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Abstract—Recently, an in-memory analog circuit based on 

crosspoint memristor arrays was reported, which enables solving 

linear regression problems in one step and can be used to train 

many other machine learning algorithms. To explore its potential 

for computing accelerator applications, it is of fundamental 

importance to improve the computing speed of the circuit, 

namely to reduce its response time towards correct outputs. In 

this work, we comprehensively studied the transfer function of 

this circuit, resulting in a quadratic eigenvalue problem that 

describes the distribution of poles of the circuit. The minimal real 

part of non-zero eigenvalues defines the dominant pole, which in 

turn dominates the response time. Simulations for multiple linear 

regression solutions with different datasets evidence that, the 

computing time does not necessarily increase with problem size, 

rather it is solely determined by the minimal eigenvalue. The 

dominant pole is related to variables in the circuit, including 

feedback conductance, and gain bandwidth products of 

amplifiers. By optimizing these parameters synergisitically, the 

dominant pole shifts to higher frequencies and the computing 

speed is consequently optimized. Our results provide a guideline 

for design and optimization of in-memory machine learning 

accelerators with analog memristor arrays. Also, issues including 

power consumption and noise impact are investigated in terms of 

the circuit variable, thus offering a comprehensive evaluation of 

its impact. 

 
Index Terms—analog computing, in-memory computing, 

linear regression, machine learning, memristor. 

 

I. INTRODUCTION 

OWADAYS machine learning (ML) systems are facing a 

severe energy problem [1]. In-memory computing is a 

promising solution, thanks to the elimination of data 

movement between the physically separated computing and 

memory units in conventional computers [2], also to the 

intrinsically massive parallelism in emerging memory 

architectures that can be exploited for computing [3]. 

Crosspoint memristor arrays enable naturally calculation of 

matrix-vector multiplication (MVM) in one step in the analog 

domain, providing an acceleration scheme for many important 
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algorithms such as neural networks [4], signal and image 

processing [5]. By adopting an appropriate setup, the time 

complexity of analog MVM computation can be as low as O(1) 

[6]. On the other hand, by configuring crosspoint feedback 

loops, basic linear algebraic problems including systems of 

linear equations and matrix eigenvectors can be solved in one 

step as well [7]-[10]. Especially, by connecting two identical 

crosspoint memristor arrays to form a negative feedback loop, 

linear regression can be conveniently solved in the closed 

form with the circuit, facilitating a one-step solution to the 

training of many ML algorithms, such as logistic regression 

and neural network [11]. To support its potential for ML 

accelerator applications, a critical point is to investigate the 

computing time of the circuit and develop optimization 

schemes correspondingly, which will ultimately lead to an 

improved energy efficiency and the overall performance. 

In this work, we intensively studied the transfer 

characteristics of the in-memory linear regression circuit. The 

transfer function analysis results in a quadratic eigenvalue 

problem (QEP), where the minimum of absolute real part of 

non-zero solutions dictates the dominant pole of the circuit, 

which in turn dominates the computing time. Such analysis is 

validated by a bunch of SPICE (Simulation Program with 

Integrated Circuit Emphasis) simulations with real-world 

datasets. As the problem size, i.e. the number of rows in the 

resulting matrix increases, the circuit response is found not 

necessarily to delay. According to the QEP as obtained, the 

dominant pole is determined by variables in the circuit, 

including feedback conductance (𝑐 ), and gain bandwidth 

products (GBWPs 𝑝1 and 𝑝2) of the two sets of operational 

amplifiers (OAs). By optimizing these parameters, the 

computing speed can be improved substantially. It is found 

that they need to be correlatively adjusted to achieve the best 

performance. For instance, the optimal 𝑐  always increases 

with the ratio of 𝑝2/𝑝1 assuming amplifiers with different 

GBWPs are available. Additionally, a large 𝑐  value 

contributes to reducing the energy consumption by the circuit, 

while amplifying the computation error and the noise impact. 

These results provide a practical viewpoint for the circuit 

evaluation, thus representing a guideline for design and 

improvement of the in-memory linear regression circuit for 

ML applications, especially in the edge computing scenarios 

where light ML models are involved. 

The rest of this paper is organized as follows. Section II 

elaborates the transfer characteristics of in-memory linear 
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regression circuit and demonstrates the deterministic role of 

the minimal eigenvalue in the QEP, namely the dominant pole 

in the temporal behavior of the circuit. Section III introduces 

optimization schemes to reduce the computing time of the 

circuit, by adopting the optimal combination of circuit 

variables that enables the highest frequency for the dominant 

pole. In Section IV, issues including power consumption and 

circuit noises are discussed in terms of circuit variables. 

Finally, this work is concluded in Section V. 

II. COMPUTING TIME ANALYSIS OF IN-MEMORY LINEAR 

REGRESSION CIRCUIT 

A. Transfer Characteristics  

Linear regression is an overdetermined linear system 

problem, which can be formulated as a matrix equation, that is  

𝑿𝝎 = 𝒚, (1) 

where 𝑿 is an 𝑛 × 𝑚 (𝑛 > 𝑚) matrix containing a column 

of ones and 𝑚 − 1 columns of independent variable values of 

𝑛  samples, 𝒚  is an 𝑛 × 1  vector reporting values of the 

dependent variable, and 𝝎 is the 𝑚 × 1 weight vector of 

fitting coefficients to be solved [11]. As matrix 𝑿  is 

non-square and hence non-invertible, Eq. (1) is solved with the 

pseudoinverse concept, namely 

𝝎 = 𝑿+𝒚 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚, (2) 

where 𝑿+ is the pseudoinverse (or Moore-Penrose inverse 

[12]) of 𝑿, 𝑿𝑇 is the transpose. To facilitate the closed form 

of Eq. (2), it is mapped in a feedback circuit constituted by 

two identical crosspoint memristor arrays, one set of 

transimpedance amplifiers (TIAs), and one set of positive 

feedback amplifiers (PFAs). In Fig. 1, matrix 𝑿 is mapped by 

the conductance matrices 𝑮𝑿  of two identical crosspoint 

memristor arrays. During the computing operation, the left and 

right arrays play the role of 𝑿 and 𝑿𝑇, respectively. Vectors 

−𝒚  and 𝝎  are mapped by the input and output voltage 

vectors (𝒗𝑖𝑛 and 𝒗𝑜𝑢𝑡), respectively. Once the known vector 

𝒚 is provided in the circuit, the static outputs of PFAs define 

the fitting coefficients of the corresponding linear regression 

model, namely the unknown vector 𝝎 is solved. Notably, 

though the feedback conductance 𝐺𝑓 (representing a scalar 

constant 𝑐) of TIAs is not involved in the static result, it plays 

an important role in the dynamic behavior as will be revealed 

later. Also, the output voltages 𝒗𝑟𝑒𝑠  of TIAs represent 

essentially the residuals of data fitting divided by the constant 

𝑐, namely 𝒗𝑟𝑒𝑠 ∝ (𝒚 − 𝑿𝝎)/𝑐, the sum of squares of which is 

termed the least squares. As 𝑐 modulates output voltages of 

TIAs, it is anticipated to play an important role in issues of 

power consumption and computation accuracy of the circuit. 

To study the computing time of the circuit, its transfer 

function, i.e., the relationship between the output vector 𝒗𝑜𝑢𝑡 
and the input vector 𝒗𝑖𝑛  shall be established. In Fig. 1, 

according to Kirchhoff’s law and amplifier theory, the 

input-output equations of the ith (1 ≤ 𝑖 ≤ 𝑛) TIA and the jth 

(1 ≤ 𝑗 ≤ 𝑚) PFA are written respectively as follows: 

−
𝐺0𝑣𝑖𝑛,𝑖(s)+𝐺𝑓𝑣𝑟𝑒𝑠,𝑖(s)+∑ 𝐺𝑋,𝑖𝑗𝑣𝑜𝑢𝑡,𝑗(s)𝑗

𝐺0+𝐺𝑓+∑ 𝐺𝑋,𝑖𝑗𝑗
𝐿1(𝑠) = 𝑣𝑟𝑒𝑠,𝑖(𝑠), (3) 

∑ 𝐺𝑋,𝑖𝑗𝑖 𝑣𝑟𝑒𝑠,𝑖(𝑠)

∑ 𝐺𝑋,𝑖𝑗𝑖
𝐿2(𝑠) = 𝑣𝑜𝑢𝑡,𝑗(𝑠), (4) 

where  𝑠  is the complex frequency, 𝐿1(𝑠)  and 𝐿2(𝑠)  are 

open-loop gains of OAs of TIAs and PFAs, respectively. 

Combining 𝑛 equations of TIAs or 𝑚 equations of PFAs 

results in the following two matrix equations in frequency 

domain: 

−𝑼𝑛[𝒗𝑖𝑛(𝑠) + 𝑐𝒗𝑟𝑒𝑠(𝑠) + 𝑿𝒗𝑜𝑢𝑡(𝑠)]𝐿1(𝑠)  

= 𝒗𝑟𝑒𝑠(𝑠), 
(5) 

𝑼𝑚𝑿
𝑇𝒗𝑟𝑒𝑠(𝑠)𝐿2(𝑠) = 𝒗𝑜𝑢𝑡(𝑠), (6) 

where the dimensionless matrix 𝑿  and constant 𝑐  have 

replaced 𝑮𝑿  and 𝐺𝑓 , respectively. Matrices 𝑼𝑛  and 𝑼𝑚 

are dimensionless as well. Specifically, 𝑼𝑛  is an 𝑛 × 𝑛 

diagonal matrix with diagonal entries of 
1

1+𝑐+∑ 𝑋𝑖𝑗𝑗
 (1 ≤ 𝑖 ≤

𝑛), 𝑼𝑚 is an 𝑚 ×𝑚 diagonal matrix with diagonal entries 

of 
1

∑ 𝑋𝑖𝑗𝑖
 (1 ≤ 𝑗 ≤ 𝑚). Incorporating Eq. (6) in Eq. (5), and 

considering the single-pole model for both sets of OAs [13], 

namely 𝐿1(𝑠) =
𝐿01

1+𝑠/𝜔01
 for TIAs and 𝐿2(𝑠) =

𝐿02

1+𝑠/𝜔02
 for 

PFAs, where 𝐿01 and 𝐿02 are the DC open-loop gains, 𝜔01 

and 𝜔02  are the 3-dB bandwidths, the matrix equation 

becomes 

[𝐿01𝜔01𝐿02𝜔02𝑼𝑛𝑿𝑼𝑚𝑿
𝑇 + 𝑐𝐿01𝜔01𝜔02𝑼𝑛  

+𝜔01𝜔02𝑰𝑛 + (𝑐𝐿01𝜔01𝑼𝑛 +𝜔01𝑰𝑛 +𝜔02𝑰𝑛)𝑠  

+𝑰𝑛𝑠
2]𝒗𝑟𝑒𝑠(𝑠) = −𝐿01𝜔01(𝑠 + 𝜔02)𝑼𝑛𝒗𝑖𝑛(𝑠), 

(7) 

where 𝑰𝑛 is the 𝑛 × 𝑛 identity matrix. As 𝐿01 and 𝐿02 are 

usually much greater than 1, e.g., 105, minor terms in the 

coefficient matrix for each order of 𝑠  in Eq. (7) can be 

omitted, resulting in the following equation 

𝒗𝑟𝑒𝑠(𝑠) =  

−(𝐿02𝜔02𝑼𝑛𝑿𝑼𝑚𝑿
𝑇 + 𝑐𝑼𝑛𝑠 +

1

𝐿01𝜔01
𝑰𝑛𝑠

2)
−1

  

∙ (𝑠 + 𝜔02)𝑼𝑛𝒗𝑖𝑛(𝑠), 

(8) 

which tells the relationship between 𝒗𝑟𝑒𝑠 and 𝒗𝑖𝑛. To obtain 

 

Fig. 1. The in-memory linear regression circuit based on two identical 

𝑛 ×𝑚 crosspoint memristor arrays and feedback loops that enabled by 

one set of TIAs and one set of PFAs. The parameters in a linear 

regression problem, namely the known matrix 𝑿, the known vector 𝒚 

and the unknown 𝝎 are mapped to 𝑮𝑿, 𝒗𝒊𝒏 and 𝒗𝒐𝒖𝒕 in the circuit, 

respectively. The input resistors are of a unit conductance 𝐺0 = 10𝜇𝑆, 

which is 10 S in this work. The feedback conductance of TIAs is 

assumed as 𝐺𝑓 = 𝑐𝐺0. The output voltages of TIAs are termed as a 

column vector 𝒗𝑟𝑒𝑠, as it represents the least squares error in linear 

regression. 
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the expression of 𝒗𝑜𝑢𝑡, Eq. (8) is substituted backwards in Eq. 

(6), which finally becomes 

𝒗𝑜𝑢𝑡(𝑠) = −𝑼𝑚𝑿
𝑇  

∙ (𝑼𝑛𝑿𝑼𝑚𝑿
𝑇 +

𝑐

𝐿02𝜔02
𝑼𝑛𝑠 +

1

𝐿01𝜔01𝐿02𝜔02
𝑰𝑛𝑠

2)
−1

  

∙ 𝑼𝑛𝒗𝑖𝑛(𝑠). 

(9) 

Eq. (9) identifies explicitly the transfer characteristics of the 

circuit, involving both matrix multiplication and inversion 

terms. Let 𝑝1 = 𝐿01𝜔01  and 𝑝2 = 𝐿02𝜔02 , which are the 

GBWPs of two sets of OAs, respectively, the transfer function 

is expressed as  

𝑭(𝑠) =  

−𝑼𝑚𝑿
𝑇 (𝑼𝑛𝑿𝑼𝑚𝑿

𝑇 +
𝑐

𝑝2
𝑼𝑛𝑠 +

𝑰𝑛

𝑝1𝑝2
𝑠2)

−1

𝑼𝑛.  
(10) 

Based on the transfer function, the stability and response time 

of the circuit can be addressed. In Eq. (10), the matrix 

inversion part determines the poles of the circuit, that is, 

letting the determinant of the matrix be zero defines all pole 

positions in the complex plane, namely  

det (𝑼𝑛𝑿𝑼𝑚𝑿
𝑇 +

𝑐

𝑝2
𝑼𝑛𝑠 +

𝑰𝑛

𝑝1𝑝2
𝑠2) = 0. (11) 

Let 𝜆 =
𝑠

𝑝1
, Eq. (11) becomes a QEP, that is 

det (
𝑝2

𝑝1
𝑼𝑛𝑿𝑼𝑚𝑿

𝑇 + 𝑐𝜆𝑼𝑛 + 𝜆
2𝑰𝑛) = 0, or  

det (
𝑝2

𝑝1
𝑿𝑼𝑚𝑿

𝑇 + 𝑐𝜆𝑰𝑛 + 𝜆
2𝑼𝑛

−1) = 0, (12) 

with the factor matrix 𝑼𝑛 dropped out for all three terms. 

In Eq. (12), it is easily recognized that matrix 𝑿𝑼𝑚𝑿
𝑇 whose 

size is 𝑛 × 𝑛  is positive semi-definite, with 𝑚  positive 

eigenvalues and 𝑛 − 𝑚 zero eigenvalues. Also, matrices 𝑰𝑛 

and 𝑼𝑛
−1 are positive definite, with all 𝑛 eigenvalues being 

positive in both cases. According to the QEP theory [14], the 

solution to Eq. (12) satisfies 𝑅𝑒(𝜆) ≤ 0, suggesting the circuit 

is always stable for any concerned matrix 𝑿, which in turn 

determines 𝑼𝑛 and 𝑼𝑚. 

To solve Eq. (12) thus obtaining explicitly the eigenvalues, 

it is converted into an eigenvalue problem of a composed 

matrix, that is  

𝑴𝝃 = 𝜆𝝃, 𝑴 = [
−𝑐𝑼𝑛 −

𝑝2

𝑝1
𝑼𝑛𝑿𝑼𝑚𝑿

𝑇

𝑰𝑛 𝑶𝑛
], (13) 

where 𝑶𝑛 is the 𝑛 × 𝑛 zero matrix, 𝝃 = [
𝜆𝒖
𝒖
], and 𝒖 is the 

corresponding eigenvector for Eq. (12). The resulting matrix 

𝑴  is of size 2𝑛 × 2𝑛  and has 2𝑛  eigenvalues in total, 

among which 𝑛 + 𝑚 eigenvalues show 𝑅𝑒(𝜆) < 0, and the 

remaining 𝑛 − 𝑚 eigenvalues are zero, as will be indicated 

with an example later. The eigenvalue solutions can also be 

understood in analogy to the solution of a quadratic equation 

with one unknown [14]. From the hardware viewpoint, the 

𝑛 +𝑚 non-zero eigenvalues (hence poles) are related to the 

𝑛 +𝑚 single-pole OAs in the circuit, while the 𝑛 −𝑚 zero 

eigenvalues are due to the count mismatch of two sets of OAs. 

Thanks to its special structure, matrix 𝑴 is diagonalizable, 

which means the Jordan blocks corresponding to each zero 

eigenvalue are scalar 1 × 1  blocks, thus guaranteeing the 

circuit stability in the sense of Lyapunov [15].  

B. Computing Time Analysis with Real-World Datasets 

The non-zero eigenvalues of matrix 𝑴 determine 𝑛 +𝑚 

poles (𝑠 = 𝜆𝑝1) of the circuit in the left half complex plane. 

The response time of a system is often characterized by the 

dominant pole (or pair)  𝑠𝑑 , corresponding to the minimal 

absolute eigenvalue |𝑅𝑒(𝜆)|𝑚𝑖𝑛 (or minimal real part of a 

complex conjugate pair of eigenvalues) of matrix 𝑴 [15]. 

The larger the |𝑅𝑒(𝜆)|𝑚𝑖𝑛, the faster the circuit response. 

To study the computing time of the in-memory linear 

regression circuit, especially its dependence on |𝑅𝑒(𝜆)|𝑚𝑖𝑛 

(or  |𝑅𝑒(𝑠𝑑)| ), we consider a multiple linear regression 

problem for PM2.5 prediction in Beijing. The dataset includes 

6 attributes (concentrations of PM10, SO2, NO2, CO and O3, 

temperature), and 1 dependent variable (concentration of 

PM2.5), in the time period from March 2013 to March 2017 

[16]. Different time segments from 1 month to 6 months were 

selected to test the response time of the circuit. 

Fig. 2a shows the attribute matrix 𝑿 of one month (March 

2014) in Eq. (1), which is of size 30 × 7, representing 30 

samples (30 rows), 6 attributes (6 columns), and 1 additional 

column of ones for linear regression problem formulization 

[11]. The matrix has been pre-processed to shift all attribute 

values positive and ensure they are in a reasonable range to be 

ready for mapping within the conductance limits of 

memristors, e.g., conductance ratio of 102 or 103 [17]-[19]. 

The input vector 𝒚 representing the PM2.5 concentration is 

shown as well. It is scaled to generate moderate output 

voltages for 𝝎, e.g., in the range of ±0.5 V [20], protecting 

the crosspoint devices from electrical destruction or 

degradation. 

In the linear regression circuit (Fig. 1), matrix 𝑿 is mapped 

in the two crosspoint memristor arrays, with 10 S being the 

conductance unit [21]. It is assumed with an 8-bit precision to 

accurately program the memristor states according to matrix 

elements [22]-[24]. The vector −𝒚  is provided as input 

voltages. We studied the transient behavior of the circuit in 

 

Fig. 2. Linear regression of a real-world dataset. (a) The pretreated 

attribute matrix 𝑿 and dependent variable vector 𝒚 for linear regression 

calculation. The size of 𝑿 is 30 × 7, including the first column of ones 

and other 6 columns for 6 contributes respectively. The size of 𝒚 is 

30 × 1 correspondingly. 𝑿 and 𝒚 are mapped to the in-memory linear 

regression circuit for SPICE simulation. (b) Simulated transient output 

voltages of PFAs in the circuit, representing the 7 linear regression 

weights (left y-axis), and the corresponding computation error at each 

moment (right y-axis). Around 9.2 s, it reaches the desired computing 

accuracy. During the simulation, a real-world OA model was used for 

both TIAs and PFAs. The feedback conductance of TIAs was assumed as 

𝐺0, namely 𝑐 = 1. 
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SPICE, and its result is shown in Fig. 2b. By defining the 

computation error as the Euclidean distance between the static 

result 𝒗𝑜𝑢𝑡
∗  and the dynamic output 𝒗𝑜𝑢𝑡(𝑡), it is shown that 

the circuit computation takes around 9.2 s to achieve the 

desired precision, i.e., the error falls below 10-3. 

We solved Eq. (13) for the matrix in Fig. 2a, to obtain the 

eigenvalues for the QEP describing the circuit, especially the 

minimal eigenvalue |𝑅𝑒(𝜆)|𝑚𝑖𝑛. As shown in Fig. 3a, there 

are 37 non-zero eigenvalues for this matrix, which is 

consistent with precious analysis in terms of matrix 𝑴. The 

|𝑅𝑒(𝜆)|𝑚𝑖𝑛 corresponding to the dominant pole is 9.75×10-3. 

To support the key role of |𝑅𝑒(𝜆)|𝑚𝑖𝑛 in the circuit speed, 

we tested different time periods of 1 month, whose linear 

regression matrices as in Fig. 2a are different as a result. 

Hence, the circuit for each time period would have a different 

distribution of eigenvalues, i.e., a different |𝑅𝑒(𝜆)|𝑚𝑖𝑛. 23 

time periods in total were used in simulation. All the resulting 

circuits were simulated in SPICE, and the computing times 

were recorded in Fig. 3b, as a function of |𝑅𝑒(𝜆)|𝑚𝑖𝑛. It 

clearly shows a reciprocal relationship between computing 

time and |𝑅𝑒(𝜆)|𝑚𝑖𝑛, thus demonstrating the dominant role of 

𝑠𝑑  in the computing time of the circuit. A proportional 

relationship between time and 1/|𝑅𝑒(𝜆)|𝑚𝑖𝑛 is shown in the 

inset of Fig. 3b as well. 

To test the dependence of computing time on the problem 

size N, we have considered the linear regression of other time 

periods of more than 1 month, namely 60 days, 90 days, 120 

days, 150 days or 180 days, resulting in linear regression 

problems with different matrix sizes. The computing time in 

each simulation was recorded. Meanwhile, the |𝑅𝑒(𝜆)|𝑚𝑖𝑛 

was calculated by solving the eigenvalues in Eq. (13). Fig. 4 

shows the relationship between computing time and 

|𝑅𝑒(𝜆)|𝑚𝑖𝑛  for different matrix sizes. It evidences the 

dominant role of 𝑠𝑑 in computing time holds. Due to the 

tighter distribution of |𝑅𝑒(𝜆)|𝑚𝑖𝑛  for larger matrices, the 

computing time is accordingly more concentrated, while it 

does not necessarily increase with the problem size, 

supporting the feasibility of in-memory linear regression 

computation for different datasets in a constant time. It is 

worth mentioning that for all the simulation cases, the number 

of system poles is equal to the number of OAs in the circuit, 

and the resulting matrix 𝑴 in Eq. (13) can be diagonalized, 

thus guaranteeing the stable outputs of the circuit . 

III. OPTIMIZATION SCHEME FOR COMPUTING TIME 

In the above simulations, a real OA model (AD823, Analog 

Devices) with a GBWP of 16 MHz was used for both TIAs 

and PFAs, and the feedback conductance of TIAs was 

intuitively considered as the unit conductance, i.e., 𝐺𝑓 = 10 

S (or 𝑐 = 1). In Eq. (13), matrix 𝑴 is defined based on 

parameters including 𝑐 , 𝑝1  and 𝑝2 , suggesting their 

deterministic role for eigenvalues of 𝑴 . Consequently, 

variables in the circuit including feedback conductance and 

GBWPs shall play a critical role for the dominant pole. We 

studied on these parameters and optimized accordingly the 

computing time of the circuit by maximizing the |𝑅𝑒(𝜆)|𝑚𝑖𝑛. 

As an initial attempt, we investigated solely the impact of 𝑐, 
whose sweep range was assumed ideally as [10-2, 102]. The 

real OA model was retained for both sets of amplifiers, 

namely 𝑝1 = 𝑝2 = 16 MHz, based on which the |𝑅𝑒(𝜆)|𝑚𝑖𝑛 

was solved for each 𝑐. The result is shown in Fig. 5a, where 

the maximum of |𝑅𝑒(𝑠𝑑)| arises at 𝑐 = 0.56, with a specific 

frequency of 0.48  MHz corresponding to |𝑅𝑒(𝜆)|𝑚𝑖𝑛 =
0.03. On both sides of the optimal point, there is a dramatic 

degradation of |𝑅𝑒(𝑠𝑑)|, which will ultimately translate to a 

significant delay of circuit response. We mapped the optimal 

𝑐 in the circuit for simulation. The transient result is shown in 

Fig. 5b, from which the computing time is calculated to be 3.9 

s, according to the criterion defined before. Compared to the 

𝑐 = 1 case in Fig. 3a, the circuit response is improved by 

more than twice. Such a speed-up is also consistent with the 

optimization of |𝑅𝑒(𝜆)|𝑚𝑖𝑛. Therefore, by simply optimizing 

the feedback conductance of TIAs, it is possible to accelerate 

 

Fig. 3. (a) Non-zero eigenvalues of Eq. (13) for the matrix 𝑿 in Fig. 2a. 

There are 37 eigenvalues in total, including 29 real eigenvalues and 4 

complex conjugate pair of eigenvalues, all of which satisfy 𝑅𝑒(𝜆) < 0. 

The minimal (absolute) eigenvalue is real, and it is labeled in the plane. 

(b) Computing time of the in-memory linear regression circuit as a 

function of the minimal eigenvalue |𝑅𝑒(𝜆)|𝑚𝑖𝑛 , surveyed with 23 

datasets of 1 month for PM2.5 prediction in Beijing. The computing time 

shows a reciprocal dependence on |𝑅𝑒(𝜆)|𝑚𝑖𝑛, which is also illustrated 

as a linear dependence on 1/|𝑅𝑒(𝜆)|𝑚𝑖𝑛  in the inset. For all the 

simulations, the same circuit conditions including feedback conductance 

of TIAs and OA models were used. 

 
Fig. 4. Computing time dependence on |𝑅𝑒(𝜆)|𝑚𝑖𝑛, for various dataset 

sizes, including 12 datasets of 1 month, 12 of 2 months, 10 of 3 months, 

10 of 4 months, 7 of 5 months, 7 of 6 months. The data of 12 datasets of 1 

month are withdrew from Fig. 3b, following the same distribution. For all 

the simulations, except for the size difference of crosspoint memristor 

arrays, the circuit conditions were kept the same. 
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remarkably the computing speed of the circuit. 

To further improve the dominant pole and hence the circuit 

speed, we considered optimizing the GBWP of one set of 

amplifiers, while the other one remaining fixed. Specifically, 

𝑝1 = 16 MHz of TIAs was unchanged, 𝑝2 of PFAs and 𝑐 
were optimized simultaneously. The bandwidth range of 𝑝2 

is reasonably considered as [10-1, 103] MHz [25]-[27]. The 

result is shown in Fig. 6a, indicating that there is a line of 

optimal combination of 𝑐 and 𝑝2 to maximize the dominant 

pole, as represented by the red/black dots in the figure. Fig. 6b 

shows 5 situations of fixed 𝑝2 values, where in each case, the 

dominant pole peaks at a specific 𝑐  value, and decreases 

obviously on both sizes of the peak, representing the best 

value of 𝑐 for each given 𝑝2. Moreover, such an optimal 𝑐 

increases monotonically with 𝑝2. On the other hand, for a 

given 𝑐, the dominant pole does not peak, rather it reaches a 

plateau when 𝑝2  is greater than a critical value, which is 

helpful to relaxing the constraint on OA parameters for circuit 

implementation. Again, such a critical 𝑝2 increases with 𝑐, 
cross-validating the synergisitic effect between 𝑝2 and 𝑐 for 

dominant pole optimization. 

We explored the full space of all the three parameters 𝑐, 𝑝1 

and 𝑝2 for circuit optimization, where the bandwidth range of 

[10-1, 103] MHz was swept for both 𝑝1 and 𝑝2 , and each 

combination the optimal 𝑐  was searched. The results are 

shown in Fig. 7a, which describes the optimal 𝑐 for every 

combination of 𝑝1 and 𝑝2. It is shown that the optimal 𝑐 
increases with 𝑝2 for any given 𝑝1, which is a generalized 

conclusion of the results in Fig. 6. On the other hand, for a 

given 𝑝2, the optimal 𝑐 decreases with 𝑝1 in contrast. The 

underlying reason is that there is an optimal 𝑐 for a 𝑝2/𝑝1 

ratio, regardless of the specific values of 𝑝1  or 𝑝2 , as 

indicated by the skew diagonal stripes in the plane. It can be 

recognized that the optimal 𝑐  increases with the ratio of 

𝑝2/𝑝1, as exemplified with two situations where 𝑐 = 1.5 and 

𝑐 = 0.2 correspond to 𝑝2/𝑝1 ratio of 10 and 0.2, respectively. 

For the optimized combination of all three parameters, the 

resulting dominant pole is shown in Fig. 7b. While the optimal 

𝑐  increases with the ratio of 𝑝2/𝑝1 , the corresponding 

dominant pole does not necessarily increase, rather it remains 

less affected along the diagonal of the horizontal plane. The 

dominant pole is more affected by the choice of 𝑝1 or 𝑝2, 
due to the fundamental impact of GBWP parameters on poles, 

as shown by Eq. (11). 

There is a monotonic relationship between the optimal 

𝑐 and 𝑝2/𝑝1 , which can be figured in the context of the 

eigenvalue problem in Eq. (13), where 𝑝2/𝑝1  plays an 

individual role to determine the eigenvalues of matrix 𝑴. Fig. 

8a shows the optimal 𝑝2/𝑝1 as a function of 𝑐 and 𝑝2. For a 

given 𝑐, the 𝑝2/𝑝1 ratio is almost constant regardless of the 

𝑝2  value, as evidenced explicitly by three trajectories of 

different 𝑐  values in Fig. 8b. Again, the optimal 𝑝2/𝑝1 

increases with 𝑐, as have been shown in the above analysis. 

 

Fig. 6. Optimized pairs of 𝑝2 and 𝑐, for a given 𝑝1 = 16 MHz. (a) 

Distribution of dominant pole for 𝑝2 in the range [10-1, 103] MHz and 𝑐 
in the range of [10-2, 102]. The red dash lines are for tracing the trend of 

dominant pole for a given 𝑝2, meanwhile the red dots illustrate the 

maximum of dominant pole for varying 𝑐. The black dash lines are for 

tracing the trend of dominant pole for a given 𝑐, meanwhile the black 

dots illustrate the turning point of dominant pole for varying 𝑝2. (b) The 

behavior of dominant pole as 𝑐 increases (both in logarithmic scale), for 

5 situations with 𝑝2 fixed, namely 𝑝2 = 0.1, 1, 10, 100 or 1000 MHz. 

For each 𝑝2, there is an optimal 𝑐 that maximizes the dominant pole, 

and such an optimal 𝑐 increases with 𝑝2. (c) The behavior of dominant 

pole as 𝑝2 increases (both in logarithmic scale), for 3 situations with 𝑐 
fixed, namely 𝑐 = 0.1, 1 or 10. For 𝑐 = 0.1 or 1, there is a critical 𝑝2 
after which the dominant pole is almost saturated, and it increases with 𝑐. 
Due to the limited 𝑝2  range, the critical point for 𝑐 = 10  is not 

observed. 

 

Fig. 5. (a) The calculated dominant pole 𝑠𝑑  a function of parameter 𝑐, 
assuming 𝑝1 = 𝑝2 = 16 MHz. 𝑠𝑑  was calculated by solving Eq. (13) 

and multiplying |𝑅𝑒(𝜆)|𝑚𝑖𝑛  with 𝑝1 . (b) Simulated transient output 

voltages of PFAs in the circuit with the optimal 𝑐 in (a), namely 𝑐 =
0.56, representing the 7 linear regression weights (left y-axis), and the 

corresponding computation error at each moment (right y-axis). Around 

3.9 s, it reaches the desired computing accuracy. During the simulation, 

the same OA model was retained. 

 

Fig. 7. Optimized combinations of three parameters. (a) Optical 𝑐 for 

pairs of 𝑝1 and 𝑝2, both in the range of [10-1, 103] MHz. Skew diagonal 

stripes in different colors appear in the plane, indicating that there is a 

(roughly) monotonic relationship between 𝑝2/𝑝1 and 𝑐. Two stripes are 

labeled for illustrations. (b) Dominant poles corresponding to the optimal 

combination of 𝑝1 , 𝑝2  and 𝑐 . For a specific 𝑝2/𝑝1  and the 

corresponding optimal 𝑐, the larger the GBWP, the greater the dominant 

pole. 
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These results provide a guidance for computing speed 

optimization for the in-memory linear regression circuit. The 

optimal 𝑐 (feedback conductance of TIAs) increases with the 

ratio of 𝑝2/𝑝1 (GBWP ratio of two sets of OAs), or verse 

vice. Under this constraint, increasing either GBWP shifts the 

dominant pole of the circuit to higher frequency, achieving a 

faster response. In the above analysis, the results have been 

limited to a single 1-month dataset. To support the generality 

of the conclusion, we have also tested more datasets with 

different time lengths regarding the optimization schemes of 

circuit speed, and the results in terms of these parameters in 

the circuit are similar.  

IV. POWER DISSIPATION AND NOISE ANALYSIS  

In Fig. 1, feedback conductance of TIAs, i.e., parameter 𝑐 
scales the residuals of data fitting, which are represented by 

the output voltages of TIAs. If 𝑐 is less than 1, the output 

voltages will be amplified, causing an increasing power 

consumption by the right crosspoint memristor array. On the 

other hand, if 𝑐 is large, the output voltages will be reduced. 

Though it may be good for power consumption, the impact of 

noise in the circuit is magnified in this case, due to the low 

signal-to-noise ratio. As a result, there is a tradeoff 

consideration for 𝑐  in terms of power consumption, noise 

issue as well as the above dominant pole analysis. 

To analyze the impact of 𝑐 on power consumption and 

circuit noise, we considered a relatively large dataset, i.e., a 

3-month dataset, resulting in two 89 × 7  crosspoint 

memristor arrays in the circuit. Also, we constrain the 𝑐 
value in a more practical range, as the memory devices in the 

right array might be destructed by amplified output voltages of 

TIAs. By assuming the maximal output voltage is 1 V, the 

lower bound of 𝑐 is calculated to be 0.2 in this case, which 

means the amplification of TIA output voltages will be less 

than 5. The power consumption of the circuit consists of two 

parts, bared by the resistive devices (𝑃𝑅) and OAs (𝑃𝑂𝐴), 

respectively. 𝑃𝑅 is calculated as  

𝑃𝑅 = ∑ 𝑣𝑖𝑛,𝑖
2 𝐺0

𝑛
𝑖=1 + ∑ [𝑣𝑜𝑢𝑡,𝑗

2 ∑ 𝐺𝑋,𝑖𝑗]
𝑛
𝑖=1

𝑚
𝑗=1   

+∑ [𝑣𝑟𝑒𝑠,𝑖
2 (𝐺𝑓 + ∑ 𝐺𝑋,𝑖𝑗

𝑚
𝑗=1 )𝑛

𝑖=1 ], 
(14) 

where the three terms are contributed by input resistors, left 

crosspoint memristor array, and right crosspoint memristor 

array together with feedback resistors, respectively. 𝑃𝑂𝐴  is 

calculated as [28] 

𝑃𝑂𝐴 = ∑ [𝑉𝑠𝐼𝑞 + |𝑣𝑟𝑒𝑠,𝑖|(𝑉𝐶𝐶 − |𝑣𝑟𝑒𝑠,𝑖|)(𝐺𝑓 +
𝑛
𝑖=1

∑ 𝐺𝑋,𝑖𝑗
𝑚
𝑗=1 )] + ∑ [𝑉𝑠𝐼𝑞 + |𝑣𝑜𝑢𝑡,𝑗|(𝑉𝐶𝐶 −

𝑚
𝑗=1

|𝑣𝑜𝑢𝑡,𝑗|) ∑ 𝐺𝑋,𝑖𝑗
𝑛
𝑖=1 ], 

(15) 

where the two terms are contributed by TIAs and PFAs, 

respectively. 𝑉𝑆 = 𝑉𝐶𝐶 − 𝑉𝐸𝐸  is the source voltage of OAs, 

𝐼𝑞 is the quiescent current of OAs, which is typically assumed 

as 100 A [29]. As the transient dynamics are much 

complicated, e.g., the one in Fig. 5b involving different curves, 

the power consumption is characterized with static output 

voltages. The calculation result is shown in Fig. 9. As 𝑐 
increases, both parts of power dissipation consumed by 

crosspoint memristor arrays and OAs decline, as they both 

rely on the output voltages of TIAs. For a relatively large 𝑐, 
the power consumption by memristors is around 0.34 mW, 

while its counterpart by OAs is greater by two orders of 

magnitude, which might be optimized with more advanced 

circuit design and process technology for OAs [30], [31]. 

We have also simulated the circuit with a comprehensive 

consideration of all noise sources in the circuit components. 

Specifically, thermal noise and shot noise were included for 

all resistive devices [32], [33], while white noise and flicker 

noise were considered for OAs [34], [35]. Fig. 10a shows the 

 

Fig. 8. (a) Heat map of log(𝑝2/𝑝1) as a function of 𝑐, 𝑝2, and the 

corresponding optimal 𝑝1. The dash lines are for indicating the constant 

𝑝2/𝑝1  for each given 𝑐 , which is 0.1 , 1 , or 10 , respectively. (b) 

Optimal 𝑝2/𝑝1 values for the three 𝑐 values. During the search for an 

optimal 𝑝1, it was constrained in the range of [10-3, 104] MHz for realistic 

considerations. As a result, it was the upper (or lower) boundary instead 

of the optimal 𝑝1 was obtained in some cases for 𝑐 = 0.1 (or for 𝑐 =
10). 

 

Fig. 9. Impact of parameter 𝑐 on the power consumption of the circuit. It 

consists of two parts PR and POA, consumed by resistive devices 

(crosspoint memristor arrays and input resistors) and OAs (TIAs and 

PFAs) in the circuit, respectively. 𝑐 was swept in the range of [0.2, 100]. 

The estimation is based on a dataset of 3 months, namely the crosspoint 

array is of size 89 × 7.  

 

Fig. 10. DC output voltages of PFAs in the circuit with noise sources 

added. The circuit simulation is based on a 89 × 7 linear regression 

matrix of a 3-month dataset. The standard deviation 𝜎 of the fluctuation 

is labeled for each output voltage. 
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static outputs with noise fluctuations for the case of 𝑐 = 1, 

where the standard deviation for each weight output is 

remarked. The computation error calculated with the mean 

values is evaluated to be 0.002 with respect to the analytical 

solution. As 𝑐  increases, the output voltages of TIAs are 

lowered down, thus the noise impact is magnified, which is 

evidenced in Fig. 10b. As 𝑐 is increased from 0.2 to 100, the 

standard deviation of voltage fluctuations is amplified by one 

order of magnitude, while the solution error increases by two 

orders of magnitude. Therefore, there is a tradeoff 

consideration for the parameter 𝑐 optimization to achieve the 

best circuit performance in terms of computation speed, power 

consumption as well as the noise impact. From the viewpoint 

of power consumption, 𝑐 > 1 is favored. On the other hand, 

the computation error is acceptable for 𝑐 < 10, i.e., 𝜎 <
1 𝑚𝑉 and error < 10-2. In the overlap range, the optimal ratio 

of 𝑝2/𝑝1 is suggested to be greater than, namely the PFAs 

have a larger GBWP than the OAs of TIAs. 𝑐 < 1 can be 

adopted for the purpose of precise computation, at the cost of 

more power dissipation, together with the consideration of a 

reduced 𝑝2/𝑝1 ratio. 

V. CONCLUSION 

In this work, we investigated the transfer characteristics of 

an in-memory analog computing circuit for linear regression 

calculation with crosspoint memristor arrays. Based on the 

transfer function of the circuit, a QEP was obtained, where the 

minimal eigenvalue (or real part of complex conjugate 

eigenvalues) represents the dominant pole, which in turn 

dominates the response time of the circuit. In contrast, the 

problem size does not play an active role in affecting the 

circuit response. According to the QEP in the matrix form, the 

minimal eigenvalue is related to parameters in the circuit 

including feedback conductance (𝑐) of TIAs and GBWPs (𝑝1 

and 𝑝2 ) of two sets of OAs. By setting up appropriate 

parameters, the computing speed of the cicuit can be 

remarkably improved, e.g., by several times faster. 

Optimization of these parameters should be operated 

synergisitically to speed up the circuit computation, for 

instance, the optimal 𝑐 increases monotonically with the ratio 

of 𝑝2/𝑝1. Besides, the parameter 𝑐 plays also an important 

role in determining the power consumption and computation 

error of the circuit, thus suggesting a comprehensive 

consideration for evaluating the circuit performance. This 

work provides a guideline for optimizing the computing time, 

power dissipation, accuracy and noise of this circuit, which is 

crucial to promote the development of in-memory ML 

accelerator applications. 
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