
A physics-informed multi-fidelity approach for the estimation

of differential equations parameters in low-data or large-noise

regimes

F. Regazzoni 1,∗, S. Pagani 1,∗,†, A. Cosenza 1, A. Lombardi 1, A. Quarteroni 1,2

1 MOX-Department of Mathematics, Politecnico di Milano, Milan, Italy
2 Institute of Mathematics, EPFL, Lausanne, Switzerland (Professor Emeritus)

∗ These authors equally contributed to this work
† Corresponding author

{francesco.regazzoni,stefano.pagani,alfio.quarteroni}@polimi.it
{alessandro.cosenza,alessandro3.lombardi}@mail.polimi.it

This paper is dedicated to the memory of Claudio Baiocchi

Abstract

In this paper, we propose a multi-fidelity approach for parameter estimation problems based
on physics-informed neural networks (PINNs). The proposed methods apply to models ex-
pressed by linear or nonlinear differential equations, whose parameters need to be estimated
starting from (possibly partial and noisy) measurements of the model’s solution. To overcome
the limitations of PINNs in case only few and/or significantly noisy data are available, we pro-
pose to train a first artificial neural network (ANN), that provides a low-fidelity solution, using a
dataset constructed with numerical simulations of the parametrized mathematical model. Then,
we express the solution as the sum of the low-fidelity solution and a correction term, provided by
a second ANN, which is trained by simultaneously minimizing the distance of the solution from
the data and the residual of the differential equation, evaluated at a suitable set of collocation
points. For the setup of the multi-fidelity formulation, we propose two alternative approaches.
In the first one, we train the low-fidelity solution with data obtained for a fixed value of the
parameters, representing an initial guess for the parameters to be estimated (possibly deriving
from prior knowledge). In the second approach, the low-fidelity solution encodes the parametric
dependence, being trained on data generated by sampling the parameter space and including
the parameters themselves among its independent variables. Numerical tests performed for two
benchmark problems, a steady-state and a time-dependent advection-diffusion-reaction PDEs,
show that the first approach allows the convergence of the PINN training to accelerate signif-
icantly. The second approach, in addition to improving the convergence speed, increases the
accuracy of the parameters estimate. This is emphasized in cases characterized by a small num-
ber of available measurements (possibly affected by noise). Finally, we show an application of
the proposed multi-fidelity approach in the context of cardiac electrophysiology. Specifically, we
employ a multi-fidelity PINN to estimate an unknown parameter of a nonlinear model describ-
ing the ionic dynamics of cardiac cells, starting from noisy measurements of the transmembrane
potential.
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1 Introduction

Artificial Neural Networks (ANNs) are powerful architectures made of interconnected nodes, known
as artificial neurons, which can learn arbitrary complex input-output functions by processing paired
input and output samples (the training data) [18]. Each artificial neuron is characterized by an
activation function, which is a function that, e.g., maps large negative inputs to zero (deactivated
neuron) and large positive inputs to one (activated neuron), and a set of parameters, namely weights
and biases. These parameters modulate the activation of each neuron: weights scale the neuron’s
inputs, while the bias controls the tendency of the neuron to be active or not. An artificial neural
network is therefore an input-output function that depends on the designed topology, i.e. on the
number of neurons and their connections, and on the set of parameters (weights and biases) that
characterize each neuron. The training process consists of identifying the parameters that allow
the network to reproduce – as faithfully as possible – the available output values given the paired
inputs. This is achieved by finding the set of parameters that minimize a cost functional (loss) in
which the discrepancy between the network evaluation and the actual data is penalized. Besides the
ANN parameters, the training process is determined by a set of so–called hyperparameters, which are
variables used to control the training process itself. These include architecture hyperparameters (e.g.
number of neurons and layers) and algorithm hyperparameters (e.g. the settings of the minimization
algorithm).

This learning strategy typically presents numerous challenges due to the high dimensionality
of the parameters space and the non-convexity of the cost functional. Identifying an optimal set
of parameters is often an arduous task, especially in the so-called small data regime when a little
amount of (noisy) data is available. This is typically the case of biological or engineering systems,
where the goal is to model physical processes starting from data acquired from few sensors or from
a small cohort of patients.

A possible strategy to overcome these data limitations consists of introducing in the loss func-
tional an additional term (a regularization term constraining the ANN solution to a manifold of
differential equations’ solutions) that encodes prior physical knowledge of the observed phenomenon.
This strategy, firstly proposed in [25, 17], gave rise to the so-called Physics Informed Neural Net-
works (PINNs) [30, 31], which have found application in numerous fields, from the identification of
the flux in an aneurysm [32] to the reconstruction of cardiac activation maps [33].

PINNs’ success is not limited to the approximation of differential problems’ solution: their struc-
ture permits to treat unknown model’s parameters as additional parameters of the neural network,
thus solving state/parameter estimation problems within a single minimization (training) procedure
(without changing the framework). This makes PINN attractive for parameter estimation problems,
compared to PDE-constrained optimization routines, where gradient descent methods are built on
the repeated (and computationally expensive) numerical approximation of differential problems [3].

In many realistic scenarios, high-fidelity mathematical models, that accurately describe biological
or engineering systems, are formed by coupled (typically nonlinear) equations. This makes the
regularization term (formed by the residual of the equations) less effective, making the search for sub-
optimal local minima, sufficiently close to the global minimum, more complex. Sometimes it is more
effective to rely on simplified models to obtain a more effective regularization term. These low-fidelity
models may result from simplifications of equations (simplified physics approximation), which might
partially describe the phenomenon. As an example, in the field of cardiac electrophysiology, the
equations of the bidomain model (high-fidelity) are frequently approximated with the monodomain
equation, which represents only the transmembrane potential, or the eikonal equation that allows
describing only the dynamics of the activation front [12, 27]. Black-box data-driven models, built
from a set of data linked to the observed phenomenon (such as numerical simulations of a high-fidelity
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model), may also be adopted as low-fidelity models.
Multi-fidelity methods have been developed in recent years to combine models of different fideli-

ties to efficiently solve complex tasks such as optimization or uncertainty quantification [24, 11, 15].
In these procedures, neural networks have been adopted as low-cost surrogate models that allow for
speeding up (Quasi)-Monte Carlo algorithms [19] or parameter estimation routines [23, 20]. This
idea has also been adapted in the PINN framework in [22], where an architecture composed of
multiple neural networks is trained on data coming from different fidelity models.

In this work we propose a new multi-fidelity PINN, based on the multi-fidelity strategy of adapta-
tion, which consists in improving the accuracy of a low-fidelity prediction with a correction combin-
ing data coming from the high-fidelity model (PDE residual) with the available (possibly corrupted
by noise) measures. This is perform adaptively during the training procedure, leveraging a pre-
trained low-fidelity model, such as a neural network or a general surrogate model. This strategy
is alternative to the one presented in [22], where the training procedure is simultaneous and the
multi-fidelity is expressed in the availability of additional data. Compared to standard approaches
to PDE-constrained optimization, in which surrogate models or reduced-order models are integrated
within gradient-based minimization algorithms [10, 21, 7, 8, 38, 2], in our framework the low-fidelity
model is integrated directly into the PINN and the training procedure is designed to directly solve
the parameter estimation problem.

We develop a training procedure divided into two different stages: the low-fidelity model is firstly
built starting from a dataset generated, e.g., from a numerical model of the physical phenomenon;
then the multi-fidelity network is trained using measurements data, the low-fidelity guess, and the
residual of the equation modeling the physical phenomenon. Compared to a traditional PINN, the
training of the network does not start from a completely random solution but relies on the low-fidelity
solution, which acts as a priori information that can then be corrected using the new information
coming from the measured data and by regularizing it through the mathematical equation (crucial
for the task of model parameter estimation). This strategy speeds up the convergence of the training
process, even in situations where the low-fidelity model represents a solution that is far from the
current one. On the contrary, a multi-fidelity network built simultaneously might be affected by
numerous local minima created by the interaction of poorly trained neural nets, from which the
optimizer might hardly escape. The process can therefore be seen as a solution refinement process,
obtained through increasingly fine regularization processes, moving from a data-driven low fidelity
surrogate to the high-fidelity equation.

We rely on two different approaches for the low-fidelity model construction: a fixed-parameter
approach versus a parameterized one, which mimics the construction of a reduced-order model. The
first approach allows regularizing the solution with respect to space and time, with a consequent
improvement of the speed of convergence of the training procedure. The second one, instead, drives
the parameter identification, reducing the error in the estimation even in cases where standard
PINNs are far from the true solutions.

We emphasize that the proposed approach is general and that the multi-fidelity network can be
based on all types of low-fidelity models, such as data-driven surrogate models [10] or projection-
based reduced-order models [28, 14]. This new paradigm might significantly improve, both in terms
of accuracy and overall computational time, parameter estimation tasks that are currently solved
through computationally intensive PDE-constrained optimization techniques.

The rest of this article is organized as follows. Sec. 2 introduces the parameter estimation problem
and describes the new multi-fidelity approaches. Numerical results are described in Sec. 3. Finally,
conclusions are drawn in Sec. 4.
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2 Methods

In this work, we consider PDE-constrained optimal control problems [34, 3], focussing on the finite-
dimensional control case (i.e. with control variable expressed by a finite vector of unknown param-
eters µ ⊂ P ⊂ Rp), under the form:

min
µ∈P

J(µ)

s.t. α
∂u

∂t
+ L(u;µ) = 0 in Ω× [0, T ],

where J(µ) = ‖Cu(x, t;µ)− y(x, t)‖2Y +R(u;µ)

(1)

where u = u(x, t;µ) is the solution of the so-called forward problem, x is the space variable defined
in the domain Ω, t is the time variable defined in the interval [0, T ]. Here, L is a (possibly nonlinear)
differential operator. Stationary PDEs can be recast in the form (1) by setting α = 0 and restricting
the domain to Ω. Boundary conditions could be included as well. In the cost functional J , the
function C : X → Y is a linear observation operator, mapping the solution of the forward problem
onto the space of observation Y = Y(Ω), while R is a suitable regularization term. In this form,
the cost functional measures the discrepancy between the numerical model output Cu and the set
of available measurements y (the target).

After temporal and spatial discretization of the PDE (e.g. by Finite Differences of Finite ele-
ments, respectively [26]), standard solution approaches are the descent methods [9, 29], which are
iterative procedures based on repeated steps along descent directions, defined at each step by the
numerical approximation of the forward and the adjoint (or sensitivities) problems. The effective-
ness of these procedures has been demonstrated in many applications ranging from aerodynamics to
solid mechanics [4]. However, the resolution in the case of high-dimensional parametric space and
multiscale and multiphysics differential problems is still challenging, due to the high-computational
costs associated with the computation of the gradient of the cost functional and the large number
of iterations required. These challenges are common to those found in identifying neural network
parameters (high dimensionality of the parameters space and the non-convexity of the loss func-
tional). For this reason, methods based on automatic differentiation and stochastic gradients are
promising tools in this context. In Sec. 2.1 we describe the PINN approach for the simultaneous
PDE solution and parameter estimation from (noisy) measurements, while in Sec. 2.2 we introduce
our novel multi-fidelity strategy.

2.1 Neural Network-based approaches to the optimal control problem

The PDE-constrained optimal control problem (1) can be reformulated as a statistical learning
problem: find a function u(x, t), expressed through an Artificial Neural Network (ANN) NN , which
minimizes the cost functional J while satisfying - in a suitable sense - the PDE. Typically, observa-
tions of the solution are only available at given spatio-temporal locations (xHi , t

H
i ), i = 1, . . . , NH

obs.
Hence, the observations are given by yHi = Cu(xHi , t

H
i ;µex) + εi, where εi denotes the measurement

error and where the solution u is associated with µ = µex, i.e. the “exact” value of the parameter.
This dataset is usually denoted as training data.
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The optimal control problem is then expressed in the following way:

min
µ,W

J (µ,W)

s.t. u(x, t) = NN (x, t;µ,W)

where J (µ,W) =
ωfit

NH
obs

NH
obs∑
i=1

|Cu(xHi , t
H
i )− yHi |2 +R(u;µ,W),

(2)

where the cost functional J is substituted by the empirical cost functional J ; the latter can be viewed
as a Monte-Carlo approximation of J . Here, W = [w,b] represents the parameters (weights w and
biases b, respectively) of the ANN, which acts as additional unknowns of the problem. The scalar
hyperparameter ωfit > 0 weights the contribution of data misfit with respect to the regularization
term R. It is important to remark that after reformulating (1) as (2), the physical information
associated with the PDE is lost. To recover it, one possiblity is offered by PINNs, which encode the
PDE into the regularization term R.

More precisely, the regularization term R is chosen as the absolute value of the PDE residual:

Rphys(u;µ,W) =
ωphys

Nc

Nc∑
i=1

∣∣∣∣α∂u(xci , t
c
i )

∂t
+ L(u(xci , t

c
i );µ)

∣∣∣∣2 , (3)

where (xci , t
c
i ), i = 1, . . . , Nc is a set of Nc collocation points, at which we penalize the residual of

the PDE in strong form, and ωphys ≥ 0 is a balancing factor. Should the boundary conditions be
available, they could be enforced in (3) by summing the absolute value of the associated residual. For
simplicity, in this work we do not consider this case, as the generalization of the proposed methods
is straightforward.

Provided that sufficiently regular activation functions are employed, the ANN is infinitely many
times continuously differentiable (u ∈ C∞(Ω× [0, T ])). Therefore, the differential operators ∂

∂t and L
can be meaningfully applied to u. Moreover, Automatic Differentiation (AD) tools – at the basis of
virtually any Machine Learning software library – can be used to practically and efficiently evaluate
the term (3), enabling a fast implementation of this method.

Although PINNs allow solving optimal control problems of the type of (1) by exploiting the
powerful tools developed in the context of Machine Learning and with little and intuitive imple-
mentation effort, training these ANNs can present several difficulties [37, 36], especially for few and
noisy data. In the low-data regime, indeed, the problem turns out to be ill-posed and characterized
by many local minima, which makes the training phase very difficult. To overcome these difficulties,
in this paper we rely on a multi-fidelity approach.

2.2 Multi-fidelity approach

We consider a multi-fidelity approach to tackle the ill-posedness of the optimal control problem. Our
goal is to combine ANNs built on different datasets and with different loss functions to solve the
parametric optimal control problem. We first express the solution u(x, t) as the sum of a low-fidelity
model solution uL, and an ANN (NNH), acting as a correction of the low-fidelity guess:

u(x, t) = uL +NNH(x, t, uL; WH), (4)

In this paper, uL is obtained with an additional ANN (named as low-fidelity ANN), but in general
it can be constructed through different techniques, including fitting techniques of projection-based
reduced-order modeling techniques.
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For the training of these two ANNs we consider two sets of data:

1. Low-fidelity dataset : approximations of the parametric solution yLi = Cu(xLi , t
L
i ;µLi )}, i =

1, . . . , NL
obs, obtained, e.g. with the chosen numerical approximation of the forward prob-

lem corresponding to different samples µLi in the parameter space. Note that NL
obs could be

arbitrary large, since it can be built through the offline execution of numerical simulations;

2. High-fidelity dataset : yHi , i = 1, . . . , NH
obs, which consists of a set of available measurements.

Compared to the usual PINN approach, in which the physics-informed component is contained only
in the regularization term R based on the model residual, we also augment the training dataset with
additional data potentially obtained through numerical simulations. This has a double advantage:
it allows creating offline the low-fidelity dataset used for the training of the low-fidelity surrogate
uL, which then acts as a regularizer of the optimal control problem.

We propose two different strategies for solving parameter estimation problems with multi-fidelity
PINNs, that we respectively denote by MPINN-v1 and MPINN-v2. Before introducing them, we
describe an alternative multi-fidelity PINN framework, that we denote by MPINN-v0, following the
approach presented in [22].

2.2.1 MPINN-v0

We consider a collection of solution snapshots obtained for different samples of the parameter µ,
that is {u(xLi , t

L
i ;µLi ) : i = 1, . . . , NL

obs}. Following [22], we here consider a more general formulation
of (4), that is

u(x, t) = LH(x, t, uL; WH) +NNH(x, t, uL; WH), (5)

where LH is a linear function and NNH is a nonlinear one (specifically an ANN). The vector WH

collects the parameters of both maps LH and NNH . The multi-fidelity PINN problem then reads

min
µ,WL,WH

J (µ,WL,WH)

s.t. uL(x, t) = NNL(x, t; WL),

u(x, t) = LH(x, t, uL(x, t); WH) +NNH(x, t, uL(x, t); WH)

where J (µ,WL,WH) =
ωLfit

NL
obs

NL
obs∑
i=1

|CuL(xLi , t
L
i )− yLi |2 +RL(uL; WL)

+
ωHfit

NH
obs

NH
obs∑
i=1

|Cu(xHi , t
H
i )− yHi |2 +RH(u;µ,WH).

(6)

The scaling constants ωLfit and ωHfit allow to tune the relative weights of the loss function terms. As
in [22], we do not regularize the low-fidelity map (that is, we set RL ≡ 0), while we consider the
physics-informed regularizer on the solution u(x, t) (that is, RH = Rphys, defined in (3)). We remark
that, within the MPINN-v0 approach, both the low-fidelity and high-fidelity maps are simultane-
ously trained. By doing so, the optimization problem might result computationally demanding. To
overcome this potential issue and to enhance the robustness of the method, we split the optimization
procedure in two sequential tasks, namely the training of the low-fidelity map and of the high-fidelity
one.
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2.2.2 MPINN-v1 with non parametric low-fidelity

Winthin the MPINN-v1 approach, the training procedure is divided into two stages. In the first
stage we train the low-fidelity ANN (NNL) as a map starting from snapshots {u(xLi , t

L
i ;µguess) : i =

1, . . . , NL
obs}, for a fixed µguess, which can be provided by a priori knowledge. The problem can be

written as: 

min
WL

JL(WL)

s.t. uL(x, t) = NNL(x, t; WL)

where JL(WL) =
ωfit

NL
obs

NL
obs∑
i=1

|CuL(xLi , t
L
i )− yLi |2 +RL(uL; WL),

(7)

where yLi = Cu(xLi , t
L
i ;µguess), i = 1, . . . , NL

obs. Here, RL could be chosen as done in (3), in a PINN
framework, or as a standard ANN regularizer.

In the second stage, we solve the optimal control problem in the multi-fidelity framework, which
is: 

min
µ,WH

J (µ,WH)

s.t. u(x, t) = uL(x, t) +NNH(x, t, uL(x, t); WH)

where J (µ,WH) =
ωfit

NH
obs

NH
obs∑
i=1

|Cu(xHi , t
H
i )− yHi |2 +RH(u;µ,WH),

(8)

where RH = Rphys is given by the physics-informed regularizer (3).

2.2.3 MPINN-v2 with parametric low-fidelity

In the second approach, we first train the low-fidelity ANN (NNL) as a parametric map starting
from snapshots {u(xLi , t

L
i ;µLi ) : i = 1, . . . , NL

obs}. The problem can be written as:

min
WL

JL(WL)

s.t. uL(x, t;µ) = NNL(x, t;µ,WL),

where JL(WL) =
ωfit

NL
obs

NL
obs∑
i=1

|CuL(xLi , t
L
i ;µLi )− yLi |2 +RL(uL; WL)

(9)

Unlike the non-parametric approach of Sec. 2.2.2, which is associated with a given value of the
parameter µguess, here the low-fidelity map encodes the dependence of the solution on the param-
eter µ. This information will be later leveraged, in the multi-fidelity formulation, to support the
identification of the parameter µ.

This stage might be optionally followed by a second one, in which we provide a first estimate
of the unknown parameters using the low-fidelity map, minimizing the distance between model and
measurements. This would provide an initial guess for µ, employed in the following step as starting
point of the training.
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In the last stage, we solve the optimal control problem in the multi-fidelity framework, which is:

min
µ,WH

J (µ,WH)

s.t. u(x, t) = uL(x, t;µ) +NNH(x, t, uL(x, t;µ); WH).

where J (µ,WH) =
ωfit

NH
obs

NH
obs∑
i=1

|Cu(xHi , t
H
i )− yHi |2 +RH(u;µ,WH)

(10)

which is now constrained on a multi-fidelity solution, depending on the unknown parameters and
the solution of the low-fidelity ANN. In this stage we employ the following regularization term:

RH(u;µ,WH) = Rphys(u;µ,WH) +
ωlh

Nc

Nc∑
i=1

|u(xci , t
c
i )− uL(xci , t

c
i ;µ)|2. (11)

The first term of (11) is the standard physics-informed loss, while the second term leverages the infor-
mation gained during the low-fidelity training (9), penalizing the discrepancy between the low-fidelity
parametric map, evaluated in the candidate parameter µ, and the solution u. The hyperparameter
ωlh ≥ 0 tunes the weight of this term in the global loss. For simplicity, we evaluate this latter term
in the same collocation points used to enforce the PDE; however, an independent set of points could
be considered as well.

We refer to Fig. 1 for a visual representation of the PINN and MPINN approaches described in
this Section.

3 Results

In this section we describe the numerical results related to two benchmark problems and to an
application in the field of cardiac electrophysiology. In all the tests reported in this paper we set for
simplicity RL ≡ 0. The observation points (xHi , t

H
i ) and (xLi , t

L
i ), as well as the collocation points

(xci , t
c
i ), are selected by means of a Monte Carlo sampling strategies from uniform distributions.

Other sampling strategies, such as Latin Hypercube sampling, could be adopted. To mimic the
presence of measurement error, we artificially generate the noise εi. Unless otherwise specified,
we generate εi by sampling from independent Gaussian distributions with zero mean and standard
deviation σ, that will be specified case by case. To minimize the loss function, we first run 100
epochs with the Adam optimizer [16]. Then we switch to a more computationally demanding, but
more accurate optimizer, namely the BFGS method [13]. Unless otherwise specified, we considered
in the benchmark examples a maximum number of 2000 iterations for this method.

To evaluate and compare the results obtained with the different strategies considered in this
paper, we introduce the following metrics:

Jfit =

√√√√ 1

NH
obs

NH
obs∑
i=1

|Cu(xHi , t
H
i )− yHi |2,

Jphys =

√√√√ 1

Nc

Nc∑
i=1

∣∣∣∣α∂u(xci , t
c
i )

∂t
+ L(u(xci , t

c
i );µ)

∣∣∣∣2,
Jlh =

√√√√ 1

Nc

Nc∑
i=1

|u(xci , t
c
i )− uL(xci , t

c
i ;µ)|2,

(12)
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Figure 1: Training procedure of PINN and MPINN approaches (the dependence on the parameter
vector distinguishes the two multi-fidelity versions).
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corresponding to the root mean square (RMS) residuals, respectively associated with data fitting,
with the satisfaction of the PDE and with the discrepancy between the numerical solution and
the low-fidelity parametric map (the latter being defined for the MPINN-v2 approach only). We
also define J test

fit in a similar manner of Jfit, but computed on a testing dataset, that is on points
different than those employed to train the ANN. Finally, to evaluate the quality of the estimate of
the parameters, we employ their relative error.

Every Machine Learning algorithm depends on a set of hyperparameters. In this context, besides
the hyperparameters associated with the ANN architecture (number of layers and number of neurons
per layer), the training process is controlled by scalar weight factors that tune the mutual contribu-
tion of the different components of the loss, that is ωfit, ωphys and (in the MPINN-v2 case) ωlh. Note
that the number of independent weight factors is equal to the total diminished by one, as we can fix
without loss of generality e.g. ωfit = 1. In the tests reported in this paper, the weight factors were
set according to the following strategy. In each test, we tuned the ANN architecture and the weight
factors independently for each approach (PINN, MPINN-v0, MPINN-v1 and MPINN-v2) by trial
and error. Once set, comparative analyses were performed for fixed values of the hyperparameters
(their values are reported in the figures’ captions or in the main text).

The results are obtained with the support of the Automatic Differentiation engine of TensorFlow
[1]. To train the models, we employ the Adam optimizer of Keras [6] and the BFGS optimizer of
SciPy [35].

3.1 Benchmark problems

In this section we introduce the two benchmark problems considered in this paper.

Advection-Diffusion-Reaction equation

We consider the following parametrized Advection-Diffusion-Reaction (ADR) problem: find u = u(x)
such that

− µd
2u(x)

dx2
+ γ

du(x)

dx
− u(x) = f(x) x ∈ (0, 1). (13)

By choosing the forcing term as

f(x) =
γ2

√
µ

cos

(
x√
µ

)
the PDE is satisfied by the solution

uex(x) = γ sin

(
x√
µ

)
.

Here the parameter vector reads µ = (µ, γ)T . The exact value of the parameter vector, employed to
generate the training data, is µex = (0.25, 1)T . In the MPINN-v2 setting, for the construction of the
parametric map, we sample the parameter in the set µ ∈ [0.1, 2.0]× [0.5, 3.0]. In the PINN setting,
we employ an ANN with three hidden layers of 10 neurons each. In the MPINN-v1 (respectively,
MPINN-v2) setting, we employ one (respectively, three) hidden layer forNNL, and one (respectively,
two) hidden layer for NNH , with 10 neurons per each layer. In the MPINN-v0 setting, we use the
same architecture for NNL and NNH of the MPINN-v1 setting. The richer architecture of the
low-fidelity ANN in the MPINN-v2 compared to the MPINN-v1 case is due to the need of including
the parametric dependence into the low-fidelity model.
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Parabolic equation

As a second benchmark problem, we consider the time-dependent PDE

du(x, t)

dt
− µd

2u(x, t)

dx2
+ γ x2 du(x, t)

dx
= 0 x ∈ (−1, 1), t ∈ (0, 1), (14)

which is satisfied by the solution

uex(x, t) = exp

(
−√γµ

(
x2

2µ
+ t

))
.

The true value of the parameter vector µ = (µ, γ)T is given by µex = (1, 2)T . To construct the
parametric map in the MPINN-v2 setting, we sample in the set µ ∈ [0.1, 4.0] × [0.1, 4.0]. For this
benchmark test, we employ a three hidden layers architecture in the PINN setting, and a two hidden
layers architecture for both ANNs in the MPINN settings, with 10 neurons per each layers.

3.1.1 PINN

We first consider the PINN method, without a multi-fidelity approach. In Figures 2 and 3 we inves-
tigate the dependency of the accuracy of the solution with respect to the number of measurements
NH

obs. The trend is plotted for different choices of the noise magnitude σ and of the number of collo-
cation points Nc. The test set comprises 1000 samples of the solution associated with the true values
of the parameters in points randomly selected with a Monte Carlo algorithm. For the sake of brevity
we only consider the ADR test case in these tests. Let us first consider the solutions obtained in the
absence of noise (σ = 0). We notice that with only 4 observations both parameters are reconstructed
accurately (relative error of the order of 10−5÷10−6). By increasing NH

obs further, the reconstruction
error slightly decreases. The number of collocation points impacts the parameter estimate, which
is SPslightly more accurate for Nc = 10000 rather than for Nc = 100. The results show that the
quality of the solution is heavily impacted by noise. For σ = 0.005, in fact, the error rises to the
order of 10−1 ÷ 10−2. In the following sections we will show how the multi-fidelity approach yields
an improvement in the quality of parameter estimation when considering noisy measurements.

3.1.2 MPINN-v0 and MPINN-v1

We now consider the MPINN-v1 method and compare it with the PINN and MPINN-v0 methods.
In Figs. 4, 5, 6 and 7 we show, for the ADR test case, the evolution of the relative errors in the
estimate of the parameters with respect either to the number of optimization epochs or with respect
to the computational time. In Fig. 8, a similar test is performed for the parabolic problem. In all
test cases, we consider NL

obs = 100 points for the training of the low-fidelity ANN. Since the outcome
of the training is aleatory (due to the randomness of the ANN weights initialization), we run 10
simulations for each setting, and we represent the geometric mean of the results by a solid line, and
by a shaded area the region spanned by all the trajectories. In the figures, we consider different
values for NH

obs and σ (see captions).
In all the considered cases, the MPINN-v0, MPINN-v1 and PINN methods provide comparable

results, on average, in terms of accuracy of the final estimation. The MPINN-v1 approach, however,
is capable of providing an improvement in the convergence speed. In Fig. 4, the loss function traces
are plotted against the number of iterations. However, the computational effort per iteration may
differ from one method to another. Thus, to perform a fair comparison, in Fig. 5 we report the
same traces shown in Fig. 4, plotted with respect to the computational time rather then the number
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Figure 2: ADR test case: relative error in the estimate of the parameters µ and γ with respect to
NH

obs. The two figures differ in the number of colloction points used: Nc = 10000 (left) and Nc = 100
(right). Here, we consider ωfit = 100, ωphys = 1 and 1000 test points employed in the computation
of J test

fit .

of iterations. By doing so, the advantage in terms of convergence speed of the MPINN-v1 method
compared to the the PINN and the MPINN-v0 ones is even more noticeable. We remark that the
computational times considered in the figure take into account also the cost needed to train the low
fidelity network in the MPINN-v1 case. Therefore, from here on we report only loss trends with
respect to the number of iterations. In fact, a comparison based on the computational time instead of
the number of iterations would be more advantageous for the MPINN-v1 method, thanks to having
split the training of the low fidelity network from the high-fidelity one, which makes the method
efficient and robust. Indeed, MPINN-v1 trajectories appear to be more likely to escape the local
minima in which the PINN and MPINN-v0 trajectories are trapped, especially in the case of noisy
data. This affects the height of shaded areas: see, e.g., the left column of Fig. 6 or the right column
of Fig. 7). In the parabolic case, this mechanism provides also a modest reduction of the mean error
(solid line in Fig. 8). As a matter of fact, the MPINN-v1 approach does not modify the loss function
with respect to the standard PINN approach. Nonetheless, it modifies the architecture of the ANN
representing the numerical solution: while in the PINN approach the solution is represented by a
single ANN, agnostic of the problem at hand, in the MPINN-v1 approach it is given by the sum
of first term (the low-fidelity solution) plus a correction term. In case the low-fidelity solution is
correlated to the exact solution, this provides a significant speedup in the training process. Clearly,
the closer the low-fidelity solution to the exact one, the larger the speed up. This is confirmed by
the numerical results: in fact, for each of the above settings, we consider two different guesses for
the parameter µguess. These mimic two possible scenarios: in the first one, we suppose to have some
a priori knowledge on the real values of the parameters, while in the second one we do not have any
prior information and consequently we use an uninformed guess. For the sake of fairness, we employ
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Figure 3: ADR test case with noise: relative error in the estimate of the parameters µ and γ with
respect to NH

obs. The two figures differ in the variance of the noise: σ = 0.0001 (left) and σ = 0.005
(right). Here, we consider ωfit = 1, ωphys = 1 and 1000 test points employed in the computation of
J test

fit .

µguess itself as initial guess in both the PINN and MPINN optimization problem. The results show
that when µguess is close to the exact solution, the optimizer converges more rapidly.

3.1.3 MPINN-v2

Let us now compare the results obtained with the MPINN-v2 method to those obtained with the
PINN method. In this section, we focus on assessing the accuracy of MPINN-v2 method instead
of the convergence speed since it is the distinguishing feature of this method. We consider three
different cases: observation without noise, observation with Gaussian noise, observation with a noise
that is nonlinearly correlated with the solution.

Case 1: no noise First, we consider the case without noise. In Fig. 9 we compare the trajectories
of the different components of the loss function during the training process, for the ADR test case
with NH

obs = 8. The figure shows that, in the case considered here, the MPINN-v2 method is not
better than the standard PINN method, other than in speeding up the early stages of the training
process (as long as the weight ωlh is sufficiently large). In fact, while with the MPINN-v2 method
the loss values quickly stagnate on constant values, the PINN method is able to improve the quality
of the solution by increasing the number of epochs.

This result is consistent with Fig. 10, in which we show the final error obtained in the estimate
of the parameters with respect to NH

obs. We observe that, while for a sufficiently large dataset the
PINN method provides more accurate results, in the low-data regime the MPINN-v2 method is
advantageous. In other terms, when the data provide little information, the multi-fidelity structure
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Figure 4: ADR test case with noise: relative error in the estimate of the parameters µ and γ with
respect to number of epochs, for NH

obs = 16 and σ = 0.01. The blue line refers to the PINN method,
the red line to the MPINN-v2 method and the green one to the MPINN-v0 method. In the left
column, the guess for the parameter (i.e. µguess = (0.3, 1.8)T ) is closer to the exact solution (i.e.

µex = (0.5, 2)T ) than the one of the right column (i.e. µguess = (1, 1)T ). The figure shows the
results of 10 training processes (the shaded region is the area spanned by the trajectories; the solid
line represents the geometric mean). Here, we consider Nc = 1000, ωfit = 100, ωphys = 1.
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Figure 5: ADR test case with noise: relative error in the estimate of the parameters µ and γ with
respect to computational time, for NH

obs = 16 and σ = 0.01. The blue line refers to the PINN
method, the red line to the MPINN-v2 method and the green one to the MPINN-v0 method. In
the left column, the guess for the parameter (i.e. µguess = (0.3, 1.8)T ) is closer to the exact solution

(i.e. µex = (0.5, 2)T ) than the one of the right column (i.e. µguess = (1, 1)T ). The figure shows the
results of 10 training processes (the shaded region is the area spanned by the trajectories; the solid
line represents the geometric mean). Here, we consider Nc = 1000, ωfit = 100, ωphys = 1.
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Figure 6: ADR test case with noise: relative error in the estimate of the parameters µ and γ
with respect to number of epochs, for NH

obs = 16 and σ = 0.001. The blue line refers to the PINN
method, the red line to the MPINN-v2 method and the green one to the MPINN-v0 method. In
the left column, the guess for the parameter (i.e. µguess = (0.3, 1.8)T ) is closer to the exact solution

(i.e. µex = (0.5, 2)T ) than the one of the right column (i.e. µguess = (1, 1)T ). The figure shows the
results of 10 training processes (the shaded region is the area spanned by the trajectories; the solid
line represents the geometric mean). Here, we consider Nc = 1000, ωfit = 10, ωphys = 1.
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Figure 7: ADR test case with noise: relative error in the estimate of the parameters µ and γ
with respect to number of epochs, for NH

obs = 8 and σ = 0.001. The blue line refers to the PINN
method, the red line to the MPINN-v1 method. In the left column, the guess for the parameter (i.e.
µguess = (0.3, 1.8)T ) is closer to the exact solution (i.e. µex = (0.5, 2)T ) than the one of the right

column (i.e. µguess = (1, 1)T ). The figure shows the results of 10 training processes (the shaded
region is the area spanned by the trajectories; the solid line represents the geometric mean). Here,
we consider Nc = 1000, ωfit = 10, ωphys = 1.
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Figure 8: Parabolic test case with noise: relative error in the estimate of the parameters µ and γ
with respect to number of epochs, for NH

obs = 16 and σ = 0.001. The blue line refers to the PINN
method, the red line to the MPINN-v1 method. In the left column, the guess for the parameter (i.e.
µguess = (1.1, 1.8)T ) is closer to the exact solution (i.e. µex = (1, 2)T ) than the one of the right

column (i.e. µguess = (0.5, 0.5)T ). The figure shows the results of 10 training processes (the shaded
region is the area spanned by the trajectories; the solid line represents the geometric mean). Here,
we consider Nc = 10000, ωfit = 1, ωphys = 1.
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Figure 9: ADR test case: loss components and relative errors trend with respect to the epochs in the
PINN model (top) vs the MPINN-v2 model (bottom), for NH

obs = 8 measured points and without
noise. Here, we consider Nc = 1000, ωfit = 100, ωphys = 1.
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Figure 10: ADR test case: parameter estimation relative errors with exact measurements. We
consider PINN vs MPINN-v2 trained using NL

obs = 10000 and two different values of ωlh. Here, we
consider ωfit = 100 and ωphys = 1.

successfully leverages the information contained in the low-fidelity parametric map, thus improving
the quality of the results.

Case 2: Gaussian noise We now consider the case with σ = 0.01 and we compare the PINN
method with the the MPINN-v2 method. In Fig. 11 we show the loss components versus training
epochs for the ADR problem. We test the PINN method versus the MPINN-v2 method for two
different values of ωlh, in the case NH

obs = 8. By comparing the results with those of Fig. 9, we
evince that the MPINN-v2 method is much more robust to noise than the standard PINN method.
As a matter of fact, the former approach achieves a significantly higher accuracy than the latter in
the case of noisy measurements. Moreover, a larger value of ωlh has the double beneficial effect of
accelerating convergence and improving accuracy.

In order to simulate scenarios with low-fidelity models of different accuracy, we show in Fig. 12
the loss components trajectories obtained with different values of NL

obs. We observe that using
only NL

obs = 100 samples to build the parametric map, the parameter estimation is very accurate.
Increasing NL

obs to 1000 and to 10000 samples, the quality of the estimate slightly increases.
Then, we study the relative error with respect to the exact parameters when NH

obs = 2, 4, 8, 16, 32
noisy measurements are considered (see Fig. 13). Unlike in the zero noise case, where the MPINN-v2
provides better estimates only in the low-data regime, our multi-fidelity is advantageous both with
few and with many data affected by noise. As a matter of fact, we observe an error reduction up to
two orders of magnitude in the parameters estimation compared with the standard PINN method.
Finally, Fig. 14 shows tha same analysis of Fig. 13 for the parabolic problem, in the case of noisy
data. The results show that the MPINN-v2 is advantageous also in this test case.
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Figure 11: ADR test case with noise: loss components and relative errors trend with respect to the
epochs in the PINN model (top) vs the MPINN-v2 model (bottom), for NH

obs = 8 measured points
and σ = 0.01. Here, we consider Nc = 1000, ωfit = 100, ωphys = 1.
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Figure 12: Loss components and relative errors trend with respect to the epochs in MPINN-v2 model
with Gaussian noise on data (σ = 0.01, NH

obs = 8). Here, we consider Nc = 1000, ωfit = 1, ωphys = 1,
ωlh = 1.
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Figure 13: ADR test case with noise: parameter estimation relative errors, for PINN vs MPINN-v2
trained using NL

obs = 1000 and NL
obs = 10000, respectively. Here, we consider Nc = 1000, ωfit = 1,

ωphys = 1 and ωlh = 1.

Case 3: correlated noise As a third case, we consider an observation error that is correlated (in
a nonlinear manner) to the solution, according to

y(x) = uex(x;µex) + 0.2 cos(uex(x;µex)).

Also in this case, MPINN outperforms the PINN method (see Figure 15). The additive nonlinear
component is able to learn the mismatch between the observation and the low-fidelity parametric
map, thus correcting and mitigating the effect of noise.

3.2 Application to cardiac electrophysiology

We now consider an application of the proposed methods to a problem arising in the field of cardiac
electrophysiology. The Bueno-Orovio model [5] (henceforth denoted as BO model) consists of a set
of strongly nonlinear ordinary differential equations, that describe the ionic dynamics of the cardiac
cells. It includes four state variables, respectively describing the transmembrane potential (u) and
three gating variables (v, w, s) associated with the fraction of open ion channels across the cell
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Figure 14: Parabolic problem with noise: parameter estimation relative errors, for PINN vs MPINN-
v2 trained using NL

obs = 1000 and NL
obs = 10000, respectively. Here, we consider Nc = 10000,

ωfit = 1, ωphys = 1 and ωlh = 1.
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Figure 15: ADR test case with correlated noise: parameter estimation relative errors, for PINN vs
MPINN-v2 trained using Nlf = 1000 and Nlf = 10000. Here, we consider Nc = 1000, ωfit = 1,
ωphys = 1 and ωlh = 1.

membrane. The BO model reads as follows.

du

dt
= −(Ifi + Iso + Isi) + Iapp

dv

dt
=

(1−H(u− θv))(v∞ − v)

τ−v
− H(u− θv)v

τ+
v

dw

dt
=

(1−H(u− θw))(w∞ − w)

τ−w
− H(u− θw)w

τ+
w

ds

dt
=

1

τs

(
1 + tanh(ks(u− us))

2
− s
)
.

(15)

Here H(x−x0) refers to the Heaviside function centered at x0. The functions Ifi, Iso and Isi represent
the fast inward, slow outward and slow inward electric currents respectively, given by the following
expressions:

Ifi = −vH(u− θv)(u− θv)(uu − u)

τfi
, (16)

Iso =
(u− uo)(1−H(u− θw))

τo
+
H(u− θw)

τso
, (17)

Isi = −H(u− θw)ws

τsi
. (18)

The function Iapp(t) represents a prescribed applied current, needed to trigger the cellular excitation.
The BO model permits to numerically reproduce a wide range of experimental conditions. However,
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in practical applications, its parameters need to be suitably calibrated on a patient-specific basis.
Due to the large number of parameters, one typically fixes most of them, based on literature data,
and calibrates only the few most relevant ones. Specifically, in this paper we focus on the calibration
of the parameter τfi, associated with the time constant of the fast inward current Ifi. The parameter
τfi influences the action potential duration, that is the time lag between the depolarization and
polarization phases of u. Hence, in this section we consider the problem of estimating τfi from noisy
measurements of the transmembrane potential u and few measurements of the gating variables v, w
and s.

In realistic scenarios, the applied current Iapp(t) is not easily measurable. Nonetheless, it plays a
role only in the very first instants (order of 1 ms) of the transmembrane potential and it is typically
set to zero for the remaining time. Hence, in the physical loss of Eq. (3), we set Iapp ≡ 0 and we do
not include time instants before t = 2 ms.

To generate the training data, we use a numerical solver based on the Finite Difference method
approximating the solution of the BO model. The solver uses a time step of ∆t = 0.1 ms and a
final time T = 0.8 s. The resulting transmembrane potential solution u is sub-sampled at 25 ms
intervals, and noise is artificially added by sampling from a normal distribution of zero mean and
standard deviation σ. In addition to measurements on the transmembrane potential, we assume
that we also have measurements of the gating variables v, w and s. Since, however, measurements
of these variables are more difficult to obtain in practice, we here consider a much coarser sampling
(one data point every 0.3 s). This is precisely the set of available measures adopted in the estimation
of the parameter τfi.

Unlike the test cases considered above, the BO model is a vectorial problem. Hence, the losses
defined in Eq. (12) can be independently defined for each component of Eq. (15). In what follows, we
will denote the corresponding loss components with a superscript specifying the variable. Similarly,
we identify with a superscript the associated weights. For instance, we denote by J uphys and J vphys the
loss functions corresponding to the residual associated with the first line and second line of Eq. (15),
respectively. The associated weights are respectively denoted by ωuphys and ωvphys. Similar notations
apply to the other variables.

In the PINN setting we employ an ANN with three hidden layers, with 32, 24 and 16 neurons,
respectively. In the MPINN setting, the same architecture is used for NNH , while 32, 16 and 8
neurons are employed forNNL. Low fidelity dataset comprises 75 numerical simulations subsampled
with random interval smaller than 10 ms.

3.2.1 Training strategy

Due to the nonlinearity of the BO model equations, a one-shot training that starts from a random
initialization of the ANN parameters typically leads to results far from the global minimum. As a
matter of fact, if the initial guess for the solution is far from the exact one, the physical component
of the loss function, instead of helping in the identification of the unknown parameter, leads the
estimate of the parameter to diverge. Therefore, in this paper we propose a training divided into
different stages, in which we tune differently the relative contribution of the different loss components.

Specifically, we split the training into two stages. In both stages, we set ωufit = 10−2 and
ωvfit = ωwfit = ωsfit = 1.

• First, we perform a maximum of 500 BFGS iterations setting ωuphys = ωvphys = ωwphys = ωsphys =

10−6. In this way the ANN is trained according to a virtually pure fitting problem, in which the
(low but not null) weights of the physical losses prevent that the residuals of the differential
equation diverge. When the MPINN-v2 approach is considered, in this stage we set ωulh =
ωvlh = ωwlh = ωslh = 1. Moreover, in this case, we precede the 500 iterations of BFGS by another
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Figure 16: BO test case: relative error in the estimate of the parameter τfi with respect to number
of epochs, for σ = 0.05 (left) and σ = 0.025 (right). The blue line refers to the PINN method, the
red line to the MPINN-v2 method. The figure shows the results of 10 training processes (the shaded
region is the area spanned by the trajectories; the solid line represents the geometric mean).

50 iterations (at most) in which we optimize solely with respect to the unknown parameter τfi.
In this way we exploit the low-fidelity map to provide an educated guess to the parameter.

• Then, we perform 10000 BFGS iterations by increasing the weight factors of the physical losses
to 10−3, to enhance the residual minimization. For the MPINN-v2, we also decrease ωulh, ωvlh,
ωwlh and ωslh to 0.05.

3.2.2 MPINN-v2 versus PINN approach

To compare the performance of PINN and MPINN-v2 methods, we perform 10 training runs for each
method, starting from different random initializations of the ANN parameters. In Fig. 16 we show
the trend with respect to the number of epochs of the second of the two stages described in Sec. 3.2.1
of the error obtained in the estimation of the parameter τfi, for two different values of the noise (i.e.
σ = 0.05 and σ = 0.025). The results demonstrate that the MPINN-v2 method outperforms the
PINN method. As a matter of fact, although the error obtained at the end of the training assumes
different values in the 10 tests performed, the accuracy is always higher than in the PINN case. On
average, the error obtained with the multi-fidelity approach is one order of magnitude lower than
with the single-fidelity approach, for both cases considered (σ = 0.05 and σ = 0.025). Note that the
error in the MPINN-v2 case starts lower than in the PINN case already from the first iteration of
the second stage. This means that the first of the two stages described in Sec. 3.2.1 is able, in the
multi-fidelity case, to provide, thanks to the low-fidelity parametric map, a good educated guess for
the unknown parameter.

In Figs. 17 and 18 we show the detailed trend of the loss components in the second of the two
stages described in Sec. 3.2.1, for two of the tests considered in Fig. 16. The figures refer to the
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PINN and MPINN-v2 methods, respectively, in the case σ = 0.025. Note that, for both PINN and
MPINN-v2, in the early epochs the loss is dominated by the physical components J uphys, J vphys, J wphys

and J sphys. When these are lowered by about an order of magnitude, J ufit and its gradients comes
into play. Note that the latter component cannot be arbitrarily lowered, due to the noise which the
measurements of u are subject to. If this happened, in fact, the model would suffer from overfitting.

We observe that in this example the values assumed by the different loss components are very
similar in the single-fidelity and multi-fidelity cases. The difference lies in the Jlh terms, which
are absent in the PINN. These terms lower the error in the MPINN estimate of τfi compared to
the PINN case. Moreover, the remaining components of the loss are very similar in the two cases,
despite having different errors with respect to the exact τfi. This reveals that the PINN formulation
is severely ill-posed and that there exist multiple local minima. These minima share similar values
of J for τfi estimates that are very different from each other. The effect of loss Jlh is thus to favor,
among all these minima, those that correspond to more accurate reconstructions of the solution
and parameter. In other words, Jlh improves the accuracy in parameter estimation acting as an
additional regularizer to the physics-informed one.

4 Conclusions

In this work, we presented a new PINN multi-fidelity strategy that allows for the solution of param-
eter estimation problems. We compared the accuracy, the robustness and the efficiency of this new
strategy with those of the standard PINN approach. As shown by the numerical results, the training
of a PINN is especially challenging in configurations characterized by few noisy available measure-
ments (small data regime), with a consequent poor simultaneous approximation of the solution and
the unknown parameters (minima of the loss J ). It is in this context that our MPINN strategy,
that integrates surrogate models in the PINN framework, turns out to be particularly effective.

We developed two different multi-fidelity approaches: MPINN-v1, based on a parameter-independent
low-fidelity solution, acting only as initial guess for the parameters and the PDE solution to be es-
timated, and MPINN-v2, based on a parameter-dependent low-fidelity solution with a training pro-
cedure designed to simultaneously minimizing the distance between the PDE solution and the data,
the distance between the PDE solution and the low-fidelity approximation for the same parameter
value, and the residual of the differential equation.

Numerical tests were performed involving an advection-diffusion-reaction equation, a parabolic
equation, and the Bueno-Orovio ionic model, focusing on the case of few noisy measurements. Both
versions of MPINNs provided a speedup in the training process, converging more rapidly than a
PINN. In addition, MPINN-v2 improved accuracy in estimating the unknown parameters. We
showed in several numerical examples that MPINN-v2 reduces the relative error by one order of
magnitude (on average) when compared to PINN.

We conclude that our multi-fidelity strategy is promising for solving realistic optimization prob-
lems involving noisy measurements and complex multiscale and multiphysics phenomena. Efficiency
is guaranteed by the techniques employed in the training of neural networks, which are accelerated
by the integration of the surrogate model approximation. Flexibility is instead provided by the
possible integration of virtually any surrogate model, from simple data-driven black-box models to
more complex projection-based models.
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Figure 17: BO test case: loss components and relative errors trend versus the epochs in the PINN
model.
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Figure 18: BO test case: loss components and relative errors trend versus the epochs in the MPINN-
v2 model.
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