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Abstract: Cyber-Physical Energy Systems (CPESs) are energy systems which rely on cyber compo-
nents for energy production, transmission and distribution control, and other functions. With the
penetration of Renewable Energy Sources (RESs), CPESs are required to provide flexible operation
(e.g., load-following, frequency regulation) to respond to any sudden imbalance of the power grid,
due to the variability in power generation by RESs. This raises concerns on the reliability of CPESs
traditionally used as base-load facilities, such as Nuclear Power Plants (NPPs), which were not
designed for flexible operation, and more so, since traditionally only hardware components aging
and stochastic failures have been considered for the reliability assessment, whereas the contribution
of the degradation and aging of the cyber components of CPSs has been neglected. In this paper,
we propose a multi-state model that integrates the hardware components stochastic failures with
the aging of cyber components, and quantify the unreliability of CPES in load-following operations
under normal/emergency conditions. To show the application of the reliability assessment model,
we consider the case of the Control Rod System (CRS) of a NPP typically used for a base-load
energy supply.

Keywords: Cyber-Physical System (CPS); Nuclear Power Plant (NPP); Renewable Energy Source
(RES); load-following; aging; multi-state model; Control Rod System (CRS)

1. Introduction

Cyber-Physical Systems (CPSs) are systems that integrate cyber components within
hardware systems in which physical processes take place [1]: when the processes relate to
energy production, transmission and distribution, they are called Cyber-Physical Energy
Systems (CPESs) [2]. With the penetration of Renewable Energy Sources (RESs) (e.g., wind,
photovoltaic), CPESs are requested to provide flexible operation (e.g., load-following,
frequency regulation) to adjust any sudden imbalance that may occur in the power grid,
due to a high level of variability and uncertainty in the power generation by renewables [3].
This inevitably raises concerns on the reliability of CPESs traditionally used as base-load
facilities, such as Nuclear Power Plants (NPPs). Indeed, given the stable steady-state
energy supply demanded to the base-load CPESs, manoeuvring capabilities were designed
for seldom operations, mainly triggered by safety needs (i.e., safe shutdowns) [4] and
with limited safety margins or capabilities to satisfy flexible operation during frequent
and fast-changing demand scenarios. Since the base-load CPESs are normally expected
to operate under stable steady-state conditions, for which any change of the cyber part
setting can be easily detected and corrected without losing control of the system [5–7],
aging of cyber parts is not a concern, whereas under frequent, fast-changing transients, as

Energies 2021, 14, 3241. https://doi.org/10.3390/en14113241 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6659-0953
https://orcid.org/0000-0002-7108-637X
https://doi.org/10.3390/en14113241
https://doi.org/10.3390/en14113241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14113241
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14113241?type=check_update&version=3


Energies 2021, 14, 3241 2 of 18

it is in the case of load-following CPESs here considered, aging of the cyber part cannot be
neglected [8].

Recently, dynamic reliability methods (e.g., Multi-State Physical Modelling (MSPM) [9],
Petri Net [10], Bayesian Network [11]) based on dynamic models of CPSs are being in-
creasingly developed to assess CPESs’ reliability. For base-load CPESs like traditional
NPPs that were not designed for flexible operation, efforts have been focusing on assess-
ing the contribution to unreliability due to aging and stochastic failures of the hardware
components, without considering the degradation and aging of the cyber components.
On the other hand, as already said, the cyber components of any Cyber-Physical System
(CPS) are sensitive parts of CPSs, because they control the physical processes, as shown
in [12–14]: disturbances on the cyber components of a CPS can strongly affect its perfor-
mance, especially during flexible operations where its functions are most active. Assuming
the functionalities of cyber components of a CPES is quite important given the long opera-
tion time of CPESs, and their reliability is threatened by aging processes typical of cyber
systems. Then, to assess the reliability of CPESs accounting for the aging and degradation
of cyber systems, in [15] we proposed a multi-state model for describing the aging process
driven by memory leakage [16,17], which leads to service rate decrease and, eventually,
data-jamming in the mission queue [18,19], which, in turn, increases the memory request;
in such conditions, the cyber system blocks its function, significantly increasing the control
delay [20,21], deteriorating the system stability and controllability during transients, when
the amount of memory available cannot satisfy the demand of the mission queue. In this
paper, we elaborate on this modelling approach to propose a framework of analysis for
complete support to the reliability assessment of CPES for load-following.

To demonstrate the use of the reliability assessment framework, we consider the
Control Rod System (CRS) of a typical NPP. We apply the multi-state model [15] that inte-
grates the hardware components’ stochastic failures with the aging of cyber components,
and quantify the unreliability of the CPS with respect to transients during load-following
operations under normal/emergency conditions.

The remainder of paper is as follows: Section 2 presents the NPP case study consider-
ing both hardware components’ stochastic failures and the aging of cyber components in
load-following operation scenarios; Section 3 presents relative modelling works of cyber
aging and the proposed multi-state model accounting for the cyber aging process; the relia-
bility assessment procedure, embedding the multi-state model of Section 3, is presented in
Section 4; the results of the application of the reliability assessment of Section 4 to the case
study of Section 2 are reported and discussed in Section 5; and in Section 6, conclusions
are drawn.

2. The Control Rod System
2.1. Control Rod System Description

The Control Rod System (CRS) (Figure 1) is an important system of a NPP, whose
function is to adjust the insertion and withdrawal of control rods in the reactor core, so
as to control the thermal power and, thus, the electric power generated [22–25] with a
closed-loop feedback control (Figure 2). The CRS elementary scheme comprises of a sensor,
a controller, a connecting network, an actuator, and a motor for rod movement, where
rk, uk, yk, ek are the discrete reference, control, output, and error signals, respectively, at
discrete time tk = kh [26], where h is the interval of sensor sampling and k = 0, 1, 2, . . .
is a discrete integer variable as a data-sampling sequence number. The feedback control
loop accounts for a total delay time τ that sums up the network transmission (τsc, τca) and
controller processing (τc) delay times.
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Figure 1. Structure of control rod mechanism.

Figure 2. Closed-loop control of control rod system.

Without loss of generality, the CRS here considered comprises of (i) a typical digital
Instrumental & Control (I&C) platform in single-controller mode with one CPU (for the
controller module), and (ii) a typical DC motor (for the motor used to control the position
of the control rods [22,27]). For the convenience of simulation, we use the discrete form of
the transfer function (Equations (1) and (2) below) proposed in [26] between the DC motor
and controller (where u and y are the control signal output of the controller and control
rod’s relative position controlled by the DC motor (considered as the percentage of energy
output), respectively, and i is the index for the simulation step):

yi = 1.944yi−1 − 0.944yi−2 + 0.004ui−1 + 0.0039ui−2 (1)

ui = ui−1 + 0.17ei − 0.163ei−1 (2)
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2.2. Load-Following Operation of the CRS

By definition, load-following means adjusting the electricity generation to match the
expected electricity load curve [28]. A complete load-following cycle consists of a power
decrease from the normal power rate (Pn) of the CPES to a lower percentage of Pn (%Pn),
followed by a ramp to re-establish the lower power level to Pn [29]. As shown in Figure 3,
different types of cycles can be envisaged in practical applications: “light cycles” with a limited
power excursion (above 60%Pn) (dotted line); “deep cycles” with a large variation of power
(below 60%Pn) (continuous line), and an “emergency cycle” with a large variation of power
(below 50%Pn) by a high power change rate (dashed-dotted line) . For these three types of
cycles, the lower power plateau can be either long or short, depending on the changes of
demand on the grid side. The rate of power change from Pn to %Pn (and vice versa) depends
on the energy CPS under analysis: in our case, we assumed a change rate of 5%Pn per second
for normal load-following conditions and 20%Pn per second for a power decrease due to
emergency conditions (compatible with the DC motor defined in Section 2.1) [4,22,27].

Figure 3. Load-following capability by cycle type.

In Table 1 [30], we can see that a typical PWR reactor is estimated to perform
100, 000 “light cycles” to 90%Pn, 100, 000 “light cycles” to 80%Pn, 15, 000 “deep cycles”
to 60%Pn, 12, 000 “deep cycles” to 40%Pn, and 100 “emergency cycles” to 20%Pn [4] during
the plant lifetime. It results that the probability that a typical PWR NPP experiences any
type of load-following cycle at each hour can be calculated (by the number of load cycles
divided by total working hours in a NPP lifetime of 70 years), with results listed in the
third column of Table 1.

Table 1. PWR reactor load-following capability [30].

Load Cycle Number of Load Cycles Probability

100-90-100 100,000 0.163
100-80-100 100,000 0.163
100-60-100 15,000 0.0245
100-40-100 12,000 0.0196

100-20-100 (emergency) 100 1.65× 10−4

No load-following – 0.6297
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3. Modelling of Cyber Systems Aging

In this Section, the multi-state model of the aging process of a CPS originally presented
in [15] is briefly recalled and customized for application to the CRS of Section 2.

Aging of cyber systems manifests in performance degradation and failure rate increase
of the software that drives the controller [17]. Cyber system aging is caused by some specific
software faults/bugs, known as aging-related bugs [18] and activated by internal/external
factors, causing errors that accumulate and propagate inside the system and finally lead to
aging-related failures.

Memory leakage is a typical effect of cyber aging processes caused by internal errors,
like unterminated processes that shrink the available amount of physical memory [18].
With memory leakage, data-jamming can occur, due to decreasing service rates that prevent
the controller from processing or delivering data and tasks in due time, which results in (i)
an accumulation of data in the mission queue, (ii) an increase of the memory request, and
(iii) data packet loss, when the mission queue is full [19].

As a result, the cyber system becomes blocked when the amount of memory available
cannot satisfy the demand of the mission queue, significantly increasing the control delay
(τc) in processing data of the controller [20,31,32] and reducing controllability and stability
of the controlled physical system [21], which increases risk of failure.

In the literature, modelling approaches of cyber aging are divided into two categories:
measurement-based, and model-based [16,33]. With respect to measurement-based ap-
proaches, time-series analysis [34–36] and machine-learning methods [37,38] are used to
forecast the system failure time by observing the performance degradation and resource
consumption [39]. However, lacking in the generalization of systems, their data-driven
characteristics make them hardly applicable to systems whose historical information is
missing. With respect to model-based approaches, the cyber-aging system is commonly
described as a Continuous-Time Markov Chain (CTMC) [6,40]. However, none compre-
hensively describes the causes, processes, and effects of cyber aging, such as service rate
decrease and data-jamming.

In this work, we use CTMC to describe multiple performance degradation (i.e., service
rate decrease) states embedded with a queueing model. With memory leakage, data-
jamming has a higher probability of occurrence, and the system can be blocked more
easily when the system cannot satisfy the memory demands, injecting high delays into the
control loop which may make the system out of control. Thanks to its advantages over
the mentioned approaches, (i) the chain of cyber aging phenomena is fully described; (ii)
time-dependent blocking transition rates can be calculated by effects of memory leakage
and the mechanism of data-jamming instead of constant transition rates with subjective
assumptions, and (iii) considering the specialty of cyber aging, this model can be applied
to simulate and explore system performances with high aging levels or under blocking
conditions instead of directly assuming system failure.

3.1. Memory Leakage

The system performance deteriorates stochastically and eventually reaches a blocking
state when the available memory cannot satisfy the demand from the mission process queue;
as shown in Figure 4, the leakage degradation process can be modeled as a continuous-time
Markov Chain with state space L = {S0, S1, . . . , Sn, B}, where state S0 is the normal state,
in which the system has the maximum memory capacity and performance; states S1 ∼ Sn
represent increasing degradation states of decreased memory available; state B is the
blocking state; λi,i+1 (i = 0, 1, . . . , n− 1) is the transition rate between degradation states Si
and Si+1; λi,B is the system-blocking transition rate from the i-th state Si to blocking state B
(if i < j, then λi,B < λj,B, which means that the worse the degradation state, the larger the
transition rate to the blocking state).
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Figure 4. Multiple degradation states of cyber aging.

3.2. Data-Jamming

For each degradation state Si, assuming a data arrival rate φ, an exponential service
rate µi and a maximum capacity of task delivery queue equal to m, the continuous time
Markov Chain of Figure 4 (below) can be used to model data-jamming, nested into the
model of Figure 4 (above), where µi denotes the different service rates in different states
Si (i = 0, 1, . . . , k) (if i < j, then µi > µj), and the lowest service rate µB is that at blocking
state B.

For each state Si, the probability Pjam(i, j) of j data-jamming in the queue at state Si
is [41]:

Pjam(i, j) =
1− φ/µi

1− (φ/µi)m+1 (
φ

µi
)j

i = 1, 2, . . . , n j = 0, 1, . . . , m.
(3)

3.3. Calculation of the System-Blocking Transition Rate

As mentioned in Section 3.1, the probability of system-blocking Pi,B from state Si, and
the corresponding blocking transition rate λi,B, depend on the current available memory
M(t) and on the memory request of the mission queue, which can be calculated with the
values of the model parameters listed in Table 2.

M(t) is estimated by assuming the transition time between degradation states (Si
and Si+1) to be exponentially distributed with parameter λi,i+1 [16]. The Monte Carlo
simulation is used to sample the transition times between states Si and Si+1, starting from
the initial state S0, and the available memory in each state is recorded at each transition
time; repeating the simulation Nmc times, the mean value of the collected available memory
at each time is taken as the available memory M(t) at time t. Figure 5 shows one random
trial of the simulation process (dashed line).
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Table 2. Parameters for cyber aging model.

Parameter Description Value

n Number of degradation states 3
λi,i+1 Transition rate between states Si and Si+1 5× 10−5 [h−1]

m Maximum number of tasks 10
φ Data coming rate 50 [s−1]
µ0 Service rate in state S0 100 [s−1]
µ1 Service rate in state S1 85 [s−1]
µ2 Service rate in state S2 70 [s−1]
µ3 Service rate in state S3 55 [s−1]
µB Service rate in state Blocking 30 [s−1]
M Total memory available 100 [Kb]
x Memory request of each task U(2,7) [Kb]

τsc, τca Transmission delay N(13.1,5.7) [ms]

Figure 5. Decreasing available memory M(t) (continuous line).

On the other hand, to estimate the memory request of the mission queue, we need
to assume that each new data comes into the queue (with maximum capacity m) with a
memory request which is a continuous random variable with density function g(x) [40]:
for any 0 < j 6 m, let g[j](x) be the density function for the total amount of j-independent
resource requests, which is equal to the j-fold convolution of g [42].

g[1](x) = g(x),

g[j+1](x) =
∫ x

0
g[j](u)g(x− u)du, j > 1 (4)

Let G[j](x) be the corresponding cumulative distribution function of g[j](x), G[j](x) =∫ x
0 g[j](u)du. The conditional probability ξ[j, M] that the system blocks with j data in

the queue and M memory available upon the arrival of a new request can be calculated
considering the system-blocking mechanism (i.e., the memory available cannot satisfy the
memory request).
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ξ[0, M] = 1− G[1](M),

ξ[j, M] = 1− G[j+1](M)

G[j](M)
, 1 6 j 6 m− 1

ξ[m, M] = 1− G[m](M) (5)

Combining the probability Pjam(i, j) of j data-jamming in the queue at state Si shown
in Section 3.2 and the conditional probability ξ[j, M] of system-blocking with j data, the
probability Pi,B(M) of system-blocking at each state with M available memory can be
calculated as in Equation (6) below. Remembering that M(t) is specific to each system, we
can calculate Pi,B(t) and the corresponding blocking transition rate λi,B(t) (Figure 6) as in
Equations (7) and (8) below.

Pi,B(M) =
m

∑
j=0

Pjam(i, j) · ξ[j, M] i = 1, 2, . . . , n (6)

fi,B(t) =
dPi,B(t)

dt
(7)

λi,B(t) =
fi,B(t)

1− Pi,B(t)
(8)

Figure 6. Transition rate of system-blocking.

3.4. Calculation of the Control Delay

The transmission delays τsc and τca of Figure 2 are usually assumed constant for
a specific network structure, whereas τc is dependent on the system state (blocking or
non-blocking), and consists of the waiting time τwaiting necessary for a data packet to
be processed, and in the calculating time τcalculating. When the cyber system is in a non-
blocking state S0 ∼ Sn, the control delay equals to the sum of τsc and τca (τc can be
neglected); whereas when the cyber system is in the blocking state B, the low service rate
causes data packet accumulation in the mission queue, significantly increasing τc, which
results in an increase of the total control delay τ [43].

τc = τwaiting + τcalculating (9)



Energies 2021, 14, 3241 9 of 18

τ =

{
τsc + τca, S0 ∼ Sn

τsc + τca + τc, B
(10)

The signal delay calculation in a degraded CPS is sketched in Figure 7: the sensors
sample the signals from the plant at the k-th sampling time; the control command signal
finally reaches the actuator after delay τ: when the cyber system is in a non-blocking state
S0 ∼ Sn, the total delay τ only accounts for τsc and τca, commonly less than h; whereas
when the cyber system is in the blocking state B, τ also accounts for τc, making τ larger
than h.

Figure 7. Delay of the CPS control.

4. Reliability Analysis of the CRS

In this Section, we show the procedure to calculate the reliability of the NPP CRS
described in Section 2, while being used for flexible control during load-following op-
erations. Cyber system aging is modelled as described in Section 3.3. The failure rates
of the controller and DC motor are listed in Table 3 [44,45]. It is worth mentioning that
we assume failure rates of both the controller and DC motor to be constant (and their
failure times exponentially distributed) even though, in the literature, the lifetime of DC
motor failure times are shown to change with temperature and to obey a Weibull distribu-
tion [46]. This assumption is here justified by the fact that the CRS is assumed to operate at
a constant temperature.

The CRS is considered to be failed when the system response (power output) is out of
the control safety boundary, that assumed to be smaller or larger than 2%Pn. Figure 8 shows
examples of normal (continuous line) and failing (dotted line) load-following operations,
which are both assumed to start at t = 1 s (the safety boundaries for a 100%Pn to 60%Pn
power decrease are [59.2%Pn; 60.8%Pn] (dashed-dotted line)).
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Figure 8. Examples of system load-following operations.

Table 3. Parameters for hardware stochastic failure.

Parameter Description Value

λcontroller Controller failure rate 8.01× 10−6 [h−1]
λmotor DC motor failure rate 9.50× 10−6 [h−1]

The CRS is considered to undergo maintenance during the refueling outage (every
18 months), as long as the components show decreasing performance [47]. In this paper,
we assume (i) to maintain the controller and DC motor, alternately, every 18 months during
the refueling outage, (ii) the maintenance activity on the controller clears all accumulated
aging-related bug-caused errors (such as memory leakage) and aging-related cyber failures
(as good as new (AGAN)).

The procedure for the reliability assessment proceeds as follows (sketched also in
Figure 9):

1. Calculate system-blocking transition rate λB with the model described in [15] and the
procedure summarized in Section 3.3;

2. Set: initial time t = 0, mission time Tmiss = 105 h, simulation time step dt = 1 h,
maintenance period Tm = 12960 h (18 months) and index of maintenance cycle
km = 1;

3. Sample the DC motor and controller hardware failure times Th,motor and Th,controller,
respectively, from the exponential distributions whose rates are reported in Table 3;

4. Set the system failure time Thard due to hardware stochastic failures: Thard = min(Th,motor,
Th,controller);

5. Check whether the system must undergo maintenance:

• If t = kmTm:
(i) alternately maintain the DC motor and controller (AGAN policy), and resam-
ple the corresponding hardware failure time, Th,motor or Th,controller;
(ii) reset the system hardware failure time Thard as step 4;
(iii) set km = km + 1;

6. Check if the hardware stochastic failure time t exceeds Thard:

• If t > Thard, record system failure time due to hardware stochastic failure in the
failure time counter: Cal(t) = Cal(t) + 1, and jump to step 9;
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• If t < Thard:
(i) sample load-following operation type L from the 3rd column in Table 1: if
L is the index for which FL−1 < R 6 FL, where FL = ∑L

l=0 Pl , Pl is the load-
following occurred probability and R is a random value sampled from the
uniform distribution in [0, 1]; the load-following operation type L is obtained;
(ii) sample the system-blocking time Tblocking = − ln(R)/λB(t− (km − 1)Tm/2),
where R is another random value sampled from the uniform distribution in [0, 1];
(iii) if Tblocking < dt (system transits to blocking state B), start to run the load-
following simulation with the type sampled in i) as following steps (a) to (h):

(a) Set: load-following simulation initial time t′ = 0, mission time T′miss =
15 s, time step dt′ = 0.002 s, sample interval h = 0.2 s and sample iteration
number k = 1, mission queue array Q with “first in first out” processing
principle;

(b) Set: initial system output y0 = 0, error e0 = 1 and control signals u0 = 0;
(c) Set: system reference input r according to different types of load-following

operations (for example: r = 1.05− 0.05t′ (1 < t′ < 9s) for load-following
operations from Pn to 60%Pn);

(d) Set t′ = t′ + dt′;
(e) Calculate yi according to Equation (1)
(f) Check whether new data are collected from the sensors.

If t′ = kh:

– Sample the calculation delay τcalculating from the exponential distri-
bution with parameter µB in Table 2;

– Sample the transmission delay τsc and τca from the Gaussian distri-
butions with the parameters in Table 2;

– Calculate the data waiting time τwaiting = ∑ Qτ [q], where q is the
index of data waiting in the mission queue;

– Calculate the total delay time τ for the k-th sample data yi according
to Equations (9) and (10);

– Save yi and kh + τ into mission queue Q as the k-th sample data and
its processing end time;

– Set k = k + 1

(g) Check whether the actuator time t′ for getting the new control signal
Qyi [1] (i.e., the first data in mission queue Q) exceeds the delay time
Qτ [1]:

– If t′ > Qτ [1], set ei = ri−Qyi [1], calculate ui according to Equation (2)
and take the first data out of the mission queue;

– If t′ < Qτ [1], set ei = ei−1 and ui = ui−1

(h) Check whether the system output yi, which refers to the system power
output, exceed 2% of the power change above and below the reference
values (i.e., the safety bounds):

– If |yi − ri| > 2% o f power change, record the cyber failure time in the
failure time counter: Cal(t) = Cal(t + 1), and jump to step 9;

– If |yi − ri| 6 2% o f power change, repeat (d) to (h) until time t′ ex-
ceeds T′miss, and finish the simulation of load-following

7. t = t + dt;
8. Repeat steps 4 to 7 until time t exceeds Tmiss for one simulation run;
9. Run Nc (e.g., 106 times) steps 2 to 8 and calculate the system unreliability simply as

Cal/Nc.
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Figure 9. Flowchart of system unreliability calculation considering cyber aging and stochastic failures.

5. Results
5.1. Normal Condition

For comparison, we assess the reliability of CRS under three different modelling
assumptions under normal load-following conditions (without considering 5-th row of
Table 1):

1. Only hardware stochastic failures (i.e., by neglecting step 6 (i) to (iii) of the reliability
assessment procedure described in Section 4);

2. Only cyber aging (i.e., by neglecting steps 3, 4 and 5 (ii) of the reliability assessment
procedure described in Section 4);

3. Both hardware stochastic failures and cyber aging.

Figure 10 shows the result of the system unreliability estimation of normal load-
following operations considering the three models mentioned above (only hardware
stochastic failures in continuous line, only cyber aging in dashed lines and both hard-
ware stochastic failures and cyber aging in the dashed-dotted line). It can be seen that:

• Hardware stochastic failures remain the principle cause of system failure;
• Each periodic maintenance (each 18 months) efficiently reduces the system unreliability;
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• As CRS ages, longer delays are to be accommodated by the control loop, increasing the
contribution of cyber aging to system failure, two years after the controller has undergone
maintenance each time (with AGAN policy that clears all the aging-related errors);

• The largest contribution of cyber aging to system failure is recorded three years after main-
tenance.

Effects of cyber aging on CRS are, thus, not negligible and need to be accounted for in
the reliability assessment. The difference between both stochastic and cyber aging (dashed-
dotted) and only stochastic (continuous) curves clearly shows the contribution of cyber
aging to the overall system reliability. Cyber aging is shown to account comparatively with
hardware stochastic failures, and should be only in design and for operation. It should be
noticed that it is thanks to the effective periodic (AGAN) maintenance assumed, that the
unreliability is maintained to a low level. Additionally, it is important to notice that the
mechanism of deterioration due to cyber aging (initially silent and negligible), abruptly
becomes a priority to be addressed when implementing maintenance activities.

Figure 10. Result of system unreliability under a normal condition.

5.2. Emergency Condition

To show the effects of cyber aging in the emergency condition, we added an emergency
cycle (5-th row in Table 1) into the same simulation framework presented in Section 5.1.

Figure 11 shows the system unreliability for load-following operations under emer-
gency conditions. When considering emergency conditions, the effects of cyber aging are
magnified, further showing the need to account for it in the reliability assessment of a
CPES: in the Figure 11, the difference between the highest two curves shows the significant
contribution of cyber aging to the system unreliability; with respect to Figure 10 (normal
conditions), cyber aging (dashed line) has a larger contribution (around 0.28 at 3 years) to
the system unreliability (whereas in Figure 10 the value is around 0.08); periodic mainte-
nance (every 18 months) is still an efficient method to reduce the system unreliability; as
CRS ages, longer delays are introduced into the control loop (as described in Section 3),
which rapidly increase the contribution of cyber-aging-caused system failure (dashed line)
that can be seen two years after each AGAN periodic maintenance.

Figure 12 further shows the results of system unreliability under an emergency con-
dition (dashed line) compared with the normal condition (dotted line), both considering
hardware stochastic failure and cyber aging. The results show that emergency conditions
significantly increase the system unreliability and the CRS vulnerability to cyber aging,
even if the occurrence of emergency transients is very rare. During emergency conditions,
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the large power change needs the CRS to be highly stable and controllable: in such rare
conditions, the CPES integrity is undermined because the cyber aging makes the CRS more
sensitive to delays that, under normal conditions, would have led to negligible effects.

Figure 11. Result of system unreliability under the emergency condition.

Figure 12. Results comparison between normal and emergency conditions.

6. Conclusions

In this paper, a previously proposed multi-state model that integrates memory leakage,
data-jamming, and a control delay to describe cyber system aging processes of a CPS was
considered within a MC-based reliability assessment framework for CPESs typically used
as the base-load, to assess the effects of cyber aging when dealing with flexible operation
(e.g., load-following).

We took the CRS of a NPP as a case study, which consists of a PI controller, a DC
motor, and connecting network. The result shows that: hardware stochastic failure is the
main reason for system failure; the periodic maintenance (assumed AGAN) can efficiently
reduce the system unreliability, for both causes of stochastic failures and cyber aging; with
gradual deterioration of the control rod system and larger delays in the control loop, cyber
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aging starts contributing significantly, up to at most about 27% of system unreliability;
the emergency condition with a lower occurrence probability contributes more than the
normal condition and increases up to, at most, about 48% of the system unreliability.

Cyber aging can, then, be an important, non-negligible cause of unreliability in base-
load CPES used for flexible operation, especially during emergency conditions. Effective
preventive maintenance on the cyber system must be planned to mitigate the aging effects,
together with the effective control of an energy dispatch at different base-load CPESs with
different aging profiles to avoid system failure during transients.
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Abbreviations
The following abbreviations are used in this manuscript:

λcontroller Controller failure rate
λi,B Transition rate from state Si to blocking state B
λi,i+1 Transition rate between state Si and state Si+1
λmotor DC motor stochastic failure rate
µB Blocking service rate
µi Non-blocking service rate
φ Data arrival rate
τ Total delay time
τc Controller processing delay time
τcalculating Calculation time of data in mission queue
τca Transmission delay between controller and actuator
τsc Transmission delay between sensor and controller
τwaiting Waitting time of data to be processed in mission queue
ξ[j, M] Conditional probability of system-blocking with j data in the queue

and M memory available
B system-blocking state
Cal Counter of system failure times
dt Simulation time step
e System error signal
g Probability density function of memory requested by a data sample
G Cumulative distribution function of memory requested by a data sample
h Sensor sampling interval
i Index of simulation steps
k Data sampling sequence number
km Index of maintenance action
M Total memory available
m Maximum number of tasks
n Number of degradation states
Nc Number of simulation runs to calculate system unreliability
Nmc Number of simulation runs to calculate memory curve
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Pn Normal power rate
Pi,B Probability of system-blocking from state Si
Pjam Probability of data-jamming
q Index of data waiting in the mission queue
Q Mission queue array
Qτ Delay time of the data waiting in mission queue Q
Qyi Value of the data waiting in mission queue Q
r System reference input
R Random value sampled from uniform distribution in [0, 1]
Si System normal or degradation state
Tm Maintenance period
Tblocking system-blocking time
Th,controller Controller stochastic failure time
Th,motor DC motor stochastic failure time
Thard System failure time due to hardware stochastic failure
Tmiss Mission time
u Control signal output
x Memory request of each task
y System power output
CPES Cyber-Physical Energy System
CPS Cyber-Physical System
CRS Control Rod System
I&C Instrumental & Control
NPP Nuclear Power Plant
PWR Pressurized Wawter Reactor
RES Renewable Energy Source
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