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Multimodal imaging is an active branch of research
as it has the potential to improve common medical
imaging techniques. Diffuse optical tomography
(DOT) is an example of a low resolution, functional
imaging modality that typically has very low
resolution due to the ill-posedness of its underlying
inverse problem. Combining the functional
information of DOT with a high resolution structural
imaging modality has been studied widely. In
particular, the combination of DOT with ultrasound
(US) could serve as a useful tool for clinicians for the
formulation of accurate diagnosis of breast lesions. In
this paper, we propose a novel method for US-guided
DOT reconstruction using a portable time-domain
measurement system. B-mode US imaging is used
to retrieve morphological information on the probed
tissues by means of a semi-automatical segmentation
procedure based on active contour fitting. A two-
dimensional to three-dimensional extrapolation
procedure, based on the concept of distance transform,
is then applied to generate a three-dimensional edge-
weighting prior for the regularization of DOT.
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The reconstruction procedure has been tested on experimental data obtained on specifically
designed dual-modality silicon phantoms. Results show a substantial quantification
improvement upon the application of the implemented technique.

This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’.

1. Introduction
Diffuse optical tomography (DOT) is a medical imaging technique based on the injection and
collection of near infrared and visible light in tissue [1]. Recent progress in this technology
has seen significant advances in developing miniaturized devices at low cost [2,3]. However,
clinical uptake of this modality has been limited by the low resolution, artefacts and high
noise in the reconstructed images, which is a consequence of the severe ill-posedness of the
inverse problem. Despite these drawbacks, DOT is still an active and growing branch of research
worldwide because of its non-invasiveness and cost-effectiveness with respect to other commonly
used imaging techniques [4]. Moreover, the spectral nature of DOT admits a spectroscopic
and therefore functional analysis of soft tissues that is crucial for clinical diagnosis [5–8]. A
leading application for DOT is in breast cancer diagnosis [9]. Nowadays, commonly used
imaging protocols for this application are computed tomography (CT), magnetic resonance
imaging (MRI) and ultrasound (US) imaging. Of these, US imaging is regarded as the state of
the art and the main tool for breast cancer screening. It is an established imaging technique
and benefiting from cost-effectiveness, non-invasiveness and a sensitivity close to 100%. The
high resolution of US B-mode images leads to clinical diagnosis based on detecting anomalous
morphology [10]. Additionally, shear wave elastography (SWE) and colour Doppler ultrasound
(CDU) give relevant insight on the presence of collagen and on oxygenation [11]. Nevertheless,
the specificity of US imaging is around 80% [12], and, consequently, patients need to go through
expensive and often invasive medical exams for a confirmatory diagnosis [13]. Thus, adopting
DOT as a suitable complementary technique, e.g. in a multi-modal probe [14], could lead to
significant economical and clinical benefits. The interest in multimodality imaging is advancing
with the ever increasing progress in systems and reconstruction techniques [15,16]. The idea of
combining DOT with a higher resolution, well-posed, structural imaging modality was suggested
early in the development of the field [17,18], and the availability of more than one modality in a
single probe naturally leads to the question of how to best combine them rather than just treating
them separately [19–21]. In particular the combination of DOT with ultrasound (US) has shown
promising results, especially in regard to breast cancer diagnosis [18,22–24]. At the same time,
the combination of optical and acoustic measurements has led to several coupled physics imaging
modalities such as photoacoustic tomography (PAT) [25] and ultrasound modulated optical
tomography (UMOT) [26]. These methods are so named because the measurement involves the
cross-generation of one type of wave from another [27]. Efforts have been spent in designing
new dual probes [9,28] and in characterizing tumours also by their reconstructed absorption
as a means to better classify them and predict their reactions to therapy [29–32]. In this paper,
we describe the study of a combined US-DOT set-up based on the time-domain probe being
developed by the SOLUS consortium [33]. We give a short introduction to the main mathematical
methods of time-domain DOT as well as on previous applications of US imaging as a prior. After
presenting a method for the extraction of relevant information from US B-mode images and their
application to generate structural priors for optical reconstruction, we show its applicability on
experimental data gathered from specifically developed silicone phantoms.

2. Image reconstruction in diffuse optical tomography
DOT is an example of a parameter identification inverse problem where the reconstructed
images represent coefficients of a forward model of photon propagation [34,35]. A variety of
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forward models is possible, of differing complexity, that can account for different aspects of
photon behaviour such as directionality, polarization, time-of-flight, etc. [36]. In this paper, we
consider a simple model viz. the time-dependent diffusion equation: let Ω be the domain under
consideration, with surface ∂Ω ; then the photon density (fluence, Φ) is given by

1
v

∂Φ(r, t)
∂t

− ∇ · κ∇Φ(r, t) + μaΦ(r, t) = q(r, t) (r, t) ∈ Ω × (0, T], (2.1)

together with appropriate initial and boundary conditions, and where q is a source term, v is
the speed of light, μa is the absorption coefficient and κ the diffusion coefficient, which is equal
to (3μ′

s)−1, where μ′
s is the reduced scattering coefficient. This model admits explicit Green’s

function representation in several geometries; in particular, the three-dimensional infinite space
Green’s function

G(Φ)
∞ (r2, r1, t2, t1) := v√

(4πvκ(t2 − t1))3
e− |r2−r1 |2

4κv(t2−t1) e−μav(t2−t1), t2 > t1, (2.2)

from which other cases such as half-space and infinite slab geometries follow by the method of
images [37]. In the following, we will assume t1 = 0 unless otherwise stated and use the notation
G(r2, r1, t). Note that this form of Green’s function is formally equivalent to solving equation (2.1)
with the source q(r, t) to be a delta function in time and space. The response for an experimental
system can be modelled by convolving this function with the actual source function with a
finite breadth in space and time. We consider NQ source positions qj ∈ ∂Ω (j = 1 · · · NQ) and Mj
measurement positions ri ∈ ∂Ω (i = 1 · · · Mj) for each source j. The forward problem is nonlinear
and is represented by

Fj,i : {μa, κ} → Φj(ri, t) ron ∂Ω . (2.3)

The objective function, under the hypothesis of a Gaussian noise, is defined as

E(μa, κ) = 1
2

NQ∑
j=1

Mj∑
i=1

NTW∑
k=1

(∫Tk+1
Tk

yj,i(t) − Fj,i(t, μa, κ)dt
)2

∫Tk+1
Tk

σ 2
j,i(t)dt

, (2.4)

where yj,i(t) is the time-resolved data for the ith measurement from source j with standard
deviation σj,i(t) and NTW is a number of temporal windows adopted for ease of computation.

(a) Linear inversion method
In this paper, we take a simple linear inversion approach for image reconstruction

y(r, t) = y0(r, t) + yδ(r, t) � F(t, μa,0, κ0) + J

(
δμa

δκ

)
, (2.5)

where J is the Jacobian of F obtained for a reference set of optical coefficients μa,0 and κ0. As
discussed in [34], the perturbation yδ of the boundary measurement y due to a perturbation δμa(r′)
and δκ(r′) in Ω is given by the Born approximation

yδ(r, t) = −
∫∞

−∞

∫
Ω

δμa
(
r′) G(y) (r, r′, t′

)
Φ

(
r′, q, t − t′

)
dr′dt′

−
∫∞

−∞

∫
Ω

δκ
(
r′)∇′G(y) (r, r′, t′

) · ∇′Φ
(
r′, q, t − t′

)
dr′dt′, (2.6)

where G(y)(r, r′, t′) is the Green function for a detector placed at the position r ∈ ∂Ω , due to a delta-
like source in r′ ∈ Ω at the time t′ and Φ(r′, q, t − t′) is the Green function for a detector in r′ due
to a delta-like source at q ∈ ∂Ω at the time t − t′. Owing to a reciprocity relation [34,38], it is valid
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that
G(y) (r, r′, t′

) = Φ
(
r′, r, t′

)
(2.7)

which allows the computation of G(y) simply by placing a source at the position of the detector.
We observe that equation (2.6) is based on two time convolutions which are typically computed
by multiplication in the Fourier domain. Moreover, after this operation, yδ(r, t) is binned into NTW
temporal windows to avoid computationally intractable matrices.

The above leads to the representation of the Jacobian J as⎛
⎜⎜⎜⎜⎝

b1
b2
...

bNQ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

J1,(μa) J1,(κ)
J2,(μa) J2,(κ)

...
...

JNQ,(μa) JNQ,(κ)

⎞
⎟⎟⎟⎟⎠

(
δμa

δκ

)
. (2.8)

The blocks are expressed as follows:

bj =

⎛
⎜⎜⎜⎜⎜⎝

yδ
j,1

yδ
j,2
...

yδ
j,Mj

⎞
⎟⎟⎟⎟⎟⎠ , Jj,(μa) =

⎛
⎜⎜⎜⎜⎝

G1 ∗ Φj
G2 ∗ Φj

...
GMj ∗ Φj

⎞
⎟⎟⎟⎟⎠ , Jj,(κ) =

⎛
⎜⎜⎜⎜⎝

∇G1 ∗ ∇Φj
∇G2 ∗ ∇Φj

...
∇GMj ∗ ∇Φj

⎞
⎟⎟⎟⎟⎠ . (2.9)

where each element is a column vector of length NTW. Thus, the final resulting Jacobian is a matrix
having NQ × Mj × NTW rows and 2N columns where N is number of voxels in the computational
grid.

(b) Ultrasound imaging and its role as a prior
US B-mode imaging is a well-established technique in breast cancer diagnosis [10,39]. The
working principle is the propagation of acoustic waves through human tissues which are
described by a characteristic impedance [12]. Assuming the speed of an input acoustic wave
to be fixed to the one of water, acoustic pulses are sent through the medium. The reflection
phenomena in the tissues cause echoes to be recorded by a receiver. The time delays between
the input wave and the returning signals give an indication of the depth at which the reflection
occurred. Thus, when a change of impedance along the propagation direction of the wave is
measured, a bright spot at a given depth can be drawn. A serial acquisition of such signals
over a plane results in an B-mode image. Nowadays, there is also the possibility of acquiring
information from three-dimensional portions of human tissues [40]; however, the majority of US
probes used in clinical settings are designed to image planes rather than volumes. Over the last
decades, medical imaging through multi-modal acquisition has seen a rising interest because of
its potential in overcoming the limitations of a single technique approach. The high resolution of
US imaging has made it a natural choice to furnish complementary prior information to apply
in DOT reconstructions, which are affected by a low space resolution and by uncertainty both
in the localization of breast lesions as well as in the evaluation of its components [18]. Image
reconstruction in DOT, considered as an inverse problem, is severely ill-posed and calls for the use
of regularization techniques. An established approach for this is to augment the objective function
in equation (2.4) with a penalty term, Ẽ = E + αR, which is designed to control the propagation of
noise in the images and/or to enhance desirable features and α is a scaling term controlling the
effect of the regularization. Regularization techniques are typically based on global descriptors
such as the overall magnitude of the reconstructed images and/or image features such as edges
and can be expressed in simple mathematical expressions such as zero- and first-order Tikhonov
functionals [41]. When considering how to make use of an auxiliary modality such as the US
data we are employing here, we need to design the penalty term appropriately. For a general
overview of regularization strategies in multimodality imaging see [42] and the references therein.
For applications of these methods in US-DOT, strategies differ between those that group pixels
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to impose a lower dimension in the space being solved in the problem specified in equation (2.8),
and those keeping a uniform resolution and imposing an image-based prior. In the dual-mesh
approach [43], the prior information on the precise localization of breast inclusions given by the
US is used to define a region of interest (ROI) in the computational grid with a finer mesh and
a background with larger grid points. The total number of parameters of the inverse problem
is thus reduced with a consequent gain of contrast in the reconstructed images. Based on this
technique, a combined US-DOT probe with a three-dimensional US array [28] was used to retrieve
a three-dimensional ROI. The difficulty in deriving a three-dimensional structure of a lesion
from US measurements led to methods with constraints on the ROI search space [14]. Here, an
ellipsoidal inclusion is assumed for a first reconstruction based on the dual-mesh approach. A
second step is then aimed at refining the retrieved inclusion by perturbing its centre and radii
and selecting the most appropriate combination. Mostafa et al. [44] proposed to select the ROI
of the ultrasound based on the results of a semi-automatic segmentation with a threshold-based
method. The segmentation is shown to perform well on US images characterized by high contrast.
However, the ROI was selected on the basis of the maximum elongation of the inclusion in the
US imaging plane thus losing part of the information recovered in the segmentation. An imaging
based prior was applied to combined US-DOT measurements in [45]. Several US B-mode scans
were used as a reference image to directly generate a regularization matrix based on its intensity
thus avoiding the explicit segmentation of the images. However, US images of breast lesions are
characterized by high variability and artefacts such as shadowing. This poses some challenges to
an extensive use of the method. Moreover, arrays of US images might not available during clinical
exams. In this paper, we make use of a semi-automatic segmentation of the target region (i.e. a
breast lesion) and derive a weighted edge penalty given by

R(x; U) =
∫
Ω

γ (U)|∇x|2dr, (2.10)

where x represents μa or κ and γ (U) ∈ [0, 1] is a function that tends to zero at the locations
of identifiable edges in U and tends to 1 in regions that do not contain significant structural
information. We remark that the form of regularization in equation (2.10) leads to an
interpretation of its derivative as a form of anisotropic filtering [46,47]. To impose the (approximate)
segmentation, we choose

γ = exp
[
−|∇χ |

β

]
, (2.11)

where χ is derived from a two-dimensional US image UP via a process of two-dimensional curve
fitting and extrapolation to three dimensions and β is a threshold parameter; here P specifies the
plane in which the US images is taken. The detailed extraction procedure to derive χ from UP is
described in §3. Combining equations (2.4), (2.5) and (2.10) leads to the inverse problem as the
minimization of the following objective problem:∥∥∥∥∥

(
SJ

α1/2L

)(
δμa

δκ

)
−

(
Sb
0

)∥∥∥∥∥
2

→ min, (2.12)

where S is a diagonal matrix of the inverse standard deviations of each measurement 1/σj,i and
L is a matrix decomposition chosen so that

〈
f, LTLf

〉 ≡R(f ) for f ∈ [δμa, δκ]. We use LSQR to solve
equation (2.12).

(c) Phantoms
Joint US-DOT heterogeneous phantoms were specifically developed by the SOLUS consortium
for this study and for future experimental validation of the multimodal probe. Their detailed
description can be found in [48]. Solid materials were preferred to obtain stable and durable
phantoms. In particular, an echogenic contrast for US investigations between bulk and
perturbation phantoms was obtained thanks to the combination of two different silicones:
the Ecoflex 00-30 (Smooth-On, Inc. PA, USA) silicone rubber (used for the bulk, i.e. a
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rectangular parallelepiped featuring a 100 × 120 mm2 surface and a 40 mm thickness) and the
Sylgard S184 (Dow Corning Corp. CA, USA) silicone elastomer (used for perturbations, i.e.
cylinders with volumes of 1 cm3—11 mm diameter, 10 mm height—or 6 cm3—22 mm diameter,
15 mm height). Since echogenicity in Sylgard S184 is lower than in Ecoflex 00-30, their
combination allowed us to simulate anechoic lesions inside echogenic tissues. The bulk phantom
had on one surface two cylindrical cavities (volume of 1 cm3 and 6 cm3) where perturbations
of equivalent volume can be inserted. Three slices (with thicknesses of 5, 15 or 25 mm) made
of the same material as the bulk can be used to cover perturbations so as to simulate different
depths of the lesion inside the tissue. Both bulk and perturbation phantoms were fabricated with
different optical properties by adding different calibrated (at 690 nm wavelength) quantities of
titanium (IV) oxide powder (Sigma Aldrich, USA) as a scattering element and toner powder
(Infotec, Toner Black 46/l) as absorber, thus permitting an almost flat absorption coefficient
over a broad spectral range. It is worth noting that the recipe was validated demonstrating
the independence between acoustic properties and the concentration of absorbers and scatterers
(in the concentrations of interest for this study) [48]. Here, a bulk phantom with (nominally)
μ′

s = 1 mm−1 and μa = 0.01 mm−1 was used, with a top slice of 5 mm thickness (featuring same
optical properties as the bulk) covering a 1 cm3 perturbation with (nominally) μ′

s = 1 mm−1 and
μa = 0.005, 0.01, 0.02, 0.04 or 0.06 mm−1. For the sake of the present study, US measurements were
taken using an SL18-5 US probe connected to an Aixplorer v.11 system (Supersonic Imagine S.A.,
France) operated with customized settings (optimized for imaging into silicone phantoms, e.g.
transmit and receive demodulation frequency = 5 MHz, voltage = 72 V, 2 half cycles, speed of
sound set to 980 m s−1). DOT measurements presented here were taken using a time-resolved
diffuse spectroscopy laboratory research prototype [49] in a scanning fashion. The instrumental
response function, taking into account the finite width of the light source, and other possible
broadening factors, such as fibre temporal dispersion, detector response, etc., is used in the
generation of the Jacobian by convolution with equation (2.6). Both source and detection fibres
were manually switched between 8 different locations (holes into a black polyvinyl chloride
plate placed on top of the phantom), thus resulting into a single DOT acquisition composed
by 64 source-detector pairs. The eight locations were chosen so as to replicate the SOLUS probe
geometry [11] (characterized by 8 DOT acquisition points around the US transducer). In detail, the
acquisition geometry was composed by two lines of four measurement points each. Measurement
points on the same line are at an intermediate distance of 12 mm, while the two lines are separated
by 20 mm. A schematic of the acquisition geometry can be found in figure 1. Each assembled
phantom was probed over eight wavelengths of 635, 670, 830, 915, 940, 980, 1030 and 1065 nm.
The measurements were performed in time-domain and normalized by area.

3. Generating a structural prior

(a) Segmentation using snakes
In order to identify semi-automatically the region where an inclusion is present in a Ultrasound
B-mode image UP, a Snake-based method was implemented [50]: given some user-defined control

points
{

p(0)
i; i = 1 . . . N

}
close to the edges of the inclusion, an active contour fitting procedure

finds an optimal set
{
p∗

i; i = 1 . . . N
}

whose cubic spline interpolation CP(s) approximates the
border of the lesion. An appropriate energy term E was defined as the sum of two contributions

E(CP) =
∫ 1

0
Eint(CP(s)) + Eim,σ (CP(s))ds, (3.1)

and minimized. The first contribution Eint is related to the internal energy of CP(s) is given by

Eint = 1
2

⎛
⎝a(s)

∣∣∣∣ d
ds

CP(s)
∣∣∣∣2 + b(s)

∣∣∣∣∣ d2

ds2 CP(s)

∣∣∣∣∣
2
⎞
⎠ , (3.2)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

ul
y 

20
21

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200195

................................................................

US transducer
optodes

X

Y

Z

Figure 1. Schematic of measurements geometry. Detectors and sources are aligned in two rows parallel to the direction of the
US scan. The plane of US imagingP is set to be at y = 0. The plane z = 0 identifies the surface of the domain. (Online version
in colour.)

where the choice of a and b affects the appearance of CP(s) such as the presence of corners.
The term Eim,σ in the second contribution of equation (3.1) takes into account the characteristic
features of UP. The characteristics of US B-mode images allow to look for inclusions’ borders
where a smoothed version of the Laplacian

ULap
Pσ

= Gσ (r) ∗ ∇2UP(r) (3.3)

is small enough, with Gσ (r) = Ae−(|r|2/2σ 2). In these settings, a characteristic function is defined so
that

χPUP,σ ,10% =
⎧⎨
⎩1 if ULap

Pσ
< P10%

(∣∣∣ULap
Pσ

∣∣∣)
0 otherwise

; Eim,σ = DT
(
χPUP,10%

)2 , (3.4)

where P10% represents the percentile value of the first 10% pixels with lowest values and the
threshold of 10% was chosen empirically. The application of the square of the distance transform
(DT) (DT) [51,52] on χPU,10% furnishes a potential which is minimum along the relevant features
of the lesion and quadratically increasing with the distance from them. This is valid defining DT
on the Euclidean distance from the zero pixels of U. A faster and more robust convergence, has
been obtained by using two further expediences. With a small change in the procedure, the user is
asked to select the points close to the borders of the inclusion and on its internal side. An additional
term can then be added to Eim so that

Eim,σ = DT
(
χPU,10%

)2 + DT
(
χP

(0)
)2

, (3.5)

where DT(χP
(0))2 acts as a repulsive term from the user-selected area, thus avoiding local

minima due to the most internal structures of the lesion. A snake segmentation is then found
by minimizing equation (3.1) with respect to the control points, i.e.{

p∗
i
} = argmin

{pi}
E (

Spline
({

pi
}))

i = 1 . . . N. (3.6)

A solution suggested in [53] introduces a parallel minimization in scale-space [54] so that
the minimization is not totally affected by the choice of a single σ . In this scenario, a set of
{σk; k = 1 . . . Nσ } is chosen and minimization of E is operated for each predefined smoothing from
the largest σmax to the smallest one σmin. A characteristic length r̂ = ‖DT(χ (0))‖∞ was defined. The
set {σk; k = 1 . . . Nσ } of Nσ evenly spaced σ was defined between σmax = 0.7r̂ and σmin = 0.15r̂. The
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Algorithm 1 . Active contour fitting for breast lesions segmentation: minimization in scale-space

1: Manually select
{

p(0)
i; i = 1 . . . N

}
;

2: Calculate initial contour CP
(0)(s) and derive χ

(0)
P

by spline interpolation;
3: for k = 1 → Nσ do
4: Compute Snake Energy by means of Eq. (3.1) with (3.5) and σk;
5: Find

{
p∗

i; i = 1 . . . N
}

using (3.6);
6: Set

{
p∗

i; i = 1 . . . N
}

as new initial guess;
7: end for
8: Calculate final contour CP

∗(s) by spline interpolation.

final process is given in Algorithm 1. The internal energy parameters a = 0 and b = 1 were chosen.
Nσ was set to be 15. In figure 2, a segmentation example obtained with described method is
shown. In figure 3, we show the result of the application of the segmentation procedure to an
image U taken on one of the bi-modal phantoms developed at Politecnico di Milano.

(b) Extrapolation to three dimensions
In order to apply a structural prior as defined in equations (2.10) and (2.11), a three-dimensional
characteristic volume χ needs to be extrapolated from the segmentation χP of UP. For this reason,
an operator T is defined such that

χ = TχP. (3.7)

Finding a form for T is not possible without some strong and mostly qualitative assumptions.
Here, we present a possible implementation which, as for the snake implementation, makes use
of the concept of the DT. The basic idea is to assume that the clinician guiding the US acquisition
has selected the slice with the maximal cross-sectional area of the lesion and that the out-of-plane
extension of the lesion diminishes smoothly. In order to implement such conditions, a height
function yext(x, z) was defined over the plane {(x, z) ∈ P}. This is designed to control the extension
of the inclusion out of the US imaging plane P by extrapolating a smooth shape. Thus:

yext(x, z) = c
√

2 DT (χP) (x, z)‖DT (χP) ‖∞ − DT (χP)2

with (3.8)

c =
√

A
π

‖DT (χP)‖∞

where A is the area of the inclusion χP so that c, in the absence of statistical insight on the
distribution of the lesions’ shape, ensures that the out-of-plane extrusion is never bigger than
the radius of the sphere whose middle section has the same area of the inclusion portrayed in χP.
The extrusion operator will finally read as

χ (x, y, z) = TDTχP(x, z) =
{

1 y2 < y2
ext(x, z)

0 elsewhere.
(3.9)

An example of a shape retrieved upon the application of TDT on the final segmentation in
figure 2b, can be seen in figure 4a. Results of the final extrapolation procedure on the segmentation
shown in figure 3 are shown in figure 4b. A validation for TDT proves to be complex. An
assessment can be made on its effect as a prior in optical reconstructions.

4. Results
A validation of the optical reconstruction on phantoms was performed by experimentally
reproducing the measurements geometry that is designed for the SOLUS project [11] by making
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(a) (b) (c)

(g) (h) (i)

( j) (k) (l)

(d) (e) ( f )

Figure 2. Example of application of semi-automatic segmentation as in Algorithm 1 on US image of breast lesion, courtesy of
Ospedale San Raffaele, Milano, Italy. The characteristic length for themultiscale snakewas found to be r̂ = 75 pixels. The initial
segmentation was obtained with the spline interpolation of 10 points. From figure 2d to f, a subset of ULap

Pσ
is displayed. The

features identified inUP are shown to be refined asσ decreases. However, also internal structures are highlighted in the process.
The same behaviour, with a clear focus on the local minima of the potentials, can be observed from figure 2g,iwhich shows the
respective DT(ULap

Pσ
)2. The addition of DT(χP

0)2 in figure 2c acts then as a repulsive term towards the local minima inside the
initial segmentation. From figure 2j to l, the full function Eim is shown. Figure 2b shows in detail the improvement brought
in the segmentation from our snake-based method. (a) Original Image UP, (b) blue: χP

(0), green: final segmentation χP,
(c) DT(χP

(0))2, (d) χPU,σ1 ,10%, (e) χPU,σ8 ,10%, (f ) χPU,σ15 ,10%, (g) DT(χPU,σ15 ,10%)
2, (h) DT(χPU,σ8 ,10%)

2, (i) DT(χPU,σ15 ,10%)
2, (j)

Eim,σ1 , (k) Eim,σ8 and (l) Eim,σ15 . (Online version in colour.)
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Figure 3. Application of semi-automatic segmentation on US images taken on bimodal phantoms, courtesy of Supersonic
Image, Aix-en-Provence, France. (a) Original image, (b) blue:χ (0)

P
, green: Final segmentationχP. (Online version in colour.)
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Figure 4. Three-dimensional rendering of the result of the extrapolation performed as described in §3b onχP of figure 2 (a)
and of figure 3 (b). (a) Extrapolated inclusion χ from χP shown in figure 2b. (b) Extrapolated inclusion χ from χP shown in
figure 3. The volume ofχP is 736 mm3. The experimental cylindrical inclusion had volume of approximately 950 mm3.

use of specifically designed phantoms described in 2c. A reference measurement y(0)
ref(r, t) was

obtained on the sole bulk, so that the linearization in equation (2.5) reads as

y(r, t) � y(0)
ref(r, t) + J

(
δμa

δκ

)
. (4.1)

The analytical model was chosen for linearization. Supposing the optical coefficients of the bulk
to be known, the Jacobian was built following the discussion in §3a. The reference values of
the homogeneous optical coefficients κ0 and μa,0 were assumed to be equal to those in the
bulk. The experimental time point spread functions were sampled with a total NTW = 20 equally
spaced time windows in a manually selected temporal ROI. The reconstruction domain Ω was
a cuboid of 64 mm × 58 mm × 32 mm, discretized with cubic voxels of side 2 mm. We compared
results with regularization using (i) zeroth-order Tikhonov prior, (ii) edge-weighted prior given
by equation (2.10) with the recovered shape using the method of §3. In figure 5 and figure 6,
two examples of absorption reconstruction with zeroth-order Tikhonov and with edge-weighting
prior are shown. In table 1, more detailed results are given for the examples displayed. It
can be seen that the proposed method improves quantification of the optical properties of the
inclusion with respect to zeroth-order Tikhonov regularization. This statement holds true also
when considering the integral value of the reconstructed δμa,in over the region of the inclusion.
However, in the case of figure 6 an important discrepancy may be observed between ground truth
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Figure 5. Results for λ = 830 nm. μtrue
a,bulk = 0.0075 mm−1, μtrue

a,in = 0.0037 mm−1. (a) Left: absorption reconstruction
(mm−1) obtained with zeroth-order Tikhonov regularization. Right: volume of the inclusion retrieved with DOT. (b) Left:
absorption reconstruction (mm−1) with edge-weighting prior obtained as described in §3. Right: volume of the inclusion
retrieved with DOT. (Online version in colour.)

and reconstructions. This can be partly explained by the inadequacy of the Born approximation in
describing situations characterized by high optical contrasts. Also the localization of the inclusion,
especially with regard to its elongation, is enhanced by the use of the proposed edge-weighting
prior. We also tested using the edge-weighted prior and the exact three-dimensional shape
(figures not shown); no particular quantification improvements were found with the exact shape,
suggesting that the approximate shape-recovery method is adequate for providing quantitative
estimates of the optical properties.
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Figure 6. Results. μtrue
a,bulk = 0.0075 mm−1, μtrue

a,in = 0.0285 mm−1. (a) Left: absorption reconstruction (mm−1) with zeroth
order Tikhonov regularization. Right: volume of the inclusion retrieved with DOT. (b) Left: absorption reconstruction (mm−1)
with edge-weighting prior obtained as described in §3. Right: volume of the inclusion retrieved with DOT. (Online version in
colour.)

5. Discussion
For a systematic analysis of the results, each reconstructed inclusion was assumed to be localized
in the region ω defined as

ω :=
{

r s.t.

∣∣∣∣∣μ
recon
a (r) − median

[
μrecon

a (r)
]

std
[
μrecon

a (r)
]

∣∣∣∣∣ > 4

}
. (5.1)
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Figure 7. Plot of reconstructed value of the inclusions over thenominal values of the contrast. Crosses indicate the reconstructed
values of the inclusion with edge-regularizing prior based on TDT. Circles are the contrast reconstructed with zeroth-order
Tikhonov regularization. (Online version in colour.)

Table 1. Table of results for the examples shown in figures 5 and 6. Comparison, for ground truth, reconstructed absorption
with zeroth-order Tikhonov regularization and edge-weighting prior, the mean value of the absorption inside the inclusion,
the integral of the reconstructed δμa,in in the region of the inclusion, the centre of mass of the inclusion along x, y and z, the
displacement d between the centre of mass of the ground truth and of the reconstructed inclusions, its maximum elongations
�x,�y and�z in the computational grid.

Fig. δμa,in
∫

ω
δμa,indr x y z d �x �y �z

(×10−3 mm−1) (mm2) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

true 5 −3.8 −3.97 0 0 10 0 12 10 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 21.04 22.2 0 0 10 0 12 10 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tikh. 5 −0.6 −1.5 −0.3 −1.3 8.3 2.2 14 24 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.84 2.22 −1.2 −1.6 8.6 2.4 16 26 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R(x;χ ) 5 −3.38 −2.81 0.5 −0.6 10.1 0.8 12 12 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 4.87 4.01 0.2 −0.6 9.5 0.8 12 12 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The representative absorption value in the inclusion was then set to be μrecon
a,in = mean[μrecon

a (ω)]
while the reconstructed value in the bulk μrecon

a,bulk = mean[μrecon
a (Ω\ω)] . From the right-hand

side of figures 5 and 6, it can be seen that localization of the inclusion is improved with
the application our structural prior, as expected. In figure 7, an overview of the quality of
the reconstructions with and without DT-based structural prior is given. On the abscissa,
the set of the absorption nominal contrast of the probed phantoms as NC = μtrue

a,in /μtrue
a,bulk

for all wavelengths is displayed, while the ordinates show the mean reconstructed contrast
RC = μrecon

a,in /μrecon
a,bulk in the case of the application of a zeroth-order Tikhonov regularization

(circles) and of the structural prior (crosses). An optimal reconstruction would see the scatter
points lying along the bisector of the axes’ origin. While able to reconstruct the sign of
the perturbation correctly, Tikhonov regularization is far from ideal for what regards its
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intensity. A sensible improvement can be observed when applying a structural prior as the one
described in §3.

6. Conclusion
We introduced a method for the application of structural priors coming from US imaging to
DOT. A semi-automatic segmentation procedure was shown to be able to extract the region of
an inclusion from an ultrasound image. A further step based on the concept of DT is then applied
to the retrieved segmentation to extrapolate a three-dimensional shape. Such procedure is not
expected to accurately represent any three-dimensional lesion, but its use allows to regularize the
problem of DOT, with benefits for localization and quantification consequently. The method was
assessed by means of experimental data taken of specifically designed phantoms. The application
of an edge-prior obtained by means of the devised strategy shows to improve the quantification of
DOT reconstructions with respect to plain global regularizations such as zeroth order Tikhonov.
Finally, it is shown that quantification is improved systematically for a wide range of optical
contrasts between bulk and inclusion.
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