
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

VFC-SMOTE: Very Fast Continuous Synthetic Minority
Oversampling for Evolving Data Streams

Alessio Bernardo1∗ · Emanuele Della Valle1

Received: date / Accepted: date

Abstract The world is constantly changing, and so are the massive amount of data
produced. However, only a few studies deal with online class imbalance learning that
combines the challenges of class-imbalanced data streams and concept drift. In this
paper, we propose the Very Fast Continuous Synthetic Minority Oversampling Tech-
nique (VFC-SMOTE). It is a novel meta-strategy to be prepended to any Streaming
Machine Learning classification algorithm aiming at oversampling the minority class
using a new version of SMOTE and BORDERLINE-SMOTE inspired by Data Sketch-
ing. We benchmarked VFC-SMOTE pipelines on synthetic and real data streams
containing different concept drifts, imbalance levels, and class distributions. We bring
statistical evidence that VFC-SMOTE pipelines learn models whose minority class
performance are better than state-of-the-art. Moreover, we analyze the time/memory
consumption and the concept drift recovery speed.

Keywords SML · Evolving Data Stream · Concept Drift · Balancing · Data
Sketching

1 Introduction

Data abound as a multitude of smart devices produce massive, continuous, unbounded
and non-stationary flows of data, namely data streams. Data streams are different
from the batches of data used to train traditional Machine Learning (ML) models.
In case of batches, since all the observations are known in advance, it is possible
to iterate over them multiple times or to split them into training and testing sets or
inspecting their characteristics, e.g. class imbalance ratio. Instead, in case of data
streams, new samples arrive unceasingly over time as mini-batches or even only one

∗ Corresponding author

1DEIB - Politecnico di Milano, Milano, Italy
Alessio Bernardo E-mail: alessio.bernardo@polimi.it
Emanuele Della Valle E-mail: emanuele.dellavalle@polimi.it

https://orcid.org/0000-0002-3492-0345
https://orcid.org/0000-0002-5176-5885

2 Alessio Bernardo, Emanuele Della Valle

at a time. Therefore, it is impossible to iterate over data streams multiple times or to
split them into training and testing sets or to inspect their characteristics. Hence, also
the traditional/batch-oriented ML techniques cannot be used.

In the 2000s’ (Domingos and Hulten 2000; Hulten et al. 2001), data streams have
been recognized as a challenge and the interest in them is growing steadily. ML prac-
titioners often transform streams into sequences of batches and retrain models as new
batches become available. However, retraining often a model may become expen-
sive. In recent years, Streaming Machine Learning (SML) (Bifet et al. 2010) was
introduced to address this challenge. SML can maintain models online, incorporating
one sample at a time and continuously updating the model instead of retraining it
anew. To cope with the stream unboundedness, each sample once used is discarded.
Moreover, streams can evolve and present forms of non-stationarity (namely, concept
drift (Tsymbal 2004)). A concept drift occurs when the function which generates in-
stances at time step t is not the same as at time step t +1. Therefore, a SML model is
dynamic and adaptive. Streams can present a class imbalance situation, too. Most of
streaming binary classification solutions neglect the minority class instances, prevent-
ing the discovery of any existing patterns in them (He and Garcia 2009). Moreover,
due to the concept drift occurrence, classes may swap, i.e. all the samples labeled
as minority (majority) class before the concept drift would get labeled as majority
(minority) class after it.

The combined problems of concept drifts and class imbalance are found in many
real-world applications. In social media mining, classifying all the news according to
topics involves both concept drift (new topics frequently appear, outdated ones are
forgotten with time, and old ones may become popular again) and class imbalance
(some topics are more popular than others). Such phenomena can also be observed
in product recommendations, since the interests of clients may change over time and
some products could be more popular, and so purchased, than others (Ma et al. 2007).
Another application is the credit card fraud detection (Pozzolo et al. 2018). The task is
to classify if a credit card transaction is fraudulent or not and it involves both concept
drift (customers’ habits evolve and fraudsters change their strategies over time) and
class imbalance (genuine transactions far outnumber frauds).

To address these problems, techniques to rebalance the training dataset were pro-
posed in the batch scenario. Two of the most used (He and Garcia 2009) are the Syn-
thetic Minority Over-sampling Technique (SMOTE) (Chawla et al. 2002) and the Bor-
derline Synthetic Minority Over-sampling Technique (BORDERLINE-SMOTE) (Han
et al. 2005). They need the entire batch as input to enable rebalancing but, in the
streaming approach, this batch is not available. The main contribution of this paper
is the Very Fast Continuous SMOTE (VFC-SMOTE). It is a meta-strategy inspired
by SMOTE, BORDERLINE-SMOTE and Data Sketching (Cormode 2017) and, besides
improving the classification performance w.r.t. the state-of-the-art methods, it focuses
on reducing the time and memory consumption.

VFC-SMOTE can be prepended to any SML model as a sort of magnifying glass
that enlarges the poorly represented portion of the stream (minority class instances).
Since we are proposing a meta-strategy as a sort of pre-processing step, we expect
it to be data dependent as some other meta-strategies, i.e. temporally augmentations.
This is the reason why we are looking for at least one SML algorithm prepended by

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 3

VFC-SMOTE that outperforms the state-of-the-art ones and not for an algorithm
able to outperform all the others.

In investigating VFC-SMOTE, considering that there are SML algorithms na-
tively able to rebalance streams in presence of concept drift (say, SML+) and algo-
rithms unable to do so (say, SML-), we formulated the following research questions:

Q1 Comparing VFC-SMOTE to SML+ models, is there at least one SML- model
that, prepended by VFC-SMOTE, outperforms any SML+ algorithm presented
in literature?

Q2 Is VFC-SMOTE consuming less time/memory than the other SML+ techniques?
Q3 Is VFC-SMOTE altering the SML- models recovery from a concept drift?

In more details, the main contributions of this paper are:

• VFC-SMOTE, a meta-strategy inspired by both the well-known SMOTE and
BORDERLINE-SMOTE techniques (applicable only to batches) and by Dynamic
Sketching that can be prepended to any SML- classifier;

• statistical evidence that VFC-SMOTE can outperform the SML+ methods in
terms of F1, Recall and G-mean obtained analysing the results of five SML- clas-
sifiers prepended by VFC-SMOTE and four other SML+ strategies (i.e., posi-
tively answering to Q1);

• a computational costs analysis of SML- algorithms prepended by VFC-SMOTE
w.r.t. other SML+ strategies in the literature, showing that the latter take more
time and consume more memory than the former (i.e., positively answering also
to Q2); and

• a discussion about the VFC-SMOTE recovery speed analysis from concept drift
showing that VFC-SMOTE does not alter the recovery speed of the SML- model
to which it is prepended (i.e., negatively answering to Q3).

The remainder of this paper is organized as follows. Section 2 introduces the
imbalance problem, some rebalance techniques and some SML+ models. Section 3
describes VFC-SMOTE. Section 4 introduces the streams and SML- models used in
the experiments and presents our research hypotheses. Section 5 shows and discusses
the evaluation results. Section 6 discusses the VFC-SMOTE limitations, while Sec-
tion 7 discusses the conclusions and some future researches.

2 Related Work

The first part of this section introduces the class imbalance problem and some sam-
pling techniques able to deal with it, while the second part deals with some state-of-
the-art approaches able to learn from imbalanced data streams and to handle concept
drift changes.
Sampling Techniques for Class Imbalance An unequal distribution among classes
characterizes imbalanced data. Since the instances contained in the minority class(es)
rarely occur, the patterns for classifying these classes tend to be rare, undiscovered,
or ignored.

4 Alessio Bernardo, Emanuele Della Valle

(a) SMOTE example (b) BORDERLINE-SMOTE example

Fig. 1 Comparison between SMOTE and BORDERLINE-SMOTE using K = 6

He and Garcia (2009) characterize the approaches to handle class imbalance as:
sampling techniques, cost-sensitive learning, kernel-based methods, and active learn-
ing methods. This work focuses on sampling techniques because they allow creating
a new meta-strategy that can be run during the pre-processing phase, regardless of the
streaming method chosen. Sampling techniques change the data distribution so that
standard algorithms focus on the cases that are more relevant to the user.

They are divided in oversampling and undersampling methods. Oversampling
methods increase the number of minority class instances through the creation of syn-
thetic instances, until classes are balanced. After that, the minority class, which was
originally underrepresented, may exert a greater influence on learning and future pre-
dictions. Undersampling methods, on the other hand, aim at reducing the number of
instances from the majority class by removing instances from this class. They of-
ten act by removing noisy instances, or simply reducing instances randomly or by
means of some heuristics. Both methods introduce their own set of drawbacks that
can worsen the learning phase (He and Garcia 2009). In case of undersampling, re-
moving instances from the majority class may cause important concept loss. In case
of oversampling, since data are replicated or synthetically generated, the drawback is
that multiple iterations over the same instances can result in overfitting.

SMOTE (Chawla et al. 2002) is a popular oversampling balancing technique (see
Fig. 1a) that synthetically generates instances for the minority class to balance the
training data. For each minority class sample xi (orange triangle), SMOTE finds its K-
nearest neighbours among the other minority class samples, it randomly chooses one
x̂i from them, and its distance from xi is multiplied by a random number δ ∈ [0,1]. The
resulting new sample xn (black circle) is located between xi and the selected neighbor
x̂i. In general SMOTE has been shown to improve classification, but it may also suffer
from drawbacks related to the way it creates synthetic samples. Specifically, SMOTE
generates new samples without considering the neighbour examples, which increases
the occurrence of overlapping between classes.

To this end, BORDERLINE-SMOTE (Han et al. 2005) (see Fig. 1b), instead of us-
ing all the minority class samples to generate new instances, uses only the borderline
samples. For each minority class sample xi (orange triangle), BORDERLINE-SMOTE
finds its K-nearest neighbours among the whole samples. If all of them are majority
class samples (case A), xi is considered noise. If there are more majority class neigh-

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 5

bours than minority class ones (case B), xi is considered easily misclassified and put
into a danger set. Otherwise, if there are more minority class neighbours than ma-
jority class ones (case C), xi is considered safe. Only the samples in the danger set
are the borderline ones and they are used by SMOTE to generate new instances (black
circles).

More than a hundred SMOTE variants have been proposed (Fernández et al. 2018)
to overcome the overlapping between classes. The most well-known are ADASYN (He
et al. 2008), DBSMOTE (Bunkhumpornpat et al. 2012), MDO (Abdi and Hashemi
2015), SWIM (Bellinger et al. 2020), and G-SMOTE (Douzas and Bação 2019). Due
to space limitations, we provide their explanations in Appendix A.

For our proposed method we decided to use SMOTE because it is still considered
the ”de-facto” standard in the framework of learning from imbalanced data (Fernández
et al. 2018). There is also the possibility to use BORDERLINE-SMOTE, with the aim to
use less data to generate new synthetic instances, thus reducing the time and memory
consumed.

Still another problem remains. As a sampling technique, SMOTE and
BORDERLINE-SMOTE cache the entire dataset in memory. This approach goes
against the basic principles of the data stream paradigm that inspects only a sam-
ple at a time, as fast as possible, and then discards it. In Section 3, we explain how
we overcome this problem.
State-of-the-Art Approaches The first part of the section wraps up the various meth-
ods, while the remainder of the section describes the methods summarized in Table 1.

They are commonly categorized into two major groups: passive versus active ap-
proaches, depending on whether an explicit drift detection mechanism is employed.
Passive approaches train a model continuously without an explicit trigger reporting
the drift, while active approaches determine whether a drift has occurred before tak-
ing any actions. Examples of passive approaches are RLSACP, ONN, ESOS-ELM, an
ensemble of neural networks (NN), OnlineUnderOverBagging, OnlineSMOTEBag-
ging, OnlineAdaC2, OnlineCSB2, OnlineRUSBoost and OnlineSMOTEBoost, while

Table 1 The main characteristics of the related works compared to VFC-SMOTE

Method Classifier type Approach type Approach for CD Approach for Class Imbalance
RLSACP (Ghazikhani et al. 2013b) Single Passive Forgetting factor Cost weight

ONN (Ghazikhani et al. 2014) Ensemble Passive + Forgetting factor Cost weightActive
EONN (Ghazikhani et al. 2013a) Ensemble Passive Weighted ensemble Cost weight
ESOS-ELM (Mirza et al. 2015) Ensemble Passive Weighted ensemble Cost weight

OnlineUnderOverBagging (Wang and Pineau 2016) Ensemble Passive Weighted ensemble Undersampling +
Oversampling

OnlineSMOTEBagging (Wang and Pineau 2016) Ensemble Passive Weighted ensemble SMOTE
OnlineAdaC2 (Wang and Pineau 2016) Ensemble Passive Weighted ensemble Cost weight
OnlineCSB2 (Wang and Pineau 2016) Ensemble Passive Weighted ensemble Cost weight
OnlineRUSBoost (Wang and Pineau 2016) Ensemble Passive Weighted ensemble Undersampling
OnlineSMOTEBoost (Wang and Pineau 2016) Ensemble Passive Weighted ensemble SMOTE
ARFRE (Ferreira et al. 2019) Ensemble Active ADWIN Cost weight
RB (Bernardo et al. 2020a) Multiple (4) Active ADWIN SMOTE

C-SMOTE (Bernardo et al. 2020b) Meta-strategy Left to algorithm Left to algorithm SMOTE variant +
prepended to prepended to ADWIN

OOB (Wang et al. 2013) Ensemble Active Weighted ensemble Oversampling +
Cost weight

UOB (Wang et al. 2013) Ensemble Active Weighted ensemble Undersampling +
Cost weight

WEOB1/WEOB2 (Wang et al. 2015) Ensemble Active Weighted ensemble Cost weight

VFC-SMOTE Meta-strategy Left to algorithm Left to algorithm SMOTE \BORDERLINE-SMOTE
prepended to prepended to variant + ADWIN

6 Alessio Bernardo, Emanuele Della Valle

ARFRE, RebalanceStream, C-SMOTE, OOB, UOB, WEOB1 and WEOB2 are con-
sidered active approaches.
Passive Approaches RLSACP (Ghazikhani et al. 2013b) is inspired by the recursive
least square (RLS) filter error model. In the proposed error model, non-stationarity is
handled including the forgetting factor (k) present in the RLS error model, while for
handling class imbalance, two adaptive error weighting strategies are proposed. In
the first one, error weights are adapted based on classifier results in different classes.
In the second one, the number of instances in the minority and majority classes are
counted from a fixed window of the most recent samples and the weights are assigned
accordingly.

ONN (Ghazikhani et al. 2014) is a similar approach. It is an online Multi Layer
Perceptron model composed by two parts. The first is a forgetting function for han-
dling concept drift while the second is an error weighting function for handling class
imbalance. EONN (Ghazikhani et al. 2013a) is an online ensemble neural network
model composed by two layers. The first layer is a cost-sensitive neural network for
handling class imbalance, while the second layer contains a method for weighting
classifiers of the ensemble. Another passive technique is ESOS-ELM (Mirza et al.
2015). It is an ensemble approach that, to tackle class imbalance, resamples the data
using fixed weights to train each classifier with an approximately equal number of
majority and minority class samples. Instead, to tackle concept drifts, it uses a voting
weights system according to the G-mean performance metric. ESOS-ELM also has
an active module to handle recurring concept drifts.

OnlineUnderOverBagging, OnlineSMOTEBagging, OnlineAdaC2, OnlineCSB2,
OnlineRUSBoost and OnlineSMOTEBoost (Wang and Pineau 2016) are the online
extensions of the popular batch cost-sensitive ensemble learning algorithms Under-
OverBagging, SMOTEBagging, AdaC2, CSB2, RUSBoost and SMOTEBoost, re-
spectively. The main challenge for adapting them to the online settings resides in
finding a way to embed costs into online ensembles for boosting algorithms with-
out having all the data. They reformulate the batch cost-sensitive boosting algorithms
avoiding the normalization step at each iteration, and then to incrementally estimate
the quantities embedded with the cost setting in the online learning scenario. Whereas
cost sensitivity in the batch setting is achieved by different resampling mechanisms.
In the online ensembles this is achieved by manipulating the parameters of the Pois-
son distribution for different classes.
Active Approaches ARFRE (Ferreira et al. 2019) is an extension of the ARF (Gomes
et al. 2019) algorithm. ARFRE resamples instances based on the current class label
distribution, so that it adapts the weights of the Poisson distribution to simulate a
balance of the instances to the base models of the forest. Thus, if a sample is part of
the minority class, its weight used during the training phase will be increased w.r.t a
sample from the majority class.

RebalanceStream (RB) (Bernardo et al. 2020a) uses ADWIN (Bifet and Gavaldà
2007) to detect concept drift in the stream by training four models m1, m2, m3, and
m4 in parallel: m1 is trained with the original samples in input; m2 uses the samples
collected and rebalanced using SMOTE from the beginning to a change (when the
last concept drift occurred); m3 uses the samples collected from a warning (when the
most recent concept drift started to occur) to a change; m4 uses the same data of m3

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 7

but rebalanced using SMOTE. After a change, the best model among them is chosen
and it is used to proceed with the execution.

C-SMOTE (Bernardo et al. 2020b) is a meta-strategy similar to VFC-SMOTE,
designed to be prepended to any SML- techniques. It is inspired by SMOTE. It uses
ADWIN (Bifet and Gavaldà 2007) to save only the recently-seen samples and uses the
minority class samples stored in the ADWIN window to apply SMOTE. C-SMOTE,
saving all the entire instances in a window and not only a summary of them as
VFC-SMOTE does, focuses only on improving the classification performance, ne-
glecting the computational ones.

Oversampling-based Online Bagging (OOB) and undersampling-based Online
Bagging (UOB) (Wang et al. 2013) are other two resampling-based ensemble meth-
ods. When class imbalance is detected, oversampling or undersampling embedded
in Online Bagging (Oza 2005) is triggered to either increase the chance of train-
ing minority class samples or reduce the chance of training majority class samples.
If the new sample (x,ck) belongs to one of the minority classes (ck ∈ Y min), OOB
will tune the parameter λ of Poisson distribution to 1/wk, which indirectly increases
the number of copies of the current sample for training. In other words, it combines
oversampling with Online Bagging. If (x,ck) belongs to one of the majority classes
(ck ∈ Y ma j), UOB will set λ to (1−wk). Training samples from the majority class
will be undersampled. Some performance analysis (Wang et al. 2015) on OOB and
UOB show that UOB is a better choice than OOB in terms of minority-class Recall
and G-mean. However, it has some weaknesses when the majority class in the data
stream turns into the minority class. OOB is more robust against changes.

To combine the strength of OOB and UOB, WEOB1 and WEOB2 (Wang et al.
2015) are proposed. They are based on the idea of ensembles, which train and main-
tain both OOB and UOB. A weight is maintained for each of them, adjusted adap-
tively according to their current G-mean performance. The weight evaluates the de-
gree of inductive bias in terms of a ratio of positive and negative accuracy. Their
combined weighted rating will decide the final prediction. WEOB1 and WEOB2 dif-
fer in the weight adjusting strategy that they use.

3 VFC-SMOTE

This section describes the proposed meta-strategy VFC-SMOTE. Its acronym
stands for Very Fast Continuous SMOTE because new variants of SMOTE and
BORDERLINE-SMOTE, to which it is inspired by, are applied continuously, trying
to consume as little time and memory as possible. VFC-SMOTE is designed to re-
balance an imbalanced data stream and it can be prepended to any SML- models. The
section firstly introduces the concepts underlying VFC-SMOTE and then it explains
in detail the algorithm.
Algorithm Concepts As said before, the real problem is the impossibility to access
the entire data during the pre-processing (rebalancing) phase. Indeed, it is impossible
to store every new sample in memory until the stream ends for two reasons: 1) the
streams are assumed infinite, and 2) this would be against the stream paradigm ap-
proach. Our solution (see Fig. 2) is inspired by Data Sketching (Cormode 2017). In

8 Alessio Bernardo, Emanuele Della Valle

Fig. 2 Architecture of VFC-SMOTE meta-strategy prepended to a SML- Model

the Data Stream Management System context, Frequency Based Sketches are used to
summarize the observed frequency distribution of a dataset. From these sketches, ac-
curate estimations of individual frequencies can be extracted (Cormode 2017). This
concept of using statistical summaries for data streams is well-known in the stream
clustering context, too (Li et al. 2008; Kranen et al. 2011). Intuitively, our proposal
uses a dynamic summary data structure, called sketch, to maintain an approximation
of the attribute distribution seen so far on the underlying continuous stream and then
uses the sketch to generate new synthetic instances. VFC-SMOTE uses an incremen-
tal decision tree, in particular a Hoeffding Adaptive Tree (HAT) (Bifet and Gavaldà
2009), as a data structure to memorize the sketch with. HAT is based on Hoeffding
Tree (HT) (Domingos and Hulten 2000), an incremental very fast decision tree al-
gorithm able to learn from non-evolving streaming data. To make HT able to adapt
to concept drifts, HAT implements, at each node, an ADWIN change detector (Bifet
and Gavaldà 2007). ADWIN keeps a variable-length window of recently seen items,
with the property that the window has the maximal length statistically consistent with
the hypothesis “there has been no change in the average value inside the window”.
More precisely, an older fragment of the window is dropped if and only if there is
enough evidence that its average value differs from that of the rest of the window.
Moreover, automatically detecting and adapting to the current rate of change, AD-
WIN is parameter and assumption-free. Its only parameter is the confidence bound
δ , indicating how confident we want to be about the algorithm’s output, referring to
all algorithms dealing with random processes. In this way, each node can monitor the
performance of its sub-branches and, if a concept drift occurs, it can substitute them
with new sub-branches. So, VFC-SMOTE is always applied on data that are con-
sistent with the current concept, and the new synthetically generated samples will be
consistent as well. We chose the HAT model as sketch since it is one of the most used
models and it is a state-of-the-art method, while, about ADWIN, it is the most used
now in MOA learners1, it is cited in different papers (Lu et al. 2020; Grulich et al.
2018; Bifet et al. 2018; Gama et al. 2014) and it is already implemented inside the

1https://moa.cms.waikato.ac.nz/

https://moa.cms.waikato.ac.nz/

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 9

Fig. 3 Sketch example

HAT model. Another reason is that ADWIN has theoretical guarantees and it extends
such guarantees to the sketch. The VFC-SMOTE memory and time (per sample)
asymptotic costs are O(logW), where W is the ADWIN window length. If the SML-
model prepended by VFC-SMOTE uses ADWIN, then the total asymptotic costs do
not change, otherwise they depend on whether the SML- model costs are more or less
than the VFC-SMOTE ones. Appendix B shows the detailed cost analysis.

In particular, Fig. 3 shows a simple example about how the sketch works. Given a
stream with two attributes, one nominal (x1) and one numerical (x2), the sketch incre-
mentally grows a decision tree. Here, after having seen enough samples, the sketch
decides to make a split on a x2 value of the x2 attribute and in its leaves (summaries)
it keeps the summary statistics of each attribute (summary). For example, in the left
branch, the sketch keeps the summaries of all the samples having the x2 value less
than or equal to x2 (all the samples under the dotted line). In case of a nominal at-
tribute (x1 summary), it keeps the occurrence frequency of each attribute value di-
vided by class, while in case of a numerical attribute (x2 summary), it keeps the
mean (µ), variance (σ2), minimum (m) and maximum (M) values observed divided
by class. Moreover, for each new sample in input, the sketch updates its summaries.

Through the hyperparameter percCorrClass, users can decide how many in-
stances to save into the sketch. Saving all the instances (correctly and incorrectly
classified) means using all of them during the rebalancing phase and thus using
SMOTE, while saving only the misclassified ones means taking into account only
the ones that lie on the border between the two classes instances and therefore us-
ing BORDERLINE-SMOTE. Of course, saving less instances (percCorrClass = 0)
into the sketch could speed up the process and save memory unlike saving all
of them (percCorrClass = 1). In the end, the new generated samples created by
VFC-SMOTE, are used by the pipelined SML- algorithm to update its model.
Algorithm Explanation Algorithm 1 presents VFC-SMOTE pseudo-code. Given
a stream S {(X1,y1),(X2,y2), ...}, where Xi is a feature vector, and yi is the la-
bel, VFC-SMOTE sketches them into the variable sketch initialized with a HAT
model (Line 2). VFC-SMOTE has also four counters (Line 3): S0 and S1, respec-
tively, count the number of instances in each class; S0 and S1 count, respectively,
the number of instances of each class generated by VFC-SMOTE. The reason why

10 Alessio Bernardo, Emanuele Della Valle

Algorithm 1:
minSizeMinority: Minimum number of minority class instances to allow the rebalancement procedure
percCorClas: Percentage of the correctly classified instances to save in the sketch
l: SML- learner
t: Balance ratio to be achieved
S: Binary classification data stream

1 Function VFC-SMOTE(minSizeMinority,percCorrClass,l,t,S):
2 sketch← HAT(), cdDet← ADWIN()
3 S0,S1,S0,S1,nCorrClass,nCorrSaved,imbalanceRatio← 0
4 while hasNext(S) do
5 X,y← next(S)
6 prequentialEvaluation(X,l)
7 if predict(l,X) 6= y then
8 sketch.add(X,y)
9 else

10 nCorrClass← nCorrClass + 1
11 if (nCorrClass × percCorrClass) > nCorrSaved then
12 nCorrSaved← nCorrSaved + 1
13 sketch.add(X,y)
14 updateCounters(sketch,S0,S1)
15 cdDet.checkCdInCounters(l,X,y,S0,S1)
16 minority,Smin,Smin← selectMinorityClass(sketch,S0,S1,S0,S1)
17 majority,Sma j ,Sma j ← selectMajorityClass(sketch,S0,S1,S0,S1)
18 if checkMinSize(minSizeMinority,Smin) then
19 imbalanceRatio← ratio(Smin,Sma j ,Smin,Sma j)
20 summaries← getSummaries(sketch,minSizeMinority)
21 while t > imbalanceRatio do
22 X̂ ,ŷ← newSample(minority,summaries)
23 Smin← Smin +1
24 train(X̂ ,ŷ,l)
25 imbalanceRatio← ratio(Smin,Sma j ,Smin,Sma j)

26 End Function

Algorithm 2:
minority: Minority class
summaries: The sketch summaries with more than minSizeMinority instances seen

1 Function newSample(minority,summaries):
2 values← ∅, index← 0
3 selectedSummaries← DiscreteProbability(summaries,summaries.instancesSeen())
4 for each summary in selectedSummaries do
5 if summary is numeric then
6 µ ← summary.observedMean(minority)
7 σ 2← summary.observedVariance(minority)
8 m← summary.observedMinValue(minority)
9 M← summary.observedMaxValue(minority)

10 values[index]← BetaDistribution(µ,σ 2,m,M)
11 else if summary is nominal then
12 values[index]← summary.mostFrequentlySeen(minority)
13 index← index + 1
14 values[index]← minority
15 return value
16 End Function

VFC-SMOTE keeps track of the instances of both classes is that, after a concept
drift, the classes may swap. In this case, VFC-SMOTE will use the samples of the
new minority class to introduce new synthetic samples. Every time a new sample
(X ,y) is available, the prequential evaluation (Gama et al. 2013) approach is applied
(testing and then learner l training phase) (Line 6). Subsequently, depending on how

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 11

the instance (X ,y) is classified, it can be added to sketch (Lines 7-13). If the sample
is misclassified, then it is added directly to the sketch (Line 8). If it is not, it could
be added anyway with a probability equal to the percCorrClass value (Lines 10-13).
The function updateCounters() (Line 14) updates the relative counter S0 or S1, while
the function checkDcInCounters() (Line 15) uses ADWIN to check a concept drift
occurrence and to reset the S0 and S1 counters. The next step identifies the actual
minority (Line 16) and majority (Line 17) classes and saves the corresponding mi-
nority/majority classes and counters into, respectively, minority, Smin, Smin, ma jority,
Sma j and, Sma j. Then, Line 18 checks if the number of minority instances is at least
equal to the hyperparameter minSizeMinority specified by the user. If it is true, the
algorithm can proceed with the rebalance phase, otherwise it waits for another sample
in input. If minSizeMinority is equal to −1, no checks are performed on the minority
class size, so the checkMinSize function will always return true. At Line 19, the actual
imbalanceRatio between the number of minority and majority instances added to the
sketch is calculated as in Equation 1.

imbalanceRatio =
Smin +Smin

Smin +Sma j +Smin +Sma j
(1)

If the imbalanceRatio is less than the balance ratio to achieve t (imbalanced sketch),
all the sketch summaries with more than minSizeMinority instances seen are retrieved
(Line 20) and they are used to generate some new synthetic samples (X̂ , ŷ) until
the imbalanceRatio is equal to t (balanced sketch, Lines 21-25). In particular, the
function newSample(), at Line 22, and exploded in Algorithm 2, is responsible for
generating a new synthetic sample.

This procedure is different from the original SMOTE and BORDERLINE-SMOTE
ones. Before starting executing, SMOTE and BORDERLINE-SMOTE calculate the
number of instances to be introduced for each minority sample in the batch. Instead,
in our continuous version, not all the summaries are used to generate new instances.
VFC-SMOTE uses the discrete probability function to have more chances to select
the selectedSummaries that saw more instances (Line 3) and then, it uses the at-
tributes observed summary contained into the selectedSummaries to generate a new
instance (Lines 4-13). For each summary, a new value is generated for the new in-
stance. In case of a numerical summary, the new value is a sample drawn from a Beta
distribution having the mean (µ) and variance (σ2) observed from the minority class
instances seen so far by that summary, scaled by the minimum (m) and maximum
(M) values seen. In this way, the new sample value will certainly be between the m
and M values (Lines 5-10). In case of a nominal summary, the new value is the most
frequently seen value among the minority class instances seen so far by that summary
(Lines 11-12). In the end, Line 14 assigns the minority class value to the new instance
generated.

Back to Algorithm 1, at Line 23, Smin is updated, the new instance (X̂ , ŷ) is used
to train the learner l (Line 24) and the new imbalanceRatio is calculated (Line 25).

12 Alessio Bernardo, Emanuele Della Valle

4 Experimental Settings

This section consists of six parts. At the beginning, we introduce the hypotheses to
be tested. Then, the following four parts discuss the data stream (both synthetic and
real), the SML- algorithms prepended by VFC-SMOTE to run the experiments, and
the various experimental settings. The last part selects the best SML+ methods to be
compared with VFC-SMOTE.
Research Hypotheses We formulate our hypotheses as follows:

– Hp. 1: VFC-SMOTE compared to the SML+ methods improves the performance
for the minority class in at least one SML- algorithm prepended by.

– Hp. 2: Since VFC-SMOTE keeps a summary of the data in a sketch and intro-
duces a rebalance phase, the SML- models to which it is prepended consume less
memory and they have a lower latency for sample than the SML+ methods.

– Hp. 3: Since VFC-SMOTE is only a meta-strategy to be prepended to any SML-
model, aiming at improving the minority class performance, it has no impact on
the concept drift management and therefore on the recovery speed from a concept
drift occurrence.

Artificial Data Stream We decided to synthetically generate some data streams con-
taining both different types of concept drift (Tsymbal 2004) and different class imbal-
ance levels. We decided to start studying the phenomena in a controllable way using
only a small number of features. We choose two of the most commonly used artificial
data generators (Lu et al. 2020): SINE1 (Gama et al. 2004) and SEA (Street and Kim
2001). SINE1 generates points with two attributes (x1,x2) each uniformly distributed
in [0,1]. The class is determined by x2− sinx1 < θ , where θ is a threshold value. In
SEA, each sample has three attributes (x1,x2,x3) each uniformly distributed in [0,10].
Only the first two attributes are used to determine the label, while the third one is used
as noise. The class label is determined by x1 + x2 6 θ , where θ is a threshold value.
For convenience, in all the streams, the minority class is always the class 1, while the
majority one is the class 0. For each type of drift, each generator produces two data
streams with a different drift speed (Tsymbal 2004): sudden (in an instant of time the
first concept finishes and the next one starts) and gradual (a smooth transition from
the first concept to the next one). Streams with a gradual concept drift are denoted
by g (SINE1g and SEAg). Every data stream has 100,000 instances, with one con-
cept drift starting at time step 50,000. The concept drift in SINE1g and SEAg takes
10,000 time steps to complete. It starts at the time step 45,000 and it fully replaces
the old one by the time step 55,000. Moreover, each stream is generated four times,
changing the imbalance ratio IR. We use IR = [1:9, 2:8, 3:7, 4:6]. We consider the
following three types of concept drift.

p(y) Concept Drift. In this case, the class prior probability changes and, so, well
calibrated classifiers can become miscalibrated or imbalance issues may occur. Data
streams SINE1 and SINE1g have a significant class imbalance change, in which the
minority (majority) class of the first half of the streams becomes the majority (minor-
ity) during the latter half. SEA and SEAg have a less significant change, in which the
streams are balanced during the first half and become imbalanced during the latter
half. In the gradual drifting cases, p(y) is changed linearly during the concept tran-

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 13

sition period (time step 45,000 to time step 55,000). In SINE1 algorithms, we use
θ = 0, while in the SEA ones, we use θ = 7.

p(X |y) Concept Drift. In this case, the true decision boundary remains unaf-
fected without creating any particular problem to the classifiers. The data stream is
constantly imbalanced. In particular, the class imbalance ratio, respectively in each
stream, is 1:9, 2:8, 3:7 and 4:6 both before and after the concept drift occurrence.
The concept drift in each data stream is determined by introducing a constraint that
changes the x1 probability of the negative class (0) of being lower than a certain
value n. Before the drift occurrence, the probability is p(x1 < n) = 0.9 while after, it
is p(x1 < n) = 0.1. In the gradual drifting cases, it changes linearly during the con-
cept transition period. In SINE1 algorithms, we use θ = 0 and n = 0.5, while in the
SEA ones, we use θ = 7 and n = 5.

p(y|X) Concept Drift. This is the most critical form of concept drift. The true
boundary between classes changes after the drift, so that the previously learnt func-
tion does not apply any more. The data stream is constantly imbalanced. In particular,
the class imbalance ratio, respectively in each stream, is 1:9, 2:8, 3:7 and 4:6 both
before and after the concept drift occurrence. The data distribution in SINE1 and
SINE1g involves a concept swap i.e. in class 0 from x2−sinx1 ≥ θ to x2−sinx1 < θ ,
while the data distribution in SEA and SEAg undergoes a concept drift due to the θ

value change. Before the concept drift we use θ = 7 and after θ = 13. The change in
SEA and SEAg is less critical than the change in SINE1 and SINE1g, because some
of the examples from the old concept are still valid under the new concept after the
threshold has moved completely.

So, we have 4 streams for each stream generator and concept drift speed, for a
total of 16 streams for each concept drift type and, in the end, a total of 48 data
streams.
Real Data Stream After having studied the phenomena with some low dimension-
ality synthetic streams, we tested three real data streams having a higher number
of features, often used as a benchmark for concept drift problems (Lu et al. 2020):
PAKDD, Elec2, and KDD99. The minority class is always the class 1, while the ma-
jority one is the class 0.

PAKDD 2009 credit card data (PAKDD) (Linhart et al. 2009) are collected from
the private brand credit card operation of a Brazilian retail chain. The task is to iden-
tify whether the client has a good or bad credit. The bad credit is the minority class
(20%) of the provided modelling data. Because the data have been collected over a
long period of time (one year), gradual market changes occur. It has 28 features, of
which 15 numeric and 13 nominal.

In the Electricity data stream (Elec2) (Harries 1999), the task is to predict a di-
rection for electricity price changes w.r.t. the moving average of the last 24h in the
Australian New SouthWales Electricity Market. Input variables are recorded every 30
min from May 1996 to December 1998. The data are subject to a concept drift due
to changing consumption habits, unexpected events and seasonality. For instance,
during the recording period, the electricity market was expanded to include adjacent
areas, which allowed production surpluses from one region to be sold to another.
The minority class appears in 42.45% of the cases and the stream has 8 attributes, of
which 7 numeric and 1 nominal.

14 Alessio Bernardo, Emanuele Della Valle

The KDD cup intrusion detection data stream (KDD99) (Dua and Graff 2017)
records intrusions simulated in a military network environment. The task is to clas-
sify network traffic into normal (80.31% of the cases) or some kind of intrusion
(19.69% of the cases) described by 41 features, of which 34 numeric and 7 nominal.
The problem of temporal dependence is particularly evident here. Inspecting the raw
stream confirms that there are time periods of intrusions rather than single instances
of intrusions.
Algorithms As SML- models to be prepended by VFC-SMOTE, we tested the
ARF (Gomes et al. 2019), Naı̈ve Bayes (NV), HAT (Bifet and Gavaldà 2009), K-
Nearest Neighbor (KNN) and SWT (Bifet et al. 2013b) with ARF as base learner
algorithms. Instead, as SML+ models, we the tested the ARFRE (Ferreira et al. 2019),
RB (Bernardo et al. 2020a), OOB and UOB (Wang et al. 2013) techniques. We did
not test C-SMOTE because it mainly focuses on improving the classification per-
formance neglecting the computational ones. In fact, from a preliminary analysis of
computational costs, pipelines that use C-SMOTE shown to improve the classifica-
tion performance w.r.t. the SML+ methods, but this result is obtained at a high com-
putational cost. In some situations, C-SMOTE consumes 10 x memory and 1000
x time more than SML+ methods. All the experiments were performed by using
the MOA framework (Bifet et al. 2010) with default hyperparameter values for all
the techniques involved. The only parameters that we set in VFC-SMOTE are the
minSizeMinority, percCorrClass and ADWIN δ values. VFC-SMOTE used with
minSizeMinority = 100, percCorrClass = 1 and δ = 1e−5 obtained the best results
among all the others tested in a hyper-parameter analysis. Using percCorrClass = 1
means that saving all the samples into the sketch is better than saving only the mis-
classified ones. In this particular case, using SMOTE, the classification performance
improvements are greater than the savings in time used and RAM consumed as com-
pared to the BORDERLINE-SMOTE.
Settings All the tests were run in a machine that used 2 virtual CPUs Intel Sky-
lake P-8175 at 2.5 GHz and 8 GiB of RAM and they took about two days for com-
putation. We evaluated the predictive performance using the prequential evaluation
approach (Gama et al. 2013) and for each data stream, we performed 10 runs. Fol-
lowing (He and Garcia 2009), we used metrics extracted from a confusion matrix.
The model saves the instances that are correctly classified as numbers of True Pos-
itives (TP) and True Negatives (TN), while those that are incorrectly classified are
saved as numbers of False Positives (FP) and False Negatives (FN). In particular, we
used the Recall and F1-Measure metrics for each class: R[0], F1[0] for the majority
class and R[1], F1[1] for the minority class. We also used the G-mean (GM) metric.
Recall focuses only on the single class, allowing us to see when the recognition of
that class drops. In contrast, G-mean captures the balance between recognition ra-
tios of both classes. Therefore, by analyzing both measures it can be noticed whether
one class was recognized more often at the cost of the other. Moreover, G-mean is
skew-invariant, meaning that its interpretation remains the same for all possible class
imbalance ratios, being particularly relevant for studying drifting imbalance ratios.
For these experiments, we did not use the Accuracy and the Precision metrics for
the following reasons: the former is not reliable in case of imbalanced streams be-
cause the impact of the least-represented, and possibly more important, examples is

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 15

reduced when compared to that of the majority class, while the latter can be easily
derived from the comparison between Recall and F1-Measure metrics. We took into
account how many seconds and bytes of RAM each algorithm used, too. Since MOA
runs in a Java Virtual Machine in which the RAM consumed does not correspond
to the real amount consumed, each experiment is run in a Docker container and we
tracked the container RAM consumption through InfluxDB.

With synthetic data, knowing when the drift occurs, we calculated the metrics
over all the time steps after the concept drift ended. For sudden drifts, we reset the
metrics at time step 50,000, while, for gradual drifts, we reset them at time step
45,000 (starting drift) and 55,000 (ending drift). Instead, without knowing the true
concept drifts in real-world data, we calculated time-decayed metrics with decay fac-
tor 0.995, which means that the old performance were forgotten at the rate of 0.5%.

5 Results and Discussion

In this section, we compare the SML+ methods to the ARF, HAT, NV, KNN, and
SWT algorithms prepended by the VFC-SMOTE meta-strategy (from now on called
VFC-SMOTE*) in terms of statistical tests, time and memory consumed and recov-
ery speed from concept drift occurrence.
Statistical Tests In a tabular form, we presented the measure values averaged over
entire streams (mean performance values). We maintain the separation between syn-
thetic and real ones, which we carry out a Nemenyi test (Demsar 2006) with signifi-
cance level α = 0.05 to compare the SML+ model performance with the performance
achieved by VFC-SMOTE*. Under the Nemenyi test, x� y indicates that algorithm
x is statistically significantly more likely to be more favorable than y. In contrast,
x � y indicates that the former is better than the latter, but without any statistical
significance, and we will address this case as x is statistically similar to y.

In all the tables, VFC-SMOTE ARF, VFC-SMOTE HAT, VFC-SMOTE KNN,
VFC-SMOTE NV, and VFC-SMOTE SWT stand for, respectively, VFC-SMOTE
strategy used with ARF, HAT, KNN, NV, and SWT as base learners. In particular,
Tables 2, 3 and 4 show the average performance results and the ranks using the ar-
tificial streams with, respectively, the p(y), p(X |y), and p(y|X) concept drift types.
Table 5, instead, shows the results achieved with the real streams.

Tables 2, and 3 show that, with p(y) and p(X |y) drift types (virtual drift),
VFC-SMOTE is not the best algorithm in terms of average results. Instead, in terms
of statistical significance, we can notice that at least one SML- model prepended by
VFC-SMOTE (ARF) is, in most cases, similar to the best one. In the case of p(y|X)
drift type, i.e., the most important one to address, Table 4 shows that, in the minority
class performance and G-mean, ARF prepended by VFC-SMOTE performed better
than all others both in terms of average results achieved and statistical significance.
In the case of real streams, Table 5 shows that there are not any statistical differences
among the ranks. This is probably due to the limited number of real streams tested
(3) w.r.t. the artificial ones (48) and the significance level used. However, we can con-
clude that there is at least one SML- model prepended by VFC-SMOTE* (in general
ARF or SWT) that outperforms the SML+ ones, therefore Hp. 1 is verified.

16 Alessio Bernardo, Emanuele Della Valle

Table 2 Avg. results and ranks (in brackets) on synthetic streams with p(y) drift type
comparing VFC-SMOTE * with the other SML+ models. Results in bold are the
best for that metric.

Algorithm F1[1]1 F1[0] R[1]2 R[0] GM3

VFC-SMOTE ARF 91.12 (3.00) 94.48 (3.06) 89.33 (3.44) 96.02 (3.62) 68.02 (2.62)
VFC-SMOTE HAT 89.29 (6.31) 92.94 (6.88) 88.47 (4.69) 93.77 (6.94) 67.43 (6.88)
VFC-SMOTE KNN 88.31 (7.69) 92.42 (7.44) 87.71 (6.44) 92.89 (7.75) 67.14 (7.69)
VFC-SMOTE NV 82.95 (9.00) 85.50 (9.00) 84.68 (6.00) 88.15 (8.12) 65.68 (9.00)
VFC-SMOTE SWT 90.66 (4.06) 93.88 (4.31) 89.47 (3.88) 94.76 (4.50) 67.80 (4.50)
ARFRE 92.07 (1.31) 95.32 (1.31) 88.86 (5.75) 97.72 (1.31) 68.25 (1.88)
OOB 91.33 (2.81) 94.73 (2.50) 89.68 (3.88) 96.30 (3.12) 68.13 (2.50)
RB 90.25 (5.06) 94.15 (5.50) 87.57 (7.50) 96.12 (3.62) 67.71 (5.56)
UOB 90.00 (5.75) 94.11 (5.00) 89.76 (3.44) 95.35 (6.00) 67.97 (4.38)

1 ARFRE � (OOB � VFC-SMOTE ARF) � Others
2 (UOB � VFC-SMOTE ARF) � Others
3 (ARFRE � OOB � VFC-SMOTE ARF) � Others

Table 3 Avg. results and ranks (in brackets) on synthetic streams with p(X |y) drift
type comparing VFC-SMOTE * with the other SML+ models. Results in bold are
the best for that metric.

Algorithm F1[1]1 F1[0] R[1]2 R[0] GM3

VFC-SMOTE ARF 83.86 (1.94) 94.64 (2.88) 86.52 (3.12) 93.78 (4.00) 67.06 (2.19)
VFC-SMOTE HAT 81.52 (5.75) 93.58 (6.50) 84.96 (5.38) 92.38 (6.31) 66.50 (5.88)
VFC-SMOTE KNN 81.58 (5.69) 93.95 (6.19) 84.00 (6.50) 93.36 (5.69) 66.52 (5.75)
VFC-SMOTE NV 74.63 (8.62) 90.27 (8.94) 82.45 (6.94) 87.30 (8.69) 65.04 (8.38)
VFC-SMOTE SWT 82.03 (4.38) 94.80 (2.88) 80.53 (5.50) 95.25 (2.94) 66.13 (4.81)
ARFRE 71.16 (4.06) 95.19 (2.25) 67.91 (6.62) 98.20 (1.00) 63.98 (4.62)
OOB 84.73 (2.75) 94.44 (4.38) 88.42 (2.44) 93.10 (5.06) 67.29 (2.19)
RB 79.89 (5.75) 94.93 (3.88) 76.32 (7.38) 96.23 (3.06) 65.49 (6.81)
UOB 80.43 (6.06) 92.43 (7.12) 89.80 (1.12) 89.43 (8.25) 66.85 (4.38)

1 (VFC-SMOTE ARF � OOB) � Others
2 UOB � (OOB � VFC-SMOTE ARF) � Others
3 (OOB � VFC-SMOTE ARF) � Others

Table 4 Avg. results and ranks (in brackets) on synthetic streams with p(y|X) drift
type comparing VFC-SMOTE * with the other SML+ models. Results in bold are
the best for that metric.

Algorithm F1[1]1 F1[0] R[1]2 R[0] GM3

VFC-SMOTE ARF 78.80 (1.50) 92.97 (3.19) 81.97 (1.50) 91.90 (4.50) 65.81 (1.44)
VFC-SMOTE HAT 76.19 (3.25) 92.01 (5.56) 79.78 (2.69) 90.75 (6.50) 65.19 (3.00)
VFC-SMOTE KNN 75.81 (3.69) 92.16 (4.75) 77.36 (4.19) 91.72 (4.88) 64.92 (4.12)
VFC-SMOTE NV 50.54 (7.88) 75.62 (8.25) 52.51 (7.31) 73.89 (7.94) 53.74 (7.88)
VFC-SMOTE SWT 74.63 (4.44) 93.12 (3.75) 72.21 (4.56) 94.13 (3.19) 64.23 (4.31)
ARFRE 63.89 (5.00) 93.78 (1.50) 60.11 (5.44) 97.49 (1.25) 62.27 (5.00)
OOB 66.11 (5.38) 87.65 (5.25) 68.13 (6.38) 87.28 (5.12) 61.95 (5.94)
RB 59.05 (7.75) 88.28 (4.69) 54.59 (8.00) 90.82 (3.88) 59.89 (7.75)
UOB 61.15 (6.12) 81.57 (8.06) 71.01 (4.94) 78.12 (7.75) 60.22 (5.56)

1 VFC-SMOTE ARF � (VFC-SMOTE HAT � VFC-SMOTE KNN) � Others
2 VFC-SMOTE ARF � VFC-SMOTE HAT � Others
3 VFC-SMOTE ARF � (VFC-SMOTE HAT � VFC-SMOTE KNN) � Others

Time & Memory Consumption Before illustrating the synthesis of the time & mem-
ory comparison using all the SML+ algorithms, we discuss the comparison among

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 17

Table 5 Avg. results and ranks (in brackets) on real streams comparing
VFC-SMOTE * with the other SML+ models. Results in bold are the best for that
metric.

Algorithm F1[1]1 F1[0] R[1]2 R[0] GM3

VFC-SMOTE ARF 62.77 (4.67) 92.44 (3.33) 62.33 (3.67) 96.05 (3.67) 62.14 (4.67)
VFC-SMOTE HAT 58.33 (6.67) 89.61 (6.33) 61.06 (6.00) 92.80 (7.67) 61.45 (4.33)
VFC-SMOTE KNN 59.04 (6.33) 89.81 (6.00) 57.46 (6.67) 94.29 (5.33) 60.86 (7.33)
VFC-SMOTE NV 60.74 (6.00) 71.31 (8.67) 72.53 (6.33) 72.69 (6.67) 59.91 (7.00)
VFC-SMOTE SWT 63.67 (2.67) 92.36 (3.67) 62.74 (3.33) 95.85 (3.33) 62.19 (4.00)
ARFRE 61.38 (5.33) 92.73 (2.33) 60.58 (5.67) 97.36 (3.00) 62.04 (6.00)
OOB 70.59 (4.67) 88.88 (4.33) 72.07 (4.67) 88.31 (4.67) 62.93 (2.67)
RB 62.27 (3.33) 92.58 (2.33) 62.32 (3.67) 96.16 (3.00) 62.15 (3.67)
UOB 66.24 (5.33) 79.39 (8.00) 82.53 (5.00) 76.73 (7.67) 62.62 (5.33)

1 VFC-SMOTE SWT � RB � Others
2 VFC-SMOTE SWT � RB � Others
3 OOB � RB � VFC-SMOTE SWT � Others

the ARFRE, RB, OOB, and UOB models to select the best ones to compare them
with VFC-SMOTE *. We used the Nemenyi test (Demsar 2006) with significance
level α = 0.05 to compare the average results, divided for synthetic and real streams,
achieved by the ARFRE, RB, OOB, and UOB algorithms in each metric, and to find
the best one.
Fig. 4 and Fig. 5 show the Nemenyi results. The axis represents the average rank
achieved, while CD is the critical difference, i.e., the minimum difference that two
ranks must have to be considered statistically different. From the former, we infer
that, with synthetic streams, the best SML+ model is ARFRE, while the latter shows

(a) F1(1) (b) F1(0)

(c) R(1) (d) R(0)

(e) GM

Fig. 4 Nemenyi test on synthetic streams

18 Alessio Bernardo, Emanuele Della Valle

(a) F1(1) (b) F1(0)

(c) R(1) (d) R(0)

(e) GM

Fig. 5 Nemenyi test on real streams

that, even if there is not any statistical evidence due to the limited number of streams
tested, the best SML+ model to use with real streams is RB. Henceforth regarding
the synthetic data streams, we proceeded to compare the ARFRE technique, while
regarding the real ones, we proceeded to compare the RB technique. Appendix C
shows the comparisons with OOB, UOB, and RB algorithms using synthetic data
streams and with OOB, UOB, and ARFRE algorithms using real streams, too.

Fig. 7 and 8 illustrate a synthesis of the time & memory comparison between
VFC-SMOTE* and the ARFRE and RB algorithms.

Fig. 6 Cell of the plot

Each row represents the comparison between a
particular algorithm prepended by VFC-SMOTE
and the state-of-the-art technique, while each col-
umn represents a different data stream tested. In
particular, Fig. 6 shows a single cell of Fig. 7. For
each combination of algorithms tested and streams
used, Fig. 6 shows a scatter plot that compares
the ratio between the time used and the RAM
consumed by a specific algorithm prepended by
VFC-SMOTE and the state-of-the-art one. Red,
yellow, and blue points, respectively, refer to the
P(y), P(X |y), and P(y|X) concept drift types. If a

point is on the bottom-left quadrant of the grid, it means that the algorithm prepended
by VFC-SMOTE and tested on that stream takes less time and consumes less RAM
than the state-of-the-art algorithm. If a point is on the bottom-right quadrant of the
grid, it means that the algorithm prepended by VFC-SMOTE takes less time than

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 19

the state-of-the-art algorithm, but consumes more RAM. Instead, if a point is on the
top-left quadrant of the grid, it means that the algorithm prepended by VFC-SMOTE
consumes less RAM than the state-of-the-art algorithm, but it takes more time. In the
last case, if a point is on the top-right quadrant, it means that the algorithm prepended
by VFC-SMOTE takes more time and consumes more RAM than the state-of-the-
art one. In particular, if a point lays on the vertical dotted line, it means that the two
algorithms consume the same RAM, while if a point lays on the horizontal dotted
line, it means that the two algorithms take the same time. To enhance the data visu-
alization, all the time and RAM ratios are scaled using the maximum time and RAM
values achieved by the comparison of the VFC-SMOTE*, ARFRE, RB, OOB and
UOB algorithms in case of both artificial2 and real streams3.

Fig. 7 Ratio between time & memory consumed by VFC-SMOTE* and the ARFRE
algorithm with synthetic streams. In cells with green borders, all the points are on the
bottom-left quadrant and thus, the algorithm prepended by VFC-SMOTE takes less
time and consumes less RAM with all the concept drift types

Fig. 8 VFC-SMOTE* and
RB ratio with real streams

A quick look at Fig. 7 and 8 is enough to say that
the ratios change depending on the algorithms and
the data streams tested, but there is at least one algo-
rithm prepended by VFC-SMOTE* that is faster and
a better RAM saver than the state-of-the-art methods
(green bordered cells). More specifically, Fig. 7 shows
the ratios between time and memory consumed by
VFC-SMOTE* and ARFRE algorithm for each syn-
thetic stream used and concept drift type. We can no-
tice that both time and RAM used are pretty similar
among all the methods involved except for the case
of the KNN model prepended by VFC-SMOTE that
always consumes less RAM than ARFRE. Moreover,
there are 14 cases (green bordered cells) in which, in

2Max Time Ratio = 24.02; Max RAM Ratio = 13.56
3Max Time Ratio = 100.18; Max RAM Ratio = 6.87

20 Alessio Bernardo, Emanuele Della Valle

all the concept drift types, VFC-SMOTE* takes both less time and consumes less
RAM than ARFRE.

Fig. 8 shows the ratios between the time and memory consumed by
VFC-SMOTE* and RB algorithm for each real stream. We can notice that
VFC-SMOTE* never consumes more RAM than RB and, in more than half of the
cases (9), VFC-SMOTE* is also faster.

We can conclude that, in the majority of cases, VFC-SMOTE* uses less time
and consumes less RAM than the SML+ methods or, in the worst-case scenario, it
uses the same amount of time and RAM. So, looking also at Appendix C, Hp. 2 is
verified.
Recovery Speed Analysis VFC-SMOTE is just a meta-strategy focusing on im-
proving the minority class performance. As Table 1 shows, it leaves to the algorithm
to which it is prepended (SML-) to manage the concept drift. If the SML- model
uses a concept drift detector then also the VFC-SMOTE pipeline will be able to
manage concept drifts, otherwise it will not. In Appendix D we compared, using dif-
ferent datasets and metrics, the performance of two SML- models with and without
VFC-SMOTE. We can notice that, despite the fact that the VFC-SMOTE pipelines
performance are better than the single models performance, they all start reacting to
the concept drift (red line) at the same time. This means that VFC-SMOTE does
not have any impact on the concept drift recovery and so Hp. 3 is verified. Moreover,
for this reason we did not compare the VFC-SMOTE recovery speed analysis to the
state-of-the-art methods one.

6 Limitations

In this section we discuss the most important VFC-SMOTE limitations. The first
one is the inability to know in advance which specific SML- model prepended with
VFC-SMOTE can outperform the other SML+ methods. For this purpose, we need
to test different SML- models to find out which is the best one in each situation. An-
other limitation is that, for the time being, VFC-SMOTE can only deal with binary
classification problems. Our aim was to start from the easiest problem to determine
whether our work could achieve good performance w.r.t. the state-of-the-art meth-
ods. Moreover, VFC-SMOTE uses the SMOTE, BORDERLINE-SMOTE, ADWIN and
HAT techniques. In a future extension of this work, we will focus on both address-
ing multi-class problems and using different techniques. Another important aspect
to take into consideration is the synthetic oversampling. The risk is that not all the
synthetic generated instances are consistent with the underlying context. In our case,
considering that we are using the most seen value with nominal attributes, and a Beta
distribution scaled between the minimum and maximum values observed with numer-
ical attributes, we have thus minimized the risk of generating non-coherent instances.
This also depends on the stream class distribution. In case of a sharp boundary where
the classes do not overlap, we avoided the problem, otherwise the risk would still
remain. Another class distribution consequence is the presence of a sort of trade-
off between improving the minority class performance and decreasing the majority
class ones. In case of non-overlapping classes, minority class performance can be

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 21

Table 6 Number of times that VFC-SMOTE prepended to the SML- model per-
formed better than the SML+ models tested. The table with all the SML- models
tested is shown in Appendix E. Bold means that it performed better in more than half
of the occurrences

Data F1[1] F1[0] R[1] R[0] GM
ARF HAT SWT ARF HAT SWT ARF HAT SWT ARF HAT SWT ARF HAT SWT

Syn. 141 86 105 115 55 103 136 108 111 92 54 93 143 78 98
Real 6 3 7 6 4 7 8 3 8 7 3 7 6 3 6

improved without decreasing significantly the majority class ones, but, in case of
overlapping classes, in light of a minority class performance improvement, a major-
ity class performance decrease is unavoidable. Lastly, we chose a Beta distribution to
generate the new synthetic samples. A sensitivity analysis could be performed com-
paring the results achieved using the Beta distributions to the results achieved using
different distributions having bounded intervals, i.e. Truncated normal distribution,
Logit-normal distribution, Irwin–Hall distribution or Bates distribution.

7 Conclusions

In this work, we present the VFC-SMOTE meta-strategy, inspired by the popular
SMOTE and BORDERLINE-SMOTE techniques, that allows balancing an evolving
data stream one sample at time, and that can be used as a data filter with all the stream-
ing machine learning techniques. Compared to SMOTE and BORDERLINE-SMOTE,
our meta-strategy does not need i) a static batch during the pre-processing phase, and
ii) to check the number of minority and majority class samples among the neighbors
to generate a new sample. Instead, it saves the samples in a sketch that incorporates
ADWIN and, it uses the summaries contained into the sketch to introduce new syn-
thetic samples. The VFC-SMOTE memory and time (per sample) asymptotic costs
are O(logW), where W is the ADWIN window length.

We tested VFC-SMOTE prepended to some SML- and SML+ algorithms on
different cases of imbalance, concept drifts, and swapping between minority and ma-
jority classes. Furthermore, we measured the time and memory consumed.

The results summarized in Table 6 empirically demonstrate that there are at least
two SML- models (ARF and SWT) that, prepended by VFC-SMOTE, improve both
the minority and majority class performance in more than half of the cases if com-
pared to the SML+ methods (Q1). Moreover, with reference to time and memory
consumed, the SML- algorithms prepended by VFC-SMOTE are faster and less
memory eager than the SML+ algorithms (Q2), while with reference to the recovery
speed analysis, the SML- models behaviour is not influenced by VFC-SMOTE (Q3).

In future works, we would improve the VFC-SMOTE performance for both
classes, not only for the minority class ones. Another aim is to investigate other
meta-strategies based on different rebalance techniques, different sketch structures
and different concept drift detectors and to compare them with VFC-SMOTE. In
the long term, adapting VFC-SMOTE to multiclass and regression tasks could be
interesting.

22 Alessio Bernardo, Emanuele Della Valle

Declarations

Funding No funds, grants, or other support were awarded.
Conflicts of interest/Competing interests None.
Availability of data & material https://dataverse.harvard.edu/dataverse/cd_ir
Code availability https://github.com/alessiobernardo/VFC-SMOTE

Authors’ contributions A. Bernardo is a PhD student of Prof. E. Della Valle

References

Abdi L, Hashemi S (2015) To combat multi-class imbalanced problems by means of over-sampling
and boosting techniques. Soft Comput 19(12):3369–3385, DOI 10.1007/s00500-014-1291-z, URL
https://doi.org/10.1007/s00500-014-1291-z

Bellinger C, Sharma S, Japkowicz N, Zaı̈ane OR (2020) Framework for extreme imbalance classifi-
cation: SWIM - sampling with the majority class. Knowl Inf Syst 62(3):841–866, DOI 10.1007/
s10115-019-01380-z, URL https://doi.org/10.1007/s10115-019-01380-z

Bernardo A, Della Valle E, Bifet A (2020a) Incremental rebalancing learning on evolving data streams.
In: Fatta GD, Sheng VS, Cuzzocrea A, Zaniolo C, Wu X (eds) 20th International Conference on Data
Mining Workshops, ICDM Workshops 2020, Sorrento, Italy, November 17-20, 2020, IEEE, pp 844–
850, DOI 10.1109/ICDMW51313.2020.00121, URL https://doi.org/10.1109/ICDMW51313.

2020.00121

Bernardo A, Gomes HM, Montiel J, Pfahringer B, Bifet A, Della Valle E (2020b) C-SMOTE: continuous
synthetic minority oversampling for evolving data streams. In: Wu X, Jermaine C, Xiong L, Hu X,
Kotevska O, Lu S, Xu W, Aluru S, Zhai C, Al-Masri E, Chen Z, Saltz J (eds) IEEE International Con-
ference on Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020, IEEE, pp 483–492,
DOI 10.1109/BigData50022.2020.9377768, URL https://doi.org/10.1109/BigData50022.

2020.9377768

Bifet A, Gavaldà R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings
of the Seventh SIAM International Conference on Data Mining, April 26-28, 2007, Minneapolis,
Minnesota, USA, SIAM, pp 443–448, DOI 10.1137/1.9781611972771.42, URL https://doi.org/

10.1137/1.9781611972771.42

Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. In: Adams NM, Robardet
C, Siebes A, Boulicaut J (eds) Advances in Intelligent Data Analysis VIII, 8th International Sym-
posium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2, 2009.
Proceedings, Springer, Lecture Notes in Computer Science, vol 5772, pp 249–260, DOI 10.1007/
978-3-642-03915-7\ 22, URL https://doi.org/10.1007/978-3-642-03915-7_22

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: Massive Online Analysis. J Mach Learn Res
11:1601–1604, URL http://portal.acm.org/citation.cfm?id=1859903

Bifet A, Pfahringer B, Read J, Holmes G (2013a) Efficient data stream classification via probabilistic
adaptive windows. In: Shin SY, Maldonado JC (eds) Proceedings of the 28th Annual ACM Sympo-
sium on Applied Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013, ACM, pp 801–806,
DOI 10.1145/2480362.2480516, URL https://doi.org/10.1145/2480362.2480516

Bifet A, Read J, Zliobaite I, Pfahringer B, Holmes G (2013b) Pitfalls in benchmarking data stream
classification and how to avoid them. In: Blockeel H, Kersting K, Nijssen S, Zelezný F (eds) Ma-
chine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013,
Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I, Springer, Lecture Notes in
Computer Science, vol 8188, pp 465–479, DOI 10.1007/978-3-642-40988-2\ 30, URL https:

//doi.org/10.1007/978-3-642-40988-2_30

Bifet A, Gavaldà R, Holmes G, Pfahringer B (2018) Machine Learning for Data Streams with Practical
Examples in MOA. MIT Press

Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012) DBSMOTE: density-based synthetic mi-
nority over-sampling technique. Appl Intell 36(3):664–684, DOI 10.1007/s10489-011-0287-y, URL
https://doi.org/10.1007/s10489-011-0287-y

https://dataverse.harvard.edu/dataverse/cd_ir
https://github.com/alessiobernardo/VFC-SMOTE
https://doi.org/10.1007/s00500-014-1291-z
https://doi.org/10.1007/s10115-019-01380-z
https://doi.org/10.1109/ICDMW51313.2020.00121
https://doi.org/10.1109/ICDMW51313.2020.00121
https://doi.org/10.1109/BigData50022.2020.9377768
https://doi.org/10.1109/BigData50022.2020.9377768
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-03915-7_22
http://portal.acm.org/citation.cfm?id=1859903
https://doi.org/10.1145/2480362.2480516
https://doi.org/10.1007/978-3-642-40988-2_30
https://doi.org/10.1007/978-3-642-40988-2_30
https://doi.org/10.1007/s10489-011-0287-y

VFC-SMOTE: Very Fast Continuous SMOTE for Evolving Data Streams 23

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic Minority Over-sampling
Technique. J Artif Intell Res 16:321–357, DOI 10.1613/jair.953, URL https://doi.org/10.

1613/jair.953

Cormode G (2017) Data sketching. Commun ACM 60(9):48–55, DOI 10.1145/3080008, URL https:

//doi.org/10.1145/3080008

Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30,
URL http://jmlr.org/papers/v7/demsar06a.html

Domingos PM, Hulten G (2000) Mining high-speed data streams. In: Ramakrishnan R, Stolfo SJ, Bayardo
RJ, Parsa I (eds) Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, Boston, MA, USA, August 20-23, 2000, ACM, pp 71–80, DOI 10.1145/
347090.347107, URL https://doi.org/10.1145/347090.347107

Douzas G, Bação F (2019) Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE.
Inf Sci 501:118–135, DOI 10.1016/j.ins.2019.06.007, URL https://doi.org/10.1016/j.ins.

2019.06.007

Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml, Accessed
16 June 2021

Fernández A, Garcı́a S, Herrera F, Chawla NV (2018) SMOTE for learning from imbalanced data: Progress
and challenges, marking the 15-year anniversary. J Artif Intell Res 61:863–905, DOI 10.1613/jair.1.
11192, URL https://doi.org/10.1613/jair.1.11192

Ferreira LEB, Gomes HM, Bifet A, Oliveira LS (2019) Adaptive random forests with resampling for
imbalanced data streams. In: International Joint Conference on Neural Networks, IJCNN 2019 Bu-
dapest, Hungary, July 14-19, 2019, IEEE, pp 1–6, DOI 10.1109/IJCNN.2019.8852027, URL https:

//doi.org/10.1109/IJCNN.2019.8852027

Gama J, Medas P, Castillo G, Rodrigues PP (2004) Learning with drift detection. In: Bazzan ALC, Labidi
S (eds) Advances in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial
Intelligence, São Luis, Maranhão, Brazil, September 29 - October 1, 2004, Proceedings, Springer,
Lecture Notes in Computer Science, vol 3171, pp 286–295, DOI 10.1007/978-3-540-28645-5\ 29,
URL https://doi.org/10.1007/978-3-540-28645-5_29

Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms. Mach
Learn 90(3):317–346, DOI 10.1007/s10994-012-5320-9, URL https://doi.org/10.1007/

s10994-012-5320-9

Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.
ACM Comput Surv 46(4):44:1–44:37, DOI 10.1145/2523813, URL https://doi.org/10.1145/

2523813

Ghazikhani A, Monsefi R, Yazdi HS (2013a) Ensemble of online neural networks for non-stationary and
imbalanced data streams. Neurocomputing 122:535–544, DOI 10.1016/j.neucom.2013.05.003, URL
https://doi.org/10.1016/j.neucom.2013.05.003

Ghazikhani A, Monsefi R, Yazdi HS (2013b) Recursive least square perceptron model for non-
stationary and imbalanced data stream classification. Evol Syst 4(2):119–131, DOI 10.1007/
s12530-013-9076-7, URL https://doi.org/10.1007/s12530-013-9076-7

Ghazikhani A, Monsefi R, Yazdi HS (2014) Online neural network model for non-stationary and
imbalanced data stream classification. Int J Mach Learn Cybern 5(1):51–62, DOI 10.1007/
s13042-013-0180-6, URL https://doi.org/10.1007/s13042-013-0180-6

Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfahringer B, Holmes G, Abdessalem T
(2019) Correction to: Adaptive random forests for evolving data stream classification. Mach
Learn 108(10):1877–1878, DOI 10.1007/s10994-019-05793-3, URL https://doi.org/10.1007/

s10994-019-05793-3

Grulich PM, Saitenmacher R, Traub J, Breß S, Rabl T, Markl V (2018) Scalable detection of concept
drifts on data streams with parallel adaptive windowing. In: Böhlen MH, Pichler R, May N, Rahm
E, Wu S, Hose K (eds) Proceedings of the 21st International Conference on Extending Database
Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018, OpenProceedings.org, pp 477–480,
DOI 10.5441/002/edbt.2018.51, URL https://doi.org/10.5441/002/edbt.2018.51

Han H, Wang W, Mao B (2005) Borderline-SMOTE: A new over-sampling method in imbalanced data sets
learning. In: Huang D, Zhang XS, Huang G (eds) Advances in Intelligent Computing, International
Conference on Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005, Proceedings,
Part I, Springer, Lecture Notes in Computer Science, vol 3644, pp 878–887, DOI 10.1007/11538059\
91, URL https://doi.org/10.1007/11538059_91

Harries M (1999) SPLICE-2 comparative evaluation: Electricity pricing

https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/3080008
https://doi.org/10.1145/3080008
http://jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1145/347090.347107
https://doi.org/10.1016/j.ins.2019.06.007
https://doi.org/10.1016/j.ins.2019.06.007
http://archive.ics.uci.edu/ml
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1109/IJCNN.2019.8852027
https://doi.org/10.1109/IJCNN.2019.8852027
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1016/j.neucom.2013.05.003
https://doi.org/10.1007/s12530-013-9076-7
https://doi.org/10.1007/s13042-013-0180-6
https://doi.org/10.1007/s10994-019-05793-3
https://doi.org/10.1007/s10994-019-05793-3
https://doi.org/10.5441/002/edbt.2018.51
https://doi.org/10.1007/11538059_91

24 Alessio Bernardo, Emanuele Della Valle

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284,
DOI 10.1109/TKDE.2008.239, URL https://doi.org/10.1109/TKDE.2008.239

He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced
learning. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008, part
of the IEEE World Congress on Computational Intelligence, WCCI 2008, Hong Kong, China, June
1-6, 2008, IEEE, pp 1322–1328, DOI 10.1109/IJCNN.2008.4633969, URL https://doi.org/10.

1109/IJCNN.2008.4633969

Hulten G, Spencer L, Domingos PM (2001) Mining time-changing data streams. In: Lee D, Schkolnick
M, Provost FJ, Srikant R (eds) Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, San Francisco, CA, USA, August 26-29, 2001, ACM, pp
97–106, DOI 10.1145/502512.502529, URL https://doi.org/10.1145/502512.502529

John GH, Langley P (2013) Estimating continuous distributions in bayesian classifiers. vol abs/1302.4964,
URL http://arxiv.org/abs/1302.4964, 1302.4964

Kranen P, Assent I, Baldauf C, Seidl T (2011) The ClusTree: indexing micro-clusters for anytime
stream mining. Knowl Inf Syst 29(2):249–272, DOI 10.1007/s10115-010-0342-8, URL https:

//doi.org/10.1007/s10115-010-0342-8

Li H, Shan M, Lee S (2008) DSM-FI: an efficient algorithm for mining frequent itemsets in data
streams. Knowl Inf Syst 17(1):79–97, DOI 10.1007/s10115-007-0112-4, URL https://doi.org/

10.1007/s10115-007-0112-4

Linhart C, Harari G, Abramovich S, Buchris A (2009) PAKDD data mining competition 2009: New ways
of using known methods. In: Theeramunkong T, Nattee C, Adeodato PJL, Chawla NV, Christen P,
Lenca P, Poon J, Williams GJ (eds) New Frontiers in Applied Data Mining, PAKDD 2009 Interna-
tional Workshops, Bangkok, Thailand, April 27-30, 2009. Revised Selected Papers, Springer, Lec-
ture Notes in Computer Science, vol 5669, pp 99–105, DOI 10.1007/978-3-642-14640-4\ 7, URL
https://doi.org/10.1007/978-3-642-14640-4_7

Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2020) Learning under concept drift: A review. CoRR
abs/2004.05785, URL https://arxiv.org/abs/2004.05785, 2004.05785

Ma S, Li X, Ding Y, Orlowska ME (2007) A recommender system with interest-drifting. In: Benatallah
B, Casati F, Georgakopoulos D, Bartolini C, Sadiq W, Godart C (eds) Web Information Systems
Engineering - WISE 2007, 8th International Conference on Web Information Systems Engineering,
Nancy, France, December 3-7, 2007, Proceedings, Springer, Lecture Notes in Computer Science,
vol 4831, pp 633–642, DOI 10.1007/978-3-540-76993-4\ 55, URL https://doi.org/10.1007/

978-3-540-76993-4_55

Mirza B, Lin Z, Liu N (2015) Ensemble of subset online sequential extreme learning machine for class im-
balance and concept drift. Neurocomputing 149:316–329, DOI 10.1016/j.neucom.2014.03.075, URL
https://doi.org/10.1016/j.neucom.2014.03.075

Oza NC (2005) Online bagging and boosting. In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10-12, 2005, IEEE, pp 2340–2345,
DOI 10.1109/ICSMC.2005.1571498, URL https://doi.org/10.1109/ICSMC.2005.1571498

Pozzolo AD, Boracchi G, Caelen O, Alippi C, Bontempi G (2018) Credit card fraud detection: A realistic
modeling and a novel learning strategy. IEEE Trans Neural Networks Learn Syst 29(8):3784–3797,
DOI 10.1109/TNNLS.2017.2736643, URL https://doi.org/10.1109/TNNLS.2017.2736643

Street WN, Kim Y (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In: Lee
D, Schkolnick M, Provost FJ, Srikant R (eds) Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, San Francisco, CA, USA, August 26-
29, 2001, ACM, pp 377–382, DOI 10.1145/502512.502568, URL https://doi.org/10.1145/

502512.502568

Tsymbal A (2004) The problem of concept drift: definitions and related work. Computer Science Depart-
ment, Trinity College Dublin 106(2):58

Wang B, Pineau J (2016) Online bagging and boosting for imbalanced data streams. IEEE Trans Knowl
Data Eng 28(12):3353–3366, DOI 10.1109/TKDE.2016.2609424, URL https://doi.org/10.

1109/TKDE.2016.2609424

Wang S, Minku LL, Yao X (2013) A learning framework for online class imbalance learning. In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Ensemble Learning, CIEL
2013, IEEE Symposium Series on Computational Intelligence (SSCI), 16-19 April 2013, Singapore,
IEEE, pp 36–45, DOI 10.1109/CIEL.2013.6613138, URL https://doi.org/10.1109/CIEL.

2013.6613138

https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1145/502512.502529
http://arxiv.org/abs/1302.4964
1302.4964
https://doi.org/10.1007/s10115-010-0342-8
https://doi.org/10.1007/s10115-010-0342-8
https://doi.org/10.1007/s10115-007-0112-4
https://doi.org/10.1007/s10115-007-0112-4
https://doi.org/10.1007/978-3-642-14640-4_7
https://arxiv.org/abs/2004.05785
2004.05785
https://doi.org/10.1007/978-3-540-76993-4_55
https://doi.org/10.1007/978-3-540-76993-4_55
https://doi.org/10.1016/j.neucom.2014.03.075
https://doi.org/10.1109/ICSMC.2005.1571498
https://doi.org/10.1109/TNNLS.2017.2736643
https://doi.org/10.1145/502512.502568
https://doi.org/10.1145/502512.502568
https://doi.org/10.1109/TKDE.2016.2609424
https://doi.org/10.1109/TKDE.2016.2609424
https://doi.org/10.1109/CIEL.2013.6613138
https://doi.org/10.1109/CIEL.2013.6613138

25

Wang S, Minku LL, Yao X (2015) Resampling-based ensemble methods for online class imbalance
learning. IEEE Trans Knowl Data Eng 27(5):1356–1368, DOI 10.1109/TKDE.2014.2345380, URL
https://doi.org/10.1109/TKDE.2014.2345380

Appendices
Appendix A Further Sampling Techniques for Class Imbalance

The ADASYN (He et al. 2008) main idea proceeds from the assumption of utiliz-
ing a weighted distribution depending on the type of minority examples according to
their learning complexity. The quantity of synthetic data for each one is associated
with the level of difficulty of each minority example. This difficulty estimation is
based on the ratio of examples belonging to the majority class in the neighborhood.
Then, a density distribution is computed using all the ratios of the minority instances,
which will be used to compute the number of synthetic examples required to be gen-
erated for each minority example. DBSMOTE (Bunkhumpornpat et al. 2012) relies
on a density-based approach to clustering called DBSCAN and performs oversam-
pling by generating synthetic samples along the shortest path from each minority
instance to a pseudo-centroid of a minority class cluster. DBSMOTE was inspired
by BORDERLINE-SMOTE in the sense that it operates in an overlapping region, but
unlike BORDERLINE-SMOTE, it also tries to maintain both the minority and majority
class accuracies. MDO (Abdi and Hashemi 2015) builds synthetic examples having
the same Mahalanobis distance from each examined class mean as the other minority
examples. Thus, the region of minority instances can be better learned by preserv-
ing the co-variance during the generation of synthetic examples along the probability
contours. Also, the risk of overlapping between different class regions is reduced.
SWIM (Bellinger et al. 2020) is based on the Mahalanobis distance, too. It gener-
ates synthetic minority training examples that are (1) near to their minority seed and
(2) have the same Mahalanobis distance from the mean of the majority class as their
seed. This ensures that the synthetic instances do not spread into denser regions of
the majority class where there is no statistical evidence that they should be. The last
technique proposed is G-SMOTE (Douzas and Bação 2019). It substitutes the SMOTE
data generation mechanism by defining a flexible geometric region around each mi-
nority class instance. Then, synthetic instances are generated inside the boundaries
of the region. At the most general choice of hyper-parameters, this geometric region
of the input space is a truncated hyper-spheroid.

Appendix B Asymptotic Complexity Analysis

From Table 7, which shows the memory, asymptotic memory, time per sample,
and asymptotic time per sample complexity of the SML- models used to test the
VFC-SMOTE meta-strategy, we can notice that all the models that use ADWIN (e.g.
ARF, HAT and SWT) require O(logW) asymptotic memory and time, where W is the

https://doi.org/10.1109/TKDE.2014.2345380

26

ADWIN window length. Instead, the other two models (e.g. KNN and NV) require
O(1) asymptotic memory and time.

The total memory complexity of the proposed solution is the sum of the space
used to store the sketch and the SML- model to which VFC-SMOTE is prepended.
Since the sketch is stored in a HAT model, its asymptotic complexity is O(logW).
Thus, whether the SML- model uses ADWIN or not, the total asymptotic memory
complexity is still O(logW). Notice that, in the latter case, the asymptotic complexity
worsens from O(1) to O(logW).

Instead, the time complexity per sample of the proposed solution is the sum of
the time used to 1) save the element into the sketch, 2) retrieve all the summaries
from the sketch, 3) sort the summaries by the number of instances seen, 4) generate
new synthetic samples, 5) train the SML- model with the newly generated synthetic
samples, and 6) train the SML- with the sample arrived in input. So, the total time
complexity is, respectively, O(AVC+ logW)+O(T +L)+O((T +L)log(T +L))+
O(AI)+O(I ∗ SML−)+O(SML−), where here A is the number of attributes, V is
the maximum number of values for an attribute, C is the number of classes (2), T is
the number of tree nodes, L is the number of tree leaves, M is the number of buckets
used by ADWIN, I is the number of synthetic instances to generate to rebalance the
stream in that moment and O(SML−) stands for the time complexity of the SML-
model. Asymptotically, also this cost becomes O(logW) and so, as before, whether
the SML- model uses ADWIN or not, the total time asymptotic complexity is still
O(logW).

Table 7 Memory, asymptotic memory, time per sample, and asymptotic time per
sample complexity of the SML- models. Here, A is the number of attributes, V is
the maximum number of values for an attribute, C is the number of classes (2), T
is the number of tree nodes, W is the ADWIN window length, M is the number of
buckets used by ADWIN, I is the number of synthetic samples to introduce at each
moment, K is the nearest neighbors to use (10), WKNN is the KNN window length
(1000), and E is the number of ARF and SWT ensemble size (100). Note that all the
time complexity are per sample

SML- model Mem Asym. Mem Time Asym. Time
ARF (Gomes et al. 2019) O(E(TAVC+T Mlog(W/M)) O(logW) O(E(AVC+ logW)) O(logW)
HAT (Bifet and Gavaldà 2009) O(TAVC+T Mlog(W/M)) O(logW) O(AVC+ logW) O(logW)
KNN (Bifet et al. 2013a) O(AWKNN) O(1) O(AWKNN) O(1)
NV (John and Langley 2013) O(AVC) O(1) O(AC) O(1)
SWT (Bifet et al. 2013b) O(E(T (A+1)VC+Mlog(W/M)) O(logW) O(E((A+1)VC+ logW)) O(logW)

Appendix C Further Data on Time & Memory Consumption

Fig. 9 shows the ratio between time & memory consumed by VFC-SMOTE* and,
respectively, OOB, UOB, RB algorithms with synthetic data streams and ARFRE,
OOB and UOB with real data streams.

27

(a) OOB algorithm with synthetic data streams

(b) UOB algorithm with synthetic data streams

(c) RB algorithm with synthetic data streams

(d) ARFRE algorithm
with real data streams

(e) OOB algorithm
with real data streams

(f) UOB algorithm
with real data streams

Fig. 9 Ratio between time & memory consumed by VFC-SMOTE* and the state-of-
the-art algorithms with synthetic and real data streams. In cells with a green border,
all the points are on the bottom-left quadrant and so, the algorithm prepended by
VFC-SMOTE takes less time and consumes less RAM with all the concept drift
types

28

Appendix D Recovery Speed Analysis

Fig. 10 shows the performance comparison between the ARF and HAT techniques
prepended with and without VFC-SMOTE. The red solid lines represent the concept
drift occurrence, while the red dashed lines represent the start and the end of a gradual
drift.

(a) SINE1 with IR=2:8 and p(y) concept drift (b) SEA with IR=1:9 and p(X |y) concept drift

(c) SEA with IR=2:8 and p(y|X) concept drift (d) SEAg with IR=1:9 and p(y|X) concept drift

Fig. 10 Comparison between ARF and HAT prepended with and without
VFC-SMOTE

Appendix E Summary of Results

Table 8 shows the summary results of all the SML- methods prepended by
VFC-SMOTE.

29

Table 8 Number of times that VFC-SMOTE prepended to the SML- model per-
formed better than the SML+ models tested. Bold means that it performed better in
more than half of the occurrences

Data F1[1] F1[0] R[1] R[0] GM
ARF HAT KNN NV SWT ARF HAT KNN NV SWT ARF HAT KNN NV SWT ARF HAT KNN NV SWT ARF HAT KNN NV SWT

Syn. 141 86 78 20 105 115 55 54 6 103 136 108 97 63 111 92 54 53 15 93 143 78 72 21 98
Real 6 3 4 4 7 6 4 3 1 7 8 3 3 4 8 7 3 5 3 7 6 3 3 2 6

	Introduction
	Related Work
	VFC-SMOTE
	Experimental Settings
	Results and Discussion
	Limitations
	Conclusions
	Further Sampling Techniques for Class Imbalance
	Asymptotic Complexity Analysis
	Further Data on Time & Memory Consumption
	Recovery Speed Analysis
	Summary of Results

