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A B S T R A C T

High accuracy in Equations of State (EoSs) is becoming a more and more critical aspect for design and opera-
tional purposes in different areas of chemical and process engineering. It is well-known that improper pre-
dictions of mixture properties provide large deviations in process simulations, process control actions,
estimation of operative conditions, assessment of performance indexes and optimal unit/process design.
These deviations are strongly emphasized when typical operating conditions appear rather severe. One of
the most challenging application sectors is represented by cryogenic separations and especially in case their
nominal operating conditions approach the critical point. Air Separation Units (ASUs) are the ideal applica-
tion field to demonstrate these criticisms. In addition, dedicated EoSs sometimes lacks in implementation
details and thermodynamic parameters, making the reliability target impossible to be achieved. The present
paper is aimed at bridging the current gaps in the implementation of Bender EoS for the reliable prediction
of air mixture properties as well as the reliable simulation of ASU plants. The implementation requires the
description of robust and efficient algorithms. At last, a quantitative comparison between the proposed
approach and the existing solutions is provided.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Accurate thermodynamic modeling is fundamental for a precise pre-
diction of fluid properties, especially in the case of mixtures. The demand
for high accuracy thermodynamicmodels has always been very high and
it is also ever-increasing due to the necessity of processes optimization
and energy efficiency [13,31,38,39,46,66]. Process System Engineering
could be represented as a series of interconnected layers and in this
image, the thermodynamic modelling and consequent robust-efficient
properties estimation algorithms are the core of this structure [27]. It is
well-known that more accurate predictions result in a more reliable pro-
cess design parameters estimation [11,17,20,23,53,55,67], an optimal
operative conditions definition [16,18,35,77,95,97], a better units design,
a more clear estimation of investment and operative costs [39], more
performing process control and a higher reduction in energy consump-
tion [56,60,71].

In the 1970s, the request for accurate thermodynamic models was
partially satisfied by Cubic Equations of State (CEoS) such as, for
example, the Soave-Redlich-Kwong (SRK) CEoS [76], and the Peng-
Robinson (PR) CEoS [62]. Their developments were originally based
on physical principles and they had a theoretical background. They
are still considered as best practice in many areas of application given
their easiness in numerical implementation (i.e., availability of the
analytical solution) and domain application adaptability [3,9,19,61].

CEoS offer the opportunity to develop modified relationships
based on their original structures, for instance, PR EoS are modified,
mainly:

- In the energy terms [52,85] with theoretical studies on the defini-
tion of the main parameters involved [43];

- In the estimation of the coefficients for enlarging the feasible
domain towards the critical point [14,36,65];

- On the mixing rule parameters [85,91];
- By introducing additional terms to increase prediction accuracy
and flexibility [85].

Remarkably modified PR-type EoS have an increased number of
parameters and they are called three- and four-parameters EoS.
Some examples are reported as:

- PTV, reported by Patel-Teja-Valderrama [25,59,86];
- PRSV, developed by Stryjek-Vera [78,79];
- TB, proposed by Trebble-Bishnoi [82�84].
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List of symbols

P Pressure [kPa]
T Temperature [K]
dm Molar density [mol/L]
R Ideal gas constant [J/(mol¢K)]
zk k compound generic phase molar

fraction
xk k compound liquid molar fraction
yk k compound vapour molar fraction
z Composition vector
x Liquid phase composition vector
y Vapour phase composition vector
ai,k i-th Bender fitting parameters for k pure

component (see Appendix A)
ai, B, C, D, E, F, G, H Mixing coefficient in Eq. (1) (see Appen-

dix A)
aFi ; BF ; CF etc Mixing coefficient in fugacity definition

Eq. (3) (see Appendix A)

Subscripts and superscripts
k Index for component: Nitrogen (1),

Argon (2) and Oxygen (3)
i Index for Bender fitting coefficients for

pure components (i = 1, 2, 3, . . .20)
N2 Nitrogen
Ar Argon
O2 Oxygen
vap Vapour phase
liq Liquid phase
F Fugacity coefficients subscript
V Vapour phase superscripts
L Liquid phase superscript

Greek lettersbf Fugacity coefficient in mixture
V Omega function Eq. (7)
Q Exponent of fugacity coefficient Eq. (3)
a, b, g Matrix elements (see Appendix A)
e Relative error

Acronyms
ASU Air Separation Unit(s)
BWR Benedict Weber Rubin NCEoS
EoS Equation of State
CEoS Cubic-type Equation of State
NCEoS Non-Cubic Equation of State
NLS Non-Linear System
PR Peng-Robinson (EoS)
SRK Soave-Redlich-Kwong (EoS)
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To achieve additional reliability in predictions, recently many
research activities have been focused on the development of Non-
Cubic EoS (NCEoS) for both pure compounds and mixtures, which are
not any longer based on theoretical principles, but derive from dedi-
cated experimental data fitting [41,48].

Nevertheless, their application field is still rather limited to few
components since the computational effort required is rather costly
[21,47, 49,51,90,93].

An extensive application area for the NCEoS is represented by air
liquefaction which involves, actually, few components: nitrogen, oxy-
gen, argon, carbon dioxide, and several other impurities, mainly
traces of nitrous oxides and light hydrocarbons [1,24,81]. Assuming
that all the impurities, including carbon dioxide, are preventively
removed, the purified air mixture is an ideal field for NCEoS develop-
ment, validation, and application. For this reason, one of the most
widespread thermodynamic model adopted in Air Separation Units
(ASU) simulation and optimization, both in scientific and technical or
industrial communities, is the Bender NCEoS [5,7,26,72,94].

ASUs have been thoroughly analysed from different points of
view: optimal process design, static and dynamic simulation
[2,54,92,97], thermodynamic modelling [37,48,73,88], integration
and coupling with other plants [35,50], and finally optimization and
operation planning [34,95,96]. Many engineering, procurement, and
construction (EPC) companies working in the ASU business emphas-
ised some issues and troubles related to ASU design and operation
especially in terms of the reliability in thermodynamic models of the
side-column for argon-oxygen splitting and thermal efficiency of the
cold box [2,54,87,92]. Thermodynamic models are the primary aspect
for overcoming these difficulties and improvements have been made
in this direction. In fact, all the experimental campaigns performed
since the 1950s indicate that there is a high interest in obtaining
accurate data needed to improve thermodynamic model prediction
reliability, as reported in several works [22,42,48]. Lemmon et al. also
report some of the most relevant works concerning experimental
data campaigns on air mixtures. More recently, some works have
tried to compare the performance of different EoS suitable for ASU
simulation. As reported in Fu and Selinger works [26,72], a modified
version of PR CEoS and Bender models are the most used thermody-
namic models to simulate and design ASU despite the focus of the
past years to improve BWR NCEoS [37,73,88]. However, Bender
NCEoS is currently the most reliable and established thermodynamic
model for industrial applications [33,94] although it is not directly
implemented in the most common process simulators (e.g. AspenOne
Suite, PRO II, and UniSim Design). The Bender NCEoS success
could be explained by the failure of the modified PR equations of
state since they show several numerical issues with a decrease in
reliability in some portions of the operative condition domain,
especially close to the triple point and in some cases also close to
the critical one [33]. Nevertheless, a proper handling of Bender
NCEoS is required in order to obtain reliable and accurate results
due to its intrinsic nonlinearity.

Thanks to its tuneable accuracy, Bender’s model has been also
applied to other mixtures, such as ethylene and propylene [4,10], but
also to more complex mixtures such as natural gas, for instance,
methane, propane, n-butane, and n-pentane [15,29,74,80]. Some
attempts to generalize the Bender model for accounting more com-
ponents and in wider applicability ranges are present in literature
[68�70]. Also, some applications in the field of carbon capture and
sequestration have also been implemented [32].

Despite all the above improvements and attempts to provide
accurate thermodynamic models, the main issue is still the robust-
ness of the numerical solution. Many researchers implemented effi-
cient algorithms for CEoS in process simulators in order to reduce the
computational effort, also increasing numerical accuracy while others
proposed several numerical techniques to effectively calculate mix-
tures thermodynamic properties such as compressibility factor and
so forth also close to the critical point [30,44,45].

This is not yet the case for the Bender NCEoS and, more in general,
the NCEoS family.

In this paper, the Bender NCEoS is introduced in Section 2. A
robust and efficient algorithm to solve both bubble and dew prob-
lems is proposed in Section 3. The case study and related results are
provided in Section 4. In particular, the implemented algorithm and
NCEoS are compared to the NIST NCEoS [48] for the dry air mixture.
The NIST NCEoS has been set as a reference due to its high accuracy
(relative error generally less than 0.5%). This work aims at proposing
a suitable algorithm to solve the bubble and dew problem. The pro-
posed procedure may be applied for other NCEoS.



Fig. 1. Error in pressure prediction for deviation (+1% green and -1% red bar) around the phase density root (A � vapour and B � liquid phase) for different ternary mixtures with
different oxygen contents: (1) N2-rich, (2) Ar-rich, (3) O2-rich, and (4) dry air. Data are reported from Bender’s work appendix.

F. Bisotti et al. / International Journal of Thermofluids 10 (2021) 100083 3
2. Bender equation of state: general function shapes and features

Bender NCEoS is a development of the Benedict-Rubin-Weber
(BWR) NCEoS specifically tailored for the air components, i.e., nitro-
gen, argon, and oxygen. Bender provided a set of twenty fitted coeffi-
cients for each pure component and suitable mixing rules (i.e., linear,
geometric, and Lorentz-type) to evaluate the corresponding mixing
parameters. Those coefficients directly derive from regressions per-
formed on experimental data and they are available on Bender’s
works [5�7]. Techniques and strategies for numerical regression are
reported in the same works. As stated by Bender, among the many
empirical equations of state published, only two have been largely
applied for predicting phase equilibria in the nitrogen-argon-oxygen
system. It is well known that BWR NCEoS is not suitable for use in the
liquid region of both pure fluid and mixtures. Whereas SRK and PR
CEoS, despite their capacity to easily fit experimental pressure-tem-
perature-volume data at low-density gas region or those of the liquid
region, have unique sets of coefficients that, even if these are temper-
ature dependent, are not able to provide good accuracy and reliability
on the whole range of temperature and pressure. Bender NCEoS tries
to achieve a good representation of the gas region as well as of the
condensed phase including the two-phase region with one single
function (E. Bender, 1973). The constitutive relationship among pres-
sure, temperature, composition, and molar density (dm) is given

PEoS T ;dm; zð Þ ¼ dmT Rþ a1 � a2
T

� B
� �

dm þ Cd2m þ Dd3m

þ Ed4m þ Fd5m þ Gþ Hd2m
� �

d2m ¢ exp �a20d2m
� �

266664
377775
ð1Þ

Mixing coefficients and corresponding rules are also available in the
literature and a smart implementation exploiting matrix and vector prod-
ucts to speed up calculations has been already proposed [8]. This proce-
dure is especially recommended in phase equilibria problems in order to
avoid repetitive time-consuming operations. Bender provided also the
expression for the fugacity in a mixture of each component. As in the pre-
vious case, the mixture coefficients are analytically evaluable and matrix-
vector products are suggested. For more details see appendix A.
bfk T; dm; zð Þ ¼ RTdmzk ¢ exp uð Þ ð2Þ
where the exponent is defined as follows

u T ; dm; zð Þ ¼ 1
R
¢ aF1 þ

2aF2
T

� 2BF

� �
dm þ 3

2
CFd2m þ DFd3m þ EFd4m þ FFd5m

þ b1 � b2 � b3 þ b4ð Þ a20;k
a20

� �1
2

" #
d2m

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð3Þ

The main issue concerning the Bender NCEoS is the steepness
of the constitutive law around the density root: when a small
density variation occurs the pressure value error is greatly magni-
fied. Indeed, as shown in Fig. 1, for a displacement of 1% around
the correct molar density value the pressure predictions, accord-
ing to Eq. (1), are highly affected. This demonstrates that the
Bender model is strongly steep around the density root, especially
for the liquid phase which is very common for CEoS and NCEoS.
Function steepness decreases for temperature increment and it is
inversely proportional to the oxygen and argon content. These
trends are fully understandable in the light of the numerical tech-
niques that Bender applied to obtain the fitting parameters for
pure compounds [5].

The sensitivity analysis has been conducted on both ternary and
binary mixtures. The results are reported in Figs. 1 and 2 for ternary
mixtures whereas for binary mixtures in Appendix C. The sensitivity
analysis has been mainly devoted to identifying the steepness of
Bender function around the density solution. In Fig. 1 it is shown the
pressure variation for increment (green bar) and decrement (red bar)
of 1% of density phase. Fig. 2 depicts the derivatives in the density
root point. Four ternary mixtures have been analysed: composition
vectors are here ordered as z = [N2 Ar O2]:

� N2 - rich mixture z = [0.95 0.005 0.045]
� Ar - rich mixture z = [0.05 0.855 0.095]
� O2 - rich mixture z = [0.05 0.095 0.855]
� Dry air z = [0.80 0.02 0.18]



Fig. 2. Derivations in the phase density root point (1 � vapour and 2 � liquid) for different mixtures composition: N2-rich (blue), Ar-rich (green), O2-rich (red) mixtures, and dry air
(yellow). Compositions are ordered as listed in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Moreover, the derivative in density-root point has been evaluated
and the results are reported in Fig. 2. This chart shows once again
that Bender NCEoS is a steep function in the root point. This means
that the gradient-oriented Non-Linear System (NLS) solver should be
opportunely tuned in order to guarantee convergence.

To summarize, these Fig.s depict the general features of the
Bender NCEoS:

� The steepness around phase density solution especially for vapour
phase;

� The steepness is directly related to the mixture composition: mix-
tures enriched in nitrogen exhibit a more regular profile, while
the worst case is represented by mixtures containing mainly oxy-
gen;

� The deviations in vapour density are magnified for increasing
temperatures, while the opposite is verified for liquid density;

� Larger errors associated with density deviation are encountered
for high oxygen content both for vapour and liquid phase.

Further details for binary mixtures are reported in Appendix C.

2.1. Bubble and Dew problems formulation with Bender EoS

In bubble and dew problems when CEoS are applied, the
unknowns are a thermodynamic variable (either temperature or
pressure) and one phase composition, the vapor one for the bubble
problem or the liquid one in the dew case [64,75]. Owing to the non-
linear constitutive law interconnection among pressure, tempera-
ture, density, and composition, phase density is an additional
unknown since the compressibility factor cannot be directly calcu-
lated. Therefore, the presence of molar densities as additional
unknowns slightly modifies the system:

bfV

k T ;dV ; yð Þ ¢ yk � bfL

k T; dL; xð Þ ¢ xk ¼ 0 k ¼ 1;2;3
PV
EoS T ;dV ; yð Þ � P ¼ 0
PL
EoS T ;dL; xð Þ � P ¼ 0P

k xk � 1 ¼ 0 or
P

k yk � 1 ¼ 0

8>>>><>>>>: ð4Þ

bfk

ðaÞ
is the fugacity coefficient in mixtures of the k component in

the generic phase a coefficient and it is a function of temperature,
phase density, and composition. In order to partially simplify the
system and guarantee phase composition consistency, it is worth
removing the stoichiometry equation ensuring a molar fraction nor-
malized composition (i.e., y3 = 1 � y1 � y2 or x3 = 1 � x1 � x2). Taking
advantage of this substitution, the current system becomes:

bfV

k T ;dV ; y1; y2ð Þ ¢ yk � bfL

k T; dL; x1; x2ð Þ ¢ xk ¼ 0 k ¼ 1;2;3
PV
EoS T ;dV ; yð Þ � P ¼ 0
PL
EoS T ;dL; xð Þ � P ¼ 0

8><>: ð5Þ
3. Methods and algorithms

The development and the numerical strategies adopted to solve
bubble and dew problems using Bender NCEoS will be described. Dif-
ferently from what was presented in Bender’s work, where simplified
forms of bubble and dew problems have been partially dealt with,
here, a solution strategy is proposed. Algorithms are proposed in a
chronological evolution in order to emphasize additional issues that
arise in each step and the numerical strategies adopted to improve
the algorithm stability, reduce the computational time , and enhance
the numerical precision . The algorithms have been implemented in
Microsoft Visual Studio C++ 2013 and the numerical routines for the
solution of the NLS have been taken from the BzzMath numerical
library developed at Politecnico di Milano [12].

3.1. Standard algorithm and sensitivity analysis

The strategy adopted to achieve a numerical solution for NLS pre-
sented in Eq. (5) tries to decompose the global problem into simpler
sub-problems. In this perspective, it is possible to handle smaller
problems whose solution is less complex and time-consuming. The
partial results of the different sub-problems enable to obtain of reli-
able values for the unknown variables. These partial results are then
reused as guess values for the unknowns to solve the global problem
in Eq. (5). More in detail, initially, it is worth removing the phase den-
sity dependence since it is an unknown of the problem and it appears
both in Eq. (1) and Eqs. (2) and (3). Generally, in CEoS, the phase den-
sity can be calculated a posteriori once the compressibility factor has
been estimated. In Bender’s model, density is part of the thermody-
namic model, hence, it is not possible to remove this dependence.
The decoupling of pressure and fugacity is a key aspect to simplify



Table 1
Dependence of main parameters
temperature (T) and composition
(z): (☒) absence of dependence,
(☑) strong dependence, and (par-
tially) means weak dependence,
i.e., coefficient variation does not
change the order of magnitude.

T z

a1 ☒ ☒

a2 ☒ ☒

a20 ☒ partially
B ☑ partially
C ☑ partially
D partially ☑

E partially ☑

F partially ☑

G ☑ ☑

H ☑ ☑
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the general problem. Finally, considering that both nitrogen, argon,
and oxygen are nonpolar compounds, it is acceptable that the liquid
phase should not show a strong nonideal behaviour even in cryogenic
conditions as already proven [28].

Taking advantage of that:

� Decoupling Eqs. (1) and (2) implies removing density dependence,
� N2-Ar-O2 liquid phase does not show deviation from ideal behaviour,

a simplified approach is to solve the Raoult law, as stated in Eq. (6).
The Raoult problem solution provides as results temperature or pres-
sure and the unknown phase composition independently from the
density phase. Vapour tension relationships are taken from [63]

P ¢ yk � Psat
k Tð Þ ¢ xk ¼ 0 k ¼ 1;2;3

Sxk � 1 ¼ 0 or Syk � 1 ¼ 0

(
ð6Þ

These partial results, now, are applied on the Bender EoS Eq. (1) to
directly evaluate the corresponding phase density. Hence, the Raoult
problem allows handling a simplified problem and, consequently, to
build the first guess values to be provided to the original global non-
linear system Eq. (5). The standard algorithm works properly in the
middle range, i.e., far from the triple and critical points. Indeed, close
to these region boundaries, it is not able to reach a solution or the
solution is even physically not acceptable. This instability is mainly
related to general features of the Bender NCEoS previously explained
and the possibility to violate feasible constraints imposed on thermo-
dynamic variables. In Section 3.2 a proof on how to handle these
infeasibilities is presented.

3.2. Robust algorithm implementation

To ensure stability on the whole domain, a sensitivity analysis has
been done on the mixing parameters appearing in the constitutive
relationship Eq. (1). This has been performed by changing composi-
tion at fixed temperatures. Temperature values have been selected to
cover the whole vapor-liquid equilibrium region. The results of the
sensitivity analysis are listed in Table 1. The 3D-charts and quantita-
tive analysis are given in Appendix B. The 3D-charts provide a more
detailed picture of the virial coefficient variation as a function of tem-
perature and phase composition.

The sensitivity analysis shows that a few coefficients are not
affected by the parameters variation while the majority is sensible at
Fig. 3. Dry air omega function both fo
least to one parameter. Moreover, this preliminary study emphasizes
the main issue related to bubble and dew problems with Bender
NCEoS: in certain portions of the domain it is possible to achieve a
negative pressure which pushes the NLS towards unfeasible solutions
and the numerical solver is not able to recover and re-fall in the
region even though constraints are set to the solver for the variables
in question. This behaviour has been noted to be more common in
case of dew problems as will be shown in the results section espe-
cially for temperatures close to triple and critical points. To avoid this
unphysical behaviour a new algorithm is here proposed. According to
the Bender thermodynamic model, the predicted pressure for a
generic phase is defined as in (1)

PEoS T ;dm; zð Þ ¼ dmT Rþ a1 � a2
T

� B
� �

dm þ Cd2m þ Dd3m þ Ed4m

þ Fd5m þ Gþ Hd2m
� �

d2m ¢ exp �a20d2m
� �

266664
377775
ð1Þ

Omega term is defined as

V T; dm; zð Þ ¼ Rþ a1 � a2
T

� B
� �

dm þ Cd2m þ Dd3m þ Ed4m þ Fd5m

þ Gþ Hd2m
� �

d2m ¢ exp �a20d2m
� � ð7Þ
r vapour (A) and liquid (B) phase.



Fig. 4. Robust algorithm logical scheme for each NLS Solver Iteration.
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Eq. (7) manages and determines the sign in Eq. (1). Therefore,
major efforts should be focused on the general trend of the Omega
function according to the phase involved (i.e., liquid and vapour). For
more details, refer to Appendix D

As depicted in Fig. 3, the Omega function, both for the liquid and
vapour phases, can be split into two different regions: the positive
and the negative one. These two regions are separated by the zeros
level line (orange dots also called boundary line) whose projection is
also drawn (dark red points). The Omega function resembles a con-
strained optimization problem with a fixed Pareto-front [58] which
divides the feasible region (positive Omega function) from the unfea-
sible one, hence, the nonlinear system (NLS) can be solved as a con-
strained optimization problem [89]. However, in this case, a NLS
solver has been used even though theoretically also a constrained
optimization algorithm may be applied. To avoid any unfeasible
behaviour of the nonlinear system, the phase density solution should
be sought within the positive domain of the Omega function. At each
iteration, the solver guessed solution is checked externally to prevent
any issues and divergence from the feasible region:

Temporary composition, temperature, and phase density are
exploited to evaluate the phase Omega function,

If the calculated point:
2.1 falls within the feasible region, the guessed values are kept
and the NLS solver can perform the successive iteration;

2.2 on the contrary, the density value is modified according to
(2.2.1 and 2.2.2)

2.2.1 keeping the parameters constant (pressure, temperature,
and phase molar composition), it is possible to search for the molar
density root such that the Omega function nullifies (i.e., move to one
of dots along the orange line)

2.2.2 a temporary value is furtherly modified in order to move
inside the feasible region: slightly increased for the liquid density
and decreased for the vapor phase, as depicted in Fig. 3.

2.3 solution check: if the NLS solver has not converged to a
solution, the solver proceeds with a new iteration and the proce-
dure restarts from step n.1, otherwise, the NLS has found the
solution.

The procedure is illustrated in Fig. 4.
Moreover, at each step, an additional hint to enhance the solver

convergence has been deduced by looking at both the equilibrium
equation and the Omega function shapes. From the NLS emerges that
the constitutive law must be satisfied both for vapor and liquid
phases. At the predicted equilibrium, the pressure is equal and uni-
form within the system, therefore, taking advantage of this physical



Fig. 5. Comparison between Bender function (solid blue line) and Taylor-expansion curve trends at different order: right-hand-side graphs show details of the overlapping between
Bender function and fifth-order expansion model. Curves obtained for 85 K, 98 kPa, zN2 ¼ 0:2089 and zO2 ¼ 0:6879 and first-guess liquid density value d0m ¼ 34:144 mol ¢L�1

(highlighted as an orange dot).
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property, it is possible to combine Eq. 1 both for vapour and liquid
phases obtaining:

dVm ¢VV T ;dVm; y
� �� dLm ¢VL T ;dLm; x

� � ¼ 0 ð8Þ
Eq. (8) shows that the product between the phase density and its

corresponding Omega function for both phases has to be equal.
Hence, considering that

1. the molar density of the condensate phase is larger than the
vapour one in order of magnitude,

2. the liquid phase Omega term increases its value for small density
variation more rapidly than the vapour Omega term as clearly
shown in Fig. 3 and Appendix D,

in order to fall inside the feasible domain, smart correction factors
(i.e., a and b in Fig. 4) have been implemented to correct the phase
density at each iteration. For the liquid, the proposed corrected den-
sity should stay very close to the boundary line, therefore the zero-
line density is increased just for 1-3% of its value, while for the vapour
phase a reduction of 5-10% has been used. The selection of the proper
correction coefficients depends on temperature and pressure. In fact,
discretizing the whole domain in temperature or pressure, the closer
is the system to the critical point the lower will be the correction. In
this way, the algorithm is able to properly work also closer to the crit-
ical point where vapor and liquid densities tend to coincide.

3.3. Efficient algorithm

The Robust algorithm ensures convergence and a reliable solution
even though the computational effort and time are considerable. These
last aspects are undesired disadvantages when a series of bubble/dew
problems are to be solved repeatedly as in software for industrial appli-
cations, where accurate and fast results are needed. The convergence
time may be reduced by partially modifying the original equations for
pressure and the fugacity coefficients without losing robustness and
numerical precision. The exponential parts in Eq. (1) and Eq. (2) signifi-
cantly increase the nonlinearity and also the computational effort. In
order to remove these terms and speed up the calculation, it is worth
applying a Taylor expansion around the first guess value for the phase
density. According to the general Taylor expansion

f xð Þ ¼ f x0ð Þ þ
X
n

f nð Þ x0ð Þ
n!

x� x0ð Þn ð9Þ

The Taylor expansion has been applied on exponential term
appearing in Eq.1 and other terms and coefficients containing it (refer
to Appendix B). The Taylor expansion is centred in the molar density
(d0m) calculated from the Raoult problem as described in Section 3.1.
The following derivatives are obtained:

f dmð Þ ¼ e�a20dm ð10Þ

f 1ð Þ ¼ �2a20dmf dmð Þ ð10:1Þ

f 2ð Þ ¼ 2a20 2a20d2m � 1
� �

f dmð Þ ð10:2Þ

f 3ð Þ ¼ 4a220 3dm � 2a20d3m
� �

f dmð Þ ð10:3Þ

f 4ð Þ ¼ 2a20 3� 12a20d2m þ 4a220d
4
m

� �
f dmð Þ ð10:4Þ

f 5ð Þ ¼ 8a320dm �4a220d
4
m þ 20a20d2m � 15

� �
f dmð Þ ð10:5Þ

The choice of expanding only around the molar density is due to
the good accuracy of the first guess value for the phase molar density.
Besides, the Taylor expansion has been stopped at the fifth-order
because, as depicted in Fig. 5, the approximate curve tends to overlap
to the original Bender NCEoS curve over quite a wide range and not
only around the fixed point. Moreover, lower order-expansions show
a certain discrepancy and therefore they do not guarantee conver-
gence of the efficient algorithm.

The substitution of the exponential part with polynomial terms
allows to furtherly simplify the shape of the equation and this results
in faster and simpler convergence of the algorithm as shown in the
results paragraph. The trade-off between computational speed and
numerical accuracy is solved.



Fig. 6. Parity plots for predicted bubble pressure (left) and liquid density (right) with Bender model.
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4. Case study and results

In this section, the performances of the different algorithms are
compared both in terms of numerical accuracy and computational
effort. It is worth testing and comparing the Bender EoS Efficient
algorithm (Section 3.3) performance with respect to the most com-
monly used thermodynamic packages in Air Separation Unit [5], such
as Peng-Robinson (PR), Soave-Redlich-Kwong (SRK), and Benedict-
Webber-Rubin (BWR). For simplicity, bubble and dew problems in
pressure are performed in the temperature range varying from 60 K
up to 132 K for fixed dry air composition (zN2 ¼ 0:7812, zO2 ¼ 0:2096
and zAr = 0.0092). In the case of a bubble problem, the given composi-
tion corresponds to that of the liquid, while in the dew problem to
that of the vapour phase. The reference data are directly taken from
the NIST Database published in a specialized paper [48]. The NIST
RefProp results for dry air has been considered as a reference since
the authors claim that the relative errors for bubble/dew lines and
relative phase density are lower than 0.1% between triple and critical
points (the largest errors are close to the critical point, however, NIST
model ensures that it does not exceed 0.1%). The NIST thermody-
namic model results are listed in the appendix of the cited work and
they are not reported in the present work. The Bender Equation of
State has been implemented both in MatLab� environment and in
Visual Studio C++ 2013 code where the BzzMath Library has been
embodied [12], while concerning BWR, SRK and PR Equations of State
thermodynamic packages in Aspen Hysys V10 have been used.

As a remark, in charts where the temperature is reported on the x-
axis, vertical lines stand for the triple and critical temperatures.

The results section is subdivided into two different parts: (1) Sec-
tion 4.1 and 4.2 concern the bubble and dew problems respectively
comparing the results for Bender’s model with other CEoS and NCEoS
while (2) Section 4.3 shows the differences and main features for the
different algorithms proposed in Methods and Algorithm paragraph.

4.1. Bubble problem

This paragraph reports the bubble problem results for dry air
using the Efficient algorithm proposed in Section 3.3. To compare the
experimental data and the EoS results, parity graphs, and relative
errors charts will be used. Although the pressure parity plot (Fig. 6
left side) is intuitive, the molar density chart (Fig. 6 right side) is
slightly more complex: top-right corner is representative of points
close to the triple point, where, due to severe cryogenic conditions,
the liquid phase is denser than in proximity of the critical point
located in the bottom-left corner. The positions of the triple and criti-
cal point regions are exactly the opposite in the pressure parity chart.
The relative error has been evaluated as:

� ¼ yexp � yEoS
yexp

ð11Þ

Parity plot (Fig. 6) shows overlapping between the Bender model
and experimental data. Specifically, the predicted bubble pressure is
aligned with the experimental data, while the liquid density presents
a deviation closer to the critical point as depicted also in Fig. 9. How-
ever, Fig. 7 proves that also the PR, SRK, and BWR liquid density pre-
dictions near the critical point deviate with respect to the
experimental data while the Bender model performs better within
this region. Moreover, the BWR model diverges in the proximity of
the triple point, while the other thermodynamic models overlap per-
fectly with the experimental points.

The Bender model for the bubble pressure prediction, as already
emphasized in Fig. 6, agrees with experimental data. In detail, the
Bender model gives better predictions near the triple point up to 80
K. However, the results provided by Bender and cubic EoS are compa-
rable and similar along with the overall temperature range. The
Bender relative error in pressure is generally within 1%, except for a
few points. Worse performance is concentrated closer to the critical
point where the relative error is still restrained but it increases up to
almost 2% (Fig. 8 right side). In any case, the full picture (Fig. 8 left
side) proves that BWR EoS is not a suitable thermodynamic tool to
properly predict the bubble pressure for the air mixture. As a matter
of fact, predictions are affected by a large relative error that continu-
ously decreases up to the critical point.

Similarly, concerning the liquid phase density, the EoS provides
good results, in particular, the Bender model relative error is always
below 1.5% up to 125 K. All the analysed thermodynamic models
worsen close to the critical points and the relative errors raise up to
20%. The Bender model profile is stable from 60 K up to 125 K and its
trend is qualitatively in line the relative errors associated with other
considered EoS: in this portion of the temperature domain, all the
tested thermodynamic models exhibit smooth trends and great accu-
racy. For temperatures higher than 125 K (i.e., near the critical transi-
tion) Bender model shows a pick-trend, however, close to the critical
point (i.e., 130 - 132 K) it ensures great accuracy, with a relative error



Fig. 7. Parity plot bubble pressure (left) and corresponding liquid density (right) predicted in temperature range 60K-132K by different EoS: Bender (blue), PR (red), SRK (yellow),
and BWR (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Predicted bubble pressure relative error (left) and detail (right) with different EoS: Bender (blue), PR (red), SRK (yellow), and BWR (green). (For interpretation of the referen-
ces to colour in this figure legend, the reader is referred to the web version of this article.)
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below 5%, while PR, SRK, and BWR tends to diverge. Specifically, CEoS
provides results affected by relative errors larger than 10%, as shown
in Fig. 9.

4.2. Dew Problem

Parity plot (Fig. 10) proves an agreement between the dew pres-
sure prediction and the experimental data, but for the vapour density
chart, there is a slight deviation from the bisector close to the triple
point. Qualitatively, the same trends are depicted in Fig. 11, where all
the EoS show a discrepancy approaching the triple point except the
Bender and SRK models that do not appear to suffer from this issue.
Finally, all the considered EoS look to properly predict and describe
the mixture properties close to the critical point.
Previous considerations are confirmed in Figs. 12 and 13. BWR
seems not to be a suitable thermodynamic model to solve the dew
problem for the air mixture. Moreover, it is possible to claim that all
the EoS show worsened performances when compared to the bubble
problem. Specifically, the Bender’s model relative error increases up
to 3% for the majority of the case studies but there are some points
where relative errors reach 9%. Close to the critical point, the Bender
model returns providing accurate results and the relative error is
kept below 4% and comparable to that of the CEoS.

Concerning the vapour phase density, the Bender model exhibits a
good agreement with respect to the RepProp package developed by
NIST. The relative error is kept within §5% except for few cases
mainly concentrated close to the critical point. However, in this
region, the largest relative error is almost 7%. In addition, as



Fig. 9. Predicted liquid density relative error at different temperatures (from 60 K up to 132 K) with different EoS: Bender (blue), PR (red), SRK (yellow), and BWR (green). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Parity plots for predicted dew pressure (left) and vapour density (right) with Bender model.
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confirmed in parity plot in Fig. 10, the Bender model seems to under-
estimate the corresponding vapour molar density. PR EoS shows a
parabolic shape in errors trends, indeed, it appears inaccurate close
to both critical and triple points (relative error larger close to 10%),
while qualitatively it overlaps to experimental points in the range of
85 � 110 K. SRK is still the EoS that better predicts mixture properties
in the dew problem for dry air even when approaching the critical
point. SRK’s model results are comparable to those obtained with the
Bender NCEoS applying the Efficient algorithm.

4.3. Comparison of the Bender solution algorithms

In this paragraph, the algorithms presented in Section 3 are com-
pared in terms of accuracy and computational time. The dry air bub-
ble and dew problems are still used as a reference case study to
compare performances and accuracy.

4.3.1. Bubble problem accuracy
Figs. 14 and 15 clearly prove that the Standard algorithm (Sec-

tion 3.1) is not sufficient to handle bubble problems with the Bender
EoS. Moreover, sometimes this algorithm is not able to converge to a
solution or it may even provide results that are not the real solution
of the system. These points are denoted with 100% relative error and
they are concentrated in proximity of triple and critical points.
Robust and Efficient strategies provide results within 5% of error in
pressure and liquid density (except for few points close to the critical
point where error raises to almost 10%). More in general, the Efficient
algorithm presents relative errors which are distributed around a
mean value of 0.5% and the relative error is kept below 1%. Both
Robust and Efficient algorithms exhibit spikes or errors moving
towards the critical point: the error is kept below 3.5% in the case of
pressure while it slightly increases up to 9% for liquid density predic-
tions. The Robust algorithm shows also a second spike in relative
error in bubble pressure prediction in the proximity of the triple
point (60 - 65 K), however, the relative error is always lower than 4%.

4.3.2. Dew problem accuracy
Concerning the dew problem, Fig. 16 demonstrates that the Stan-

dard algorithm is not able to solve the problem and only Robust and
Efficient algorithms provide a numerical solution. The accuracy of



Fig. 11. Parity plot dew pressure (left) and corresponding vapour density (right) predicted in the temperature range 60 K -132 K by different EoS: Bender (blue), PR (red), SRK (yel-
low), and BWR (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Predicted dew pressure relative error (left) and detail (right) with different EoS: Bender (blue), PR (red), SRK (yellow), and BWR (green). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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both is similar, but, as already underlined in paragraph 3.2, the accu-
racy is worsened in the dew problem, and the efficient algorithm
guarantees errors within 8% error margin for pressure and 7% for
density. Moreover, Fig. 16 proves the issue presented in Section 3.2:
in the Standard Algorithm for the dew problem, the numerical solver
is not able to ensure a physically acceptable solution and it falls in
the infeasible region providing a negative pressure as a result. Since
the solver violates physical constraints, the unfeasible results have
been considered null and consequently, the relative error is 100%.
The same issue is present for the bubble problem, but it is less fre-
quent (Fig. 15). As depicted in Fig. 17, just focusing on Robust and
Efficient algorithms, it is possible to highlight that the Efficient algo-
rithm tends to keep the relative errors distributed around an average
value (2%), while the Robust algorithm exhibits a decreasing trend.
However, larger errors are localised around the triple point (>20%)
and the critical point (>15%). This proves that the Efficient algorithm
effectively enables to mitigate the presence of large errors close to
the upper and lower limits of the temperature domain, while, in the
middle range (80 - 120 K) errors are kept similar (below 2.5%) to the
ones of Robust method despite it generally performs better.

4.3.3. Computational time
Accuracy, efficiency, and computational efforts are key parame-

ters to evaluate the performances and robustness of algorithms
[11,12,57]. In this paragraph, the computational time of the three
proposed numerical strategies will be analysed in order to identify
whether the Efficient algorithm (paragraph 3.3) is an effective
enhancement of the Robust one (paragraph 3.2). Fig. 18 and Table 2
prove that both for dew and bubble problems. the computational
time has been drastically reduced: the Efficient algorithm ensures
convergence, as already discussed, and additionally, it reduces the
computational time within the VLE domain including the points close
to the triple and critical points. The computational time requested by
the Robust algorithm (square markers in Fig. 18) is generally lower
than the Standard algorithm (circle markers). The Standard algorithm
computational times are more oscillating: as a general consideration,



Fig. 13. Predicted liquid density relative error at different temperatures (from 60 K up to 132 K) with different EoS: Bender (blue), PR (red), SRK (yellow), and BWR (green). On the
right side, a detail focusing on the Bender model and CEoS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this arti-
cle.)

Fig. 14. Bender solution algorithms comparison: bubble pressure relative error.
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this algorithm requires more time to converge to a solution, if it con-
verges in the first place. For temperatures higher than 110 K in the
bubble problem, the Standard algorithm performances seem to be
promising, however, this trend is completely misleading since look-
ing at Fig. 16 it appears that the results are affected by large errors
(>15%). Moreover, since the Standard algorithm is not suitable to
solve the dew problem, in Fig. 18 the right-hand-side circle markers
are not present. Considering the Robust algorithm, square markers
look clustered which means that the algorithm is strongly affected by
the operating condition. Time data clustering is more evident for the
dew problem (Fig. 18 left-hand-side) where the Robust algorithm
slowly converges to a numerical solution closer to the critical point
and for temperatures higher than 100 K. Still focusing on this temper-
ature range (i.e 120 - 132 K), the computational time shows an aver-
age increasing linear trend. As a matter of fact, the Robust algorithm
allows to solve bubble and dew problems with good numerical accu-
racy (Fig. 16 and 17), however, it is not fully stable since
computational time depends on the operating condition and this
behavior is magnified according to which problem should be solved.
For instance, the bubble problem requires, on average 331 ms, while
the dew problem 836 ms. This discrepancy is not evident for the Effi-
cient algorithm (triangular markers): 66 ms for bubble problem and
90 ms for the dew one. Moreover, the Efficient algorithm does not
exhibit any data clustering, indeed, computational times are distrib-
uted around the average value. Similar considerations may be pro-
posed for numerical accuracy. As reported in Table 2, the relative
error trends show a strong reduction meaning that both Robust and
Efficient algorithms produce an improvement in the numerical accu-
racy with respect to the Standard one. Comparing these two algo-
rithms, it is possible to state that the Taylor expansion benefits on
average computational time and relative error. This effect is more
evident in the dew problem. The main difference between Robust
and Efficient algorithms lies in computational time. As already dis-
cussed, the Efficient algorithm causes an effective reduction of the



Fig. 15. Bender solution algorithms comparison: liquid density relative error.

Fig. 16. Bender solution algorithms comparison: dew pressure (left) and liquid density (right) relative errors.

Fig. 17. Comparison of relative errors for robust and efficient algorithms in dew problem.
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Fig. 18. Standard (blue), Robust (red), and Efficient (green) algorithms computational time. The corresponding horizontal lines are the average computational time for each pro-
posed algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison of algorithms performances.

Bubble problem Dew problem

Algorithm eP[%] ed[%] t [ms] eP[%] ed[%] t [ms]

Standard 60.4 30.2 549 - - -
Robust 0.63 1.20 331 2.76 3.91 826
Efficient 0.47 1.44 66 2.71 2.24 90
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computational time. The impact is reflected in a reduction of one
order of magnitude as reported in Table 2. For the bubble problem,
the computational time becomes five times lower whereas for the
dew problem almost ten times.
Table A.1
Units of measure to be adopted with
Bender EoS.

Variable Unit of Measure

Pressure � P [kPa]
Temperature � T [K]
Molar density � dm [mol/L]
Gas Constant � R [kPa¢L/(mol¢K)]

Table A.2
Pure compound coefficients (ai,k).

i Nitrogen (k = 1) Argon (k = 2) Oxygen (k = 3)

1 0.37713681 0.31639051 0.35643862
2 0.11808150 ¢ 103 0.13043320 ¢ 103 0.14407294 ¢ 103
3 � 0.20459519 ¢ 104 � 0.28370046 ¢ 104 � 0.25661301 ¢ 104
4 0.10039112 ¢ 107 0.13150788 ¢ 107 0.10322523 ¢ 107
5 � 0.23100097 ¢ 108 � 0.50534111 ¢ 108 � 0.19530479 ¢ 108
5. Conclusions

In air separation units (ASU), severe cryogenic conditions require
reliable equations of state (EoS) to accurately predict the thermody-
namic behavior of the ternary mixture. It has been proved that the
Bender model is a suitable thermodynamic tool able to properly
describe the mixture properties in vapour-liquid equilibria in the
cryogenic environment. In fact, the results provided are comparable
to that of industrially validated and more commonly used Peng-Rob-
insons (PR) and Soave-Redlich-Kwong (SRK) EoS. Despite some
criticisms and warnings [41], these preliminaries are encouraging
and seem to open a perspective to implement the Bender non-cubic
equation of state (NCEoS) for industrial applications in the ASU field.
Moreover, three different algorithms have been developed and pro-
posed to overcome numerical and intrinsic issues due to the NCEoS
formulation. The efficient algorithm is a trade-off between numerical
accuracy and computational time and effort required. Finally, since
the general approach proposed in Bender’s work [5] has also been
applied recently for several additional compounds, the algorithms
here discussed can be easily transferred to these species and they
may also be exploited as a general strategy for the solution of bubble
and dew problems using NCEoS other than the Bender model.
6 0.82438827 ¢ 10�2 � 0.28179523 ¢ 10�2 0.13149946 ¢ 10�3

7 � 0.11154107 ¢ 101 0.39628356 ¢ 101 0.21353195 ¢ 101
8 0.31874442 ¢ 103 0.72951535 ¢ 103 0.35916916 ¢ 103

(continued)
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Appendix

Appendix A. � Bender Equation of State coefficients and mixing rules

In this appendix, twenty pure components coefficients and the
mixing rules both for pressure Eq. (1) and fugacity coefficient Eq. (2)
are provided. Moreover, since in Bender’s works [5], units of measure
are missing and sometimes not consistent, the correct units of mea-
sure are listed in Table A.1. For more details on the implementation
of vector and matrix products to evaluate the mixing coefficients, see
the cited reference [8].

In order to be consistent with the twenty coefficients provided in
[5] and reported in Table A.2, the following units of measurement
should be used although Bender himself suggested several wrong
ones [5, 6].

Coefficients gathered in Table A.2 are necessary to evaluate coeffi-
cients appearing in Eqs. (1) and (3). Some preliminary calculations
are necessary:



Table A.2 (Continued)

i Nitrogen (k = 1) Argon (k = 2) Oxygen (k = 3)

9 0.88741591 ¢ 10�3 0.1217661 ¢ 10�2 0.73097410 ¢ 10�3

10 � 0.14864235 � 0.50030773 � 0.27513075
11 0.499951582 ¢ 10�5 � 0.21947285 ¢ 10�4 0.64203761 ¢ 10�5

12 � 0.47638192 ¢ 10�3 0.16831369 ¢ 10�1 0.98687798 ¢ 10�3

13 0.17421249 ¢ 10�3 � 0.11437390 ¢ 10�3 0.84733604 ¢ 10�4

14 � 0.44153012 ¢ 105 0.52614785 ¢ 104 � 0.63010952 ¢ 105
15 0.95112155 ¢ 107 � 0.58356378 ¢ 106 0.15107048 ¢ 108
16 � 0.36302552 ¢ 109 � 0.11692362 ¢ 109 � 0.13084843 ¢ 1010
17 � 0.17495594 ¢ 103 � 0.34445957 ¢ 103 � 0.19018424 ¢ 103
18 0.81455788 ¢ 105 0.15802557 ¢ 106 0.45774043 ¢ 105
19 � 0.20730231 ¢ 107 � 0.68651100 ¢ 107 0.30856640 ¢ 107
20 0.78475058 ¢ 10�2 0.55854495 ¢ 10�2 0.55291853 ¢ 10�2
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Bk ¼
a3;k
T2 þ a4;k

T3 þ a5;k
T4 ðA:1Þ

Ck ¼ a6;k þ
a7;k
T

þ a8;k
T2 ðA:2Þ

Dk ¼ a9;k þ
a10;k
T

ðA:3Þ

Ek ¼ a11;k þ
a12;k
T

ðA:4Þ

Fk ¼
a13;k
T

ðA:5Þ

Gk ¼
a14;k
T3 þ a15;k

T4 þ a16;k
T5 ðA:6Þ

Hk ¼
a17;k
T3 þ a18;k

T4 þ a19;k
T5 ðA:7Þ

Pressure coefficients
By indicating parameters (A.1) � (A.7) as generic Yk parameters,

mixing rules for coefficients (generically denoted as Y) in Eq. (1) are
provided. In particular for:

� coefficients a2, B and a20 geometrical mixing rule is applied

Y ¼
X3
k¼1

zkY
1=2
k

 !2

ðA:8Þ
�
 coefficient C cubic mixing rule is suggested

Y ¼
X3
k¼1

zkY
1=3
k

 !3

ðA:9Þ
�
 all other coefficients linear mixing rule is provided

Y ¼
X3
k¼1

zkYk ðA:10Þ
Therefore, applying the aforementioned mixing rules (A.8) � (A.9)

a1 ¼
X3
k¼1

zka1;k ðA:11Þ

a2 ¼
X3
k¼1

zk
ffiffiffiffiffiffiffiffi
a2;k

p !2

ðA:12Þ

B ¼
X3
k¼1

zk
ffiffiffiffiffi
Bk

p !2

ðA:13Þ

C ¼
X3

k¼1
zk3

ffiffiffiffiffi
Ck

p� �3
ðA:14Þ
D ¼
X3
k¼1

zkDk ðA:15Þ

E ¼
X3
k¼1

zkEk ðA:16Þ

F ¼
X3
k¼1

zkFk ðA:17Þ

H ¼
X3
k¼1

zkHk ðA:18Þ

a20 ¼
X3
k¼1

zk
ffiffiffiffiffiffiffiffiffiffi
a20;k

p !2

ðA:19Þ

The only exception to standard mixing rules is given by G
mixing parameter. Bender found out that the linear mixing rule
alone was not correct due to binary mixtures deviations. The
additional term in the mixing rule, therefore, accounts for these
deviations and it is the result of nonlinear regression on experi-
mental data sets:

G ¼
X3
k¼1

zkGk þ
X3
i¼1

X3
j¼iþ1

aij
100
T

� �mij

þ bij

	 

zizj ðA:20Þ

Values of the parameters aij, bij and g ij are provided in matrix
form

aij ¼
0 �0:0072 0:0057

�0:0072 0 0:0095
0:0057 0:0095 0

24 35 ðA:21:1Þ

bij ¼
0 0:007 0

0:007 0 0:004
0 0:004 0

24 35 ðA:21:2Þ

mij ¼
0 6 8
6 0 4
8 4 0

24 35 ðA:21:3Þ

Fugacity coefficients
Similarly, here coefficients appearing in Eq. (3) are provided. In

each term, it is possible to partially recognize mixing coefficients
(A.11) � (A.19)

aF1 ¼
X3
k¼1

zka1;k þ a1;k ðA:22Þ

aF2 ¼
X3
k¼1

zka
1=2
1;k

 !
¢ a1=21;k ðA:23Þ

BF ¼
X3
k¼1

zkB
1=2
k

 !
¢B1=2

k ðA:24Þ

CF ¼
X3
k¼1

zkC
1
3
k

 !2

¢C1
3
k ðA:25Þ

DF ¼
X3
k¼1

zkDk þ
Dk

3
ðA:26Þ

EF ¼
X3
k¼1

zkEk þ
Ek
4

ðA:27Þ



:0095
100
T

� �4

þ 0:004

#
z3 1� z2ð Þ

)
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FF ¼
X3
k¼1

zkFk þ
Fk
5

ðA:28Þ

HF ¼ 4
X3
k¼1

zkHk

 !
þ Hk ðA:29Þ

While parameter GF has slightly more complex expression that
depends on the considered specie

Gk¼1
F ¼ 2Gþ Gk þ �0:0072

100
T

� �6

þ 0:007

" #
z2 1� z1ð Þ þ 0:0057

100
T

� �8

z3 1� z1ð Þ
( )

ðA:30:1Þ

scale80%Gk¼2
F ¼ 2Gþ Gk þ �0:0072

100
T

� �6

þ 0:007

" #
z1 1� z2ð Þ þ 0

"(
ðA:30:2Þ

Gk¼3
F ¼ 2Gþ Gk þ 0:0057

100
T

� �8

z1 1� z3ð Þ þ 0:0095
100
T

� �4

þ 0:004

" #
z2 1� z3ð Þ

( )
ðA:30:3Þ

Finally

b1 ¼ GF þ HF=a20
2a20d2m

ðA:31Þ

b2 ¼ exp �a20d2m
� � GF

2a20d2m
þ HF

2a20
1þ 1

a20d2m

� �	 

ðA:32Þ

b3 ¼ G
a20d2m

1� exp �a20d2m
� � ¢ a20d2m þ 1

� �� � ðA:33Þ

b4 ¼ H

a20dmð Þ2
2� exp �a20d2m

� � ¢ a20d2m þ 1
� �2 þ 1
h in o

ðA:34Þ

It is fundamental to emphasize that for a single-phase (i.e., only
liquid, only vapour, or supercritical fluid), the elements (A.11) �
(A.20) are numbers, while all parameters are defined in (A.22) �
(A.34) are vectors. In the case of vapour-liquid equilibria, the firsts
become vectors instead of the latter matrixes. Moreover, it is worth
taking advantage of the vector-matrix product to speed up calcula-
tions [8].

Appendix B. � Sensitivity analysis on coefficients

A sensitivity analysis has been performed on the mixing coef-
ficient of the Bender EoS (A.11) � (A.20). By fixing the tempera-
ture, the phase composition is the only adjustable variable. Since
Table B.1
Maximum and minimum value of mixing coefficients at dif

60 K 90 K
max min max

a1mix 0.377 0.317 0.377
a2mix 144 118 144
a20mix 7.85 ¢ 10�3 5.53 ¢ 10�3 7.85 ¢ 10�3

B 2.559 1.401 0.8015
C 0.1352 0.0782 0.06793
D -1.590 ¢ 10�3 -7.121 ¢ 10�3 -7.642 ¢ 10�3

E 2.586 ¢ 10�4 -2.945 ¢ 10�6 1.651 ¢ 10�4

F 2.904 ¢ 10�6 -1.906 ¢ 10�6 1.936 ¢ 10�6

G 0.06264 -0.8088 0.02292
H 6.620 ¢ 10�3 1.770 ¢ 10�3 9.593 ¢ 10�4
air is a ternary mixture, only nitrogen and argon composition (x1
and x2 respectively) are shown, considering that the composition
in oxygen must satisfy the normalized stoichiometry sum. In
order to avoid useless calculations, the unfeasible domain, where
the sum of x1 and x2 is larger than the unit (i.e., the point along
the diagonal of the square defined by the molar fraction axes and
the associated area), has been automatically removed. Tempera-
tures have been selected in order to cover the whole domain
where vapor-liquid is possible, hence, from the triple point up to
the critical point. The following 3D-plots are representative of
60K (a), 90K (b), and 120K (c). In the same cases, x and y axes
orientation is changed in order to have a better view of the
curves disposition in the space.

Table B.1 lists the maximum and minimum value of each mixing
coefficient at 60 K, 90 K, and 120 K. From Table B.1 it is possible to
appreciate the order of magnitude associated with the mixing coeffi-
cients and the impact of temperature on their value. For the sack of
completeness, Figs. B.11 and B.12 graphically show the percentage
variation of maximum and minimum respectively within the typical
operating condition for air cryogenic separation (60 - 120 K). Since
mixing coefficients a1mix, a2mix and a20mix are not sensible to temper-
ature, their variation is not plotted in the charts. In the charts, the
parameters percentage variations have been estimated considering
as reference the values at 60 K:

variation ¼ 1� Y Tð Þ
Y 60 Kð Þ ðB:1Þ

Where Y is the generic mixing coefficient.
As it can be observed, the temperature strongly influences the

mixing coefficients. The only exceptions are a1mix, a2mix and a20mix

coefficients which are insensible to the temperature effects. From
Table B.1 it emerges that temperature-dependent coefficients change
the order of magnitude (generally, a decreasing trend is registered
with temperature) and even the sign. For instance, coefficients E, F,
and G present opposite signs for maximum and minimum values
meaning that also the phase composition covers a key role in deter-
mining the sign of mixing coefficient and in Omega function in Eq.7.
The large variability for the mixing coefficient is undesired since it
may cause potential numerical instabilities in the solution of the bub-
ble and dew problems.
ferent temperatures.

120 K
min max min

0.317 0.377 0.317
118 144 118
5.53 ¢ 10�3 7.85 ¢ 10�3 5.53 ¢ 10�3

0.6835 0.3275 0.3203
0.03520 0.0426 0.0211
-4.342 ¢ 10�3 -3.513 ¢ 10�4 -2.952 ¢ 10�3

-2.980 ¢ 10�7 1.183 ¢ 10�4 1.025 ¢ 10�6

-1.271 ¢ 10�6 1.452 ¢ 10�6 -9.531 ¢ 10�7

-0.07777 5.729 ¢ 10�3 -0.0162
6.505 ¢ 10�4 2.868 ¢ 10�4 2.083 ¢ 10�4



Fig. B.1. sensitivity analysis on coefficient a1mix.

Fig. B.2. sensitivity analysis on coefficient a2mix.

Fig. B.3. sensitivity analysis on coefficient a20mix.
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Fig. B.4. sensitivity analysis on coefficient B.

Fig. B.5. sensitivity analysis on coefficient C.

Fig. B.6. sensitivity analysis on coefficient D.
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Fig. B.7. sensitivity analysis on coefficient E.

Fig. B.8. sensitivity analysis on coefficient F.

Fig. B.9. sensitivity analysis on coefficient G.
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Fig. B.10. sensitivity analysis on coefficient H.

Fig. B11. Percentage variation of maximum values as a function of temperature in cryogenic conditions.
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Fig. B12. Percentage variation of minimum values as a function of temperature in cryogenic condition.
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Appendix C. � Function steepness

According to Bender NCEoS, predicted pressure is defined as

PEoS T ;dm; zð Þ ¼ dmT Rþ a1 � a2
T

� B
� �

dm þ Cd2m þ Dd3m þ Ed4m

þ Fd5m þ Gþ Hd2m
� �

d2m ¢ exp �a20d2m
� �

266664
377775
ð1Þ

In this case, it is of interest to evaluate the displacement between
real and predicted pressure (PEoS � P) for density variations (§1%)
Fig. C1. Error in pressure for positive (green bar) and negative (red bar) density deviations f
dry air.
around the real root. Exploiting results provided in Bender’s work
appendix tables, it is possible to

1. assign temperature, pressure, and phases composition at the boil-
ing point,

2. evaluate the corresponding predicted phase molar density,
3. impose variations to the molar density and evaluate the displace-

ment.

Results are indexes of the function steepness and they allow to
numerically calculate the derivative of the function Eq. (C1) in the
or different N2-O2 binary mixtures: (1) zN2 ¼ 0:95, (2) equimolar, (3) zN2 ¼ 0:05 and (4)



Fig. C2. Derivative in vapour root (A) and liquid (B) for different N2-O2 binary mixtures: (blue) zN2 ¼ 0:95, (grey) equimolar, (red) zN2 ¼ 0:05 and (yellow) dry air.

Fig. C3. Error in pressure for positive (green bar) and negative (red bar) density deviations for different Ar-O2 binary mixtures: (1) zAr = 0.90, (2) equimolar, (3) zAr = 0.10 and (4) dry
air.
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Fig. C4. Derivative in vapour root (A) and liquid (B) for different Ar-O2 binary mixtures: (green) zAr = 0.90, (grey) equimolar, (red) zAr = 0.10 and (yellow) dry air.
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phase root point. Analysis has been done for temperature range and
phase composition of interest in ASUs.

Appendix D. � Omega Function general shape

Figures D.1-D.4 show a general shape of the Omega term inde-
pendently from the phase composition. As in the steepness
Fig. D1. Pure N2 Omega function for
analysis, a large amount of oxygen in the mixtures is reflected in
larger increments of the function itself close to the zero-level
curve (orange line).

V T; dm; zð Þ ¼ Rþ a1 � a2
T

� B
� �

dm þ Cd2m þ Dd3m þ Ed4m þ Fd5m

þ Gþ Hd2m
� �

d2m ¢ exp �a20d2m
� � ð7Þ
vapour (A) and liquid (B) phase.



Fig. D2. Pure O2 Omega function for vapour (A) and liquid (B) phase.

Fig. D3. Equimolar N2-O2 Omega function for vapour (A) and liquid (B) phase.
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Fig. D4. Equimolar Ar-O2 Omega function for vapour (A) and liquid (B) phase.
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