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Abstract
We prove existence of martingale solutions for the stochastic Cahn–Hilliard
equation with degenerate mobility and multiplicative Wiener noise. The poten-
tial is allowed to be of logarithmic or double-obstacle type. By extending to
the stochastic framework a regularization procedure introduced by Elliott and
Garcke in the deterministic setting, we show that a compatibility condition
between the degeneracy of the mobility and the blow-up of the potential allows
to confine some approximate solutions in the physically relevant domain. By
using a suitable Lipschitz-continuity property of the noise, uniform energy and
magnitude estimates are proved. The passage to the limit is then carried out by
stochastic compactness arguments in a variational framework. Applications to
stochastic phase-field modelling are also discussed.
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1. Introduction

The Cahn–Hilliard equation was firstly proposed in [14] in order to describe the spin-
odal decomposition occurring in binary metallic alloys. Since then it has been increasingly
employed in several areas such as, among many others, physics, engineering, and biology.
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In the recent years, the Cahn–Hilliard equation has become one of the most important mod-
els involved in phase-field theory. In such class of models, the evolution of a certain mate-
rial exhibiting two different features is described by introducing a so-called state variable
ϕ ∈ [−1, 1], representing the difference in volume fractions. The sets {ϕ = 1} and {ϕ = −1}
correspond to the pure regions, while the interfacial region {−1 < ϕ < 1} where the two
components coexist is supposed to have a positive thickness. For this reason, such models
are usually referred to as diffuse interface models, and the time evolution of the state vari-
able is often described by means of a Cahn–Hilliard-type equation. The field of applications
of diffuse-interface modelling is enormous. In physics it is used in the context of evolution
of separating materials, phase-transition phenomena, and dynamics of mixtures of fluids; in
biology phase-field modelling is crucial in the description of evolution of interacting cells,
tumour growths, and dynamics of interacting populations; in engineering it plays a central role
in modelling of damage and deterioration in continuous media.

Given a smooth bounded domain O of Rd , with d � 2, and a fixed final time T > 0, the
deterministic Cahn–Hilliard equation reads

∂tϕ− div(m(ϕ)∇μ) = 0 in (0, T) ×O, (1.1)

μ = −Δϕ+ F′(ϕ) in (0, T) ×O, (1.2)

n · ∇ϕ = n · m(ϕ)∇μ = 0 in (0, T) × ∂O, (1.3)

ϕ(0) = ϕ0 inO. (1.4)

The variable ϕ is referred to as state variable, or order parameter, while μ is the chemical
potential. Here, the symbol n denotes the outward unit vector on the boundary ∂O, the function
m is known as mobility, while F : R→ [0,+∞] is a double-well potential with two global
minima. Typical examples of m and F are given below.

The chemical potential μ is directly related in equation (1.2) to the subdifferential of the
so-called free-energy functional

ϕ �→ 1
2

∫
O
|∇ϕ|2 +

∫
O

F(ϕ).

The double-well potential F may be thought as a singular convex function that has been per-
turbed by a concave quadratic function: the effect of the concave perturbation is then the
creation of two global minima for F, each one representing the pure phases of the model.
Minimising the F-term in free-energy above describes then the tendency of each pure phase to
concentrate, whereas the gradient term penalises high oscillations of the state variable. The idea
behind the minimisation of the free-energy is then a calibration between these two phenomena.

Since only the values of ϕ in the interval [−1, 1] are relevant to the physical derivation
of the model, the double-well potential F is only meaningful if defined on [−1, 1]. The most
important example is the logarithmic one, defined as

Flog(r) :=
θ

2
((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) +

θ0

2
(1 − r2), r ∈ (−1, 1), (1.5)

with 0 < θ < θ0 being given constants, which possesses two global minima in the interior of
the physically relevant domain [−1, 1]. This choice of the nonlinearity is the most coherent with
the physical derivation of the Cahn–Hilliard model itself, in relation to its thermodynamical
consistency: for this reason, (1.5) is usually employed in contexts related to separation phe-
nomena in physics. A second relevant choice for F is the so-called double-obstacle potential
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Fob(r) :=

{
1 − r2 if r ∈ [−1, 1],

+∞ otherwise.
(1.6)

Here, by contrast, the global minima corresponds exactly to the pure phases±1, and this choice
is then often employed in the modelling contexts where the pure phases have a privileged
role compared to the interface: it is the cases, for example, of tumour growth dynamics in
biology. In (1.6), the derivative F′

ob has to be interpreted in the sense of convex analysis as the
subdifferential ∂Fob, and the equation takes the form of a differential inclusion. In some cases,
these double-well potentials are approximated by the polynomial one

Fpol(r) :=
1
4

(r2 − 1)2, r ∈ R, (1.7)

which nonetheless does not ensure the relevant constraint ϕ ∈ [−1, 1]. While on the one hand
the polynomial potential Fpol is certainly much easier to handle from the mathematical point
of view, on the other hand the logarithmic potential Flog is surely the most relevant in terms
of thermodynamical consistency. Indeed, due to the physical interpretation of diffuse-interface
modelling, only the values of the variable ϕ in [−1, 1] are meaningful. For this reason, the
possibility of dealing with the logarithmic potential Flog is crucial.

The classical choice of the mobility m is a positive constant mcon, independent of ϕ. Nev-
ertheless, starting from the pioneering contribution [10] itself, several authors proposed the
choice of a mobility depending explicitly on the order parameter. A thermodynamically rele-
vant choice for m has been exhibited in the works [11, 12, 56] and consists of a polynomial
mobility mpol defined on the physically relevant domain [−1, 1] with degeneracy at the extremal
points:

mpol(r) := 1 − r2, r ∈ [−1, 1]. (1.8)

A more general version of mpol is given by

mα(r) := (1 − r2)α, r ∈ [−1, 1], α � 1. (1.9)

Several variants of the Cahn–Hilliard equation have been studied in the last decades.
Novick–Cohen proposed in [67] the viscous regularization (see also [41, 42]), accounting also
for viscous dynamics occurring in phase-transition evolution. Gurtin generalized the viscous
correction in [55] possibly including nonlinear viscosity contributions in the equation. More
recently, physicists have introduced the so-called dynamic boundary conditions in order to
account also for possible interaction with the walls in a confined system (see for example
[45, 50, 59]).

The mathematical literature on the deterministic Cahn–Hilliard equation is extremely devel-
oped: we refer to [65] and the references therein for a unifying treatment on the available
literature. In particular, in the case of constant mobility existence, uniqueness, and regularity
have been studied in [15, 16, 18, 19, 21, 51] both with irregular potentials and dynamic bound-
ary conditions, and in [7, 8, 66, 75] with nonlinear viscosity terms. Significant attention has
been devoted also to the asymptotic behaviour of solutions [20, 24, 52] and optimal control
problems [17, 22, 23, 57]. A mathematical analysis of the framework of nonconstant and pos-
sibly degenerate mobility has been investigated in [13, 40]. In this direction we also refer to
the contribution [29, 62, 84] regarding existence of solutions. Let us point out the work [54]
dealing with the analysis of a Cahn–Hilliard equation with mobility depending on the chemical
potential, [78] in relation to global attractors, and [61] for an approach based on gradient flows
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in Wasserstein spaces. A diffuse interface model with degenerate mobility has been studied
also in [48]. Numerical simulations have been analysed in [4, 60].

Despite the fact that the deterministic model has been proven to be extremely effective
in the description of phase-separation, there are certainly important downsides. One of the
main drawbacks of the deterministic framework is the impossibility of describing the unpre-
dictable disruptions occurring in the evolution at the microscopic scale. These may be due to
several phenomena of different nature, such as uncertain movements at a microscopic level
caused by configurational, electronic, or magnetic effects, which cannot be captured by the
classical deterministic Cahn–Hilliard system. The most natural way to capture the random-
ness component which may affect phase-field evolutions is to introduce a Wiener-type noise
in the Cahn–Hilliard equation itself. This was first proposed in [25] employing Wiener noises
in the well-known Cahn–Hilliard–Cook stochastic version of the model, which has been then
validated as the only genuine description of phase-separation in the contributions [6, 71]. Cur-
rently, this is widely studied both in the physics and applied mathematics literatures, for which
we refer to [64, 72] and the references therein. The stochastic version Cahn–Hilliard equation
reads

dϕ− div (m(ϕ)∇μ) dt = G(ϕ) dW in (0, T) ×O, (1.10)

μ = −Δϕ+ F′(ϕ) in (0, T) ×O, (1.11)

n · ∇ϕ = n · m(ϕ)∇μ = 0 in (0, T) × ∂O, (1.12)

ϕ(0) = ϕ0 inO. (1.13)

Here, W is a cylindrical Wiener process defined on certain stochastic basis, while G is a suitable
stochastically integrable operator with respect to W. Precise assumptions on the data are given
in section 2 below.

From the mathematical point of view, the stochastic Cahn–Hilliard equation has been stud-
ied mainly in the case of polynomial potential and only with constant mobility. One the first
contributions in this direction is [27], in which the authors show existence of solutions via a
semigroup approach in the case of polynomial potentials. More recently, well-posedness has
been investigated also in [26, 39] again in the polynomial setting. A more general framework
allowing for rapidly growing potentials (e.g. more than exponentially) has been analysed in
[74, 77] from a variational approach. The genuine case of logarithmic potentials has only been
covered in the works [30, 31, 53] by means of so-called reflection measures.

The mathematical literature on stochastic phase-field modelling has also been increasingly
developed. Let us point out in this direction the works [1] dealing with unbounded noise,
[43, 44] for a study of a diffuse interface model with thermal fluctuations, and [5, 69] dealing
with the stochastic Allen–Cahn equation. Beside well-posedness, optimal control problems
have also been studied in [76] in the case of the stochastic Cahn–Hilliard equation, and in
[68] in the context of a stochastic phase-field model for tumour growth. Besides, let us point
out the mathematical literature on stochastic two-phase flows has also been expanded in the
last years, in the context of coupled stochastic systems of Cahn–Hilliard–Navier–Stokes and
Allen–Cahn–Navier–Stokes type. In this direction, we refer the reader to the contributions [33,
35, 80, 81] for existence of solutions, [3, 36] about asymptotic long-time behaviour, [37] on
large deviation limits, and [32, 34] dealing with a nonlocal phase-field equation in the system
instead.

One of the most critical problems of the stochastic model is that the presence of the random
forcing term does not guarantee that the state variable ϕ remains in the physically relevant
domain [−1, 1], even if the double-well potential is singular as in (1.5) or (1.6). This is due

3816



Nonlinearity 34 (2021) 3813 L Scarpa

to the presence of the additional second-order term in the energy balance, which may cause
blow-up of the energy in finite time. The consequences of this fact are sever, both on the math-
ematical side and especially from the modelling perspective. Indeed, from the point of view of
thermodynamically consistency of the equation, ϕ represents a local concentration and is only
meaningful if belonging to the physical interval [−1, 1]: the impossibility of proving that the
solution of the stochastic equation satisfies this constraint inevitably represents a modelling
downside. Besides, as we have pointed out above, the available literature on the stochastic
Cahn–Hilliard equation only handles the case of constant mobility, which unfortunately is not
the most suited for describing phase-separation.

The current state-of-the-art of the stochastic Cahn–Hilliard equation inevitably calls then
for a deeper investigation in the direction of degeneracy of the mobility, including the phys-
ically relevant logarithmic potential, and showing that the physically meaningful constraint
ϕ ∈ [−1, 1] is achieved. This paper is the first contribution in the mathematical literature
that addresses these three points, and represents then an important step especially in terms of
applicative validation of the stochastic Cahn–Hilliard–Cook model. Our results have impor-
tant consequences to all fields, in particular physics and engineering, where phase-separation
is usually studied under random forcing, as we provide the first mathematical validation of the
stochastic model in its more relevant form, i.e. with degenerate mobility mpol and logarithmic
potential Flog.

In this paper we are interested in studying the stochastic Cahn–Hilliard
equation (1.10)–(1.13) from a variational approach, including the cases of degenerate
mobility mpol, the logarithmic double-well potential Flog, and the double-obstacle potential
Fob. As we have pointed out, these choices are indeed the most relevant in terms of the
thermodynamical coherency of the model. From the mathematical perspective, our approach
differs from [30, 31, 53] as we do not rely on reflection measures. Our techniques extend to
stochastic framework the ideas of Elliott and Garcke in [40], and consist of a compatibility
condition between the degeneracy of the mobility, the coefficient G, and the possible blow-up
of the potential at the extremal points ±1.

Let us briefly explain the main difficulties arising in the case of degenerate mobility and
logarithmic potential, and how we overcome these in the present work.

The first main issue appearing in the stochastic framework is the presence of a prolifer-
ation term in equation (1.10). Indeed, in the deterministic case the integration in space of
equation (1.1) yields, together with the boundary conditions (1.3), the conservation of mass
during the evolution. This is in turn crucial when dealing with irregular potentials such as
Flog or Fob, as it allows to control the spatial mean of the chemical potential. However, in the
stochastic scenario the presence of the noise term in equation (1.10) determines a prolifera-
tion of the total mass of the system. Whereas this drawback can be overcome in the easier
case of regular potentials as Fpol, this results in the impossibility of obtaining satisfactory esti-
mates on the chemical potential μ in the case of logarithmic and double-obstacle potentials.
The main reason is the following. On the one hand the derivatives of Fpol can be controlled by
Fpol itself, i.e. |F′′

pol|, |F′
pol| � c(1 + F) for a certain c > 0, so that the usual energy estimates

on Fpol allow to bound also F′
pol, hence μ as a byproduct. On the other hand, however, the

derivatives of the logarithmic potential Flog blow up at ±1 much more rapidly than Flog itself,
so that the classical energy estimates on Flog are not enough to deduce a control on F′

log. This
problem is even more evident in the stochastic setting due to the presence in the energy esti-
mates of the second order Itô correction, which depends of the second derivative F′′. Again,
while this term can be handled in the case of polynomial potentials as Fpol, in the case of
logarithmic potential Flog the situation is much more critical, due to blow-ups at ±1 pointed
out above.
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The second main issue is the degeneracy of the mobility. Indeed, while in the case of constant
mobility mcon, or more generally if m is bounded from below by a positive constant, one usually
deduces estimates on ∇μ pretty directly, if m degenerates at ±1, as in the physically relevant
case mpol, then there is no hope to obtain a control on the gradient of the chemical potential.

These two main problems suggest that in the case of degenerate mobility the role of the
chemical potentialμ must be passed by, and a different interpretation of the equation is needed.
To this end, if one formally substitutes equation (1.11) into (1.10), it is possible to obtain a
variational formulation on the problem only involving the variable ϕ. In particular, the nonlin-
ear term resulting from such substitution (see definition 2.5 below) is in the form m(ϕ)F′′(ϕ).
Hence, supposing that the degeneracy of the mobility compensates the blow-up of F′′ at±1, we
can obtain a coherent formulation of the problem not involvingμ anymore. Such compatibility
condition between m and F′′ was employed in the mentioned work [40], and is very natural as
it is satisfied by the physically relevant choices mpol and Flog, as we will show in remark 2.3
below.

The idea to overcome the presence of Itô correction terms in the energy estimates depend-
ing on F′′ is of similar nature. If G is Lipschitz-continuous and vanishes at the extremal
points ±1, its degeneracy can compensate the blow-up of F′′ and the energy estimate can
be closed. Again, such Lipschitz-continuity assumption on G is very natural in applications,
and has been widely employed in stochastic phase-field modelling. For example, in [5] the
authors consider a diffuse-interface model based on the stochastic Allen–Cahn equation in
the context of evolution of damage in certain continuum media. The state variable repre-
sents here the damage parameter, which may be though as the local ratio of active cohesive
bonds at the microscopic level. Clearly, only positive values of the state variable are phys-
ically meaningful, and in order to ensure this the authors use a obstacle-type potential. As
far as the noise is concerned, the idea to handle the singularity is of similar nature: the ran-
dom forcing is supposed to be multiplicative and to ‘switch off’ whenever the ϕ touches the
potential barriers. On the same line, the superposition-type stochastic forcing that we pro-
pose in this paper has also been widely employed in applications. In [43] for instance, this
has been actively explored in the context of a model for a binary mixture of incompressible
fluids.

In this work we prove two main results. The first one deals with existence of martingale
solutions to the problem (1.10)–(1.13) in the case of positive mobility and regular potential.
Although being a preparatory work for us, this first result is also interesting on its own, as it
covers the case of non constant mobility and allows up to first-order exponential growth for the
potential. The proofs rely on a double approximation involving a Faedo–Galerkin discretiza-
tion in space and an Yosida regularization on the nonlinearity. The second main result that
we prove is the main contribution of the paper, and states existence of martingale solutions
in the case of degenerate mobility and irregular potentials, possibly including Flog and Fob.
We employ a suitable regularization on the potential, the mobility, and the diffusion coeffi-
cient so that we can solve the approximated problem thanks to the first result. We show then
uniform estimates on the solutions by using energy and magnitude estimates based on the
compatibility between m, F, and G. Finally we pass to the limit by a stochastic compactness
argument.

As far as uniqueness of solutions is concerned, the problem is still open even in the deter-
ministic setting. A uniqueness result for the system with degenerate mobility has been obtained
in [49] in the framework of a nonlocal diffusion related to tumour growth dynamics: here, the
authors exploit the regularizing properties of the nonlocal nature of the equation in order to
show continuous dependence on the initial data. Nevertheless, for Cahn–Hilliard evolutions of
local type with degenerate mobility, regularity of solutions is much more difficult to achieve,

3818



Nonlinearity 34 (2021) 3813 L Scarpa

and uniqueness remains unknown. In the stochastic setting, this also prevents from proving
existence of probabilistically strong solutions.

Let us now summarize the main contents of the work. In section 2 we introduce the main
setting and we state the main results. Section 3 contains the proof of existence of martingale
solutions in the case of positive mobility and regular potential. Section 4 is focused on the
proof of existence of martingale solutions in the setting of degenerate mobility and irregular
potential.

2. Main results

We introduce here the notation and setting of the paper, and state the main results. The first main
result focuses on existence of solutions in case of nondegenerate mobility and regular potential,
while the second deals with the case of degenerate mobility and logarithmic potential.

2.1. Notation and setting

For any real Banach space E, its dual will be denoted by E∗. The norm in E and the duality
pairing between E∗ and E will be denoted by ‖·‖E and 〈·, ·〉E, respectively. If (A, A , ν) is a finite
measure space, we use the classical notation Lp(A; E) for the space of p-Bochner integrable
functions, for any p ∈ [1,+∞]. We shall also use the classical symbol L0(A; E) for the space
of A -measurable functions with values in E. If E1 and E2 are separable Hilbert spaces, we use
the notation L 2(E1, E2) for the space of Hilbert–Schmidt operators from E1 to E2.

Throughout the paper, (Ω, F, (Ft)t∈[0,T],P) is a filtered probability space satisfying the
usual conditions, with T > 0 being a fixed final time, and W is a cylindrical Wiener process
on a separable Hilbert space U. We fix once and for all a complete orthonormal system (uk)k

of U. For every separable Hilbert space E and � ∈ [2,+∞), we set

L�
w(Ω; L∞(0, T; E∗)) := {v : Ω→ L∞(0, T; E∗) weak∗-measurable:

E‖v‖�L∞(0,T;E∗) < +∞
}

,

and recall that by [38, theorem 8.20.3] we have

L�
w(Ω; L∞(0, T; E∗)) =

(
L

�
�−1 (Ω; L1(0, T; E))

)∗
.

Moreover, we will use the symbols C0([0, T]; E) and C0
w([0, T]; E) for the spaces of strongly

and weakly continuous functions from [0, T] to E, respectively.
It is useful to recall here some general facts about the cylindrical Wiener process W and

stochastic integration that will be used later on in the paper: we follow the approach of [63,
sections 2.5.1–2]. Since W is cylindrical in U, we have the formal representation

W =

∞∑
k=0

βkuk, (2.1)

with (βk)k being a family of independent real Brownian motions. Nonetheless, it is important to
note that the infinite sum does not converge in general in U, hence W is not rigorously defined as
a U-valued continuous process. In order to properly define W and the corresponding stochastic
integral, it is useful to show that it is always possible to consider W as a Q1-Wiener process
on a larger space U1, with Q1 being of trace-class on U1. To this end, note that there always
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exists a larger separable Hilbert space U1 and a Hilbert–Schmidt operator ι ∈ L 2(U, U1). For
example, on U one can define the norm

‖v‖U1
:=

( ∞∑
k=0

1
k2
|(v, uk)U|2

)1/2

, v ∈ U.

It is easy to check that ‖·‖U1
is a well-defined norm on U, weaker than the usual one ‖·‖U .

It makes sense then to define U1 as the abstract closure of U with respect to the norm ‖·‖U1
:

namely, U1 is the abstract space of infinite linear combinations v of (uk)k for which ‖v‖U1
is

finite, i.e.

U1 :=

{
v =

∞∑
k=0

αkuk : ‖v‖2
U1

:=
∞∑

k=0

α2
k

k2
< +∞

}
.

With this choice, (U1, ‖·‖U1
) is actually a separable Hilbert space and the inclusion ι : U ↪→ U1

is Hilbert–Schmidt: indeed, we have

∞∑
k=0

‖ι(uk)‖2
U1

=

∞∑
k=0

‖uk‖2
U1

=

∞∑
k=0

∞∑
j=0

1
j2
|(uk, u j)U|2

=

∞∑
k=0

1
k2
‖uk‖2

U =

∞∑
k=0

1
k2

< +∞.

Consequently, by the properties of Hilbert–Schmidt operators (see again [63]), we have that
the infinite sum (2.1) actually converges in U1: this means that we can look at W as a rigor-
ously defined stochastic process on U1. Moreover, it actually holds that W is a well-defined
Q1-Wiener process on U1, with Q1 := ι ◦ ι∗ being of trace class on U1, and such that Q1/2

1 (U1) =
ι(U). In the sequel we will say that W is a cylindrical Wiener process on U if and only if it is
a Q1-Wiener process on U1. Furthermore, stochastic integration with respect to the cylindrical
process W is defined in terms of the usual stochastic integration with respect to the Q1-Wiener
process. In this regard, for every Hilbert space K it holds that B ∈ L 2(U, K) if and only if
B ◦ ι−1 ∈ L 2(Q1/2

1 (U1), H). Consequently, for every progressively measurable stochastic inte-

grand B ∈ L2(Ω; L2(0, T; L 2(U, K))), it holds that B ◦ ι−1 ∈ L2(Ω; L2(0, T; L 2(Q1/2
1 (U1), K)))

and ∫ ·

0
B(s) dW(s) :=

∫ ·

0
B ◦ ι−1(s) dW(s),

where the right-hand side is the usual integral with respect to the Q1-Wiener process, the
left-hand side is the stochastic integral with respect to the cylindrical Wiener process, and
the equality is intended in the sense of indistinguishable continuous K-valued processes. The
definition of stochastic integral with respect to the cylindrical Wiener process W can be shown
to be independent of the specific Hilbert space U1 and the Hilbert–Schmidt embedding ι.

Let O ⊂ R
d (d � 2) be a smooth bounded domain. We shall use the notation Q := (0, T) ×

O and Qt := (0, t) ×O for every t ∈ (0, T). Denoting by n the outward normal unit vector on
O, we define the functional spaces

H :=L2(O), V1 :=H1(O), V2 := {v ∈ H2(O) : n · ∇v = 0 a.e. on ∂O},
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endowed with their natural norms ‖·‖H , ‖·‖V1
, and ‖·‖V2

, respectively. For every v ∈ V∗
1 , we

set vO := 1
|O| 〈v, 1〉 for the spatial mean of v. We also define

BR := {v ∈ L∞(O) : ‖v‖L∞(O) � R}, R > 0.

Moreover, we will use the symbol c to denote any arbitrary positive constant depending
only on the data of the problem, whose value may be updated throughout the proofs. When
we want to specify the dependence of c on specific quantities, we will indicate them through a
subscript.

2.2. Nondegenerate mobility and regular potential

In case of nondegenerate mobility and regular potential, we assume the following.

ND1 F ∈ C2(R), F � 0, F′(0) = 0, and there exists a constant CF > 0 such that

|F′(r)| � CF (1 + F(r)) ∀ r ∈ R,

|F′′(r)| � CF (1 + F(r)) ∀ r ∈ R,

F′′(r) � −CF ∀ r ∈ R.

ND2 m ∈ C0(R) and there exist two constants m∗, m∗ > 0 such that

m∗ � m(r) � m∗ ∀ r ∈ R.

ND3 G : H → L 2(U, H) is measurable and there exists (gk)k∈N ⊂ W1,∞(R) such that

G(v)uk = gk(v) ∀ v ∈ H, ∀ k ∈ N,

CG :=
∞∑

k=0

‖gk‖2
W1,∞(R) < +∞.

ND4 The initial datum in nonrandom, and satisfies ϕ0 ∈ V1 and F(ϕ0) ∈ L1(O).

Let us point out that the assumption ND1 allows for the classical choice of the polyno-
mial double-well potential Fpol defined in (1.7), but also allows to consider polynomials of any
orders and even first-order exponentials. Moreover, assumption ND2 allows of course for the
constant mobility scenario, but also includes the case of positive nonconstant mobilities. Condi-
tion ND3 on the noise is widely employed in literature (see for example [9, 43, 44]), and ensures
that in particular that G : H → L 2(U, H) is Lipschitz-continuous and linearly bounded, and
that the restriction G|V1 : V1 → L 2(U, V1) is linearly bounded. The initial datum is assumed
to be nonrandom in ND4: this is meaningful in relation to the physical interpretation of the
model. A random initial datum could also be considered, but this would make the mathemati-
cal treatment too heavy in our opinion, as different estimates are based on different moments in
Ω. Since this is not the main focus of the paper, we preferred to assume ϕ0 nonrandom in order
to make the treatment clearer and avoid technicalities: for an exact analysis on the moments of
the initial datum we refer the reader to [77].

We precise now the definition of martingale solution in the case of nondegenerate mobility
and regular potential.

Definition 2.1. Assume conditions ND1–ND4. A martingale solution to the problem
(1.10)–(1.13) is a septuple (Ω̂, F̂, (F̂t)t∈[0,T], P̂, Ŵ, ϕ̂, μ̂) such that:
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• (Ω̂, F̂, (F̂t)t∈[0,T], P̂) is a filtered probability space satisfying the usual conditions;
• Ŵ is a U-valued cylindrical Wiener process on (Ω̂, F̂, (F̂t)t∈[0,T], P̂);
• ϕ̂ ∈ L0(Ω̂; C0([0, T]; H) ∩ L2(0, T; V2)) is progressively measurable;
• μ̂ = −Δϕ̂+ F′(ϕ̂) ∈ L0(Ω̂; L2(0, T; V1));
• for every v ∈ V1, it holds that∫

O
ϕ̂(t, x)v(x) dx +

∫
Qt

m(ϕ̂(s, x))∇μ̂(s, x) · ∇v(x) dx ds

=

∫
O
ϕ0(x)v(x) dx +

∫
O

(∫ t

0
G(ϕ̂(s)) dŴ(s)

)
(x)v(x) dx

(2.2)

for every t ∈ [0, T], P̂-almost surely.

The first main result of the paper deals with existence of martingale solutions in case of
positive mobility and regular potential.

Theorem 2.2. Assume conditions ND1–ND4. Then, there exists a martingale solution(
Ω̂, F̂, (F̂t)t∈[0,T], P̂, Ŵ, ϕ̂, μ̂

)
to the problem (1.10)–(1.13) in the sense of definition 2.1 such that, for every � ∈ [2,+∞),

ϕ̂ ∈ L�(Ω̂; C0([0, T]; H)) ∩ L�
w(Ω̂; L∞(0, T; V1)) ∩ L�/2(Ω̂; L2(0, T; V2)),

μ̂ ∈ L�/2(Ω̂; L2(0, T; V1)), ∇μ̂ ∈ L�(Ω̂; L2(0, T; Hd)),

F′(ϕ̂) ∈ L�/2(Ω̂; L2(0, T; H)),

and the following energy inequality holds, for every t ∈ [0, T]:

1
2

sup
r∈[0,t]

Ê‖∇ϕ̂(r)‖2
H + sup

r∈[0,t]
Ê‖F(ϕ̂(r))‖L1(O) + Ê

∫
Qt

m(ϕ̂(s, x))|∇μ̂(s, x)|2 dx ds

� 1
2
‖∇ϕ0‖2

H + ‖F(ϕ0)‖L1(O) +
CG

2
Ê

∫ t

0
‖∇ϕ̂(s)‖2

H ds

+
1
2
Ê

∫ t

0

∞∑
k=0

∫
O

F′′(ϕ̂(s, x))|gk(ϕ̂(s, x))|2 dx ds.

(2.3)

If also

|F′′(r)| � CF(1 + |r|q) ∀ r ∈ R, where

⎧⎪⎨
⎪⎩

q ∈ [2,+∞) if d = 2,

q :=
2

d − 2
if d � 3,

(2.4)

then it holds that

ϕ̂ ∈ L�/4(Ω̂; L2(0, T; H3(O))), F′(ϕ̂) ∈ L�/4(Ω̂; L2(0, T; V1)).
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2.3. Degenerate mobility and irregular potential

We deal now with a degenerate mobility m : [−1, 1] → R which vanishes at ±1 and an irreg-
ular potential F : (−1, 1) → R possibly of logarithmic or double-obstacle type. In this case we
assume the following.

D1 F : (−1, 1) → [0,+∞) can be decomposed as F = F1 + F2, where F1 ∈ C2(−1, 1) is
convex and F2 ∈ C2([−1, 1]).

D2 m ∈ W1,∞(−1, 1) is such that

m(r) � 0 ∀ r ∈ [−1, 1], m(r) = 0 iff r = ±1, mF′′ ∈ C0([−1, 1]).

In particular, it is well defined the function

M : (−1, 1) → [0,+∞), M(0) = M′(0) = 0, M′′(r) =
1

m(r)
, r ∈ (−1, 1).

D3 G : B1 → L 2(U, H) is measurable and there exists (gk)k∈N ⊂ W1,∞(−1, 1) such that

G(v)uk = gk(v) ∀ v ∈ B1, ∀ k ∈ N,

gk

√
F′′, gk

√
M′′ ∈ L∞(−1, 1) ∀ k ∈ N,

LG :=
∞∑

k=0

(
‖gk‖2

W1,∞(−1,1) +
∥∥∥gk

√
F′′
∥∥∥2

L∞(−1,1)
+
∥∥∥gk

√
M′′
∥∥∥2

L∞(−1,1)

)
< +∞.

D4 The initial datum is nonrandom and satisfies

ϕ0 ∈ V1, |ϕ0| < 1 a.e. inO, F(ϕ0) ∈ L1(O), M(ϕ0) ∈ L1(O).

Note that under assumption D1 the irregular component of the potential F is the convex part F1,
which may explode at ±1. In condition D2 we assume on the other hand that the degeneracy
of the mobility can only occur at ±1, and compensates the eventual blow up of F′′ at ±1. This
is expected from the point of view of application to phase-field modelling (see the remark 2.3
below). Finally, the additional summability condition in D3 is a generalization of the classical
compatibility condition between m and F′′ to the stochastic framework. This can be interpreted
as a compensation of the blow up of F′′ and M′′ in ±1 also by the component functions (gk)k.
Again, this condition is satisfied in several physically relevant scenarios (see remark 2.3 below).

Remark 2.3 (logarithmic potential). Let us show now that the assumptions D1–D2
allow for the physically relevant case of degenerate mobility and logarithmic potential given
by the natural choices mpol and Flog defined in (1.8) and (1.5), respectively. Indeed, assumption
D1 holds with obvious choice of F1 and F2. Moreover, an elementary computation yields

F′′
log(r) =

θ

1 − r2
− θ0, r ∈ (−1, 1),

so that mpolF′′
log ∈ C0([−1, 1]) and also condition D2 is satisfied.

With mobility mpol and potential Flog, a sufficient condition for assumption D3 is that

(gk)k∈N ⊂ W1,∞(−1, 1), gk(−1) = gk(1) = 0 ∀ k ∈ N,
∞∑

k=0

‖g′
k‖

2
L∞(−1,1) < +∞,

(2.5)
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meaning essentially that the components (gk)k are Lipschitz-continuous and vanish at the
extremal points. Let us show that under (2.5) also D3 is satisfied. Indeed, for every r ∈ (−1, 1)
and k ∈ N one has

∣∣∣gk(r)
√

F′′
log(r)
∣∣∣2 =
∣∣∣∣θ gk(r)

1 − r2
− θ0gk(r)

∣∣∣∣
2

� 2θ
g2

k(r)
1 − r2

+ 2θ0g2
k(r)

= 2θ
|gk(r) − gk(−1)‖gk(r) − gk(1)|

|1 − r‖1 + r| + 2θ0|gk(r) − gk(1)|2

� 2θ‖g′
k‖

2
L∞(−1,1)

|1 + r‖1 − r|
|1 + r‖1 − r| + 2θ0‖g′

k‖
2
L∞(−1,1)|r − 1|2

� 2‖g′
k‖

2
L∞(−1,1) (θ + 4θ0) ,

so that gk

√
F′′

log ∈ L∞(−1, 1) for all k ∈ N, and

∞∑
k=0

∥∥∥gk

√
F′′

log

∥∥∥2

L∞(−1,1)
� 2(θ + 4θ0)

∞∑
k=0

‖g′
k‖

2
L∞(−1 1) < +∞.

The computations for the terms gk

√
M′′

pol are entirely analogous, and D3 follows.

Remark 2.4 (double-obstacle potential). Note that choosing F1 = 0 and F2(r) := 1 −
r2, r ∈ [−1, 1], one recovers exactly the double-obstacle potential Fob defined in (1.6). Choos-
ing also the degenerate mobility mpol and G as in (1.8) and (2.5), it is not difficult to check that
D1–D4 are satisfied.

We give now the definition of martingale solution in the case of degenerate mobility and
irregular potential. The main idea is to formally substitute equation (1.11) in the variational
formulation of the problem in order to remove the dependence on the variableμ. The advantage
of the degeneracy of the mobility is that the resulting variational formulation makes sense
thanks to assumption D2.

Definition 2.5. Assume D1–D4. A martingale solution to the problem (1.10)–(1.13) is a
sextuple (Ω̂, F̂, (F̂t)t∈[0,T], P̂, Ŵ, ϕ̂) such that:

• (Ω̂, F̂, (F̂t)t∈[0,T], P̂) is a filtered probability space satisfying the usual conditions;
• Ŵ is a U-valued cylindrical Wiener process on (Ω̂, F̂, (F̂t)t∈[0,T], P̂);
• ϕ̂ ∈ C0

w([0, T]; L2(Ω̂; H)) ∩ L0(Ω̂; L2(0, T; V2)) is progressively measurable;
• |ϕ̂| � 1 almost everywhere in Ω̂× Q;
• it holds that∫

O
ϕ̂(t, x)v(x) dx +

∫
Qt

Δϕ̂(s, x) div [m(ϕ̂(s, x))∇v(x)] dx ds

+

∫
Qt

m(ϕ̂(s, x))F′′(ϕ̂(s, x))∇ϕ̂(s, x) · ∇v(x) dx ds

=

∫
O
ϕ0(x)v(x) dx +

∫
O

(∫ t

0
G(ϕ̂(s))dŴ(s)

)
(x)v(x) dx

(2.6)

for every v ∈ V2 ∩ W1,d(O), P̂-almost surely, for every t ∈ [0, T].

3824



Nonlinearity 34 (2021) 3813 L Scarpa

Remark 2.6. As we have anticipated, the variational formulation (2.6) in definition 2.5 is
formally obtained substituting the definition (1.11) of chemical potential in equation (1.10)
and integrating by parts. The reason why we do so is that the chemical potential μ does not
inherit enough regularity in the degenerate case. The main advantage of such substitution is
that all the terms in (2.6) are still well-defined. Indeed, by D2 we have that mF′′ ∈ C0([−1, 1]),
so that the third term on the left-hand side makes sense. Moreover, for every v ∈ V2 ∩ W1,d(O)
we have that div(m(ϕ̂)∇v) = m′(ϕ̂)∇ϕ̂ · ∇v + m(ϕ̂)Δv, where m(ϕ̂), m′(ϕ̂) ∈ L∞(Q) by D2.

Also, since V1 ↪→ L
2d

d−2 (O), noting that d−2
2d + 1

d = 1
2 by the Hölder inequality we have

div(m(ϕ′)∇v) ∈ H, so that also the second term on the left-hand side of (2.6) makes sense.

We are now ready to state the second main result of the paper, ensuring existence of mar-
tingale solutions in the case of degenerate mobility and irregular potential. Both the cases of
logarithmic and double-obstacle potential are covered.

Theorem 2.7. Assume conditions D1–D4. Then, there exists a martingale solution

(
Ω̂, F̂, (F̂t)t∈[0,T], P̂, Ŵ, ϕ̂

)

to the problem (1.10)–(1.13) in the sense of definition 2.5 such that

ϕ̂ ∈ C0
w([0, T]; L2(Ω̂; V1)) ∩ L2(Ω̂; L2(0, T; V2)),

F(ϕ̂), M(ϕ̂) ∈ L∞(0, T; L1(Ω×O)).

In particular, if

lim
|r|→1−

F1(r) = +∞ or lim
|r|→1−

M(r) = +∞, (2.7)

then

|ϕ̂(t)| < 1 a.e. in Ω̂×O ∀ t ∈ [0, T].

Let us stress that the last assertion of theorem 2.7 ensures that under (2.7) the concentration ϕ̂
is almost everywhere contained in the interior of the physically relevant domain, meaning that
the contact set {|ϕ̂| = 1} has measure 0, or better said that

|{(ω̂, x) ∈ Ω̂×O : |ϕ̂(ω̂, t, x)| = 1}| = 0 ∀ t ∈ [0, T].

Note that in general the degeneracy of the mobility at ±1 may prevent M to blow up at ±1,
and (2.7) is not always satisfied. For example, an easy computation shows that for degenerate
mobility mpol introduced in remark 2.3 we have

Mpol(r) =
1
2

((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) , r ∈ (−1, 1).

Hence, in such a case Mpol is bounded in (−1, 1) and condition (2.7) is satisfied only if the
potential F blows up at ±1. On the other hand, in case of polynomial mobility mα with α � 2,
condition (2.7) is always satisfied, irrespectively of the potential F. If (2.7) is not satisfied, then
one can only infer that |ϕ̂| � 1 almost everywhere, as it is natural to expect.
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3. Positive mobility and regular potential

This section is devoted to the proof of theorem 2.2. The main idea is to perform two sep-
arate approximations on the problem. The first one depends on a parameter λ > 0, and is
obtained replacing the nonlinearity F with its Yosida approximation. The second one depends
on the parameter n ∈ N and is a Faedo–Galerkin finite-dimensional approximation. Uniform
estimates are proved first uniformly in n, when λ is fixed, and a passage to the limit as n →∞
yields existence of approximated solutions forλ > 0 fixed. Secondly, further uniform estimates
are proved uniformly in λ and a passage to the limit as λ→ 0 gives existence of solutions to
the original problem.

3.1. The approximation

First of all, since F′′ � −CF, the function γ : R→ R defined as γ(r) :=F′(r) + CFr, r ∈ R,
is nondecreasing and continuous: hence, γ can be identified with a maximal monotone graph
in R× R and satisfies γ(0) = 0. It makes sense then to introduce the Yosida approximation
γλ : R→ R of γ for any λ > 0 and define γ̂λ : R→ [0,+∞) as γ̂λ(r) :=

∫ r
0 γλ(s)ds, r ∈ R.

With this notation, we introduce the approximated potential as

Fλ : R→ [0,+∞), Fλ(r) :=F(0) + γ̂λ(r) − CF

2
r2, r ∈ R.

Let us recall that from the general theory on monotone analysis [2, chapter 2] we know that
the Yosida approximation γλ is 1

λ
-Lipschitz-continuous, hence also linearly bounded. Conse-

quently, by definition of γ̂λ there exists a constant cλ > 0 such that γ̂(r) � cλ(1 + |r|2) for all
r ∈ R. Also, noting that F′

λ(r) = γλ(r) − CFr for all r ∈ R by definition, this readily ensures
that also F′

λ is 1
λ

-Lipschitz-continuous and that, possibly renominating cλ, it holds

|Fλ(r)| � cλ(1 + |r|2) ∀ r ∈ R. (3.1)

Secondly, let (e j) j∈N+ ⊂ V2 and (α j) j∈N+ be the sequences of eigenfunctions and eigen-
values of the negative Laplace operator with homogeneous Neumann conditions on O,
respectively, i.e.{−Δe j = α je j inO,

n · ∇e j = 0 in ∂O,
j ∈ N+.

Then, possibly using a renormalization procedure, we can suppose that (e j) j is a complete
orthonormal system of H and an orthogonal system in V1. For every n ∈ N+, we define the
finite dimensional space Hn := span{e1, . . . , en} ⊂ V2, endowed with the ‖·‖H-norm.

We define the approximated operator Gn : Hn → L 2(U, Hn) as

Gn(v)uk :=
n∑

j=1

(G(v)uk, e j)He j, v ∈ Hn, k ∈ N.

One can check that Gn is well-defined: indeed, for every v ∈ Hn and every n ∈ N+, thanks to
assumption ND3 we have
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∞∑
k=0

‖Gn(v)uk‖2
H =

∞∑
k=0

n∑
j=1

|(G(v)uk, e j)H|2 �
∞∑

k=0

∞∑
j=1

|(G(v)uk, e j)H|2

=
∞∑

k=0

‖G(v)uk‖2
H = ‖G(v)‖2

L 2(U,H),

so that Gn(v) ∈ L 2(U, Hn) for all v ∈ Hn and

‖Gn(v)‖L 2(U,H) � ‖G(v)‖L 2(U,H) ∀ v ∈ H, ∀ n ∈ N+. (3.2)

A similar computations shows also that Gn is Lipschitz-continuous from Hn to L 2(U, Hn).
Similarly, we define the approximated initial value

ϕn
0 :=

n∑
j=1

(ϕ0, e j)He j.

Finally, for every n ∈ N+ let mn := ρn ∗ m where (ρn) is a standard sequence of mollifiers.
In particular, we have that

(mn)n ⊂ W1,∞(R), m∗ � mn(r) � m∗ ∀ r ∈ R,

mn → m in C0([a, b]) ∀ a < b.

We consider the approximated problem

dϕλ,n − div
(
mn(ϕλ,n)∇μλ,n

)
dt = Gn(ϕλ,n) dW in (0, T) ×O, (3.3)

μλ,n = −Δϕλ,n + F′
λ(ϕλ,n) in (0, T) ×O, (3.4)

n · ∇ϕλ,n = n · m(ϕλ,n)∇μλ,n = 0 in (0, T) × ∂O, (3.5)

ϕλ,n(0) = ϕn
0 inO. (3.6)

Let us fix now λ > 0 and n ∈ N+: we look for a solution (ϕλ,n, μλ,n) to (3.3)–(3.6) in the form

ϕλ,n =

n∑
j=1

aλ,n
j e j, μλ,n =

n∑
j=1

bλ,n
j e j,

for some processes

aλ,n := (aλ,n
1 , . . . , aλ,n

n ) : Ω× [0, T] → R
n , bλ,n := (bλ,n

1 , . . . , bλ,n
n ) : Ω× [0, T] → R

n.

Plugging in the ansatz on ϕλ,n and μλ,n in (3.3)–(3.6) and taking any arbitrary ei, i = 1, . . . , n,
as test functions, we immediately see that the variational formulation of (3.3)–(3.6) is given
by∫

O
ϕλ,n(t, x)ei(x) dx +

∫
Qt

mn(ϕλ,n(s, x))∇μλ,n(s, x) · ∇ei(x) dx ds

=

∫
O
ϕn

0(x)ei(x) dx +

∫
O

(∫ t

0
Gn(ϕλ,n(s)) dW(s)

)
(x)ei(x) dx ∀ i = 1, . . . , n,
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and∫
O
μλ,n(t, x)ei(x) dx =

∫
O
∇ϕλ,n(t, x) · ∇ei(x) dx +

∫
O

F′
λ(ϕλ,n(t, x))ei(x) dx ∀ i = 1, . . . , n,

for every t ∈ [0, T],P-almost surely. Using the orthogonality properties of (e j) j, we deduce then
that (ϕλ,n, μλ,n) satisfy (3.3)–(3.6) if and only if the vectors (aλ,n, bλ,n) satisfy the stochastic
differential equations

daλ,n
i +

n∑
j=1

bλ,n
j

∫
O

mn

(
n∑

l=1

aλ,n
l el(x)

)
∇e j(x) · ∇ei(x) dx dt

=

(
Gn

(
n∑

l=1

aλ,n
l el

)
dW, ei

)
H

,

bλ,n
i = αia

λ,n
i +

∫
O

F′
λ

(
n∑

l=1

aλ,n
l el(x)

)
ei(x) dx,

aλ,n
i (0) = (ϕ0, ei)H ,

for every i = 1, . . . , n, where the stochastic integral on the right-hand side must be interpreted
for any i = 1, . . . , n as Gλ,n

i dW where

Gλ,n
i : Hn → L 2(U,R), Gλ,n

i uk :=

(
Gn

(
n∑

l=1

aλ,n
l el

)
uk, ei

)
H

, k ∈ N.

Since the functions mn, F′
λ, and the operator Gn are Lipschitz-continuous, the system can be

seen as an abstract evolution equation on the Hilbert space Hn with Lipschitz-continuous non-
linearities: hence, the classical theory [28, section 7.1] applies and we can find a unique solution

aλ,n, bλ,n ∈ L�
(
Ω; C0([0, T];Rn)

)
∀ � ∈ [2,+∞).

We deduce that for every n ∈ N the approximated system (3.3)–(3.6) admits a unique solution

ϕλ,n,μλ,n ∈ L�
(
Ω; C0([0, T]; Hn)

)
∀ � ∈ [2,+∞).

3.2. Uniform estimates in n, with λ fixed

We show now that the approximated solution (ϕλ,n, μλ,n) satisfy some energy estimates,
independently of n, with λ > 0 being fixed.

First of all, integrating (3.3) on O and using Itô’s formula yields

1
2
|(ϕλ,n(t))O|2 =

1
2
|(ϕn

0)O|2 +
∫ t

0
(ϕλ,n(s))O(Gn(ϕλ,n(s)) dW(s))O

+
1
2

∫ t

0
‖(Gn(ϕλ,n(s))O‖2

L 2(U,R)ds.

Taking supremum in time, power �/2 and expectations, thanks to the Burkholder–
Davis–Gundy inequality we have
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E sup
s∈[0,t]

|(ϕλ,n(s))O|� � E|(ϕn
0)O|� + E

(∫ t

0

∞∑
k=0

|(Gn(ϕλ,n(s))uk)O|2 ds

)�/2

+ E

(∫ t

0
|(ϕλ,n(s))O|2

∞∑
k=0

|(Gn(ϕλ,n(s))uk)O|2 ds

)�/4

.

Note that |(ϕn
0)O| = |O|−1|

∫
Oϕ

n
0| � |O|−1‖ϕn

0‖L1(O) � |O|−1/2‖ϕn
0‖H � |O|−1/2‖ϕ0‖H and

∞∑
k=0

|(Gn(ϕλ,n)uk)O|2 � |O|−1
∞∑

k=0

‖Gn(ϕλ,n)uk‖2
H � |O|−1

∞∑
k=0

‖G(ϕλ,n)uk‖2
H

= |O|−1
∞∑

k=0

‖gk(ϕλ,n)‖2
H �

∞∑
k=0

‖gk‖2
L∞(R) � CG.

Hence, by the Young inequality we infer that there exists c > 0, independent of λ and n, such
that

‖(ϕλ,n)O‖L�(Ω;C0([0,T])) � c. (3.7)

We want now to write Itô’s formula for the free energy functional

Eλ(v) :=
1
2

∫
O
|∇v|2 +

∫
O

Fλ(v), v ∈ Hn. (3.8)

To this end, note that since Hn ↪→ V2 and F′
λ is Lipschitz-continuous, Eλ : Hn → [0,+∞) is

Fréchet-differentiable with dEλ : Hn → H∗
n given by

DEλ(v)h =

∫
O
∇v(x) · ∇h(x) dx +

∫
O

F′
λ(v(x))h(x) dx, v, h ∈ Hn.

Let us show now that also DEλ is Fréchet-differentiable with D2Eλ : Hn → L (Hn, H∗
n) given

by

D2Eλ(v)[h, k] =
∫
O
∇h(x) · ∇k(x) dx +

∫
O

F′′
λ(v(x))h(x)k(x)dx, v, h, k ∈ Hn.

Indeed, for every v, h, k ∈ Hn we have that∣∣∣∣DEλ(v + k)h − DEλ(v)h −
∫
O
∇h(x) · ∇k(x) dx−

∫
O

F′′
λ(v(x))h(x)k(x) dx

∣∣∣∣
=

∣∣∣∣
∫
O

F′
λ(v(x) + k(x))h(x) dx −

∫
O

F′
λ(v(x))h(x) dx −

∫
O

F′′
λ(v(x))h(x)k(x) dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0

∫
O

(
F′′
λ(v(x) + τk(x)) − F′′

λ(v(x))
)

h(x)k(x) dx dτ

∣∣∣∣ .
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Now, since we have the continuous inclusion Hn ↪→ L∞(O), by Hölder inequality we
infer that ∣∣∣∣DEλ(v + k)h − DEλ(v)h −

∫
O
∇h(x) · ∇k(x) dx −

∫
O

F′′
λ(v(x))h(x)k(x) dx

∣∣∣∣
� ‖h‖L∞(O)‖k‖L∞(O)

∫ 1

0
‖F′′

λ(v + τk) − F′′
λ(v)‖L1(O) dτ

� c2
n‖h‖Hn

‖k‖Hn

∫ 1

0
‖F′′

λ(v + τk) − F′′
λ(v)‖L1(O) dτ ,

where cn > 0 is the norm of the inclusion Hn ↪→ L∞(O). Since F′′
λ is continuous and bounded,

the third factor on the right-hand side converges to 0 if k → 0 in Hn by the dominated
convergence theorem, hence

sup
‖h‖Hn�1

∣∣∣∣DEλ(v + k)h − DEλ(v)h −
∫
O
∇h(x) · ∇k(x) dx −

∫
O

F′′
λ(v(x))h(x)k(x) dx

∣∣∣∣
= o
(
‖k‖Hn

)
as k → 0 in Hn.

This shows that DEλ is indeed Fréchet-differentiable with derivative D2Eλ given as above.
Furthermore, the derivatives DEλ and D2Eλ are continuous and bounded on bounded subsets
of Hn, as it follows from the Lipschitz-continuity of F′

λ and the continuity and boundedness of
F′′
λ.

We can then apply Itô’s formula to Eλ(ϕλ,n) in the classical version of [28]. To this end, note
that by (3.4) we have dEλ(ϕλ,n) = μλ,n: we obtain then

Eλ(ϕλ,n(t)) +
∫

Qt

mn(ϕλ,n(s, t))|∇μλ,n(s, x)|2 dx ds

= Eλ(ϕn
0) +
∫ t

0

(
μλ,n(s), Gn(ϕλ,n(s)) dW(s)

)
H

+
1
2

∫ t

0

∞∑
k=0

∫
O

[
|∇Gn(ϕλ,n(s))uk|2(x)

+ F′′
λ(ϕλ,n(s, x))|Gn(ϕλ,n(s))uk|2(x)

]
dx ds.

(3.9)

Taking power �/2 at both sides, supremum in time and then expectations yields, recalling the
definition (3.8) and the assumption ND2,

1
2
E sup

s∈[0,t]
‖∇ϕλ,n(s)‖�H + E sup

s∈[0,t]
‖Fλ(ϕλ,n(s))‖�/2

L1(O)
+ m�/2

∗ E‖∇μλ,n‖�L2(0,t;H)

� c�

⎡
⎣‖∇ϕn

0‖
�
H + ‖Fλ(ϕn

0)‖�/2
L1(O)

+E sup
s∈[0,t]

∣∣∣∣
∫ s

0

(
μλ,n(r), Gn(ϕλ,n(r)) dW(r)

)
H

∣∣∣∣
�/2

+ E‖Gn(ϕλ,n)‖�L2(0,t;L 2(U,V1))

+ E

∣∣∣∣∣
∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕn(s, x))‖Gn(ϕλ,n(s))uk|2(x) dx ds

∣∣∣∣∣
�/2
⎤
⎦
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for every t ∈ [0, T], P-almost surely, for a certain constant c� > 0 depending only on �. Let
us estimate the terms on the right-hand side separately. First of all, from the definition of the
approximate initial value ϕn

0, since ϕ ∈ V1 we have ‖∇ϕn
0‖H � ‖∇ϕ0‖H . Let us focus on the

stochastic integral. By the Burkholder–Davis–Gundy inequality and the estimate (3.2), we
infer that

E sup
s∈[0,t]

∣∣∣∣
∫ s

0

(
μλ,n(r), Gn(ϕn(r)) dW(r)

)
H

∣∣∣∣
�/2

� c�E

(∫ t

0
‖μλ,n(s)‖2

H‖Gn(ϕλ,n)‖2
L 2(U,H) ds

)�/4

� c�E

(∫ t

0
‖μλ,n(s)‖2

H‖G(ϕλ,n)‖2
L 2(U,H) ds

)�/4

for a certain constant c� > 0 independent of n and λ. Thanks to assumption ND3 we have

‖G(ϕλ,n)‖2
L 2(U,H) =

∞∑
k=0

‖gk(ϕλ,n)‖2
H � |O|

∞∑
k=0

‖gk‖2
L∞(R) � |O|CG,

so that, consequently, we deduce that

E sup
s∈[0,t]

∣∣∣∣
∫ s

0

(
μλ,n(r), Gn(ϕλ,n(r)) dW(r)

)
H

∣∣∣∣
�/2

� c�|O|�/4C�/4
G E‖μλ,n‖�/2

L2(0,t;H)
.

Summing and subtracting (μλ,n)O on the right-hand side, using the Poincaré–Wirtinger
inequality and the Young inequality we deduce that

E sup
s∈[0,t]

∣∣∣∣
∫ s

0

(
μλ,n(r), Gn(ϕλ,n(r)) dW(r)

)
H

∣∣∣∣
�/2

� m�/2
∗
2

E‖∇μλ,n‖�L2(0,t;H) + cE‖(μλ,n)O‖�/2
L2(0,t)

+ c,

where c = c(m∗, c�, |O|, �, CG) > 0 is an arbitrarily large constant independent of n and λ. Let
us focus now on the trace terms in Itô’s formula. Since G(ϕλ,n) takes values in L 2(U, V1), we
have

‖Gn(ϕλ,n)‖2
L 2(U,V1) � ‖G(ϕλ,n)‖2

L 2(U,V1) =

∞∑
k=0

‖gk(ϕλ,n)‖2
V1

�
(
|O|+ ‖∇ϕλ,n‖2

H

) ∞∑
k=0

‖gk‖2
W1,∞(R),

so that ND3 yields

E‖Gn(ϕn)‖�L2(0,t;H) � c
(

1 + E‖∇ϕλ,n‖�L2(0,t;H)

)
for a certain constant c > 0 independent of n and λ. Taking the mean of (3.4) we get

(μλ,n)O = (F′
λ(ϕλ,n))O � c‖F′

λ(ϕλ,n)‖L1(O),
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so that from assumption ND1 it follows that

|(μλ,n)O| � c
(
1 + ‖Fλ(ϕλ,n)‖L1(O)

)
for a certain c > 0 independent of λ and n: we infer then that, possibly updating the value
of c,

E sup
s∈[0,t]

‖∇ϕλ,n(s)‖�H + E sup
s∈[0,t]

‖Fλ(ϕλ,n(s))‖�/2
L1(O)

+ E sup
s∈[0,t]

|(μλ,n(s))O|�/2 + E‖∇μλ,n‖�L2(0,t;H)

� c
(

1 + E‖(μλ,n)O‖�/2
L2(0,t)

+ E‖∇ϕλ,n‖�L2(0,t;H)

)
+ ‖Fλ(ϕn

0)‖�/2
L1(O)

+
1
2
E

(∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕλ,n(s, x))‖Gn(ϕλ,n(s))uk|2(x) dx ds

)�/2

.

(3.10)

Let us estimate the two terms on the right-hand side. Recall that here λ > 0 is fixed. First of
all, since Fλ is bounded by a quadratic function by (3.1) and (ϕn

0)n is bounded in H thanks to
the properties of the orthogonal projection on Hn, we have that

‖Fλ(ϕn
0)‖L1(O) � cλ

(
1 + ‖ϕn

0‖
2
H

)
� cλ

(
1 + ‖ϕ0‖2

H

)
∀ n ∈ N

for a certain cλ > 0 independent of n. Secondly, note that since |F′′
λ| � cλ for a certain cλ > 0

independent of n, by the same computations as above we have

∞∑
k=0

∫
O
|F′′

λ(ϕλ,n(s, x))‖Gn(ϕn(s))uk|2(x) dx � cλ‖G(ϕλ,n)‖2
L 2(U,H) � cλ|O|CG.

Putting this information together we deduce from (3.10) that there exists a positive constant
cλ, independent of n, such that

E sup
s∈[0,t]

‖∇ϕλ,n(s)‖�H + E sup
s∈[0,t]

‖Fλ(ϕλ,n(s))‖�/2
L1(O)

+ E sup
s∈[0,t]

|(μλ,n(s))O|�/2 + E‖∇μλ,n‖�L2(0,t;H)

� cλ
(

1 + E‖(μλ,n)O‖�/2
L2(0,t)

+ E‖∇ϕλ,n‖�L2(0,t;H)

)
.

The Gronwall lemma and the estimate (3.7) yield then, after updating the constant cλ,

‖ϕλ,n‖L�(Ω;C0([0,T];V1)) � cλ, (3.11)

‖μλ,n‖L�/2(Ω;L2(0,T;V1)) + ‖∇μλ,n‖L�(Ω;L2(0,T;H)) � cλ. (3.12)

Moreover, the computations performed above also imply that

‖Gn(ϕλ,n)‖L∞(Ω×(0,T);L 2(U,H))∩L� (Ω;L∞(0,T;L 2(U,V1))) � cλ
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for a positive constant c independent of λ and n, hence also by [46, lemma 2.1], for any s ∈
(0, 1/2), ∥∥∥∥

∫ ·

0
Gn(ϕλ,n(s)) dW(s)

∥∥∥∥
L�(Ω;Ws,�(0,T;V1))

� cλ,s.

By comparison in (3.4) we infer then that

‖ϕλ,n‖L�(Ω;Ws̄,�(0,T;V∗
1 )) � cλ, (3.13)

where cλ is independent of n, and s̄ ∈ (1/�, 1/2) is fixed.

3.3. Passage to the limit as n →∞, with λ fixed

We perform here the passage to the limit as n →∞, keeping λ > 0 fixed.
Let us show that the sequence of laws of (ϕλ,n)n is tight on C0([0, T]; H). To this end, let us

recall that, since s̄ > 1/�, by [79, corollary 5, p 86] we have the compact inclusion

L∞(0, T; V1) ∩ Ws̄,�(0, T; V∗
1 )

c
↪→C0([0, T]; H).

Hence, for every R > 0 the closed ball BR in L∞(0, T; V1) ∩ Ws̄,�(0, T; V∗
1 ) of radius R is com-

pact in C0([0, T]; H). Moreover, thanks to the Markov inequality and the estimates (3.11) and
(3.13) we have

P{ϕλ,n ∈ Bc
R} = P{‖ϕλ,n‖L∞(0,T;V1)∩Ws̄,�(0,T;V∗

1 ) > R}

� 1
R�

E‖ϕλ,n‖�L∞(0,T;V1)∩Ws̄,�(0,T;V∗
1 ) �

c�λ
R�

,

which yields

lim
R→+∞

sup
n∈N+

P{ϕλ,n ∈ Bc
R} = 0,

as required. Hence, the family of laws of (ϕλ,n)n on C0([0, T]; H) is tight. Using a similar argu-
ment, since Ws̄,�(0, T; V1) is compactly embedded in C0([0, T]; H), one can also show that the
family of laws of

Gn(ϕλ,n) · W :=
∫ ·

0
Gn(ϕλ,n(s)) dW(s)

is tight on C0([0, T]; H). Moreover, taking into account the remarks in subsection 2.1 we iden-
tify W with a constant sequence of random variables with values in C0([0, T]; U1). Hence, we
deduce that the family of laws of (ϕλ,n, Gn(ϕλ,n) · W, W)n is tight on the product space

C0([0, T]; H) × C0([0, T]; H) × C0([0, T]; U1).

By Prokhorov and Skorokhod theorems (see [58, theorem 2.7] and [83, theorem 1.10.4,
addendum 1.10.5]) and their weaker version by Jakubowski–Skorokhod (see e.g. [9,
theorem 2.7.1]), recalling the estimates (3.11)–(3.13) there exists a probability space (Ω̃, F̃, P̃)
and measurable maps Λn : (Ω̃, F̃) → (Ω, F) such that P̃ ◦ Λ−1

n = P for every n ∈ N and
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ϕ̃λ,n :=ϕλ,n ◦ Λn → ϕ̃λ in Lp(Ω̃; C0([0, T]; H)) ∀ p < �,

ϕ̃λ,n
∗−⇀ϕ̃λ in L�

w(Ω̃; L∞(0, T; V1)) ∩ L�(Ω̃; Ws̄,�(0, T; V∗
1 )),

μ̃λ,n :=μλ,n ◦ Λn ⇀ μ̃λ in L�/2(Ω̃; L2(0, T; V1)),

∇μ̃λ,n ⇀ ∇μ̃λ in L�(Ω̃; L2(0, T; H)),

Ĩλ,n := (Gn(ϕλ,n) · W) ◦ Λn → Ĩλ in Lp(Ω̃; C0([0, T]; H)) ∀ p < �,

W̃n :=W ◦ Λn → W̃ in Lp(Ω̃; C0([0, T]; U1)) ∀ p < �,

for some measurable processes

ϕ̃λ ∈ L�(Ω̃; C0([0, T]; H)) ∩ L�
w(Ω̃; L∞(0, T; V1)) ∩ L�(Ω̃; Ws̄,�(0, T; V∗

1 )),

μ̃λ ∈ L�/2(Ω̃; L2(0, T; V1)) , ∇μ̃λ ∈ L�(Ω̃; L2(0, T; H)),

Ĩλ ∈ L�(Ω̃; C0([0, T]; H)),

W̃ ∈ L�(Ω̃; C0([0, T]; U1)) .

Note that possibly enlarging the new probability space, it is not restrictive to suppose that
(Ω̃, F̃, P̃) is independent of λ. Now, since F′

λ is Lipschitz-continuous, we readily have

F′
λ(ϕ̃λ,n) → F′

λ(ϕ̃λ) in L�(Ω̃; L2(0, T; H)),

and similarly, since G : H → L 2(U, H) is Lipschitz-continuous,

‖Gn(ϕ̃λ,n) − G(ϕ̃λ)‖Lp(Ω̃;L2(0,T;L 2(U,H)))

� ‖Gn(ϕ̃λ,n) − Gn(ϕ̃λ)‖Lp(Ω̃;L2(0,T;L 2(U,H)))

+ ‖Gn(ϕ̃λ) − G(ϕ̃λ)‖Lp(Ω̃;L2(0,T;L 2(U,H)))

� ‖G(ϕ̃λ,n) − G(ϕ̃λ)‖Lp(Ω̃;L2(0,T;L 2(U,H)))

+ ‖Gn(ϕ̃λ) − G(ϕ̃λ)‖Lp(Ω̃;L2(0,T;L 2(U,H))) → 0,

so that

Gn(ϕ̃λ,n) → G(ϕ̃λ) in Lp(Ω̃; L2(0, T; L 2(U, H))) ∀ p < �.

Moreover, since ϕ0 ∈ V1 we also have that ϕn
0 → ϕ0 in V1.

Let us handle now the stochastic integral and identify the limit term Ĩλ: we follow the
classical arguments in [46] and [28, section 8.4]. Introducing the filtration

F̃λ,n,t := σ{ϕ̃λ,n(s), Ĩλ,n(s), W̃n(s) : s ∈ [0, t]}, t ∈ [0, T],

clearly W̃n is adapted. Moreover, since the maps Λn preserve the laws, we have that W̃n is a
Q1-Wiener process on U1 (hence a cylindrical Wiener process on U), and Ĩλ,n is the H-valued
martingale

Ĩλ,n(t) =
∫ t

0
Gn(ϕ̃λ,n(s))dW̃n(s) ∀ t ∈ [0, T].
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These statements follow directly by the fact the Λn preserves the laws, and by definition of Q1-
Wiener process and stochastic integral (see for example [73, section 4.5] and [82, section 4.3]).

The next step is to show that the limit process W̃ is actually a cylindrical Wiener process in
U, i.e. that is a Q1-Wiener process on U1. To this end, we introduce the filtration

F̃λ,t := σ{ϕ̃λ(s), Ĩλ(s), W̃(s) : s ∈ [0, t]}, t ∈ [0, T],

so that clearly W̃ is adapted to it. Also, it holds W̃(0) = 0 since W̃n(0) = 0 and W̃n →
W̃ in C0([0, T]; U1) as n →∞. Moreover, for every s, t ∈ [0, T] with s � t and for every
bounded continuous function ψ ∈ C0

b(C0([0, s]; H) × C0([0, s]; H) × C0([0, s]; U1)), since W̃n

is a (F̃λ,n,t)t-martingale we have

Ẽ
[
(W̃n(t) − W̃n(s))ψ(ϕ̃λ,n, Ĩλ,n, W̃n)

]
= 0 ∀ n ∈ N.

Hence, letting n →∞ we deduce, thanks to the strong convergences above, the continuity and
boundedness of ψ, and the dominated convergence theorem, that

Ẽ
[
(W̃(t) − W̃(s))ψ(ϕ̃λ, Ĩλ, W̃)

]
= 0,

yielding that W̃ is a (F̃λ,t)t-martingale in U1. Similarly, since W̃n is a Q1-Wiener process on
U1, by the dominated convergence theorem it holds that, for every h, k ∈ U1,

0 = Ẽ
[(

(W̃n(t), h)U1(W̃n(t), k)U1 − (W̃n(s), h)U1(W̃n(s), k)U1

− (t − s)(Q1h, k)U1

)
ψ(ϕ̃λ,n, Ĩλ,n, W̃n)

]
n→∞−−−→Ẽ

[(
(W̃(t), h)U1 (W̃(t), k)U1 − (W̃(s), h)U1(W̃(s), k)U1

− (t − s)(Q1h, k)U1

)
ψ(ϕ̃λ, Ĩλ, W̃)

]
,

from which we get that the tensor quadratic variation of W̃ on U1 is

〈〈W̃〉〉(t) = tQ1, t ∈ [0, T].

Hence, by [28, thorem 4.6] we deduce that W̃ is a Q1-Wiener process on U1, i.e. a cylindrical
Wiener process on U, with respect to the filtration (F̃λ,t)t.

Next, let us argue on the same same line for Ĩλ. First of all, it is clear that Ĩλ is (F̃λ,t)t-adapted
and Ĩλ(0) = 0, since Ĩλ,n(0) = 0 for all n ∈ N. Secondly, for every s, t ∈ [0, T] with s � t and
for everyψ ∈ C0

b(C0([0, s]; H) × C0([0, s]; H) × C0([0, s]; U1)), the martingale property of Ĩλ,n

and the dominated convergence theorem yield again

0 = Ẽ
[
(̃Iλ,n(t) − Ĩλ,n(s))ψ(ϕ̃λ,n, Ĩλ,n, W̃n)

] n→∞−−−→ Ẽ
[
(̃Iλ(t) − Ĩλ(s))ψ(ϕ̃λ, Ĩλ, W̃)

]
.

We deduce that Ĩλ is an H-valued (F̃λ,t)t-martingale. Similarly, since Ĩλ,n = Gn(ϕ̃λ,n) · W̃n, we
have the tensor quadratic variation

〈〈̃Iλ,n〉〉(t) =
∫ t

0
Gn(ϕ̃λ,n(s)) ◦ Gn(ϕ̃λ,n(s))∗ ds, t ∈ [0, T].
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Consequently, given arbitrary h, k ∈ H, the dominated convergence theorem yields again that

0 =
˜

E

[(
(
˜
Iλ,n(t), h)H(

˜
Iλ,n(t), k)H − (

˜
Iλ,n(s), h)H(

˜
Iλ,n(s), k)H

−
∫ t

s
(Gn(

˜
ϕλ,n(r))Gn(

˜
ϕλ,n(r))∗h, k)H dr

)
ψ(

˜
ϕλ,n,

˜
Iλ,n,

˜
Wn)

]

n→∞→
˜

E

[(
(
˜
Iλ(t), h)H(

˜
Iλ(t), k)H − (

˜
Iλ(s), h)H(

˜
Iλ(s), k)H

−
∫ t

s
(G(

˜
ϕλ(r))G(

˜
ϕλ(r))∗h, k)H dr

)
ψ(

˜
ϕλ,

˜
Iλ,

˜
W)

]
,

so that the tensor quadratic variation of Ĩλ is given by

〈〈̃Iλ〉〉(t) =
∫ t

0
G(ϕ̃λ(s)) ◦ G(ϕ̃λ(s))∗ ds, t ∈ [0, T]. (3.14)

Taking these remarks into account and setting M̃λ :=G(ϕ̃λ) · W̃, with the information col-
lected so far we know that M̃λ and Ĩλ are H-valued martingales with respect to (F̃λ,t)t with
tensor quadratic variations given by

〈〈M̃λ〉〉(t) = 〈〈̃Iλ〉〉(t) =
∫ t

0
G(ϕ̃λ(s)) ◦ G(ϕ̃λ(s))∗ ds, t ∈ [0, T]. (3.15)

In order to conclude that actually M̃λ = Ĩλ, we need to exploit their tensor quadratic covaria-
tion. To this end, recalling the definition of Q1 in subsection 2.1, by [70, theorem 3.2, p 12] we
have that

〈〈̃Iλ,n, W̃n〉〉(t) =
∫ t

0
Gn(ϕ̃λ,n(s)) ◦ ι−1 d〈〈W̃n〉〉(s)

=

∫ t

0
Gn(ϕ̃λ,n(s)) ◦ ι−1 ◦ Q1 ds

=

∫ t

0
Gn(ϕ̃λ,n(s)) ◦ ι∗ ds, t ∈ [0, T],

yielding, taking adjoints (and recalling that ι : U → U1 is the usual inclusion),

〈〈W̃n, Ĩλ,n〉〉(t) =
∫ t

0
ι ◦ Gn(ϕ̃λ,n(s))∗ ds, t ∈ [0, T].

Hence, for every s, t ∈ [0, T] with s � t, for every ψ ∈ C0
b(C0([0, s]; H) × C0([0, s]; H) ×

C0([0, s]; U1)), for every h ∈ U1 and k ∈ H, we have again by the dominated convergence
theorem

0 = Ẽ

[(
(W̃n(t), h)U1 (̃Iλ,n(t), k)H − (W̃n(s), h)U1 (̃Iλ,n(s), k)H

−
∫ t

s
(Gn(ϕ̃λ,n(r))∗k, h)U1 dr

)
ψ(ϕ̃λ,n, Ĩλ,n, W̃n)

]

n→∞−−−→Ẽ

[(
(W̃(t), h)U1 (̃Iλ(t), k)H

− (W̃(s), h)U1 (̃Iλ(s), k)H −
∫ t

s
(G(ϕ̃λ(r))∗k, h)U1 dr

)
ψ(ϕ̃λ, Ĩλ, W̃)

]
.
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Consequently, we have that

〈〈W̃ , Ĩλ〉〉(t) =
∫ t

0
ι ◦ G(ϕ̃λ(s))∗ ds, t ∈ [0, T]. (3.16)

We are now ready to conclude: indeed, taking (3.14)–(3.16) into account, we get

〈〈M̃λ − Ĩλ〉〉 = 〈〈M̃λ〉〉+ 〈〈̃Iλ〉〉 − 2〈〈M̃λ, Ĩλ〉〉

= 2
∫ ·

0
G(ϕ̃λ(s)) ◦ G(ϕ̃λ(s))∗ ds − 2

∫ ·

0
G(ϕ̃λ(s)) d〈〈W̃ , Ĩλ〉〉(s) = 0,

which yields that

Ĩλ = M̃λ =

∫ ·

0
G(ϕ̃λ(s)) dW̃(s). (3.17)

Eventually, testing (3.3) by arbitrary v ∈ V1 and integrating in time yields, after letting n →
∞ and taking (3.17) into account∫

O
ϕ̃λ(t, x)v(x) dx +

∫
Qt

m(ϕ̃λ(s, x))∇μ̃λ(s, x) · ∇v(x)dx ds

=

∫
O
ϕ0(x)v(x)dx +

∫
O

(∫ t

0
G(ϕ̃λ(s))dW̃(s)

)
(x)v(x)dx

(3.18)

for every t ∈ [0, T], P̃-almost surely. Indeed, this follows directly form the convergencesproved
above, the fact that mn(ϕ̃λ,n) → m(ϕ̃λ) almost everywhere, the fact that |mn| � m∗, and the
dominated convergence theorem. Moreover, testing (3.4) by v ∈ V1 gives∫

O
μ̃λ(t, x)v(x)dx =

∫
O
∇ϕ̃λ(s, x) · ∇v(x)dx +

∫
O

F′
λ(ϕ̃λ(t, x))v(x)dx (3.19)

for almost every t ∈ (0, T), P̃-almost surely.
Finally, if we take expectations in (3.9), noting the stochastic integral is a martingale and

that P̃ ◦ Λ−1
n = P for every n, we obtain

1
2
Ẽ‖∇ϕ̃λ,n(t)‖2

H + Ẽ‖Fλ(ϕ̃λ,n(t))‖L1(O) + Ẽ

∫
Qt

mn(ϕ̃λ,n(s, x))|∇μ̃λ,n(s, x)|2 dx ds

� 1
2
‖∇ϕn

0‖
2
H + ‖Fλ(ϕn

0)‖L1(O) +
CG

2
Ẽ

∫ t

0
‖∇ϕ̃λ,n(s)‖2

H ds

+
1
2
Ẽ

∫ t

0

∞∑
k=0

∫
O

F′′
λ(ϕ̃λ,n(s, x))|gk(ϕ̃λ,n(s, x))|2 dx ds

for every t ∈ [0, T]. We want to let n →∞ using the convergences proved above. To this end,
the first two terms on the left-hand side and all the terms on the right-hand side pass to the
limit by weak lower semicontinuity and the dominated convergence theorem (recall that F′′

λ

is continuous and bounded). In order to pass to the limit by lower semicontinuity in the third
term on the left-hand side, it is sufficient to show that√

mn(ϕ̃λ,n)∇μ̃λ,n ⇀
√

m(ϕ̃λ)∇μ̃λ in L1(Ω̃× Q). (3.20)
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To prove this, note that since mn(ϕ̃λ,n) → m(ϕ̃λ) a.e. in Ω̃× Q, for any arbitrary fixed σ > 0,
by the Severini–Egorov theorem there is a measurable set Aσ ⊂ Ω̃× Q such that |Ac

σ| � σ and
mn(ϕ̃λ,n) → m(ϕ̃λ) uniformly in Aσ. In particular, we have that

√
mn(ϕ̃λ,n)1Aσ →

√
m(ϕ̃λ)1Aσ

in L∞(Ω̃× Q). Consequently, for any ζ ∈ L∞(Ω̃× Q)d we have∫
Ω̃×Q

√
mn(ϕ̃λ,n)∇μ̃λ,n · ζ =

∫
Ω̃×Q

1Aσ

√
mn(ϕ̃λ,n)∇μ̃λ,n · ζ +

∫
Ac
σ

√
mn(ϕ̃λ,n)∇μ̃λ,n · ζ.

Since
√

mn(ϕ̃λ,n)1Aσ →
√

m(ϕ̃λ)1Aσ in L∞(Ω̃× Q) and ζ ∈ L∞(Ω̃× Q) we have∫
Ω̃×Q

1Aσ

√
mn(ϕ̃λ,n)∇μ̃λ,n · ζ →

∫
Ω̃×Q

1Aσ

√
m(ϕ̃λ)∇μ̃λ · ζ,

while the Hölder inequality and the boundedness of ∇μ̃λ,n in L2(Ω̃× Q) yields∣∣∣∣
∫

Ac
σ

√
mn(ϕ̃λ,n)∇μ̃λ,n · ζ

∣∣∣∣ � (m∗)1/2‖∇μ̃λ,n‖L2(Ω̃×Q)‖ζ‖L2(Ac
σ )

� c‖ζ‖L∞(Ω̃×Q)σ
1/2,

where c > 0 is independent of n and σ. Since σ and ζ are arbitrary, we infer that (3.20)
holds. Hence, passing to the limit as n →∞ yields by weak lower semicontinuity, for every
t ∈ [0, T],

1
2
Ẽ‖∇ϕ̃λ(t)‖2

H + Ẽ‖Fλ(ϕ̃λ(t))‖L1(O) + Ẽ

∫
Qt

m(ϕ̃λ(s, x))|∇μ̃λ(s, x)|2 dx ds

� 1
2
‖∇ϕ0‖2

H + ‖Fλ(ϕ0)‖L1(O) +
CG

2
Ẽ

∫ t

0
‖∇ϕ̃λ(s)‖2

H ds

+
1
2
Ẽ

∫ t

0

∞∑
k=0

∫
O

F′′
λ(ϕ̃λ(s, x))|gk(ϕ̃λ(s, x))|2 dx ds.

(3.21)

3.4. Uniform estimates in λ

We prove here uniform estimates independently of λ.
First of all, since P̃ ◦ Λ−1

n = P for every n ∈ N+, from (3.7) and weak lower semicontinuity
it follows that

‖(ϕ̃λ)O‖L�(Ω̃;C0([0,T])) � c

for a certain c > 0 independent of λ.
Secondly, from the estimate (3.10) we infer that

Ẽ sup
s∈[0,t]

‖∇ϕ̃λ,n(s)‖�H + Ẽ sup
s∈[0,t]

‖Fλ(ϕ̃λ,n(s))‖�/2
L1(O)

+ Ẽ sup
s∈[0,t]

|(μ̃λ,n(s))O|�/2 + Ẽ‖∇μ̃λ,n‖�L2(0,t;H)

� c
(

1 + Ẽ‖(μ̃λ,n)O‖�/2
L2(0,t)

+ Ẽ‖∇ϕ̃λ,n‖�L2(0,t;H)

)
+ ‖Fλ(ϕn

0)‖�/2
L1(O)

+
1
2
Ẽ

(∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕ̃λ,n(s, x))||Gn(ϕ̃λ,n(s))uk|2(x) dx ds

)�/2

,
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where again c is independent of λ. We want to let n →∞ using weak lower semicontinu-
ity of the norms at both sides. To this end, since ϕn

0 → ϕ0 in V1 and Fλ is bounded by a
quadratic function by (3.1), Fλ(ϕn

0) → Fλ(ϕ0) in L1(O) as n →∞. Moreover, recalling also
the strong convergences Gn(ϕ̃λ,n) → G(ϕ̃λ) in Lp(Ω̃; L2(0, T; L 2(U, H))) and ϕ̃λ,n → ϕ̃λ in
Lp(Ω̃; C0([0, T]; H)) for every p < �, proved in the previous subsection, we have in particular
that

|F′′
λ(ϕ̃λ,n)‖Gn(ϕ̃λ,n)uk|2 → |F′′

λ(ϕ̃λ)‖G(ϕ̃λ)uk|2 a.e. in Ω̃× (0, T) ×O, ∀ k ∈ N.

Since |F′′
λ| � cλ, by ND3 we have

∫
O
|F′′

λ(ϕ̃λ,n)‖Gn(ϕ̃λ,n)uk|2 � cλ‖Gn(ϕ̃λ,n)uk‖2
H � cλ‖G(ϕ̃λ,n)uk‖2

H � cλ|O|‖gk‖2
L∞(R),

and the dominated convergence theorem yields

Ẽ

(∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕ̃λ,n(s, x))||Gn(ϕ̃λ,n(s))uk|2(x) dx ds

)�/2

→ Ẽ

(∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕ̃λ(s, x))||G(ϕ̃λ(s))uk|2(x) dx ds

)�/2

.

We infer then, letting n →∞ and using weak lower semicontinuity, that

Ẽ sup
s∈[0,t]

‖∇ϕ̃λ(s)‖�H + Ẽ sup
s∈[0,t]

‖Fλ(ϕ̃λ(s))‖�/2
L1(O)

+ Ẽ sup
s∈[0,t]

|(μ̃λ(s))O|�/2 + Ẽ‖∇μλ‖�L2(0,t;H)

� c
(

1 + Ẽ‖(μ̃λ)O‖�/2
L2(0,t)

+ Ẽ‖∇ϕ̃λ‖�L2(0,t;H)

)
+ ‖Fλ(ϕ0)‖�/2

L1(O)

+
1
2
Ẽ

(∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕ̃λ(s, x))||G(ϕ̃λ(s))uk|2(x) dx ds

)�/2

,

where the constant c is independent of λ. Let us bound the last two terms on the right-hand side
uniformly in λ. First of all, recalling that F is a quadratic perturbation of the convex function
γ̂, by definition of Fλ we have that ‖Fλ(ϕ0)‖L1(O) � ‖F(ϕ0)‖L1(O). Secondly, using the Hölder
inequality and assumption ND3 we have

∫ t

0

∞∑
k=0

∫
O
|F′′

λ(ϕ̃λ(s, x))||G(ϕ̃λ(s))uk|2(x) dx ds

�
∫ t

0
‖F′′

λ(ϕ̃λ(s))‖L1(O) ds
∞∑

k=0

‖gk(ϕ̃λ)‖2
L∞(Q)

� |Q|CG

∫ t

0
‖F′′

λ(ϕ̃λ(s))‖L1(O) ds.
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Putting this information together, using the growth assumption on F′′ in ND1, we have then

Ẽ sup
s∈[0,t]

‖∇ϕ̃λ(s)‖�H + Ẽ sup
s∈[0,t]

‖Fλ(ϕ̃λ(s))‖�/2
L1(O)

+ Ẽ sup
s∈[0,t]

|(μ̃λ(s))O|�/2 + Ẽ‖∇μ̃λ‖�L2(0,t;H)

� c
(

1 + Ẽ‖(μ̃λ)O‖�/2
L2(0,t)

+ Ẽ‖∇ϕ̃λ‖�L2(0,t;H) + Ẽ‖Fλ(ϕ̃λ)‖�/2
L1(0,t;L1(O))

)
+ ‖F(ϕ0)‖�/2

L1(O)

,where the constant c (possibly updated) is independent of λ. The Gronwall lemma yields then
the estimates

‖ϕ̃λ‖L�(Ω̃;L∞(0,T;V1)) � c, (3.22)

‖μ̃λ‖L�/2(Ω̃;L2(0,T;V1)) + ‖∇μ̃λ‖L�(Ω̃;L2(0,T;H)) � c. (3.23)

Thanks to ND3 we deduce that

‖G(ϕ̃λ)‖L∞(Ω̃×(0,T);L 2(U,H))∩L� (Ω̃;L∞(0,T;L 2(U,V1))) � c,

hence also by [46, lemma 2.1], for any s ∈ (0, 1/2),∥∥∥∥
∫ ·

0
G(ϕ̃λ(s))dW̃(s)

∥∥∥∥
L�(Ω̃;Ws,�(0,T;V1))

� cs. (3.24)

By comparison in (3.18) we infer that

‖ϕ̃λ‖L�(Ω̃;Ws̄,�(0,T;V∗
1 )) � c, (3.25)

where again c is independent of λ, and s̄ ∈ (1/�, 1/2) is fixed. Finally, testing the variational
equation (3.19) by γλ(ϕ̃λ) = F′

λ(ϕ̃λ) + CFϕ̃λ and rearranging the terms we have, for almost
every t ∈ (0, T),∫

O
γ ′
λ(ϕ̃λ(t, x))|∇ϕ̃λ(t, x)|2 dx +

∫
O
|F′

λ(ϕ̃λ(t, x))|2 dx

=

∫
O
μ̃λ(t, x)F′

λ(ϕ̃λ(t, x))dx + CF

∫
O
μ̃λ(t, x)ϕ̃λ(t, x) dx

− CF

∫
O

F′
λ(ϕ̃λ(t, x))ϕ̃λ(t, x) dx.

Since the first term on the left-hand side is nonnegative by monotonicity of γλ, the Young
inequality yields, after integrating in time,

‖F′
λ(ϕ̃λ)‖2

L2(0,T;H) �
1
2
‖F′

λ(ϕ̃λ)‖2
L2(0,T;H) +

3
2
‖μ̃λ‖2

L2(0,T;H) +
3
2

C2
F‖ϕ̃λ‖2

L2(0,T;H),

so that by (3.22)–(3.23) we have

‖F′
λ(ϕ̃λ)‖L�/2(Ω̃;L2(0,T;H)) � c. (3.26)
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By comparison in (3.19) we deduce that Δϕ̃λ ∈ L�/2(Ω̃; L2(0, T; H)) and by elliptic regularity

‖ϕ̃λ‖L�/2(Ω̃;L2(0,T;V2)) � c. (3.27)

3.5. Passage to the limit as λ→ 0

We perform here the passage to the limit as λ→ 0 and recover a martingale solution to the orig-
inal problem (1.10)–(1.13). Since the arguments are very similar to the ones in subsection 3.3,
we shall omit the details.

Since we have the compact inclusion L∞(0, T; V1) ∩ Ws̄,�(0, T; V∗
1 )

c
↪→C0([0, T]; H), using

the estimates (3.22) and (3.25) and arguing exactly as in subsection 3.3, one readily deduce
that the family of laws of (ϕ̃λ)λ on C0([0, T]; H) is tight. Similarly, estimate (3.24) and the
compact inclusion Ws̄,�(0, T; V1)

c
↪→C0([0, T]; H) yields that the family of laws of (G(ϕ̃λ) · W̃)λ

is tight on C0([0, T]; H). In particular, the family of laws of (ϕ̃λ, G(ϕ̃λ) · W̃ , W̃)λ is tight on the
product space

C0([0, T]; H) × C0([0, T]; H) × C0([0, T]; U1) .

By Prokhorov and Jakubowski–Skorokhod theorems (see again the references [58,
theorem 2.7], [83, theorem 1.10.4, addendum 1.10.5], and [9, theorem 2.7.1]), there exists
a further probability space (Ω̂, F̂, P̂) and measurable maps Ξλ : (Ω̂, F̂) → (Ω̃, F̃) such that
P̂ ◦ Ξ−1

λ = P̃ for every λ > 0 and

ϕ̂λ := ϕ̃λ ◦ Ξλ → ϕ̂ in Lp(Ω̂; C0([0, T]; H)) ∀ p < �,

ϕ̂λ
∗−⇀ϕ̂ in L�

w(Ω̂; L∞(0, T; V1)),

ϕ̂λ ⇀ ϕ̂ in L�/2(Ω̂; L2(0, T; V2)) ∩ L�(Ω̂; Ws̄,�(0, T; V∗
1 )),

μ̂λ := μ̃λ ◦ Ξλ ⇀ μ̂ in L�/2(Ω̂; L2(0, T; V1)),

∇μ̂λ ⇀ ∇μ̂ in L�(Ω̂; L2(0, T; H)),

F′
λ(ϕ̂λ) ⇀ ξ̂ in L�/2(Ω̂; L2(0, T; H)),

Îλ := (G(ϕ̃λ) · W̃) ◦ Ξλ → Î in Lp(Ω̂; C0([0, T]; H)) ∀ p < �,

Ŵλ := W̃ ◦ Ξλ → Ŵ in Lp(Ω̂; C0([0, T]; U1)) ∀ p < �,

for some measurable processes

ϕ̂ ∈ L�(Ω̂; C0([0, T]; H)) ∩ L�
w(Ω̂; L∞(0, T; V1)) ∩ L�/2(Ω̂; L2(0, T; V2))∩

L�(Ω̂; Ws̄,�(0, T; V∗
1 )),

μ̂ ∈ L�/2(Ω̂; L2(0, T; V1)), ∇μ̂ ∈ L�(Ω̂; L2(0, T; H)),

ξ̂ ∈ L�/2(Ω̂; L2(0, T; H)),

Î ∈ L�(Ω̂; C0([0, T]; H)),

Ŵ ∈ L�(Ω̂; C0([0, T]; U1)) .
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Since G : H → L 2(U, H) is Lipschitz-continuous, we also have

G(ϕ̂λ) → G(ϕ̂) in Lp(Ω̂; L2(0, T; L 2(U, H))) ∀ p < �.

Moreover, since F′ = γ − CFI and γ is maximal monotone, by the strong-weak closure of
maximal monotone operators (see [2, lemma 2.3]) and the strong convergence of (ϕ̂λ)λ, we
have that

ξ = F′(ϕ̂) a.e. in Ω̂× (0, T) ×O.

Following the exact same argument of subsection 3.3, we introduce the filtration

F̂λ,t := σ{ϕ̂λ(s), Îλ(s), Ŵλ(s) : s ∈ [0, t]}, t ∈ [0, T],

and infer that Îλ is the H-valued martingale given by

Îλ(t) =
∫ t

0
G(ϕ̂λ(s)) dŴλ(s) ∀ t ∈ [0, T].

Now, arguing again as in subsection 3.3, thanks to the strong convergences of ϕ̂λ → ϕ̂ and
G(ϕ̂λ) → G(ϕ̂) proved above, we can suitably enlarge the probability space (Ω̂, F̂, P̂) and find a
saturated and right-continuous filtration (F̂t)t∈[0,T] such that Ŵ is a cylindrical Wiener process
on the stochastic basis (Ω̂, F̂, (F̂t)t∈[0,T], P̂) and

Î(t) =
∫ t

0
G(ϕ̂(s)) dŴ(s) ∀ t ∈ [0, T].

Now, since P̂ ◦ Ξλ = P̃ for every λ > 0, from (3.18) and (3.19) it follows that∫
O
ϕ̂λ(t, x)v(x) dx +

∫
Qt

m(ϕ̂λ(s, x))∇μ̂λ(s, x) · ∇v(x) dx ds

=

∫
O
ϕ0(x)v(x) dx +

∫
O

(∫ t

0
G(ϕ̂λ(s)) dŴλ(s)

)
(x)v(x) dx

for every t ∈ [0, T], P̂-almost surely, and∫
O
μ̂λ(t, x)v(x) dx =

∫
O
∇ϕ̂λ(s, x) · ∇v(x) dx +

∫
O

F′
λ(ϕ̂λ(t, x))v(x) dx

for almost every t ∈ (0, T), P̂-almost surely. Hence, using the convergences proved above, the
continuity and boundedness of m together with the dominated convergence theorem, we can
let λ→ 0 in the variational formulations and obtain exactly (2.2), and μ̂ = −Δϕ̂+ F′(ϕ̂).

In order to prove the energy inequality (2.3) we note that since P̂ ◦ Ξ−1
λ = P̃ for all λ > 0,

from (3.21) we infer that

1
2
Ê‖∇ϕ̂λ(t)‖2

H + Ê‖Fλ(ϕ̂λ(t))‖L1(O) + Ê

∫
Qt

m(ϕ̂λ(s, x))|∇μ̂λ(s, x)|2 dx ds

� 1
2
‖∇ϕ0‖2

H + ‖Fλ(ϕ0)‖L1(O) +
CG

2
Ê

∫ t

0
‖∇ϕ̂λ(s)‖2

H ds

+
1
2
Ê

∫ t

0

∞∑
k=0

∫
O

F′′
λ(ϕ̂λ(s, x))|gk(ϕ̂λ(s, x))|2 dx ds

(3.28)
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for every t ∈ [0, T]. We want to let again λ→ 0 and use the convergences just proved. To this
end, for the second term on the left-hand side note that Fλ is a quadratic perturbation of the
convex function γ̂λ, where γ̂λ(ϕ̂λ) � γ̂(Jλϕ̂λ) and Jλ := (I + λγ)−1 : R→R is the resolvent of
γ. Noting that

|Jλϕ̂λ − ϕ̂| � |Jλϕ̂λ − ϕ̂λ|+ |ϕ̂λ − ϕ̂| � λ|γλ(ϕ̂λ)|+ |ϕ̂λ − ϕ̂|,

we easily infer that Jλϕ̂λ → ϕ̂ a.e. in Ω̂× Q, so that by weak lower semicontinuity and the
Fatou lemma

Ê‖F(ϕ̂)‖L1(O) � lim inf
λ→0

Ê‖Fλ(ϕ̂λ)‖L1(O).

Moreover, for the third term on the left-hand side of (3.28), arguing exactly as in the proof of
(3.20) we have that

Ê

∫
Qt

m(ϕ̂(s, x))|∇μ̂(s, x)|2 dx ds � lim inf
λ→0

Ê

∫
Qt

m(ϕ̂λ(s, x))|∇μ̂λ(s, x)|2 dx ds.

Furthermore, for the second term on the right-hand side of (3.28) note that Fλ(ϕ0) � F(ϕ0).
Finally, the last term on the right-hand side of (3.28) can pass to the limit by the dom-
inated convergence theorem. Indeed, since F′

λ = γλ − CFI = γ ◦ Jλ − CFI, we have F′′
λ =

(γ ′ ◦ Jλ)J′
λ − CF , from which

|F′′
λ(ϕ̂λ)‖gk(ϕ̂λ)|2 � ‖gk‖2

L∞(R)|F′′
λ(ϕ̂λ)|

= ‖gk‖2
L∞(R)|γ ′(Jλ(ϕ̂λ))J′

λ(ϕ̂λ) − CF|.

Recalling that Jλ : R→ R is one-Lipschitz continuous, it holds |J′λ| � 1 and we deduce that

|F′′
λ(ϕ̂λ)‖gk(ϕ̂λ)|2 � ‖gk‖2

L∞(R)

(
|γ ′(Jλ(ϕ̂λ))|+ CF

)
,

where, by definition of γ we have γ ′(Jλ(ϕ̂λ)) = F′′(Jλϕ̂λ) + CF. From these computations and
assumption ND1 it follows that

|F′′
λ(ϕ̂λ)‖gk(ϕ̂λ)|2 � ‖gk‖2

L∞(R)

(
|F′′(Jλ(ϕ̂λ))|+ 2CF

)
� c‖gk‖2

L∞(R)

(
1 + |F(Jλ(ϕ̂λ))|

)
.

The term in brackets on the right-hand side is uniformly integrable in Ω̂× Q because
F(Jλ(ϕ̂λ)) → F(ϕ̂) in L1(Ω̂× Q), hence so is the left-hand side by comparison. Hence, recalling
that
∑∞

k=0‖gk‖2
L∞(R) � CG, the Vitali convergence theorem yields

Ê

∫ t

0

∞∑
k=0

∫
O

F′′
λ(ϕ̂λ(s, x))|gk(ϕ̂λ(s, x))|2 dx ds

→ Ê

∫ t

0

∞∑
k=0

∫
O

F′′(ϕ̂(s, x))|gk(ϕ̂(s, x))|2 dx ds.

Letting then λ→ 0 in (3.28) taking into account these remarks yields exactly, by weak lower
semicontinuity, the energy inequality (2.3).

In order to conclude we only need to prove the last assertion of theorem 2.2. To this end,

note that if d � 3 and |F′′(r)| � CF(1 + |r| 2
d−2 ) for all r ∈ R, recalling that V1 ↪→ L

2d
d−2 (O) and

noting that 2−d
2d + 1

d = 1
2 , by Hölder inequality we have
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‖∇F′
λ(ϕ̂λ)‖H = ‖F′′

λ(ϕ̂λ)∇ϕ̂λ‖H � CF

∥∥∥(1 + |ϕ̂λ|
2

d−2

)
∇ϕ̂λ

∥∥∥
H

� CF

∥∥∥1 + |ϕ̂λ|
2

d−2

∥∥∥
Ld (O)

‖∇ϕ̂λ‖
L

2d
d−2 (O)

� CF‖1 + ϕ̂λ‖
2

d−2

L
2d

d−2 (O)
‖∇ϕ̂λ‖

L
2d

d−2 (O)

� c‖1 + ϕ̂λ‖
2

d−2
V1

‖ϕ̂λ‖V2
,

from which it follows that

‖∇F′
λ(ϕ̂λ)‖L2(0,T;H) � c‖1 + ϕ̂λ‖

2
d−2
L∞(0,T;V1)‖ϕ̂λ‖L2(0,T;V2).

Using (3.22) and (3.27), since 2
d−2 � 2 the right-hand side is uniformly bounded in L�/4(Ω̂), so

that by weak lower semicontinuity we have F′(ϕ̂) ∈ L�/4(Ω̂; L2(0, T; V1)). Since μ̂ = −Δϕ̂+
F′(ϕ̂), we conclude by elliptic regularity. If d = 2, the same argument works using the
embedding V1 ↪→ Lq(O) for all q ∈ [2,+∞). This concludes the proof of theorem 2.2.

4. Degenerate mobility and irregular potential

This section is devoted to proving theorem 2.7. The main idea of the proof is the following.
We approximate the irregular potential F and the mobility m using a suitable regularization,
depending on a parameter ε > 0, introduced in [40] in the deterministic setting. We show that
the ε-approximated problem admits martingale solutions thanks to the already proved theorem
2.7. Finally, exploiting the compatibility assumptions between F, m, and G, we prove uniform
estimates on the solutions and pass to the limit by monotonicity and stochastic compactness
arguments.

Let us also mention that a similar approximation in ε > 0 was used in [47], in the study
of a nonlocal Cahn–Hilliard–Navier–Stokes deterministic model with degenerate mobility.
Here the authors prove that the system with ε > 0 fixed admits a solution by relying on a
time-discretisation argument, and then they show convergence as ε→ 0. In our case, the idea
is similar, but existence of solution at ε fixed is obtained using the λ-approximation of the
ND case instead of the time-discretisation. This choice was meant to avoid technical time-
measurability issues in the stochastic setting; nonetheless, we point out that both techniques
are feasible also in the stochastic case.

4.1. The approximation

For brevity of notation, we shall denote by ε a fixed real sequence (εn)n ⊂ (0, 1/4) converging
to 0 as n →∞. We shall briefly say that ε→ 0.

Since F2 ∈ C2([−1, 1]) we can extend it to the whole R as

F̃2 : R→ R, F̃2(r) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F2(r) if |r| � 1,

F2(−1) + F′
2(−1)(r + 1) +

1
2

F′′(−1)(r + 1)2 if r < −1,

F2(1) + F′
2(1)(r − 1) +

1
2

F′′(1)(r − 1)2 if r > 1,
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so that F̃2 ∈ C2(R) and ‖F̃′′
2‖C0(R) � ‖F′′

2‖C0([−1,1]). Moreover, for every ε ∈ (0, 1/4) we define
F1,ε : R→ R as the unique function of class C2 such that F1,ε(0) = F1(0), F′

1,ε(0) = F′
1(0), and

F′′
1,ε(r) =

⎧⎪⎪⎨
⎪⎪⎩

F′′
1 (r) if |r| � 1 − ε,

F′′
1 (−1 + ε) if r < −1 + ε,

F′′
1 (1 − ε) if r > 1 − ε.

With this notation, we introduce the regularized potential Fε :=F1,ε + F̃2 and note that, by D1,
we have Fε ∈ C2(R) with F′′

ε ∈ L∞(R). In particular, Fε satisfies ND1 and (2.4). Moreover, by
definition we have that Fε = F on [−1 + ε, 1 − ε].

We define the approximated mobility

mε : R→ R, mε(r) :=

⎧⎪⎪⎨
⎪⎪⎩

m(r) if |r| � 1 − ε,

m(−1 + ε) if r < −1 + ε,

m(1 − ε) if r > 1 − ε.

Note that by assumption D2 we have that mε ∈ C0(R) with

0 < min{m(−1 + ε), m(1 − ε)} � mε(r) � ‖m‖C0([−1,1]) ∀ r ∈ R,

so that mε satisfies ND2 and mε = m on [−1 + ε, 1 − ε]. Furthermore, we define Mε as the
unique function in C2(R) such that

Mε : R→ [0,+∞), Mε(0) = M′
ε(0) = 0, M′′

ε (r) :=
1

mε(r)
, r ∈ R.

In particular, note that by definition of mε and D2 we have M′′
ε ∈ L∞(R).

We define the approximated operator Gε : H → L 2(U, H) setting

Gε(v)uk := gk,ε(v) v ∈ H, k ∈ N,

where, for every k ∈ N,

gk,ε : R→ R , gk,ε(r) :=

⎧⎪⎪⎨
⎪⎪⎩

gk(r) if |r| � 1 − ε,

gk(−1 + ε) if r < −1 + ε,

gk(1 − ε) if r > 1 − ε.

Note that gk,ε ∈ W1,∞(R) for every k ∈ N and that

CGε =
∞∑

k=0

‖gk,ε‖2
W1,∞(R) �

∞∑
k=0

‖gk‖2
W1,∞(−1,1) � LG < +∞,

so that Gε satisfies assumption ND3 and Gε = G on B1−ε.
We deduce that the assumptions ND1–ND4 are satisfied by the set of data (Fε, mε, Gε,ϕ0):

hence, theorem 2.2 ensures that for every ε ∈ (0, 1/4) there exists a martingale solution(
Ωε, Fε, (Fε,t)t∈[0,T],Pε, Wε,ϕε,με

)
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to the problem (1.10)–(1.13) in the sense of definition 2.1. Since ε ∈ (0, 1/4) is chosen in a
countable set of points (see the remark at the beginning of the subsection), by suitably enlarging
the probability spaces we shall suppose that such martingale solutions are of the form(

Ω̄, F̄, (F̄t)t∈[0,T], P̄, W̄,ϕε,με

)
,

for a certain stochastic basis (Ω̄, F̄, (F̄t)t∈[0,T], P̄). Theorem 2.2 ensures also the regularities

ϕε ∈ L�(Ω̄; C0([0, T]; H))∩ L�
w(Ω̄; L∞(0, T; V1))

∩ L�/2(Ω̄; L2(0, T; V2)) ∩ L�/4(Ω̄; L2(0, T; H3(O))),

με ∈ L�/2(Ω̄; L2(0, T; V1)) , ∇με ∈ L�(Ω̄; L2(0, T; Hd)),

F′
ε(ϕε) ∈ L�/2(Ω̄; L2(0, T; H)) ∩ L�/4(Ω̄; L2(0, T; V1)).

for every � ∈ [2,+∞), and the variational formulation (2.2) reads∫
O
ϕε(t, x)v(x)dx +

∫
Qt

mε(ϕε(s, x))∇με(s, x) · ∇v(x) dx ds

=

∫
O
ϕ0(x)v(x) dx +

∫
O

(∫ t

0
Gε(ϕ̂ε(s)) dW ′(s)

)
(x)v(x) dx

(4.1)

for every v ∈ V1, for every t ∈ [0, T], P̄-almost surely, where με = −Δϕε + F′
ε(ϕε).

4.2. Uniform estimates in ε

We show here uniform estimates on the approximated solutions.
First estimate. First of all, taking v = 1 in (4.1), using Itô’s formula and the

Burkholder–Davis–Gundy and Young inequalities as in the proof of (3.7) yields

‖(ϕε)O‖L�(Ω̄;C0([0,T])) � c, (4.2)

for a positive constant c independent of ε.
Secondly, the energy inequality (2.3) implies that

1
2

sup
r∈[0,t]

Ē‖∇ϕε(r)‖2
H + sup

r∈[0,t]
Ē‖Fε(ϕε(r))‖L1(O)

+ Ē

∫
Qt

mε(ϕε(s, x))|∇με(s, x)|2 dx ds

� 1
2
‖∇ϕ0‖2

H + ‖F(ϕ0)‖L1(O) +
CGε

2
Ē

∫ t

0
‖∇ϕε(s)‖2

H ds

+
1
2
Ē

∫ t

0

∞∑
k=0

∫
O

F′′
ε (ϕε(s, x))|gkε(ϕε(s, x))|2 dx ds.

Now, we have already shown that CGε � LG for every ε. Moreover, by assumption D3 and the
definitions of Fε and mε, we have that for every r ∈ [−1 + ε, 1 − ε]

F′′
ε (r)|gk,ε(r)|2 = F′′(r)|gk(r)|2 �

∥∥∥√F′′gk

∥∥∥2

L∞(−1,1)
,
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while for every r < −1 + ε

F′′
ε (r)|gk(r)|2 = (F′′

1 (−1 + ε) + F̃′′
2(r))|gk(−1 + ε)|2

= F′′(−1 + ε)|gk(−1 + ε)|2 + (F̃′′
2(r) − F′′

2 (−1 + ε))|gk(−1 + ε)|2

�
∥∥∥√F′′gk

∥∥∥2

L∞(−1,1)
+ 2‖F′′

2‖C0([−1,1])‖gk‖2
L∞(−1,1),

and similarly for every r > 1 − ε

F′′
ε (r)|gk(r)|2 = (F′′

1 (1 − ε) + F̃′′
2(r))|gk(1 − ε)|2

= F′′(1 − ε)|gk(1 − ε)|2 + (F̃′′
2(r) − F′′

2 (1 − ε))|gk(1 − ε)|2

�
∥∥∥√F′′gk

∥∥∥2

L∞(−1,1)
+ 2‖F′′

2‖C0([−1,1])‖gk‖2
L∞(−1,1).

Hence, we deduce that

F′′
ε (r)|gk,ε(r)|2 �

∥∥∥√F′′gk

∥∥∥2

L∞(−1,1)
+ 2‖F′′

2‖C0([−1,1])‖gk‖2
L∞(−1,1) ∀ r ∈ R.

Substituting in the energy inequality and recalling the definition of LG yields then

1
2

sup
r∈[0,t]

Ē‖∇ϕε(r)‖2
H + sup

r∈[0,t]
Ē‖Fε(ϕε(r))‖L1(O)

+ Ē

∫
Qt

mε(ϕε(s, x))|∇με(s, x)|2 dx ds

� 1
2
‖∇ϕ0‖2

H + ‖F(ϕ0)‖L1(O) +
LG

2
Ē

∫ t

0
‖∇ϕε(s)‖2

H ds

+ (1 + 2‖F2‖C0([−1,1]))LG
|Q|
2

.

The Gronwall lemma and estimate (4.2) imply then

‖ϕε‖C0([0,T];L2(Ω̄;V1)) � c, (4.3)

‖Fε(ϕε)‖L∞(0,T;L1(Ω̄×O)) � c, (4.4)∥∥∥√mε(ϕε)∇με

∥∥∥
L2(Ω̄;L2(0,T;H))

� c. (4.5)

Noting that ‖gk,ε‖W1,∞(R) � ‖gk‖W1,∞(−1,1) for every k ∈ N, thanks to assumption D3 and (4.3)
we also have that

‖Gε(ϕε)‖L∞(Ω̄×(0,T);L 2(U,H))∩L∞ (0,T;L2(Ω̄;L 2(U,V1))) � c,

which implies by [46, lemma 2.1] that, for every s ∈ (0, 1/2) and for every p ∈ [2,+∞),∥∥∥∥
∫ ·

0
Gε(ϕε(s))dW ′(s)

∥∥∥∥
Lp(Ω̄;Ws,p(0,T;H))∩L2(Ω̄;Ws,2(0,T;V1))

� cs,p. (4.6)

By comparison in (4.1) we deduce from (4.5) and (4.6) that, for every s ∈ (0, 1/2),

‖ϕε‖L2(Ω̄;Ws,2(0,T;V∗
1 )) � cs. (4.7)
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Second estimate. The idea is now to write Itô’s formula for
∫
OMε(ϕε). In order to do this,

note that Mε ∈ C2(R) and M′′
ε ∈ L∞(R), so that M′

ε is Lipschitz-continuous. In particular, we
have that v �→ M′

ε(v) is well defined and continuous from V1 to V1. Hence, we can apply Itô’s
formula in the variational setting [70, theorem 4.2] and obtain∫

O
Mε(ϕε(t, x)) dx +

∫
Qt

mε(ϕε(s, x))M′′
ε (ϕε(s, x))∇με(s, x) · ∇ϕε(s, x) dx ds

=

∫
O

Mε(ϕ0(x)) dx +

∫ t

0

(
M′

ε(ϕε(s)), Gε(ϕε(s)) dW ′(s)
)

H

+
1
2

∫ t

0

∞∑
k=0

∫
O

M′′
ε (ϕε(s, x))|gk(ϕε(s, x))|2 dx ds.

Noting that M′′
εmε = 1 by definition of Mε and recalling that με = −Δϕε + F′

ε(ϕε), since the
stochastic integral on the right-hand side is a martingale taking expectations yields

Ē

∫
O

Mε(ϕε(t, x)) dx + Ē

∫
Qt

|Δϕε(s, x)|2 dx ds

+ Ē

∫
Qt

F′′
ε (ϕε(s, x))|∇ϕε(s, x)|2 dx ds

=

∫
O

Mε(ϕ0(x)) dx +
1
2
Ē

∫ t

0

∞∑
k=0

∫
O

M′′
ε (ϕε(s, x))|gk(ϕε(s, x))|2 dx ds.

Now, by definition of Mε and mε we have Mε(ϕ0) � M(ϕ0) almost everywhere in O. Moreover,
by assumption D3 and the definitions of Mε and Gε, we have that for every r ∈ [−1 + ε, 1 − ε]

M′′
ε (r)|gk,ε(r)|2 = M′′(r)|gk(r)|2 �

∥∥∥√M′′gk

∥∥∥2

L∞(−1,1)
,

while for every r < −1 + ε

M′′
ε (r)|gk(r)|2 = M′′(−1 + ε)|gk(−1 + ε)|2 �

∥∥∥√M′′gk

∥∥∥2

L∞(−1,1)
,

and similarly for every r > 1 − ε

M′′
ε (r)|gk(r)|2 = M′′(1 − ε)|gk(1 − ε)|2 �

∥∥∥√M′′gk

∥∥∥2

L∞(−1,1)
.

Hence, we deduce that

M′′
ε (r)|gk,ε(r)|2 �

∥∥∥√M′′gk

∥∥∥2

L∞(−1,1)
∀ r ∈ R.

Taking into account these remarks and recalling that F′
ε = F′

1,ε + F̃′
2, we have then

Ē

∫
O

Mε(ϕε(t, x)) dx + Ē

∫
Qt

|Δϕε(s, x)|2 dx ds

+ Ē

∫
Qt

F′′
1,ε(ϕε(s, x))|∇ϕε(s, x)|2 dx ds

�
∫
O

M(ϕ0(x)) dx + LG
|Q|
2

− Ē

∫
Qt

F̃′′
2(ϕε(s, x))|∇ϕε(s, x)|2 dx ds.
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Since F′′
1,ε � 0 by definition and ‖F̃′′

2‖L∞(R) � ‖F′′
2‖C0([−1,1]), recalling D4 and the estimate (4.3)

we deduce by elliptic regularity that

‖Mε(ϕε)‖C0([0,T];L1(Ω̄×O)) � c, (4.8)

‖ϕε‖L2(Ω̄;L2(0,T;V2)) � c. (4.9)

Third estimate. We prove now an estimate allowing to obtain some L∞-bounds on the lim-
iting solution: we are inspired here by some computations performed in [40, p 414] (see also
[49, section 4.1.1]). Note that by definition of Mε and mε we have that, for every r > 1,

Mε(r) = Mε(1 − ε) + M′
ε(1 − ε)(r − 1 + ε) +

1
2

M′′
ε (1 − ε)(r − 1 + ε)2

� 1
2

M′′
ε (1 − ε)(r − 1 + ε)2 =

(r − 1 + ε)2

2mε(1 − ε)
� (r − 1)2

2mε(1 − ε)
,

and similarly, for every r < −1,

Mε(r) = Mε(−1 + ε) + M′
ε(−1 + ε)(r + 1 − ε) +

1
2

M′′
ε (−1 + ε)(r + 1 − ε)2

� 1
2

M′′
ε (−1 + ε)(r + 1 − ε)2 =

(r + 1 − ε)2

2mε(−1 + ε)

� (r + 1)2

2mε(−1 + ε)
=

(|r| − 1)2

2mε(−1 + ε)
.

We infer that

(|r| − 1)2
+ � 2Mε(r) max{mε(1 − ε), mε(−1 + ε)} ∀ r ∈ R.

Now, since mε(1 − ε) = m(1 − ε) and m(1) = 0 we have

|mε(1 − ε)| = |m(1 − ε)| = |m(1 − ε) − m(1)| � ‖m′‖L∞(−1,1)ε

and similarly, since mε(−1 + ε) = m(−1 + ε) and m(−1) = 0,

|mε(−1 + ε)| = |m(−1 + ε)| = |m(−1 + ε) − m(−1)| � ‖m′‖L∞(−1,1)ε.

We deduce then that

(|r| − 1)2
+ � 2ε‖m′‖L∞(−1,1)Mε(r) ∀ r ∈ R,

yielding, together with (4.8),

‖(|ϕε| − 1)+‖C0([0,T];L2(Ω̄;H)) � c
√
ε. (4.10)

4.3. Passage to the limit as ε→ 0

The argument are similar to the ones performed in subsections 3.3 and 3.5, so we will omit the
technical details for brevity.

First of all, by [79, corollary 5, p 86] we have the compact inclusion

L2(0, T; V2) ∩ Ws,2(0, T; V∗
1 )

c
↪→ L2(0, T; V1).
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Hence, using the estimates (4.7) and (4.9), together with the Markov inequality, arguing as in
subsection 3.3 we easily infer that the laws of (ϕε)ε on L2(0, T; V1) are tight. Secondly, fixing
s̄ ∈ (0, 1/2) and p̄ � 2 such that s̄ p̄ > 1, again by [79, corollary 5, p 86] we have also the
compact inclusion

Ws̄,̄p(0, T; H) ∩ Ws̄,2(0, T; V1)
c
↪→C0([0, T]; V∗

1) ∩ L2(0, T; H),

so that estimate (4.6) yields by the same argument that the sequence of laws of (Gε(ϕε) · W̄)ε on
C0([0, T]; V∗

1) ∩ L2(0, T; H) are tight. In particular, the family of laws of (ϕε, Gε(ϕε) · W̄, W̄)ε
is tight on the product space

L2(0, T; V1) ×
(
C0([0, T]; V∗

1 ) ∩ L2(0, T; H)
)
× C0([0, T]; U1).

Recalling that L2(0, T; H), L2(0, T; V1), and L2(0, T; V2) endowed with their weak topolo-
gies are sub-Polish, by Prokhorov and Jakubowski–Skorokhod theorems (see again [58,
theorem 2.7], [83, theorem 1.10.4, addendum 1.10.5], and [9, theorem 2.7.1]) and the estimates
(4.3)–(4.9), there exists a probability space (Ω̂, F̂, P̂) and measurable maps Θε : (Ω̂, F̂) →
(Ω̄, F̄) such that P̂ ◦Θ−1

ε = P̄ for every ε ∈ (0, 1/4) and

ϕ̂ε :=ϕε ◦Θε → ϕ̂ in L2(0, T; V1) P̂− a.s.,

ϕ̂ε
∗−⇀ϕ̂ in L∞(0, T; L2(Ω̂; V1)),

ϕ̂ε ⇀ ϕ̂ in L2(0, T; V2) ∩ Ws̄,2(0, T; V∗
1 ) P̂− a.s.,

η̂ε := (mε(ϕε)∇με) ◦Θε ⇀ η̂ in L2(0, T; H) P̂− a.s.,

Îε := (Gε(ϕε) · W̄) ◦Θε → Î in Lp(Ω̂; C0([0, T]; V∗
1) ∩ L2(0, T; H)) ∀ p ∈ [2,+∞),

Ŵε := W̄ ◦Θε → Ŵ in Lp(Ω̂; C0([0, T]; U)) ∀ p ∈ [2,+∞),

for some measurable processes

ϕ̂ ∈ L∞(0, T; L2(Ω̂; V1)) ∩ L2(Ω̂; L2(0, T; V2)) ∩ L2(Ω̂; Ws̄,2(0, T; V∗
1 )),

η̂ ∈ L2(Ω̂; L2(0, T; Hd)),

Î ∈ Lp(Ω̂; C0([0, T]; V∗) ∩ L2(0, T; H)) ∀ p ∈ [2,+∞),

Ŵ ∈ Lp(Ω̂; C0([0, T]; U)) ∀ p ∈ [2,+∞).

Furthermore, by lower semicontinuity and estimate (4.10) it follows that

|ϕ̂(t)| � 1 a.e. in Ω̂×O, ∀ t ∈ [0, T],

while the estimates (4.3) yields also the convergence

ϕ̂ε → ϕ̂ in Lp(Ω̂; L2(0, T; V1)) ∀ p ∈ [1, 2).
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Now, by definition of Gε and recalling that ‖g′
k,ε‖L∞(R) � ‖g′

k‖L∞(−1,1), we have that

‖Gε(ϕ̂ε) − G(ϕ̂)‖2
L 2(U,H) � 2‖Gε(ϕ̂ε) − Gε(ϕ̂)‖2

L 2(U,H) + 2‖Gε(ϕ̂) − G(ϕ̂)‖2
L 2(U,H)

= 2
∞∑

k=0

(
‖gk,ε(ϕ̂ε) − gk,ε(ϕ̂)‖2

H + ‖gk,ε(ϕ̂) − gk(ϕ̂)‖2
H

)

� 2
∞∑

k=0

(∥∥g′
k,ε

∥∥2

L∞(R)
‖ϕ̂ε − ϕ̂‖2

H + ‖gk,ε(ϕ̂) − gk(ϕ̂)‖2
H

)

� 2LG‖ϕ̂ε − ϕ̂‖2
H + 2

∞∑
k=0

‖gk,ε(ϕ̂) − gk(ϕ̂)‖2
H ,

where

∞∑
k=0

‖gk,ε(ϕ̂) − gk(ϕ̂)‖2
H

=

∞∑
k=0

(∥∥(gk(−1 + ε) − gk(ϕ̂))1{ϕ̂<−1+ε}
∥∥2

H
+
∥∥(gk(1 − ε) − gk(ϕ̂))1{ϕ̂>1−ε}

∥∥2

H

�
∞∑

k=0

‖g′
k‖

2
L∞(−1,1)

(∥∥(ϕ̂+ 1 − ε)1{ϕ̂<−1+ε}
∥∥2

H +
∥∥(ϕ̂− 1 + ε)1{ϕ̂>1−ε}

∥∥2

H

)

� LG

(∥∥(ϕ̂+ 1 − ε)1{ϕ̂<−1+ε}
∥∥2

H
+
∥∥(ϕ̂− 1 + ε)1{ϕ̂>1−ε}

∥∥2

H

)
.

Since |ϕ̂| � 1 almost everywhere, we have that 1{ϕ̂<−1+ε} → 0 and 1{ϕ̂>1−ε} → 0 almost
everywhere, so that the dominated convergence theorem yields

Gε(ϕ̂ε) → G(ϕ̂) in Lp(Ω̂; L2(0, T; L 2(U, H))) ∀ p ∈ [1, 2).

Following now the same argument of subsection 3.3, we define the filtration

F̂ε,t :=σ{ϕ̂ε(s), Îε(s), Ŵε(s) : s ∈ [0, t]}, t ∈ [0, T],

and infer that

Îε(t) =
∫ t

0
Gε(ϕ̂ε(s))dŴε(s) ∀ t ∈ [0, T].

Following again subsection 3.3, thanks to the strong convergences of ϕ̂ε → ϕ̂ and Gε(ϕ̂ε) →
G(ϕ̂) proved above, we deduce that, possibly enlarging the probability space (Ω̂, F̂, P̂), there
is a saturated and right-continuous filtration (F̂t)t∈[0,T] such that Ŵ is a cylindrical Wiener
process on the stochastic basis (Ω̂, F̂, (F̂t)t∈[0,T], P̂) and

Î(t) =
∫ t

0
G(ϕ̂(s)) dŴ(s) ∀ t ∈ [0, T].
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Passing to the weak limit as ε→ 0 yields then, for every v ∈ V1,

∫
O
ϕ̂(t, x)v(x) dx +

∫
Qt

η̂(s, x) · ∇v(x) dx ds

=

∫
O
ϕ0(x)v(x) dx +

∫
O

(∫ t

0
G(ϕ̂(s)) dŴ(s)

)
(x)v(x) dx

(4.11)

P̂-almost surely, for every t ∈ [0, T]. It only remains to identify the limit η̂.
Let us show that, for every ζ ∈ L∞(0, T; V1 ∩ Ld(O)), it holds

∫
Q
η̂(s, x) · ζ(s, x) dx ds =

∫
Q
Δϕ̂(s, x) div [mε(ϕ̂(s, x))ζ(s, x)] dx ds

+

∫
Q

m(ϕ̂(s, x))F′′(ϕ̂(s, x))∇ϕ̂(s, x) · ζ(s, x) dx ds

P̂− a.s..

(4.12)

First of all, note that all the terms in (4.12) are well defined. Indeed, by boundedness of mε we
have mε(ϕ̂ε)ζ ∈ L∞(0, T; Hd), and recalling that V1 ↪→ L

2d
d−2 (O) and d−2

2d + 1
d = 1

2 , by Hölder
inequality

div [mε(ϕ̂ε)ζ] = m′
ε(ϕ̂ε)∇ϕ̂ε · ζ + mε(ϕ̂ε) div ζ,

with

‖div [mε(ϕ̂ε)ζ]‖H � ‖m′
ε‖L∞(R)‖∇ϕ‖

L
2d

d−2
‖ζ‖Ld(O) + ‖mε‖L∞(R)‖div ζ‖H

� c‖m‖W1,∞(−1,1)

(
‖ϕ̂ε‖V2

‖ζ‖Ld(O) + ‖η‖V1

)
.

Hence div [mε(ϕ̂ε)ζ] ∈ L∞(0, T; H). Furthermore, the second term on the right-hand side is
also well defined since mεF′′

ε ∈ L∞(R).
By density, it is not restrictive to prove (4.12) for every ζ ∈ L∞(0, T; V2 ∩ H2m̄(O)), where

m̄ is such that H2m̄(O) ↪→ L∞(O). Since μ̂ε = −Δϕ̂ε + F′
ε(ϕ̂ε) and we have the regularity ϕ̂ε ∈

L2(0, T; V2 ∩ H3(O)), integration by parts yields

∫
Q

mε(ϕ̂ε(s, x))∇μ̂ε(s, x) · ζ(s, x) dx ds

= −
∫

Q
∇Δϕ̂ε(s, x) · mε(ϕ̂ε(s, x))ζ(s, x) dx ds

+

∫
Q

F′′
ε (ϕ̂ε(s, x))mε(ϕ̂ε(s, x))∇ϕ̂ε(s, x) · ζ(s, x) dx ds

=

∫
Q
Δϕ̂ε(s, x) div [mε(ϕ̂ε(s, x))ζ(s, x)] dx ds

+

∫
Q

F′′
ε (ϕ̂ε(s, x))mε(ϕ̂ε(s, x))∇ϕ̂ε(s, x) · ζ(s, x) dx ds

(4.13)
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so that we need to show that we can pass to the limit on the right-hand side. Let us start from
the first-term. This is of the form

Δϕ̂εm
′
ε(ϕ̂ε)∇ϕ̂ε · ζ +Δϕ̂εmε(ϕ̂ε) div ζ,

where

Δϕ̂ε ⇀ Δϕ̂ in L2(0, T; H) P̂− a.s. (4.14)

Since mε(ϕ̂ε) → m(ϕ̂) almost everywhere and |mε| � |m|, the dominated convergence theorem
yields that

mε(ϕ̂ε) → m(ϕ̂) in Lp(Q) P̂− a.s., ∀ p ∈ [2,+∞).

Since ζ ∈ L∞(0, T; H2m̄(O)) and H2m̄(O) ↪→ L∞(O), this implies in particular

mε(ϕ̂ε) div ζ → m(ϕ̂) div ζ in L2(0, T; H) P̂− a.s.. (4.15)

Moreover, since m′
ε = 0 on (−∞,−1 + ε) ∪ (1 − ε,+∞), we have that

m′
ε(ϕ̂ε) = m′(ϕ̂ε)1{|ϕ̂ε|�1−ε} → m′(ϕ̂) a.e. in Ω̂× Q,

hence also, thanks to the strong convergence ϕ̂ε → ϕ̂ in L2(0, T; V1), that

m′
ε(ϕ̂ε)∇ϕ̂ε → m′(ϕ̂)∇ϕ̂ a.e. in Q.

Noting also that

|m′
ε(ϕ̂ε)∇ϕ̂ε|2 � ‖m′‖L∞(−1,1)|∇ϕ̂ε|2

where the right-hand side is uniformly integrable Q (because it converges strongly in L1(Q)),
by Vitali’s generalized dominated convergence theorem we infer that

m′
ε(ϕ̂ε)∇ϕ̂ε → m′(ϕ̂)∇ϕ̂ in L2(Q) P̂− a.s.

Since ζ ∈ L∞(Q) by choice of m̄, this implies that

m′
ε(ϕ̂ε)∇ϕ̂ε · η → m′(ϕ̂)m′(ϕ̂)∇ϕ̂ · η in L2(0, T; H) P̂− a.s. (4.16)

Let us focus now on the second term on the right-hand side of (4.13). Note that since |ϕ̂| � 1
and ϕ̂ε → ϕ̂ almost everywhere in Q, we have that (see [40, pp 416–7])

mε(ϕ̂ε)F′′
ε (ϕ̂ε) → m(ϕ̂)F′′(ϕ̂) a.e. in Ω̂× Q.

Since also ∇ϕ̂ε →∇ϕ̂ almost everywhere in Q, recalling that |mεF′′
ε | � ‖mF′′‖C0([−1,1]) by D2,

the Vitali dominated convergence theorem yields again

mε(ϕ̂ε)F′′
ε (ϕ̂ε)∇ϕ̂ε → m(ϕ̂)F′′(ϕ̂)∇ϕ̂ in L2(0, T; H), P̂− a.s. (4.17)

Consequently, using (4.14)–(4.17) in (4.13) and letting ε→ 0, we obtain exactly the
variational formulation (4.12) for every ζ ∈ L∞(0, T; V2 ∩ H2m̄(O)). A classical density
argument yields then (4.12) for every ζ ∈ L∞(0, T; V1 ∩ Ld(O)). Finally, the variational
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formulation (2.6) follows then from (4.11) and (4.12) with the choice ζ = ∇v. The regularity
ϕ̂ ∈ C0

w([0, T]; L2(Ω̂; V1)) is a consequence of the regularity

ϕ̂ ∈ L∞(0, T; L2(Ω̂; V1)) ∩ C0 ([0, T]; L2(Ω; (V2 ∩ W1,d(O))∗),

obtained by comparison in (2.6).
The only thing that remains to be proved is the regularity of F(ϕ̂) and M(ϕ̂). Since we

have the convergence ϕ̂ε(t) → ϕ̂(t) almost everywhere in Ω̂×O, there is a measurable set
A0 ⊂ Ω̂×O (possibly depending on t) of full measure such that ϕ̂ε(t) → ϕ̂(t) pointwise in A0

for every t ∈ [0, T]. Let us show that

F1(ϕ̂(t)) � lim inf
ε→0

F1,ε(ϕ̂ε(t)) , M(ϕ̂(t)) � lim inf
ε→0

Mε(ϕ̂ε(t)) in A0 ∀ t ∈ [0, T]. (4.18)

Indeed, since we already know that |ϕ̂| � 1, for every (ω̂, x) ∈ A0 it holds either |ϕ̂(ω̂, t, x)| < 1
or |ϕ̂(ω̂, t, x)| = 1. In the former case, since ϕ̂ε(ω̂, t, x) → ϕ̂(ω̂, t, x), we have |ϕ̂ε(ω̂, t, x)| < 1
for ε small enough, hence also F1,ε(ϕ̂ε(ω̂, t, x)) = F(ϕ̂ε(ω̂, t, x)) and Mε(ϕ̂ε(ω̂, t, x)) =
M(ϕ̂ε(ω̂, t, x)) for ε small enough, from which (4.18) follows by continuity of F1 and M in
(−1, 1). In the latter case, it holds either ϕ̂(ω̂, t, x) = 1 or ϕ̂(ω̂, t, x) = −1. In the first possibility,
for ε small we have by definition of F1,ε

F1,ε(ϕ̂ε(ω̂, t, x)) � min{F1(ϕ̂ε(ω̂, t, x)), F1(1 − ε)}→ L,

where L := limr→1− F1(r) ∈ [0,+∞] is well defined by monotonicity of F1. If L = +∞, then
by comparison we deduce that F1,ε(ϕ̂ε(ω̂, t, x)) →+∞, so that (4.18) holds automatically. If
L < +∞, then F1 can be extended by continuity in 1, and the inequality gives

lim inf
ε→0

F1,ε(ϕ̂ε(ω̂, t, x)) � L = F1(1) = F1(ϕ̂(ω̂, t, x)),

so that (4.18) still holds. The argument for the point −1 and the function M is exactly the same,
and (4.18) is proved. Finally, the inequalities (4.4), (4.8), and (4.18), together with the Fatou’s
lemma, yield the desired assertion. This completes the proof of theorem 2.7.
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[36] Deugoué G and Medjo T T 2018 The exponential behavior of a stochastic globally modified
Cahn–Hilliard–Navier–Stokes model with multiplicative noise J. Math. Anal. Appl. 460 140–63

[37] Deugoue G and Medjo T T 2020 Large deviation for a 2D Cahn–Hilliard–Navier–Stokes model
under random influences J. Math. Anal. Appl. 486 123863

[38] Edwards R E 1965 Functional Analysis. Theory and Applications (New York: Holt, Rinehart &
Winston)
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