on the planet’s center of mass, the (x, y, z) axes are directed as the heliocentric position,

velocity vp and angular momentum of the planet, respectively. All the involved quantities are non-

dimensional, such that the planet’s distance from the Sun and the Sun’s gravitational parameter are

both equal to 1. The non-dimensionalisation gives in turn |vp| = 1 and makes the orbital period of

the planet equal to 2π.

The flyby effect, interplanetary-wise in any patched conics approximation, is modeled as an in-

stantaneous rotation of the planetocentric velocity vector U without magnitude change.

With the above defined quantities it is possible to introduce the b-plane reference frame, whose

axes (ξ̂, η̂, ζ̂) are defined as by Öpik:10

η̂ =
U

||U|| ; ξ̂ =
U × vp

||U|| ||vp|| ; ζ̂ = ξ̂ × η̂. (1)

From now on the definition b-plane will be used to identify the plane perpendicular to the η̂ axis,

because

ξ2 + ζ2 = b2 (2)

with b the impact parameter as by Milani et al.19

Recalling,11 from an interplanetary point of view the flyby can be modeled as an instantaneous

rotation of U into U′. The superscript ′ shall denote the post-encounter quantities in the following

lines.

B-plane circles

A certain post-encounter semi-major axis a′ is fully determined by θ′, the angle between U′ and

vp:12

cos θ′ =
1− 1/a′ − U2

2U
(3)

From the b-plane properties and some spherical geometry analysis, the b-plane locus of points of

a given post-encounter semi-major axis a′ is a circle centered on the ζ̂ axis:12

ξ2 + ζ2 − 2c sin θ

cos θ′ − cos θ
ζ +

c2(cos θ′ + cos θ)

cos θ′ − cos θ
= 0 (4)

which is equivalent to

ξ2 + ζ2 − 2Dζ +D2 = R2 (5)

3



with the center’s ζ coordinate D and the radius R explicitly defined as

D =
c sin θ

cos θ′ − cos θ
R =

∣∣∣∣ c sin θ′

cos θ′ − cos θ

∣∣∣∣ (6)

where, analogously to θ′, θ is the angle between U and vp, and c = μp/|U|2. As already men-

tioned, any reachable post-encounter semi-major axis can be drawn as a circle in the b-plane, with-

out necessarily need to be resonant. The sole exception regards flybys that do not modify the value

of a, and thus feature θ ≡ θ′, which are defined as the straight horizontal line:12

ζ = cot θ (7)

Perturbations in the b-plane

Previous results by the authors of this work17 led to the semi-analytical definition of the b-plane

circles arising from the effects of a generic perturbation source. Assuming the locus of points of

common post-encounter semi-major axis a′ being still well approximated by circles centered on the

ζ̂ axis, all the perturbing effects can be condensed in three angular variations:

• of the turn angle γ, Δγ;

• of the angle ψ that identifies the direction of the rotation of U into U′, Δψ;

• of the post-encounter angle θ′, Δθ′.

Note that, since the b-plane frame is defined at the entrance of the sphere of influence and the

spherical geometry of the rotation is what determines the circles, the effect of possible variations

of the magnitude of U is included in Δθ. Condensing once more θ
′∗ = θ′ + Δθ′, finding the

intersections of the perturbed circle with the ζ̂ axis brings the following expressions for D and R:17

D =
c(sin θ cosΔγ cosΔψ − cos θ sinΔψ)

cos θ′∗ − cos θ cosΔγ − sin θ sinΔγ cosΔψ

R =

∣∣∣∣ c
√
sin2 θ′∗ − sin2 θ sin2Δψ

cos θ′∗ − cos θ cosΔγ − sin θ sinΔγ cosΔψ

∣∣∣∣
(8)

In the perturbed case, the expression ζ1,2 = D ±R is exact for finding the intersections with the

ζ̂ axis of the locus of points of conserved semi-major axis as well, in fact the expressions for D and

R are no more singular for θ ≡ θ′.

The perturbed b-plane model can be used for the computation of the post-encounter orbital ele-

ments accounting for both the close approach and any other generic perturbation effect, and it pro-

vides an improvement if compared to simulation-predicted b-plane circles. Figure 1 compares the

resonant circles drawn with the unperturbed theory (left) and the new perturbed model of Equation

(8) (right) with the simulated resonant semi-major axes (yellow dots) coming from the planetary

protection analysis of the upper stage of the launcher of Solar Orbiter9, 20*. The grey dots repre-

sent instead simple close approaches currently not in resonance. Note that the circles defined in

Equations (6) and (8), on purpose nearly visible and drawn in light grey, have become the black

4



Figure 1: Perturbed b-plane resonances vs simulated resonances in the full force environment.

bounded belt shaped loci of points, because also almost perfectly phased resonant returns have been

considered extending each circle over its own neighbourhood.

In Figure 1 the perturbing angles Δγ, Δψ and Δθ′ have been computed by post-processing the

results of the numerical integration of the perturbed trajectory within the sphere of influence bound-

aries for the barycenter of the cloud of points in Figure 1, using the Picard-Chebyhsev method. Note

that Δγ, Δψ and Δθ′ remain small in magnitude, nevertheless Figure 1 shows that the difference

they make in the characterization of the b-plane circles is significant. This gives a further proof

to the need of precise models for the flyby phase, which is required if the desired post-encounter

prediction must be accurate.

PICARD-CHEBYSHEV INTEGRATION METHOD

Picard iterations23 are a method that can be used to obtain an approximation of the solution of

initial/boundary value problems. Denoting the state of dimension n with x, the independent variable

with t, the initial/boundary condition with x0 and the dynamics function with f(x, t), the problem is

defined as
dx
dt

= f(x, t), x0 = x(t0) (9)

Starting from an initial approximation x(0)(t) of the actual solution x(t) of the initial/boundary

value problem presented in Equation (9), the i-th Picard iteration improves the previous approxima-

tion x(i−1)(t) of x(t) with x(i)(t) as23

x(i)(t) = x(0)(t) +
∫ t

t0

f
(
x(i−1)(s), s

)
ds (10)

The method converges for a good enough initial approximation x(0)(t) and for i −→ +∞.23

In the analytical Picard iteration context, performing more than one iteration is in general hard.

The increasingly complex expressions for x(i)(t) make it difficult to retrieve closed form solutions

after the first 2-3 steps.14 At the same time, numerically computing the integral functions by quadra-

ture might not suffice in accuracy, as only the first few iterations in general improve the function

*More detailed information about this analysis and the related validation can be found in the work of Colombo et al.,21

Colombo et al22 and Masat.17
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approximation. In the attempt to develop parallelizable routines for the integration of the dynamical

motion, the Picard-Chebyshev method was built combining the Picard iterations with the Chebyshev

polynomial approximation.24 A possible derivation of the method follows the work of Fukushima,13

which can be summarized in three steps:

1. Select a good enough initial guess x(0)(t).

2. Approximate f(x, t) and x(0)(t) with their Chebyshev polynomial expansion.

3. Picard-iterate to update the coefficients of the interpolating Chebyshev polynomials.

The Picard iterations halt when the stopping conditions are met, based on the maximum difference

between two consecutive iterations dropping below some user-specified tolerance.

The so defined method allows to easily perform several more Picard iterations than the analytical

case. The involved expressions remains always of the same type, i.e. the Chebyshev polynomials,

thus delegating the function approximation to a finer level. Furthermore, few iterations suffice to

drop below a low tolerance if the real solution x(t) differs from the initial guess x(0)(t) only because

of small perturbations.23 Starting from the unperturbed Keplerian solution for the weakly perturbed

two body problem, a relatively fast convergence of the method is ensured.13

Matrix form for vectorized and parallel computation

The method is suitable for parallel or vector implementation, indeed Fukushima also proposed

a vectorized version.25 More recent works over this technique by Bai and Junkins developed the

modified Picard-Chebyshev method15 and a CUDA implementation for NVIDIA GPUs.14 For com-

pactness and to better highlight the parallelisation possibilities, the method is presented using the

matrix formulation by Koblick et al,16 still based on the work of Bai and Junkins.14, 15

For N Chebyshev nodes and the integration interval [t0, tN−1], the independent variable t is

sampled for j = 0, 1, ..., N − 1 up-front as

tj = ω2τj + ω1 (11)

with

τj = − cos

(
jπ

N − 1

)
, ω1 =

tN−1 + t0
2

, ω2 =
tN−1 − t0

2
(12)

The values of the Chebyshev polynomials and their derivatives at the selected N nodes do not

directly enter the Picard iterations, but require some manipulation to obtain the constant matrices C
and A, which can be computed up-front as well. C is N ×N and its elements are defined as16

Cj+1,1 =
1

2
T0(τj), j = 0, ..., N − 1

Cj+1,k+1 = Tk(τj), j = 0, ..., N − 1 and k = 1, ..., N − 1
(13)

whereas A is N − 1×N , with elements

Ak+1,j+1 =
Tk(τj)− Tk+2(τj)

2(j + 1)
, j, k = 0, ..., N − 2

Ak+1,N =
Tk(τN−1)

2(N − 1)
, k = 0, ..., N − 2

(14)

6



where Tk(τ) = cos(k arccos(τ)) is the Chebyshev polynomial of degree k.13 Another constant

quantity that is involved in the iteration process is the row matrix S of dimension 1×N − 1, whose

elements are16

Sk = 2(−1)k+1, k = 1, ..., N − 1 (15)

Finally, given the n-dimensional sampled states y(i−1)(tj) = y(i−1)
j , j = 0, ..., N as a matrix

y(i−1) of dimension N × n computed at the Picard iteration i − 1, the whole process can be sum-

marized in three sequential steps to obtain the states at the iteration i. The first one collects the

evaluations of the dynamics function f in the N × n force matrix F:16

F(i)
j+1 = ω2 f

(
y(i−1)
j , tj

)
, j = 0, ..., N − 1 (16)

each of which can be performed in parallel, as well as all the upcoming matrix elementary opera-

tions.

Secondly, the N × n matrix B is obtained by rows as16

B1 = SAF + 2y0, Bj = AF, j = 2, ..., N (17)

Note that the boundary values y0 remain constant for all the Picard iterations. Third and last, the

N × n matrix of the state guesses y(i) for the i-th Picard iteration is

y(i) = CB (18)

The iteration process stops when the maximum state difference between two consecutive Picard

iterations y(i) and y(i−1) drops below a specified relative or absolute tolerance, upon user’s choice.

As already underlined by Fukushima13 and Bai and Junkins,14, 15 despite the proved theoretical

convergence, large integration spans may lead to numerical instabilities, due to the cumulation of

round-off errors even with large N as multiple orbital revolutions take place. Fukushima13 suggests

a piece-wise approach as a workaround, which has been implemented in this work and uses the

modified Picard-Chebyshev method to integrate orbit by orbit in sequence* until the end of the

span.

The core steps of the proposed algorithm follow the presented scheme,14, 15 together with the au-

tomatic generation of the Keplerian initial guess spanning one nominal orbital period. The proposed

implementation interfaces with SPICE ephemerides26 considering them a parameter of the Picard

iteration process, as will be better detailed in the following sections.

CONTINUOUS MULTI-FLYBY DESIGN IN THE RELATIVISTIC N-BODY PROBLEM

The chaotic nature of the flyby problem makes it necessary to keep a high precision level to get

an accurate prediction of the trajectory after a flyby. Here the reason to account for relativistic ef-

fects, as well as to keep all the considered tolerances low. The effects of solar radiation pressure

are neglected for now, nonetheless its future inclusion shall have no impact at all in the presented

algorithms as only a minor (indeed just another perturbation) update of the dynamical model will

be required. General relativity effects have been previously implemented by the authors of this

*The proposed implementation automatically handles either forward or backward integration.
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work,17, 22 based on the Post-Newtonian model of the Einstein-Ingfeld-Hoffmann equations as pre-

sented by Seidelmann.27 The same set of equations is used by the Jet Propulsion Laboratory (JPL)

for their simulations generating ephemerides data,26 which are also used in this work to fetch the

state of the N-bodies at each sampling time tj

The b-plane theory is used to prune the optimization of a given multi-flyby trajectory. Assuming

to know only some post-encounter macro-properties to be achieved such as semi-major axis, ec-

centricity, inclination and flyby planets and times, the overall algorithm can be summarized in two

steps:

1. Obtaining the unperturbed patched-conics solution using the b-plane theory, for the interplan-

etary orbits and the planetocentric details of all of the possibly multiple flybys.

2. Making the solution continuous in time and space, accounting for perturbing effects and ex-

ploiting them to minimize the corrections required to enter each next flyby.

The presented steps are explained in more detail in the following sections.

Patched conics b-plane solution for resonant orbits

Valsecchi et al.28, 29 found an analytical solution for the computation of the post-encounter orbital

parameters for a given b-plane point at the entrance of the sphere of influence. They successfully

identify fixed values of eccentricity and inclination that conserve the Tisserand parameter, for each

point belonging to a fixed semi-major axis circle. Although analytical, the relationship is unfortu-

nately algorithmic and highly non-linear: this makes it difficult to build the inverse relation, i.e. to

retrieve the b-plane entrance to the sphere of influence given the full set of post-encounter orbital

parameters, even in a numerical or optimization context as convexity cannot be in general ensured.

An alternative approach was developed in a previous work,17 defining an efficient optimization

problem that uses the spherical geometry relations that generate the b-plane circles. Provided that

the desired post-encounter condition is reachable and has the same Tisserand parameter of the pre-

encounter one, the algorithm finds the point (ξ, ζ) on a specified b-plane circle associated to the

rotation of U that gets the closest to the desired exit condition U′.

It is also possible to include some mission constraints, such as not getting too close to the planet,

as this implies only excluding certain portions of the circle/straight line, as well as including the per-

turbing effects according to the angular model (Δγ,Δψ,Δθ′). The values of such angles computed

on a specified b-plane point were shown to significantly improve the prediction of the transformation

of U into U′ also in the neighbourhood of the point itself.17

Specifically mentioning to the case of resonances, another optimization layer was developed:17

find a set of intermediate resonant trajectories to gradually move from an initial interplanetary orbit

to a final one, which is not reachable with a single flyby, for a fixed number of intermediate flybys.

In the unperturbed and patched conics context, 1-2 seconds only17 were required by a MATLAB®

implementation of this approach to design a set of resonant orbits with Venus, which are already

very close to the actual optimized mission profile from Solar Orbiter’s mission redbook.9

When accounting for perturbing effects in the b-plane, a modification of the circles is inevitably

introduced, as already shown in Figure 1. Nevertheless, the Δv variation due to perturbing effects

is much smaller than the difference between the two set of circles, in relative terms.17
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Integration method adaptation and precision assessment

Koblick16 used the modified Picard-Chebyshev method to integrate the two body problem in the

planetary environment accounting for several perturbing effects. In this work the focus is brought

toward an interplanetary application, with particular interest on the perturbations introduced by

the gravitational field of the major bodies of the Solar System. As already briefly mentioned, the

SPICE toolkit26 is used together with JPL’s ephemerides data to retrieve the states of the N bodies

at any integration step. This aspect has been noted to be the most computationally expensive task

in the general integration accounting for N-body effects, for instance making around 60% of the

total account in the work by Colombo et al.21 In fact, a binary source must be scanned seeking

for the closest saved samples, which must then be interpolated to fit the actual supplied time, for

each step and for each of the bodies in the integration. Time steps cannot be foreseen with the

standard integration methods, that continuously adapt the step size and sequentially move forward

or backward from a given state, thus requiring repeated toolkit calls.

Using the Picard-Chebyshev method brings a significant advantage to this regard: consider the

restricted N-body problem equation for a test particle written in barycentric Cartesian coordinates:

r̈(t) = −
N∑
i=1

μi(r(t)− ri(t))
|r(t)− ri(t)|3 (19)

with r(t), ṙ(t) and r̈(t) position, velocity and acceleration vectors respectively.

If the time t is used as the independent variable to integrate the motion of the test particle with the

Picard-Chebyshev method, it must be sampled a-priori on the Chebyshev nodes, by the definition of

the method itself. Using a dataset for the ephemerides data instead of requiring a custom integration

of the full N-body problem makes ri sole function of the time t. In turn, it is possible to sample also

the states of the N bodies a-priori, as the sampling times are never going to change through the whole

integration process, and such samples can be then given as input not only to the dynamics function

evaluation, but become a parameter for all the required Picard iterations. This aspect, together with

the parallelization possibilities offered by the method, can be used to speed up numerical simulations

in the interplanetary environment, provided that enough computational power is available and the

precision achieved is satisfactory.

This section aims indeed at discussing the accuracy of the method. Note that the inclusion of

general relativity effects does not add any conceptual complexity to the problem. The more complex

dynamics can be simply summarized as r̈(t) = f(ri(t), ṙi(t)) i = 1, ..., N , thus also the velocity

samples for all the N bodies are required to keep the ephemerides data as an integration parameter.

Furthermore the integration is performed piece-wise orbit-by-orbit, as suggested by Fukushima:13

new time nodes are generated, thus new ephemerides are sampled, one orbital period by one orbital

period until the end of the time span is reached, or only once for the time spent within the sphere of

influence in case of flyby phases.

Figure 2 shows the evolution of the relative position error with respect to JPL’s data for the

near-Earth asteroid 2010RF12 from 1st January 1989, 100 years forward in time, integrating in the

Sun-centered J2000 reference frame and varying the number of Chebyshev nodes per orbit from 15

to 200. Such asteroid was chosen because it performs a flyby of Earth, so that the hyperbolic phase

could be tested too. For each leg, the initial guess is the Keplerian solution, elliptical or hyperbolic

depending on the current status. The flyby time is known, so three legs in total are shown*. It can

*The flyby detection routine is necessary to use the integrator as a whole, nevertheless for the design purposes of this
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be clearly seen that the integration accuracy increases with increasing number of nodes per orbit,

depicted with the same color scale in all the sub-plots, and converges to the precision of a more

traditional simulation strategy plotted with the black solid line. The latter was performed using the

Runge-Kutta RK78 method, the same dynamical model was adopted in both cases*.

Figure 2: Picard-Chebyshev and Runge-Kutta RK78 integration errors, as relative position differ-

ence with respect to JPL’s data for the asteroid 2010RF12.

Event detection routines, such as for flybys or impacts, can complete the integrator as a whole.

Their implementation will be explored in future works. Figure 3 presents instead the relative re-

lationship between the execution time of the serial Picard-Chebyshev method and the number of

Chebyshev nodes. The almost linear relationship highlights once again the possible parallelization

benefits, which can be exploited to reach a high accuracy level increasing the number of nodes. A

detailed analysis of the absolute computational performances, including scalability, speedup proper-

ties and implementation language influence, will also be included in future works upon completion

of the whole integration strategy. To provide a first order of magnitude, a MATLAB® not par-

allelized implementation with a MEX® function for the dynamics† requires about 15 seconds to

complete all the three legs presented in Figure 2, on a single core of a local workstation equipped

work all the legs and times are known beforehand.
*The test case was extensively discussed by Masat17 for the validation of the implementation of relativistic effects.
†The MEX® function was generated with MATLAB®’s Code Generation Toolbox.
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with an Intel® CoreTM i7-7700 CPU (3.60 GHz).

Figure 3: Picard-Chebyshev serial execution runtimes for the asteroid 2010RF12.

B-plane pruned recursive optimization: reverse cascade flyby design

A recursive strategy for multi-flyby design can be built wrapping up the concepts presented so

far. The algorithm tries to give an optimal solution to the problem:

How should flyby j occur, so that flyby j+1 happens according to some already specified features
and accounting for any perturbing effect?

The b-plane design strategy17 provides a unique entrance (and thus exit) to the sphere of influence

in the patched conics approximation. All that remains to do, conceptually, is to properly provide the

interface conditions between the two legs, accounting for all the possible perturbations sources and

replacing the zero/infinity link with a continuity relationship. In the following lines the subscripts

in and out shall denote the specific points of entrance and exit to/from the sphere of influence for

the current flyby.

Consider the entrance conditions to flyby j + 1, happening at the time t
(j+1)
in , as the Sun-centric

position r(j+1)
in and velocity v(j+1)

in , already fulfilling the mission requirements for t > t
(j+1)
in to-

gether with possible future manoeuvres already defined.

Consider also a deep space correction maneuver happening at the time t̃ > t
(j)
out. The whole

entrance condition
(
t
(j+1)
in , r(j+1)

in , v(j+1)
in

)
is back-integrated in the perturbed environment with the

Picard-Chebyshev method to the time t̃ < t
(j+1)
in , obtaining the connection state (r̃, ṽ).

Assume that the unperturbed solution for flyby j is expressed in the b-plane formalism, which can

also mean a manipulation of the solution of a Lambert’s problem18 with the related planetocentric

phase and not necessarily from the already mentioned b-plane algorithm,17 particularly as the time

t(j), the b-plane coordinates (ξ, ζ), and the planetocentric outgoing asymptotic velocity U′.

Based on this, the time spent in the flyby phase δt(j) can be estimated with the time law for the
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hyperbolic motion*, forcing the remaining b-plane coordinate η such that the distance from the flyby

planet equals the radius of the sphere of influence. In turn, δt(j) can be used to get another estimate,

that is the actual exit from the sphere of influence t
(j)
out = t(j) + δt(j)/2.

The time t
(j)
out is actually the outer optimization variable of the proposed algorithm. Intuitively, the

estimate arising from t(j) and δt(j) might not be the best possible time when to abandon the sphere

of influence starting the phase toward flyby j + 1 and performing the minimum cost correction

maneuver at t̃, especially because of perturbing effects acting on the way. The claim that is made

treats t
(j)
out as a very good starting guess, optimizing over a ”perturbation” Δt(j) of the exit time and

bounding the search to a relatively small domain.

A similar reasoning is made for the b-plane coordinates (ξ, ζ) and the outgoing planetocentric ve-

locity U′, considering the unperturbed solution as initial optimization guess and searching over small

variations thereof. Theoretical support comes in this case from the results of the perturbed b-plane

circles: the relatively small difference between the selected points in the perturbed and unperturbed

cases suggests to use the variations of the b-plane coordinates (Δξ,Δζ) as two optimization vari-

ables and to bound them again in a relatively small search space. The set of optimization variables

is completed with ΔU′, a variation of U′ bounded in a small domain as well. Note that the usage of

the b-plane interface between flyby and interplanetary leg combined with the small bounded vari-

ation approach has also a more practical reason: despite working in a backward time recursion, a

perturbed trajectory that minimizes the maneuver cost at t̃ may in general excessively differ from

the mission requirements. The b-plane intrinsically constrains the interface to be an actual flyby,

furthermore the small and bounded search space should ensure a perturbed trajectory not too dif-

ferent from the desired profile for t < t
(j)
in . Given the initial values

(
t
(j)
out, ξ, ζ,U′) and the generic

variations
(
Δt(j),Δξ,Δζ,ΔU′), the initial conditions

(
r(j)out, v(j)out

)
at the time t

(j)
Δ = t

(j)
out+Δt(j) for

the forward Picard-Chebyshev integration from t
(j)
Δ to t̃ are uniquely defined through the following

steps:

1. the flyby planet’s state
(
r(j)p , v(j)p

)
can be retrieved by reading the ephemerides database for

the time t
(j)
Δ ;

2. from (ξ +Δξ, ζ +Δζ) the third b-plane coordinate η is fixed by requiring the distance from

the planet to equal the radius of the sphere of influence;

3. the b-plane coordinates (ξ+Δξ, η, ζ+Δζ) can be converted into the planetocentric cartesian

coordinates rpl, because the axes of the b-plane reference frame are uniquely defined as in

Equation (1) and the planetocentric velocity vector is U′ +ΔU′;

4. The Sun-centric coordinates
(
r(j)out, v(j)out

)
are retrieved by the simple summations r(j)out = rpl+

r(j)p and v(j)out = (U′ +ΔU′) + v(j)p .

The initial value problem is solved numerically forward in time with the Picard-Chebyshev

method, to the connection maneuver at t̃. It can be wrapped denoting the dynamics functions

rf (t) and vf (t), with t
(j)
out ≤ t ≤ t̃, for position and velocity respectively, and setting t0 = t

(j)
out,

r(t0) = r(j)out and v(t0) = v(j)out as initial conditions. In general,
(
rf (t̃), vf (t̃)

)
will differ from the

back-integrated state that leads to flyby j+1 through Δ̃r = rf (t̃)− r̃ �= 0 and Δ̃v = vf (t̃)− ṽ �= 0.

*Not reported here. See for instance Curtis18 for more details.
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The physics of the correction maneuver performed at t̃ embeds the mandatory constraint of the

position where it is to happen, theoretically defined as Δ̃r = 0. Note that the dynamical motion

is numerically integrated, thus leaving the maneuver position as a pure equality constraint might

severely affect the computational performance of the optimization: a full Picard-Chebyshev in-

tegration lives in between the function evaluation and the connection state, thus new numerical

integrations would be required for the constraint alone. At the opposite side, the actual maneuver

to be designed may not have any physical sense if omitted, as the continuity requirement may be

lost. Nonetheless, in a numerical context an absolutely negligible value of Δ̃r suffices to satisfy the

physical meaning of the correction maneuver. These observations led to the choice of explicitly im-

plementing the position constraint with a penalty method,30 that is penalizing the objective function

(the correction |Δ̃v| in this case) adding a large term direct function of the position difference Δ̃r.

Therefore, defining Jv =
∣∣Δ̃v

∣∣, omitting the explicit dependencies on the optimization variables

for conciseness and denoting the components of ΔU′ with ΔU ′(1,2,3), the general maneuver design

can be written as the following optimization problem:

minimize
Δξ,Δζ,ΔU′ Jv

(
t̃, t

(j)
Δ

)
+ αJr

(
t̃, t

(j)
Δ

)
subject to |Δξ| ≤ Δξmax,

|Δζ| ≤ Δζmax,

|ΔU ′(1,2,3)| ≤ ΔU ′(1,2,3)
max

(20)

with Jr =
∣∣Δ̃r

∣∣ and α sufficiently large. Finally, assuming the position constraint to be fulfilled in

the optimization problem of Equation (20) whose result gives J∗
v

(
t̃, t

(j)
Δ

)
+ αJ∗

r

(
t̃, t

(j)
Δ

)
, the outer

layer optimizing the flyby time consists of breaking down t
(j)
Δ into t

(j)
out +Δt(j):

minimize
Δt(j)

J∗
v

(
t̃, t

(j)
out +Δt(j)

)
subject to |Δt(j)| ≤ Δtmax

(21)

Note that no choice has been made yet about the optimization algorithms, which might be sensitive

to the search space size and the function relative steepness within the different regions. Moreover,

it should also be tailored on the available computational resources, i.e. preferring parallelizable

routines over dominantly sequential algorithms for high performance computing facilities.

The optimization problem of Equation (20) is a sub-problem of the optimization problem of

Equation (21). This somehow enhances the flexibility of the approach, i.e. the inner layer might be

used for search space exploration purposes without the need of a finely refined solution in terms of

starting time t
(j)
Δ . Note that both the layers are still explicitly dependent on the maneuvering point

t̃, which in fact can and for practical applications should be optimized as well. In this work it shall

remain a problem parameter, as more focus is put toward exploring the effect of small variations of

the departure time t
(j)
Δ . Completing the description, another optimization layer can be easily defined

to find the best t̃ similarly to what done for t
(j)
Δ in Optimzation Problem (21), and in the presented

formalism it shall straightforwardly include the innermost layer defined by the optimization problem

of Equation (20).

Some observations regarding the expected computational performances of the optimization can

be made based on the analysis of the Picard-Chebyshev integration method, already presented in
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Figure 2 for the accuracy behavior and Figure 3 for the computational time variation with increas-

ing number of Chebyshev nodes. Keeping on hold the parallelization possibilities, it can be said

that the higher the value of t̃ the higher the runtime will be, if the number of nodes per period is

kept constant. Note also that the optimization problem of Equation (20) is going to benefit from

the minimal ephemerides overhead as a whole: the boundary times are fixed, thus the ephemerides

dataset can be scanned only once and the related values can be considered as parameters not only

within the Picard-Chebyshev integration, but also for all the iterations of the optimization algorithm.

Finally, a high acceleration of the whole solution search process is expected with properly paral-

lelized implementations of both the integration method and the optimization algorithm. The penalty

approach30 used to define the optimization problem of Equation (20) allows for massively parallel

and brute force strategies to be implemented as well, because all the remaining constraints are of

boundary type.

APPLICATION: SOLAR ORBITER’S FIRST RESONANT PHASE WITH VENUS

The presented design procedure has been tested on a phase of the ongoing mission Solar Orbiter,8

particularly taking the initial data from the trajectory profile with launch in January 2018* available

in the mission redbook.9

For this concept validation phase, the algorithm has been entirely implemented in MATLAB®.

A small computational acceleration is introduced compiling the Picard-Chebyshev iterations into

a MEX® function with MATLAB® Coder™. The optimization problem of Equation (20) is solved

with the fmincon.m function of MATLAB®’s Optimization Toolbox, using both the Interior-point

and Sequential Quadratic Programming methods,30 based on the dimension of the search space.

Solar Orbiter’s first resonant phase with Venus is reproduced accounting for perturbing effects

from the N bodies and general relativity. Following the notation from the mission redbook,9 the

two gravity assist maneuvers are identified with V2 and V3, with V standing for the flyby planet

(Venus) and the numbers 2 and 3 representing the second and third close approach with Venus from

the mission launch, respectively. The interplanetary leg between the two flybys is identified with

V2-V3. The goal is to design flyby V2 so that V3 can lead to a desired post-encounter trajectory

almost ballistically, i.e. minimizing the correction maneuver required in the phase between V2 and

V3. The maneuver is designed with maneuvering time t̃ at the apocenter of the first nominal orbit

after V2, nevertheless as already mentioned even this aspect can and should be optimized.

Boundary conditions, b-plane pruning and method parameters

Generally, the required boundary condition is the state vector that allows a specified entrance

to flyby j + 1. It may come from a previous step of the presented flyby design algorithm, as the

output of the back-integration of
(
r(j+1)
out , v(j+1)

out

)
, or simply being given, if no close approach is to

happen after flyby j + 1. Considering the Solar Orbiter-like mission, flyby V3 may be entered as

the following interplanetary state:

r(j+1)
in =

⎧⎨
⎩
−67036625.74
−85735252.56
2558691.33

⎫⎬
⎭ km, v(j+1)

in =

⎧⎨
⎩

30.54
−4.05
1.79

⎫⎬
⎭ km/s, t

(j+1)
in = 8119.84 MJD2000

(22)

*Later discarded, the actual mission left Earth on February 2020.
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Solar Orbiter’s first resonant phase with Venus is in a 3/4 resonance, which means that in the

unperturbed and patched conics case flyby V2 is to happen 3 Venus’ periods before flyby V3, and

in the meantime Solar Orbiter would have travelled for 4 of its orbital periods. The output of the b-

plane preliminary optimization layer17 enforcing the 3/4 resonance has given the following pruning

quantities:

{
ξ
ζ

}
=

{
8484.11
6432.19

}
km, U′ =

⎧⎨
⎩

3.08
17.78
3.66

⎫⎬
⎭ km/s, t

(j)
out = 7446.50 MJD2000 (23)

The maneuvering time is set as a parameter, particularly at the nominal* apocenter of the first

interplanetary resonant orbit. For the starting guess:

r̃ =

⎧⎨
⎩
−133539124.84
−31992755.47
−4424590.99

⎫⎬
⎭ km, ṽ =

⎧⎨
⎩

5.08
−20.43
1.65

⎫⎬
⎭ km/s, t̃ = 7570.89 MJD2000 (24)

The maximum values where to bound
(
Δξmax,Δζmax,ΔU

′(1,2,3)
max

)
have been set as 1% of the im-

pact parameter19 b =
√

ξ2 + ζ2 and of |U′| for the b-plane coordinates and the velocity components

respectively. The boundary value for the exit time variation Δtmax is set to 1% of Venus’ orbital

period. Trivially, the optimization starts with all the variables
(
Δξ,Δζ,ΔU′,Δt(j)

)
set equal to

zero. The cost functions Jr and Jv are in all the cases computed as the relative values |Δv|/|ṽ| and

|Δr|/|r̃| with respect to the known maneuvering point, to remove the possible dimension sensitivity.

Specifically for the Picard-Chebyshev method, 160 nodes per period are used and the iterations

are stopped when the maximum of the relative difference between two consecutive state updates

drops below 10-14. The first arc to be designed, i.e. the one defining the optimal exit and the

maneuver, spans less than one orbital period, thus proportional nodes to the defined 160 per period

based on its total time length are set, according to the fixed nodes per period logic. The optimal time

found is then used for a single run of the optimization problem of Equation (20) with 200 Chebyshev

nodes, assessing the influence of the number of nodes in the design precision, comparing both the

node cases against a relativistic simulation.

Optimization implementation

Despite the narrow region where the optimization variables are set to vary, it has been observed

that even the smallest variations have a relevant impact in the convergence of the algorithm, es-

pecially if the position constraint is made strict. For this reason and to keep a robust approach in

the concept validation phase, the optimization problem of Equation (20) is solved several times in

cascade, using the result of the previous step as the new starting guess. Particularly:

• the search space dimension is reduced by 10 times for each optimization probelm, up to an

absolute minimum of 10-8 starting from the already introduced ± 1% for each variable;

• within the optimization solver, the initial minimum relative step size between two iterations

is of 10-6, reduced by a factor 10 each time up to 10-15;

*It is set as if the orbital parameters were exactly equal to the desired trajectory after the maneuver, assuming the

difference between pre and post maneuver orbits to be small.
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• the penalty factor α is initially set to 105 to improve the convergence also for the Jv contri-

bution, although the position constraint is then made stricter by raising the value of α by a

factor 10 each time, up to 109;

• the the ”interior point” algorithm in fmincon.m is selected for the first half optimization

problems, whereas ”sqp” is used in the last ones because of the smaller search space;

• MATLAB®’s globalsearch algorithm solves the current optimization problem if the pre-

vious step has returned the starting guess without improvements, searching for a global min-

imizer*.

the optimization problem of Equation (21) is solved with a grid search approach. The time span

is always sampled with the initial supplied value plus 40 evenly spaced values of Δt(j), reducing

Δtmax by a factor 10 for 5 times, from the initial grid size equal to ± 1% of Venus’ orbital period.

The best value from the previous search is used as starting point for the new one. This approach

resembles the algorithm used in MATLAB®’s patternsearch.m function, implemented manu-

ally in this work to keep a low number of trial Δt(j) in this concept validation phase.

Note that both the function fmincon.m and the algorithm implemented for the outer layer

can run in parallel. Direct search methods are particularly suited for parallelization, the possible

implementation in high performance computing facilities might abandon descent algorithms like

”interior point” and ”sqp” in favour of a finer and parallel domain scanning strategy.

Results

Solving the optimization problem of Equation (20) with the above described implementation took

about 2-3 minutes on a single core of a local workstation equipped with an Intel® CoreTM i7-7700

CPU (3.60 GHz).

The 200 nodes algorithm† converged to the following residual Δr∗ and impulsive action Δv∗ for

the required maneuver:

Δr∗ =

⎧⎨
⎩
−1.92
−1.23
1.81

⎫⎬
⎭m, Δv∗ =

⎧⎨
⎩
−0.88
0.85
1.59

⎫⎬
⎭m/s, (25)

One should note both how small the correction effort is, despite the execution point t̃ is yet to be

optimized, and the fulfilment of the position constraint. The presented maneuver is modeled as a

single impulse, nevertheless given its magnitude it can be easily achieved by the current low thrust

propulsion technologies:

|Δv∗| = 2.01 m/s,
|Δv∗|
|ṽ| = 9.49× 10−5

|Δr∗| = 2.91 m,
|Δr∗|
|r̃| = 2.12× 10−11

(26)

*For performance reasons a maximum of half of the iterations can run the global search, in any case the presented test

case at most two were experienced out of all the ten steps.
†The difference with the Δv resulting from the 160 nodes run is negligible, the position constraint is slightly worse

fulfilled but in the same order of magnitude.
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Most of the computational time was required to fulfil the position constraints. If the presented

algorithm was to be used with a wider but still good position tolerance, it is likely to run significantly

faster even before its parallel implementation.

The best starting time t
(j)∗
out was found to be slightly higher than the initial guess t

(j)
out, and together

with the interplanetary optimal starting state the initial condition is

r(j)∗out =

⎧⎨
⎩
−64960081.70
−85998322.99
2681916.07

⎫⎬
⎭ km, v(j)∗out =

⎧⎨
⎩

31.01
−3.44
1.78

⎫⎬
⎭ km/s, t

(j)∗
out = 7446.52 MJD2000 (27)

Retrieving the b-plane coordinates (ξ∗, ζ∗) and the planetocentric velocity U′∗ from
(
r(j)∗out , v(j)∗out

)
and Venus’ position at t

(j)∗
out proves the optimal pruning brought by the b-plane prediction

{
ξ∗

ζ∗

}
=

{
8484.69
6542.04

}
km, U′∗ =

⎧⎨
⎩

3.26
17.76
3.67

⎫⎬
⎭ km/s (28)

The value of ζ∗ looks slightly (0.02%) out of the initial bounds despite the constraint, which may

have two different explanations. First, the optimization variables are updated concurrently: varia-

tions on U′ also change the orientation of the b-plane axes, which in turn result on different b-plane

coordinates for a given fixed position in space. Secondly, the domain reduction sequential procedure

may find a minimum close to the initial boundaries, centering there the next narrower search. The

difference is in any case rather small in magnitude.

Figure 4 shows the difference between the designed trajectory with respect to the a relativistic

simulation of the same case, both featuring the optimized maneuver at t̃. It can be observed that

the two trajectories basically coincide even if using the lower number of Chebyshev nodes, for

a relative difference that remains in the order of 10-8 and as expected from what already seen in

Figure 2. Again as expected the higher number of nodes brought a more accurate solution, with

the difference from the relativistic simulation reduced by more than 10 times. Even if small, the

error inevitably cumulates and gets amplified if multiple gravity assists are present, thus an higher

number of nodes should be kept the more precise the design needs to be. The periodic ”hills” visible

in Figure 4 happen far from the domain boundaries where the nodes are thicker*. They are likely

due to the interpolation of the Picard-Chebyshev solution over the simulation time steps, necessary

to compute the presented difference measurement. The impact of the correction maneuver, despite

small, can also be assessed: at the time of the close approach V3 the position would differ of

thousands of kilometers from the desired condition, definitely destroying the correct occurrence of

the flyby.

Finally, Figures 5a and 5b show the continuous trajectory that embeds the planetocentric phases

for both the flybys V2 and V3, togehter with the pre-V2 and post-V3 solutions and all generated

with the Picard-Chebyshev approach. As expected they are all very similar to the original mission

profile (Figure 5a), and zooming over the flyby regions the new continuity feature can be recognized

(Figure 5b).

*Because of the definition of Chebyshev nodes in Equations (11) and (12).
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Figure 4: Design difference with respect to relativistic simulation between V2 and V3 for the two

node cases, and without manoeuvre.

(a) Deep space correction maneuver and overview. (b) Zoom over Venus’ flybys V2 and V3.

Figure 5: Solar Orbiter’s continuous first resonant phase with Venus.

CONCLUSION

The complexity of the multi-flyby design problem in the continuous environment was success-

fully broken down into a backward recursive approach that designs each of the flybys in cascade,

considering the next encounter as the target condition for how to perform the current one. Given

the results of an unperturbed patched conics analysis, the b-plane was proven to be a powerful for-
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malism to enforce a continuity condition with, and particularly well suited for pruning purposes,

making the dimension of the optimization search space minimal.

A first possible development direction is the inclusion of tighter mission constraints, such as a

minimum pericenter distance as Solar Orbiter8 needs. This aspect might be tackled with the pro-

posed strategy before the design of any manevuer, seeking for quasi-ballistic solutions that surf the

effects of orbital perturbations, even if chaotic, aiming to minimize the required artificial correc-

tions.

Despite it might be already satisfactory, the computational performance of the method is for sure

what can be improved the most by future works. First of all, the serial execution can be accelerated

by a complete implementation in a compiled programming language, instead of the MATLAB®

platform as proposed in this work. Furthermore, although the sequential multi-step solution of the

optimization problem of Equation (20) proposed in the presented application is extremely robust, it

could be better tailored by prior analysis of the search space or made more lightweight already scan-

ning with finer tolerances. Most importantly, the whole approach can and is built to be parallelized,

both for the Picard-Chebyshev method and the solution of the optimization problem.

Finally, a systematic framework about how to surf a complex perturbation environment such as

the relativistic N-body problem is proposed. Provided the model to be sufficiently accurate, the

available technology might become the new bottleneck for practical purposes: some uncertainty is

inevitably introduced by the execution of the control maneuvers, as well as the connected orbital

determination measurements. Future works might also deepen this aspect using models of real life

equipment, studying in turn what consequences non-precise measurements or thruster firings might

have on the high-fidelity designed trajectory, together with the possible required mission planning

actions.

Looking to possible applications in other environments, the presented approach may be used

in the design of moon tour missions towards the giant planets, which feature the available fuel

as a major constraint. Quasi-ballistic solutions are always sought for, to swing by the numerous

bodies multiple times maximizing the exploration outcome. For instance the currently being planned

JUICE31 could benefit from this design strategy, since moving from the interplanetary to the jovian

system would not require major changes at all.
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