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Abstract
New items, also called cold-start items, are introduced every day in the catalogs of 
numerous online systems. Due to the absence of previous preferences, recommend-
ing these items is difficult but important task for a recommender system. For this 
reason, the item cold-start recommendation problem still represents an interesting 
research topic for the community. In this work, we propose Neural Feature Com-
biner (NFC), a novel deep learning, item-based approach for cold-start item recom-
mendation. The model learns to map the content features of the items into a low-
dimensional hybrid embedding space. The features that compose the embeddings 
are then combined in order to reproduce collaborative item similarity values. We 
compare NFC with three variants of the same model that learn from user feedback, 
showing the advantages of learning from similarities in terms of accuracy and con-
vergence time. With an extensive set of experiments on four datasets, we show that 
NFC outperforms several cutting edge approaches in the top-n recommendation 
task of cold-start items. Results in extremely cold (i.e., with a very low amount of 
interactions for training) and cold-warm hybrid scenarios prove that NFC effectively 
exploits collaborative information, leading to state-of-the-art accuracy. We finally 
conduct a qualitative analysis of the embeddings generated by different models, and 
we provide an analysis of the importance that different models assign to the input 
features, empirically demonstrating the robustness of the hybrid representations pro-
duced by our new model.
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1  Introduction

New items are daily introduced in the catalogs of a number of online systems. Rec-
ommending these items is a non-trivial task of high interest, due to its relevance in 
the industrial environment. In this scenario, the absence of user feedback prevents 
recommender systems from producing recommendations based on the commonali-
ties between the usage patterns of different users, known as collaborative informa-
tion. Consequently, recommenders are forced to exploit alternative sources of infor-
mation about these new items, also called cold-start items, often represented by the 
attributes or features that describe them, known as content information. However, 
the accuracy of these techniques is strongly dependent on the quality of the avail-
able features, and it is usually not comparable with the performance of algorithms 
that take advantage of past interactions between users and items (Lops et al. 2011; 
Desrosiers and Karypis 2011).

In the last years, several approaches have been specifically designed to face the 
cold-start item recommendation problem. Most of them propose hybrid approaches 
that transduce collaborative information about warm items (i.e., items that received 
preferences from users) to new items, leveraging content information as a means, in 
order to enhance the accuracy in the cold-start scenario (Gantner et al. 2010; Barkan 
et al. 2019; Barjasteh et al. 2015; Volkovs et al. 2017; Sharma et al. 2015; Bernardis 
et  al. 2018; Saveski and Mantrach 2014; Elbadrawy and Karypis 2015; Wei et al. 
2017; Cella et  al. 2017; Dacrema et  al. 2018). The most simple methods provide 
solutions for feature weighting that assess the importance of each content feature 
depending on the relationships between content and collaborative information on 
warm items. Other more complex models learn to map item features into a hybrid, 
low-dimensional embedding space, to exploit also combinations of features, which 
can be crucial to improve the accuracy.

A family of recent feature weighting techniques proposes to learn feature weights 
extracting collaborative information from a collaborative item-based similarity 
matrix instead of user-item interactions directly (Dacrema et al. 2018; Cella et al. 
2017; Bernardis et al. 2018). Item similarity matrices based on collaborative infor-
mation express the similarity between two items according to their respective feed-
back patterns: a high similarity score indicates that most of the users that provided 
positive feedback for one of the two items also provided positive feedback for the 
other one. Dacrema et al. (2018) assert that using similarity values as learning tar-
gets has a number of advantages over learning directly from the user-item interac-
tions: similarity matrices are denser than user rating matrices; the item-based model 
used to generate the matrix can be chosen properly, depending on the characteristics 
required; the models are simpler and converge faster.

Inspired by this family of approaches, in this paper we propose a new item-
based, deep learning model for cold-start item recommendation called Neural Fea-
ture Combiner (NFC), that learns to reproduce a given collaborative item similarity 
matrix using only the content representations of the items. The model takes as input 
the content features of an item, maps them in a low-dimensional embedding space, 
and generates the similarity values between that item and all the warm items in the 
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dataset. Different from previous techniques, the deep learning architecture ena-
bles the exploitation of nonlinear combinations of features, and the structure of the 
model allows to weigh them differently, depending on the item the similarity refers 
to. Moreover, NFC is able to predict the similarities between a new, cold item and 
all the warm items leveraging only the content representation of the new one.

We also propose three variants of NFC that learn from user-item interactions 
directly, using different optimization techniques, in order to assess the differences 
between learning from similarities or user ratings. With extensive experiments over 
four datasets, we show that the main version which learns from collaborative simi-
larities largely outperforms the other variants in both accuracy and convergence 
time. We confront NFC with several baselines and state-of-the-art techniques for 
cold-start item recommendation, and we empirically demonstrate its superior rank-
ing capabilities. We perform a sensitivity analysis varying the number of interac-
tions available during the training process, and we report a comparative study in 
a cold-warm hybrid scenario similar to a real environment, showing the ability of 
NFC to effectively exploit collaborative information. Finally, we perform a qualita-
tive study of the embeddings on the Yahoo! Movies dataset, comparing the repre-
sentations provided by our model against those provided by a group of state-of-the-
art approaches for cold-start recommendation. We conduct an analysis of the item 
neighborhoods generated by these models in the embedding space they learn, and 
we examine the importance they assign to the content features, to provide a clearer 
explanation of the outcomes produced by the models. For the sake of reproducibil-
ity, we also release the source code used to perform all the experiments.

The rest of the paper is organized as follows. In Sect. 3, we present some state-
of-the-art techniques for cold-start recommendation. In Sect.  4, we describe our 
new NFC model. In Sect. 5, we propose the variants of NFC that learn from user 
feedback instead of similarity values. In Sect.  6, we describe the datasets and all 
the algorithms that we used in our experiments. In Sect.  7, we report the results 
in the cold-start scenarios. In particular, we assess the advantages of learning from 
similarity values, and we show the results of the comparison between NFC and the 
other state-of-the-art techniques. In Sect. 8, we provide the results in the cold-warm 
hybrid scenario. In Sect.  9, we show the results of our qualitative analysis of the 
model. In Sect. 10, we discuss the limitations of our work. We conclude the paper 
with some final remarks.

2 � Related works

Recommending cold-start items is a very well-known problem in Recommender 
Systems literature, and many different approaches have been specifically proposed 
to face it. The lack of collaborative information about cold items led to the imple-
mentation of techniques that focus on the content information of the items, which is 
always available a priori, also for new items. One of the most simple and common 
techniques that exploit content information is the item nearest neighbors approach 
(Desrosiers and Karypis 2011). The content of each item is represented as a vector 
of features, and a similarity function, like cosine similarity or Pearson correlation, 



	 C. Bernardis, P. Cremonesi 

1 3

is defined between couples of items. The algorithm recommends the most similar 
items to those in the user’s profile.

To improve the accuracy performance of this branch of approaches, a variety of 
feature weighting algorithms have been proposed. In these techniques, a real value 
is assigned to every feature in order to estimate its importance. Filtering methods, 
like TF-IDF (Luhn 1957; Sparck Jones 1988) and BM25 (Robertson et al. 1994), are 
very common in information retrieval and try to improve the performance of con-
tent-based algorithms assessing the relevance of features from their statistical distri-
bution among items. The idea behind these weighting techniques is that the impor-
tance of a feature is directly proportional to the frequency with which it appears in 
an item but inversely proportional to its popularity.

The main drawback of these methods is that they ignore the collaborative infor-
mation available between different users, and they consider only the interaction 
history of the user involved in the recommendation. For this reason, they are also 
called non-collaborative user personalized models. A branch of more complex 
approaches called embedded methods, exploits this type of information to esti-
mate the relevance of item features. User-specific Feature-based Similarity Models 
(UFSM) in Elbadrawy and Karypis (2015) is a sparse, high-dimensional latent fac-
tor model that learns multiple global similarity functions for estimating the simi-
larity between items based on their content representations. These similarities are 
combined together with user-specific weights to provide highly personalized rec-
ommendations. The model is trained either minimizing a squared error loss func-
tion or adopting a Bayesian Personalized Ranking (BPR) optimization procedure. 
Collaborative boosted Feature Weighting (CFW) in Dacrema et al. (2018) proposes 
a feature weighting technique equivalent to Least-squares Feature Weighting pre-
sented in Cella et al. (2017). The main characteristic of the model is that it learns 
weights from item-based collaborative similarity matrices, instead of ratings, a tech-
nique that has several advantages: flexibility in the selection of the collaborative 
algorithm; similarity values are less noisy than user interactions; faster convergence. 
Similar to CFW, HP3 in Bernardis et al. (2018) is a feature weighting approach that 
exploits the advantages of learning from similarity matrices in a graph-based model.

Feature weighting models are usually simple and fast to train. However, they do 
not take into account nonlinear combinations of features, which contribution might 
be very important to model user preferences correctly. To overcome this drawback, 
FBSM (Sharma et al. 2015) uses a bilinear model to capture pairwise dependencies 
between the features. Proposed as an evolution of UFSM, it learns a global, bilinear 
similarity function between the content representations of couples of items. Moreo-
ver, in order to reduce the high number of parameters introduced by bilinearity, it 
models pairwise relations as a combination of a linear component and a low-rank 
component.

Another family of approaches for item cold-start recommendation is based on 
matrix factorization techniques. These methods learn to map items’ or users’ fea-
tures into a low-dimensional embedding space. DropoutNet (Volkovs et  al. 2017) 
proposes a neural network-based latent approach explicitly trained for cold-start 
that can be applied on top of any existing latent model. The authors observe that 
the cold-start scenario is equivalent to the missing data problem where preference 
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information is missing. By applying dropout during training, they condition the 
neural network to generalize for missing input. Gantner et al. (2010) learn how to 
map attributes of users and items to latent features of a matrix factorization model 
optimized for BPR. Exploiting the learned mappings, the model can provide latent 
representations also for new users and new items, retaining a competitive predictive 
accuracy and recommendation celerity. Local Collective Embeddings in Saveski and 
Mantrach (2014) is a matrix factorization method that exploits items’ properties and 
past user preferences while enforcing the manifold structure exhibited by the collec-
tive embeddings. Given the content representation of a new item, the model projects 
it in a hybrid low-dimensional space and infers the users that are most likely to be 
interested in it. Decoupled completion and transduction in Barjasteh et  al. (2015) 
is a matrix factorization-based approach that simultaneously exploits the similarity 
information among users and items to alleviate the cold-start problem. It decouples 
the completion of a rating sub-matrix, generated by excluding cold-start items, and 
the transduction of knowledge to cold-start items using side information. CB2CF 
(Barkan et al. 2019) is a deep neural model designed ad hoc for the Microsoft Store 
that learns a multiview mapping of content-based item representations to collabora-
tive factorized ones, produced by a BPR approach. It is capable of encoding differ-
ent types of content information, including categorical, numerical, continuous, or 
unstructured textual data.

Alongside all the techniques specifically designed for cold-start recommendation, 
there are also other more generic approaches that have been successfully employed 
for the same task (Pan et al. 2019; Lian et al. 2017). The factorization machine in 
Rendle (2010) is a general predictor that models all nested variable interactions, like 
a polynomial kernel in Support Vector Machine. Using a factorized parametrization, 
the factorization machine can be computed in linear time and employs a linear num-
ber of parameters. The Wide and Deep approach in Cheng et al. (2016) exploits the 
potential of deep learning and jointly trains wide linear models and deep neural net-
works. The deep part helps to generalize to previously unseen user-item feature cou-
ples, learning low-dimensional dense embeddings. On the contrary, the linear part, 
with the introduction of cross-product feature transformations, prevents the model 
from over-generalizing, due to the high sparsity of user-item interactions.

The NFC model that we propose merges and exploits several strengths of the 
state-of-the-art recommendation algorithms:

•	 CFW and HP3 are two feature weighting techniques that learn the model param-
eters using collaborative item similarities as targets during training. NFC adopts 
the same strategy, but it is a more powerful technique compared to a feature 
weighting method since it is able to model also nonlinearities and combinations 
of features.

•	 FBSM and UFSM learn similarity models for item cold-start recommendation, 
taking into account also bilinear relations between features. Similarly, NFC 
learns a similarity model, but it is able to exploit multiple combinations and non-
linear relations among item content features. Moreover, it is trained using col-
laborative similarity values instead of user-item interactions directly.
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•	 CB2CF takes advantage of the expressive power of deep learning to enable the 
embedding of completely cold items, learning to map item content features to a 
factorized, collaborative item representation. Likewise, NFC exploits the poten-
tial of deep learning to map content features into low-dimensional embedded 
representations of the items. However, differently from CB2CF, it generates a 
similarity model, and it is trained using collaborative item similarities.

Most important, to the best of our knowledge, NFC is the first algorithm that directly 
maps a vector of features – of any item, including cold-start items – with the similar-
ity to any other warm item. On the contrary, all other methods in the literature learn 
feature weights, either explicit feature weights, such as CFW and HP3 , or embedded 
feature weights, such as FBSM and UFSM. Feature weights are later used to com-
pute the similarity between cold and warm items.

3 � Model

3.1 � Notation

Let U, I,F  represent, respectively, the set of users, items, and item features. The set 
I  is composed of two disjoint subsets: the set of cold items Ic , and the set of warm 
items Iw.

Matrix � of size |U| × |I| is the User Rating Matrix (URM). If the URM contains 
explicit feedback, each entry rui represents the rating value given by user u to item 
i, while it contains 0 if the user did not provide any feedback on the item. If the 
URM contains implicit feedback, rui assumes a binary value (either 0 or 1), where 
value 1 is assigned when the user expressed positive feedback, while 0 is assigned 
otherwise.

Matrix � of size |I| × |F| represents the Item Content Matrix (ICM), where each 
entry aif  assumes value 1 if a certain item i has the feature f, 0 otherwise.

Matrix � of size |I| × |I| represents a generic item-based similarity matrix, where 
each entry sij in � assesses how similar items i and j are.

3.2 � Neural feature combiner

In this paper, we propose Neural Feature Combiner (NFC), an item-based approach 
that employs a deep learning architecture to generate the item similarity matrix. 
The NFC model structure can be divided into two main components. The first takes 
as input the content-based representation �i of a given item i ∈ I  and generates an 
embedded representation �i in a low-dimensional space. We refer to this component 
as the embedding network. The second component of the model takes as input the 
embedded representation �i of an item and combines the embedded features that 
compose it in order to generate the similarity scores sji between all the warm items 
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j ∈ Iw and item i. We refer to this part of the architecture as the combination net-
work. Finally, the preferences are predicted as a common item-based model:

Note that if user u did not provide any feedback for item j, then ruj = 0 according 
to the definition in Sect. 4.1. Consequently, the summation in Eq. (1) is performed 
exploiting only the similarities related to the warm items for which u provided feed-
back. The complete structure of NFC is graphically shown in Fig. 1. The two com-
ponents of the network are discussed more in detail in the following sections.

The model is trained end-to-end using a collaborative similarity matrix as target, 
minimizing the sum of squared errors loss L with L2 regularization defined as:

where � represents the parameters of the model. During this procedure, the content 
features of warm items are provided as input to the model, and the respective collab-
orative similarities are used as learning targets to reproduce. NFC learns to encode 
the content representation of an item into a hybrid embedding, as it is generated 
using content information as source and collaborative information as target, and to 
combine the latent features that compose it in order to predict the similarity values. 
Note that, as shown in (1), in an item-based model only warm items contribute to 
the user preference prediction, since if j is a cold item, then ruj = 0 by definition.

During the recommendation phase, the model is able to estimate also the similar-
ity values between all the warm items and the new cold items. Indeed, in the infer-
ence process, NFC requires as input only the content features of an item, which is 
the only type of information available about cold-start items. This allows providing 
personalized recommendations also in an item cold-start scenario.

3.2.1 � Embedding network

The embedding network is a multi-layer, fully connected neural network that trans-
forms the content representation of an item �i , under the form of content features, in 
a low-dimensional, hybrid embedding �i . It can be defined as:

where h is the number of layers that compose the network, and �x , �x , and gx are 
weight matrix, bias vector, and activation function of the x-th layer, respectively. The 
expressive power of neural networks allows capturing nonlinear relationships among 
multiple features that are of great importance to represent high-level concepts. To 

(1)r̃ui =

Iw∑
j

ruj ⋅ sji

(2)L =

Iw∑
i

Iw∑
j

(sCF
ij

− sij)
2 + �||�||2

(3)

⎧⎪⎨⎪⎩

�1
i
= g1(�1�i + �1)

�2
i
= g2(�2�

1

i
+ �2)

⋮

�i = �h
i
= gh(�h�

h−1
i

+ �h)
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better understand the relevance of feature combinations, consider, as an example, 
the movie domain. Harrison Ford and Mark Hamill are famous actors that appeared 
in several movies, often very different from each other. While the information that 
each of them acted in a movie does not provide many insights, the simultaneous 
presence of both is very informative. Indeed, they interpreted two main characters in 
the widely known Star Wars saga. It follows that if a model is able to merge the two 
pieces of information, it can recognize movies that belong to that saga, an important 
detail that single features could not depict individually.

3.2.2 � Combination network

Given the embedded representation �i of an item i, the combination network esti-
mates the similarity values between all the warm items j ∈ Iw and item i. As shown 
in Fig. 1, it is composed of a small, independent neural network with h′ fully con-
nected hidden layers for every single warm target item, that can be defined as:

where �′
jx , �′jx , and g′

jx
 are weight matrix, bias vector, and activation function of 

the x-th layer of the neural network related to target item j, respectively.
The aim of this structure is to exploit nonlinear combinations of the latent fea-

tures that compose the embedding, taking into account multiple and different 
aspects, depending on the warm target item involved in the computation of the simi-
larity. Indeed, different embeddings might lead to close similarity values, because 
different users look at different aspects of the same item, and each of them can be 
relevant in a specific scenario. As another example related to the movie domain that 

(4)
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Fig. 1   Architecture of NFC. The model takes as input the feature vector of an item i and predicts the 
similarities between each warm item and i 
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can help in understanding this intuition, consider a film belonging to the aforemen-
tioned Star Wars saga. Clearly, it is similar to all the other movies belonging to the 
saga. However, it can also be considered similar to a wide variety of other mov-
ies for several different reasons: similar to all the other science fiction movies with 
Harrison Ford, because he has unique acting skills; similar to philosophical movies, 
because of the story it tells; similar to movies with cutting edge special effects of the 
same decade; and so on. In general, there are many relevant high-level concepts that 
could conduce to high values of similarity that nonlinear relations between features 
allow to represent.

3.2.3 � Comparison with feature weighting

CFW-D and HP3 are feature weighting techniques based on the intuition that learn-
ing from collaborative similarity matrices can be beneficial for the accuracy in the 
item cold-start recommendation task. NFC is based on the same insight, but, com-
pared to feature weighting techniques, it is a widely more powerful model for two 
main reasons. The first is that it is able to capture nonlinearities and multiple com-
binations of the content features of the input item and to weigh them differently, 
according to the warm target item. The second is that it does not require that content 
and collaborative information overlap. As an example, consider two items that have 
very similar interaction profiles, but their content representations are completely 
different. In this scenario, a feature weighting approach cannot merge collaborative 
and content information, because while the collaborative similarity value between 
the items is high, the content similarity cannot be different from 0. NFC, instead, 
removes the overlap constraint, combining directly the two types of information.

3.2.4 � Implementation details

In this section, we provide some details about the implementation of NFC. The final 
architecture of the model includes batch normalization (Ioffe and Szegedy 2015) 
after every hidden layer, which allows mitigating the issues introduced by very 
sparse content representations used as input. The batch size during training is set to 
24. We also adopt the dropout technique (Srivastava et al. 2014), to reduce the risk 
of overfitting and increase the generalization capabilities of the model. We employ 
the widely known Rectified Linear Unit (ReLU) as activation function for all the 
hidden layers and a linear activation for the output layer, as this configuration pro-
vided the highest accuracy in our experiments.

We perform a sub-sampling of zero values used in the training process when the 
sparsity of the collaborative similarity matrix to learn is very high (i.e., in Near-
est Neighbors algorithms). In these scenarios, the number of zeros in the similarity 
matrix largely outclasses the number of non-zero values, generating an imbalance 
problem that could negatively affect the training procedure. Formally, given a dis-
crete random variable X with a Bernoulli distribution with success probability � , we 
approximate the loss function L in (2) as:



	 C. Bernardis, P. Cremonesi 

1 3

where Z = {(i, j) ∈ Iw × Iw|sCFij = 0} is the set of the item couples for which the 
collaborative similarity is null. This corresponds to select only a fraction equal to � 
of the zero-valued similarities to use as target samples during the model training.

Finally, we apply a Nearest Neighbors technique to the similarity matrix gener-
ated by NFC, selecting, for each item, only the k most similar items, while all the 
other similarities are set to zero. This common technique allows to largely reduce 
the time and memory requirements of the recommendation process (Desrosiers and 
Karypis 2011).

Note that we release the repository with the code and the data used in the experi-
ments.1 It contains the implementation of all the algorithms, including NFC and all 
the other baselines. We include the code used for the generation of the datasets and 
the splits used for train, test, and validation. We provide the implementation of the 
hyper-parameter optimization, and the code used to perform all the experiments that 
we report in this paper.

4 � Learning from ratings

The main goal of NFC is to generate a hybrid similarity matrix to provide more 
accurate recommendations in an item cold-start scenario. One of the main char-
acteristics of the model is that it is trained using collaborative item similarity val-
ues as targets instead of user preferences directly. This technique has been recently 
proposed in some works that specifically treat the cold-start item recommendation 
problem (Cella et al. 2017; Dacrema et al. 2018; Bernardis et al. 2018). According 
to these works, training on similarity values brings a number of advantages:

•	 Similarity matrices are denser than user rating matrices, alleviating the sparsity 
problem that is known to afflict the field of recommender systems;

•	 The collaborative item-based model used to generate the similarity matrix to 
learn can be chosen properly, depending on its characteristics;

•	 The model requires a lower amount of time to converge.

One of the objectives of this paper is to assess the validity of these statements, in 
particular for the NFC model. For this reason, in this section we propose three dif-
ferent variants of NFC that learn from user feedback employing different optimiza-
tion procedures, that will be thoroughly compared with NFC under different aspects 
in the experimental part of this work.

To let the model learn from user preferences, we simply modify the train-
ing procedure, while the architecture of the model remains unchanged. In Eq. (1), 
we defined how an item-based model, including NFC, predicts a preference for a 

(5)L ≈
∑

(i,j)∉Z

(sCF
ij

− sij)
2 +

∑
(i,j)∈Z

X(sCF
ij

− sij)
2

1  https://​github.​com/​cesar​ebern​ardis/​Neura​lFeat​ureCo​mbiner

https://www.dropbox.com/s/3gsaiq20eshafpd/NFC-extension-source.zip?dl=0
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user-item couple. Given a user profile �u and the i-th column of the similarity matrix 
�i , the prediction is computed with the dot product between them. Note that con-
sidering the structure of NFC, �i is the output of the deep learning model when the 
feature vector �i of item i is provided as input. It follows that the prediction for a 
user-item couple requires only the user preferences on warm items and the content 
features of the item.

4.1 � NFC‑MSE

NFC-MSE is a variant of NFC that adopts the mean squared error as pointwise 
loss, in order to reproduce the correct feedback value. Due to the high sparsity 
that characterizes recommender systems datasets, for the majority of user-item 
couples we have no information about the preference score that the user would 
give to the item. To solve this issue, one of the most common approaches, that 
we also adopt in this variant of our model, is to consider the absence of a prefer-
ence as negative feedback, according to the Missing-as-Negative assumption. 
However, since the amount of missing feedback is way higher than the amount 
of the available ones, we subsample their number. Similarly to Sect.  4.2.4, in 
order to sample a fraction � of all the negative feedback available, we define a 
discrete random variable X with a Bernoulli distribution with probability � , and 
the set N  of user-item couples with negative preference, i.e., 
N = {(u, i) ∈ U × I|rui = 0}.2 Moreover, to prevent the model from learning the 
identity matrix as output similarity, during training we exclude the rating of an 
item when computing a preference that involves it, defining a new prediction 
rule: r̂ui =

∑Iw⧵i

j
ruj ⋅ sji . The new regularized loss function becomes:

Note that if rui = 0 , i.e., if user u provided negative feedback for item i, then r̃ui = r̂ui 
and both notations can be used equivalently.

4.2 � NFC‑CE

The second variant of NFC that we propose interprets the preference prediction as a 
binary classification problem and minimizes the binary cross-entropy loss. In this 
scenario, we assume that all positive preferences have value 1, while negative pref-
erences have value 0. We use the sigmoid function �(x) = 1

1+e−x
 to transform the rat-

ing predictions provided by the model into probabilities. Similarly to NFC-MSE, we 
adopt the Missing-as-Negative assumption, and we subsample the negative feed-
back. The loss function is:

(6)L =

U×I⧵N∑
(u,i)

(rui − r̂ui)
2 +

N∑
(u,i)

X(rui − r̂ui)
2 + 𝜆||𝜃||2

2  � is a hyper-parameter of the model, and it is optimized during the tuning procedure.
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where N  is the set of user-item couples with negative preference defined in 
Sect. 5.1.

4.3 � NFC‑BPR

This variant of NFC is trained using the Bayesian Personalized Ranking optimiza-
tion criterion presented in Rendle et  al. (2009). This approach uses item pairs as 
training data and learns to rank them correctly for a given user, instead of scoring 
them individually. Each pair of items is composed of an item for which the user 
provided positive feedback and an item for which the user provided negative feed-
back. Also in this case, according to the Missing-as-Negative assumption, we 
consider missing preferences as negative. We define the set of training triplets 
D = {(u, i, j)|u ∈ U ∧ i ∈ I

+
u
∧ j ∈ I⧵I+

u
} , where I+

u
 is the set of items for which a 

given user u provided a positive feedback. The new loss function to minimize is:

where � is the sigmoid function.
To select the negative item sample j in each triplet (u, i, j), we employ a multi-

nomial probability distribution, where the probability of selecting an item is pro-
portional to its popularity cj = |{v ∈ U|rvj ≠ 0}| , as proposed in several works in 
literature (Rendle and Freudenthaler 2014; Hidasi et al. 2016a, b). In particular, the 
probability p(j|u) of selecting an item j ∈ I⧵I+

u
 as negative sample for user u is com-

puted as:

where the exponent � ∈ [0, 1] is a hyper-parameter, tuned during the hyper-parame-
ter optimization procedure on the validation set, that attenuates the bias toward the 
choice of popular items as negative samples.

5 � Experimental settings

In this section, we report the information concerning the experimental setup, includ-
ing the datasets used, the collaborative algorithms employed to generate the similar-
ity matrices, and the baselines that we compare NFC with.

(7)L = −

U×I⧵N∑
(u,i)

ln 𝜎(r̂ui) −

N∑
(u,i)

X ln (1 − 𝜎(r̂ui)) + 𝜆||𝜃||2

(8)L = −

D∑
(u,i,j)

ln 𝜎(r̂ui − r̂uj) + 𝜆||𝜃||2

(9)p(j�u) =
⎛
⎜⎜⎝

cj
∑I⧵I+

u

k
ck

⎞
⎟⎟⎠

�
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5.1 � Datasets

We used four well-known datasets that also provided non-user-based tags as item 
features:

Movielens Hetrec:3 this dataset is an extension of MovieLens10M dataset and 
links the movies of MovieLens dataset with their corresponding web pages at 
Internet Movie Database (IMDb) and Rotten Tomatoes movie review systems. As 
item features, we kept only movie years, genres, actors, directors, countries, and 
locations. The preferences have been binarized considering all the ratings greater 
or equal to 3.5 as positive preferences.
BookCrossing (Ziegler et  al. 2005): it is composed of user ratings over books, 
collected from the BookCrossing website. The dataset preferences have been 
binarized considering implicit ratings and explicit ratings greater or equal to 7 as 
positive feedbacks.
Yahoo! Movies:4 it contains user preferences for various movies collected from 
the Yahoo! Movies community. It also includes descriptive information about 
movies like their cast, the crew, the genre, the awards, and much more. The pref-
erences have been binarized as described for Movielens.
Amazon Video Games (Ni et al. 2019): it is a collection of reviews gathered from 
the Amazon website in a 22 years period between 1996 and 2018. Reviews con-
tain ratings on a 5-star scale, and products are accompanied with detailed meta-
data. Also in this case the preferences have been binarized as described for Mov-
ielens.

In every dataset, we kept only users with at least 5 interactions, items with at least 
5 interactions and 5 features, and features belonging to at least 5 items. These filters 
have been applied iteratively, in order to assert that all the constraints were satis-
fied after the processing. Note that these filters are commonly applied in literature 
(Elbadrawy and Karypis 2015; Sharma et al. 2015; Liang et al. 2018). Some statis-
tics about the final datasets are summarized in Table 1.

Table 1   Details of datasets used

Dataset Users (K) Items (K) Features (K) Ratings (K) Density (%)

Movielens Hetrec (MH) 2.1 6.2 8.2 511 3.92
BookCrossing (BX) 8.7 19.7 4.5 299 0.17
Yahoo! Movies (YM) 7.4 3.2 8.4 161 0.68
Amazon Video Games (AV) 33.9 12.5 13.0 295 0.07

3  https://​group​lens.​org/​datas​ets/​hetrec-​2011/.
4  Yahoo! Webscope dataset, Movies User Ratings and Descriptive Content Information, v.1.0. http://​
resea​rch.​yahoo.​com/​Acade​mic_​Relat​ions.

https://grouplens.org/datasets/hetrec-2011/
http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations
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5.2 � Collaborative algorithms

To generate the collaborative similarity matrices used as learning targets in our 
new model, we employed four different item-based algorithms:

ItemKNN-CF: it is a Nearest-Neighbors item-based Collaborative Filtering 
approach. This algorithm defines the similarity between two items as the Cosine 
similarity between the vectors of the respective preference profiles. For each 
item, only the k most similar items and their respective values are considered, all 
the other similarities are set to 0 (Desrosiers and Karypis 2011).
RP

3

�
 : it is a graph-based approach where the similarity between two items i and 

j is defined as the probability to reach j from i after 2 steps random walks. This 
probability is also penalized by the popularity of the item to reach (Paudel et al. 
2016).
SLIM: it is the well-known item-based approach called Sparse Linear Method. 
The sparse similarity matrix is obtained solving a linear regression problem, min-
imizing the root mean square error between all the predictions for each item and 
the corresponding actual rating profile (Ning and Karypis 2011).
EASE-R: it is a linear model called Embarrassingly Shallow AutoEncoder, 
recently proposed by Harald Steck. It can be considered an atypical autoencoder 
without hidden layers. Despite its simplicity, it achieves state-of-the-art perfor-
mance in terms of top-N recommendation accuracy (Steck 2019).

We tuned all the algorithms to find the best configurations, evaluating on the 
warm split described in Sect. 7.2. In Table 2, we show the performance of each col-
laborative approach in the warm-start scenario. As expected, we can see that all col-
laborative algorithms largely outperform the content-based approach. In particular, 
SLIM proves to be the best performing algorithm on all the datasets. Note that we 
do not test these algorithms in a cold-start scenario as they would not provide per-
sonalized recommendations, since they have no collaborative information about cold 
items.

Table 2   Comparison of 
NDCG@10 of item-based 
algorithms in the warm-start 
scenario

The best performing algorithm is in bold

Algorithm AV BX MH YM

ItemKNN-CF 0.1035 0.0849 0.1694 0.2941
RP

3

�
0.1027 0.0823 0.1738 0.2964

SLIM 0.1051 0.0878 0.2010 0.3249
EASE-R 0.1039 0.0873 0.1921 0.3200
ItemKNN-CBF 0.0298 0.0499 0.0202 0.0963
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5.3 � Baselines

We compared our new model with both baselines and state-of-the-art models for 
cold items recommendation:

ItemKNN-CBF: it is an item content-based k Nearest-Neighbors approach based 
on cosine similarity (Desrosiers and Karypis 2011; Lops et al. 2011). We tested 
this algorithm also applying TF-IDF and BM25 weighting techniques to item 
features before calculating the content similarity matrix. The best performing 
weighting approach on the validation set is used. Despite their simplicity, recent 
works have shown that these algorithms still have competitive accuracy in the 
top-N recommendation task (Dacrema et al. 2019).
FBSM: it is a factorized model called Feature-based factorized Bilinear Similar-
ity Model that learns a factorized similarity model, based on user preferences and 
item features (Sharma et al. 2015).
BPRMF-AFM: it is the linear-mapping version of BPR Matrix Factorization with 
Attribute-to-Feature Mapping, that uses the mapping concept to construct a fea-
ture-aware matrix factorization model (Gantner et al. 2010).
LCE: it is a matrix factorization technique called Local Collective Embeddings, 
that collectively decomposes the ICM and the URM in a common low-dimen-
sional space (Saveski and Mantrach 2014).
DCT: it is a matrix factorization method called Decoupled Completion and 
Transduction, that decouples the completion of rating matrix from the transduc-
tion of knowledge from existing ratings to cold-start items (Barjasteh et al. 2015). 
The auxiliary items’ similarity matrix is obtained through ItemKNN-CBF with 
the best performing configuration on each dataset, and no auxiliary users’ simi-
larity matrix is employed.
CFW-D: it is Collaborative Feature Weighting, a feature weighting method that 
learns the relevance of each content feature from a collaborative item similarity. 
Dacrema et al. (2018) propose two variants of this model, with and without latent 
factors. In this work, we adopt the variant without latent factors, called CFW-D, 
that the authors prove to be the best performing one.
HP

3 : it is a graph-based feature weighting technique that, similarly to CFW-D, 
learns the importance of features from a collaborative item similarity (Bernardis 
et al. 2018).

We also include two models that have not been explicitly designed for the cold-
start item recommendation scenario, but they have been successfully employed 
for this task in literature (Pan et al. 2019; Lian et al. 2017):

FM: it is a model class known as Factorization Machines that combines the 
advantages of Support Vector Machines (SVM) with factorization models for 
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high sparsity problems (Rendle 2010). We used the implementation provided in 
the xLearn library.5
WideAndDeep: it is a neural approach called that jointly trains wide linear models 
and deep neural networks to combine the benefits of memorization and generali-
zation (Cheng et al. 2016). We used the implementation provided in the Tensor-
flow library.6

Note that for FM, WideAndDeep, and BPRMF-AFM we used one-hot encoding of 
ids for users’ representations and content features as items’ representations. The 
implementation of all the algorithms is available in the repository.

6 � Cold‑start recommendation

In this section, we report the results of the analyses that we performed in item cold-
start scenarios.

6.1 � Evaluation procedure

In order to reproduce a cold-start item scenario, we adopted the same strategy pro-
posed in Sharma et al. (2015). We performed the split selecting three random sub-
sets of items and all their respective interactions. We kept 60% of items for the train-
ing set, 20% for the validation set, and 20% for the test set. We trained the models on 
the training set, and we selected the hyper-parameter configuration that provided the 
best performance on the validation set. We obtained the final results reported in this 
paper training the models on the union of train and validation sets, using the best 
configuration found, and we evaluated them on the test set.7 For a more thorough 
analysis, we repeated the evaluation on the test sets of 10 different splits, using the 
same optimal configuration. During the evaluation, we forced all the models to rec-
ommend only items belonging to the test (or validation) set used.

6.2 � Hyper‑parameter optimization

We optimized the hyper-parameters of all the algorithms maximizing the 
NDCG@10 on the validation set described in Sect. 7.1. We used the same valida-
tion also to select the number of training epochs for each algorithm, through an early 
stopping technique. In particular, we evaluated each model every 5 epochs and ter-
minated the training after 2 consecutive evaluations in which the best result did not 
improve. To select the best hyper-parameters of collaborative algorithms, we further 
split the training set in order to obtain a warm holdout, selecting randomly the 80% 

7  This is equivalent to an 80–20% split for train and test, respectively.

5  https://​xlearn-​doc.​readt​hedocs.​io/​en/​latest/.
6  https://​www.​tenso​rflow.​org/.

https://xlearn-doc.readthedocs.io/en/latest/
https://www.tensorflow.org/
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of the interactions for the warm training set and the remaining 20% for the warm 
validation set. As optimization algorithm, we employed the Bayesian Optimization 
technique implemented in the scikit-optimize Python library,8 testing 50 configura-
tions for each approach. In Table 3, we report the explored ranges for all the hyper-
parameters and, for each dataset, the best configurations of NFC that we used in all 
the experiments. The optimization procedures of NFC and all the other baselines are 
available in the repository.

6.3 � Comparing learning targets

In Sect.  5, we discussed the theoretical advantages of learning from similarities 
against learning from user-item interactions directly. We now want to assess the dif-
ference between the two techniques under different aspects, in order to prove empiri-
cally the validity of those claims.

In Tables 4 and 5, we show NDCG and Recall, respectively, in the item cold-start 
scenario at cutoffs 10 and 25 of NFC and all its variants that learn from ratings pre-
sented in Sect. 5. We report the average metric scores of the evaluations performed 
over 10 different splits and the p values of the Wilcoxon signed-rank tests between 

8  https://​scikit-​optim​ize.​github.​io/​stable/​index.​html.

Table 3   Best NFC configurations and hyper-parameter values found on the validation set for each dataset

The combination network is assumed to be composed of networks with the same architecture for each 
warm item. We report the characteristics of one of them. Square brackets in explored ranges define an 
interval
a Multiple layers in the Combination Network were high memory demanding and did not improve the 
accuracy of the model

Hyper-parameter Range AV BX MH YM

k-NN [50, 500] 50 50 160 80
Learning rate [1e−6 , 1e−3] 6.9e

−6
1.0e

−5 3.6e
−4

4.2e
−5

L2 reg. [1e−6 , 1e−2] 4.7e
−6

1.0e
−6 2.0e

−4
5.9e

−4

Zeros quota ( �) [1e−3 , 0.5] 0.26 0.50 0.02 0.04
Dropout rate [0.00, 0.80] 0.80 0.50 0.05 0.80
Epochs [5, 200] 105 105 10 55
Collaborative Similarity (EASE-R, 

ItemKNN-CF, 
RP

3

�
 , SLIM)

RP
3

�
RP

3

�
SLIM ItemKNN-CF

Embedding network
Number of layers [2, 3] 2 2 2 3
Sizes of layers [128, 1024] (1024, 482) (1024, 371) (205, 488) (1024, 823, 512)
Combination network
Number of layers [1]a 1 1 1 1
Sizes of layers [1, 32] 1 32 2 1

https://scikit-optimize.github.io/stable/index.html
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NFC and its variants that learn from ratings. The results show that NFC largely out-
performs all the variants that learn from ratings by a wide margin on all the datasets, 
metrics, and cutoffs. Moreover, the p value of the significance test is below 0.05 
in every configuration. NFC-MSE is the second-best performing algorithm in most 
scenarios, but its accuracy is about 20% lower than NFC. NFC-CE has a perfor-
mance comparable with NFC-MSE on Movielens and Yahoo!, the two densest data-
sets, while the distance widens on the other, more sparse datasets. The same behav-
ior is shown more evidently by NFC-BPR, which strongly struggles on Amazon and 
Bookcrossing, with accuracy about 5 times lower than NFC-MSE.

Another important aspect that we want to analyze, is the training time required 
by the different techniques. In Table 6, we report the average time in seconds taken 
by the algorithms to complete the training procedure over the 10 different splits that 
we used for the accuracy evaluation. Note that the values reported for NFC include 
the time required by the collaborative algorithm to train and generate the similar-
ity matrix used as learning target. We trained all the models on an NVIDIA RTX 
2080Ti. Even in this case, NFC outperforms all the variants that learn from rat-
ings in almost every scenario. It is twice faster than the second-best approach on 
3 datasets over 4, demonstrating that learning from similarities leads to a quicker 

Table 4   Comparison of NDCG of the NFC variants in the cold-start scenario

We report the average of the results obtained on 10 different folds. The best performing algorithm for 
each dataset and cutoff is highlighted in bold
*Indicates a p value of the significance test below 0.05

Algorithm AV BX MH YM

@10 @25 @10 @25 @10 @25 @10 @25

NFC 0.0953 0.1212 0.1207 0.1448 0.1212 0.1687 0.2680 0.3317
NFC-MSE 0.0783

∗
0.1038

∗
0.0926

∗
0.1118

∗
0.0804

∗
0.1177

∗
0.1834

∗
0.2329

∗

NFC-CE 0.0461
∗

0.0611
∗

0.0602
∗

0.0735
∗

0.0715
∗

0.1146
∗

0.1724
∗

0.2114
∗

NFC-BPR 0.0173
∗

0.0233
∗

0.0175
∗

0.0209
∗

0.0623
∗

0.1033
∗

0.1882
∗

0.2501
∗

Table 5   Comparison of recall of the NFC variants in the cold-start scenario

We report the average of the results obtained on 10 different folds. The best performing algorithm for 
each dataset and cutoff is highlighted in bold
*Indicates a p value of the significance test below 0.05

Algorithm AV BX MH YM

@10 @25 @10 @25 @10 @25 @10 @25

NFC 0.1486 0.2350 0.1448 0.2040 0.0754 0.1350 0.3479 0.5256
NFC-MSE 0.1229

∗
0.2094

∗
0.1120

∗
0.1595

∗
0.0525

∗
0.1000

∗
0.2250

∗
0.3625

∗

NFC-CE 0.0727
∗

0.1238
∗

0.0754
∗

0.1113
∗

0.0494
∗

0.1063
∗

0.2219
∗

0.3299
∗

NFC-BPR 0.0254
∗

0.0457
∗

0.0178
∗

0.0261
∗

0.0416
∗

0.0950
∗

0.2419
∗

0.4221
∗
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convergence and allows training the model in a much shorter amount of time. NFC-
MSE, even if it is usually more accurate than the other NFC variants, is the slowest 
on every dataset. NFC-CE and NFC-BPR have similar training times on Amazon 
and BookCrossing. The latter, in particular, has a convergence time on par with NFC 
on the Yahoo! dataset.

The results obtained in these experiments empirically confirm the advantages of 
learning from similarities. This technique allows reaching a largely higher recom-
mendation accuracy in the cold-start scenario, requiring a widely smaller amount of 
time for the model training.

6.4 � Comparison with baselines

In Tables 7 and 8, we summarize the accuracy of Top-N recommendations for all 
the algorithms in the cold-start item scenario, expressed, respectively, as NDCG and 
Recall at cutoffs 10 and 25. We report the average metric scores obtained on 10 

Table 6   Comparison of training 
time in seconds in the cold-start 
scenario

We report the average of the results obtained on 10 different folds. 
Lowest training times for each dataset are in bold

Algorithm AV BX MH YM

NFC 833 2805 203 49
NFC-MSE 8080 10,085 2674 1257
NFC-CE 1987 6394 408 129
NFC-BPR 1629 6829 1647 47

Table 7   Comparison of NDCG in the cold-start scenario

We report the average of the results obtained on 10 different folds. The best performing algorithm for 
each dataset and cutoff is in bold
*Indicates a p value of the significance test below 0.05
**Indicates a p value below 0.10

Algorithm AV BX MH YM

@10 @25 @10 @25 @10 @25 @10 @25

ItemKNN-CBF 0.0782
∗

0.0979
∗

0.1135
∗

0.1355
∗

0.1043
∗

0.1413
∗

0.2160
∗∗

0.2616
∗

FM 0.0080
∗

0.0129
∗

0.0106
∗

0.0175
∗

0.0772
∗

0.1175
∗

0.1723
∗

0.2231
∗

WideAndDeep 0.0057
∗

0.0085
∗

0.0207
∗

0.0310
∗

0.0787
∗

0.1088
∗

0.1793
∗

0.2358
∗

FBSM 0.0630
∗

0.0884
∗

0.0819
∗

0.1007
∗

0.0488
∗

0.0770
∗ 0.2269 0.2962

BPRMF-AFM 0.0611
∗

0.0836
∗

0.0914
∗

0.1133
∗

0.0828
∗

0.1292
∗

0.1819
∗

0.2437
∗

LCE 0.0407
∗

0.0560
∗

0.0665
∗

0.0833
∗

0.0880
∗

0.1202
∗

0.1256
∗

0.1942
∗

DCT 0.0697
∗

0.0885
∗

0.0941
∗

0.1152
∗

0.1133
∗∗

0.1593
∗∗

0.1854
∗

0.2237
∗

HP
3 0.0713

∗
0.0896

∗
0.1112

∗
0.1322

∗
0.1102

∗∗
0.1533

∗ 0.2230 0.2830
CFW-D 0.0589

∗
0.0732

∗
0.1074

∗
0.1295

∗
0.0850

∗
0.1240

∗ 0.2405 0.3041
NFC 0.0953 0.1212 0.1219 0.1461 0.1212 0.1687 0.2680 0.3317
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different splits and the p values of the Wilcoxon signed-rank tests between NFC and 
all the other approaches.

The first evident result is that NFC largely outperforms all the other techniques 
on all the datasets, metrics, and cutoffs. Its accuracy is between 10 and 20% higher 
than the second-best performing algorithm. However, it is interesting to notice that 
on Yahoo!, despite the quite large difference in the mean value of the metric, due to 
the high variance of the NDCG scores and the low number of samples, the p value 
of the significance test is above 0.1 in 6 comparisons out of 18. This effect is largely 
mitigated when looking at the Recall on the same dataset, since the p value is above 
0.1 in only 2 cases out of 18. Another interesting result is represented by the perfor-
mance of ItemKNN-CBF, the purely content-based approach. It is the second most 
accurate approach on the two most sparse datasets, namely Amazon and BookCross-
ing, and it provides competitive results also on Movielens and Yahoo!. The other 
hybrid baselines, instead, are particularly influenced by the characteristics of the 
dataset, and it is hard to delineate a ranking among them. FBSM obtains good Recall 
scores on Amazon and Yahoo! at high cutoffs, but it does not perform competitively 
on Movielens. LCE is on par with most techniques on Movielens, but its accuracy 
is generally lower on the other datasets. BPRMF-AFM and DCT obtain consistent 
results across the datasets, but their accuracy is never the best among the hybrid 
baselines. CFW-D and HP3 are always among the best performing hybrid baselines. 
FM and WideAndDeep have very similar results in every scenario. In particular, 
they obtain quite good results on the densest datasets, Movielens and Yahoo!, while 
they hardly fail on the most sparse ones, where their accuracy is several times lower 
than the other hybrid alternatives.

Despite NFC is based on the same intuition of CFW-D and HP3 , it brings to an 
important improvement in terms of accuracy. This difference provides empirical 

Table 8   Comparison of Recall in the cold-start scenario

We report the average of the results obtained on 10 different folds. The best performing algorithm for 
each dataset and cutoff is in bold
*Indicates a p value of the significance test below 0.05
**Indicates a p value below 0.10

Algorithm AV BX MH YM

@10 @25 @10 @25 @10 @25 @10 @25

ItemKNN-CBF 0.1181
∗

0.1842
∗

0.1378
∗

0.1910
∗

0.0650
∗

0.1115
∗

0.2455
∗

0.3710
∗

FM 0.0134
∗

0.0302
∗

0.0142
∗

0.0317
∗

0.0489
∗

0.1017
∗

0.2531
∗

0.4024
∗

WideAndDeep 0.0100
∗

0.0191
∗

0.0317
∗

0.0584
∗

0.0485
∗

0.0866
∗

0.2574
∗

0.4194
∗

FBSM 0.1039
∗

0.1904
∗

0.0988
∗

0.1462
∗

0.0314
∗

0.0666
∗ 0.2997 0.5016

∗∗

BPRMF-AFM 0.0984
∗

0.1746
∗

0.1165
∗

0.1726
∗

0.0567
∗

0.1155
∗

0.2610
∗

0.4416
∗

LCE 0.0672
∗

0.1187
∗

0.0847
∗

0.1282
∗

0.0556
∗

0.0963
∗

0.1772
∗

0.3763
∗

DCT 0.1084
∗

0.1709
∗

0.1143
∗

0.1661
∗

0.0713
∗∗

0.1281
∗

0.2082
∗

0.3118
∗

HP
3 0.1062

∗
0.1677

∗
0.1319

∗
0.1824

∗ 0.0722 0.1265 0.2703
∗∗

0.4444
∗

CFW-D 0.0876
∗

0.1358
∗

0.1294
∗

0.1849
∗

0.0549
∗

0.1047
∗ 0.3122 0.4917

∗

NFC 0.1486 0.2350 0.1455 0.2049 0.0754 0.1350 0.3479 0.5256
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evidence of the advantages of the new NFC model over simple feature weighting 
techniques discussed in Sect. 4.2.3. Nevertheless, the competitive results obtained 
by CFW-D and HP3 confirm that learning from collaborative similarity matrices is 
an effective strategy for the item cold-start recommendation task.

6.5 � Extreme cold‑start scenario

In this section, we want to perform a sensitivity analysis to study the accuracy of 
NFC in scenarios of extreme item cold-start. This experiment simulates the scarcity 
of collaborative information that can be extracted from the available data, reducing 
the number of interactions available in the train set. The results of these experiments 
can also be used to assess the performance of the algorithms in a ramp-up scenario, 
i.e., when the system is new and the quantity of feedback available is initially very 
low, but it increases over time since users continuously interact with the system. 
We adopted the same evaluation procedure and split strategy described in Sect. 7.1, 
gradually increasing the percentage of the items selected for the test set from 20 
(i.e., the scenario described in Sect. 7.1) to 80%. We performed the experiments on 
the two datasets with the highest number of items, namely Amazon and BookCross-
ing, comparing NFC with a selection of the best performing algorithms, on aver-
age, in the cold-start scenario, according to the results in Table 7. In particular, we 
selected ItemKNN-CBF, HP3 , DCT and FBSM. For each approach, we adopted the 
best performing hyper-parameter configuration found as described in Sect. 7.2.

In Fig. 2, we show average and confidence interval at 95% of the accuracy per-
formance obtained on 10 different folds, expressed as the NDCG@10. Overall, we 
observe a common decreasing trend in the accuracy of all the algorithms on both 
datasets, which means that they all benefit from a higher amount of information 
about user profiles. At low percentages of items in the test set, NFC is clearly the 
best performing algorithm, confirming the results reported in Sect.  7.4. However, 
when the size of the test set reaches 60% or more, the absence of collaborative infor-
mation negatively influences the performance of NFC. Indeed, in these scenarios, 

Fig. 2   Comparison of NDCG@10 of the best techniques in an extreme cold-start scenario, at different 
sizes of the test set. We report the average and confidence interval at 95% of 10 evaluation
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it has comparable or worse accuracy than the purely content-based ItemKNN-CBF, 
but still in line or better than the hybrid competitors. HP3 and ItemKNN-CBF have 
very similar trends on both datasets, with the second having a slightly better perfor-
mance in most of the experimental configurations. DCT has a performance com-
parable to HP3 on Amazon, while on BookCrossing it has a very similar trend with 
respect to FBSM, but with higher accuracy. FBSM, instead, is clearly the worse 
algorithm in the comparison.

Interesting to notice that all the baselines have analogous behaviors on both the 
datasets, while NFC is more impacted by the decreasing amount of interactions in 
the training set. This suggests that NFC is able to exploit more efficiently the collab-
orative information with respect to the competitors, but it is more negatively influ-
enced by the scarcity of user feedback.

7 � Hybrid scenario

In a real environment, new items, that have no interactions in the system and are 
consequently considered as cold items, are introduced into the catalog alongside the 
existing ones, for which user feedbacks are available (i.e., warm items). In order to 
achieve the highest accuracy, the algorithms have to find a good balance between the 
exploitation of the content information available for cold items and the collabora-
tive information that they have for warm items. In this set of experiments, we wish 
to analyze this scenario at different cold-warm balancings, gradually increasing the 
weight of the cold items from 0% (all the interactions in the test set belong to warm 
items) to 75 (75% of the interactions are performed on cold items, the other 25% are 
performed on warm items).9 Note that in this case also collaborative algorithms can 
provide personalized recommendations for warm items.

We compare NFC with the techniques that showed the best performance in the 
cold-start scenario, reported in Sect.  7.4. In particular, we select ItemKNN-CBF, 
FBSM, DCT, and HP3 . We also include SLIM as representative of collaborative 
approaches in the comparison, since it is the best performing collaborative technique 
in a warm-start scenario, as shown in Sect. 6.2. We perform the experiments on the 
two datasets used for the sensitivity analysis in Sect.  7.5, namely Amazon Video 
Games and BookCrossing.

7.1 � Evaluation procedure

To form the test set, we first defined the fraction � ∈ {0%, 25%, 50%, 75%} of the 
test interactions that belong to cold items. Then we performed the same type of cold 
split described in Sect. 7.1, selecting a number of items equal to 20% ⋅ � ⋅ |I| and 
all the respective interactions for the test set.10 Finally, we selected the remaining 

10  Note that this cold portion accounts for about 20% ⋅ � of all the interactions in the dataset.

9  We skip the case related to 100% since it is the cold-start scenario studied in Sect. 7.
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20% ⋅ (100% − �) of the interactions uniformly at random from the items that were 
not selected by the cold split. Consequently, the test set contains 20% of all the 
interactions in the dataset, while the other 80% composes the training set. Note that 
� = 0% corresponds to a common warm holdout, while � = 100% is equivalent to 
the cold-start holdout presented in Sect. 7.1.

For all the recommenders, we used the best hyper-parameter configurations found 
during the optimization procedure described in Sect. 7.2. During the evaluation, we 
forced the algorithms to recommend the items that had at least one interaction in the 
test set. Note that, since also warm items have interactions in the test set, the number 
of items that an algorithm can recommend is way higher compared to the cold-start 
scenario described in Sect. 7.1. This difference makes the metrics scores of the two 
experiments directly incomparable.

7.2 � Results

In Fig. 3, we show average and confidence interval at 95% of the accuracy perfor-
mance obtained on 10 different folds, expressed as the NDCG@10.

NFC shows to be a strong competitor in every situation, especially if compared 
to all the other cold-start techniques, as it is by far the best performing hybrid algo-
rithm at all cold percentages. At � = 75% , it achieves the best performance overall 
on both datasets. At lower values of � , it reaches the highest accuracy on BookCross-
ing, while it fills the gap between SLIM and all the other baselines on Amazon. 
DCT, HP3 , and ItemKNN-CBF have very similar and stable trends, independently 
from � . FBSM benefits from the presence of interactions and reaches higher accu-
racy in warm scenarios on Amazon, but it is the worse performing algorithm in most 
situations. Interesting to notice that the difference between NFC and all the other 
hybrid baselines is higher at low values of � (i.e., a low amount of test interactions 
related to cold items). This confirms that our new NFC model is able to exploit the 
available collaborative information more efficiently than its competitors.

Fig. 3   Comparison of NDCG@10 of the best techniques in a hybrid scenario, at different percentages 
of interactions related to cold items. We report the average and confidence interval at 95% of 10 evalua-
tions. We included SLIM as representative of the best pure collaborative algorithms across all the data-
sets
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Note that at values of � equal to 0%, 25%, and 50%, SLIM proves to be the 
most accurate algorithm on Amazon. This is an expected result, as collaborative 
approaches, and SLIM in particular, are known to perform very well in warm sce-
narios (Dacrema et  al. 2019), while the other approaches we compare it with are 
specifically designed for cold-start recommendation. Moreover, recommending 
warm items is an easier task, since the recommenders have valuable collaborative 
information about them. However, with the increasing percentage of interactions 
related to cold-start items, the gap between SLIM and the other models decreases. 
Indeed, at � = 75% , SLIM performs on par or worse than the other algorithms on 
both datasets.

8 � Illuminating the black box

Neural networks are often considered as black boxes, but interpreting their output 
and understanding what they learn are key factors for assessing the quality of a 
model. Indeed, these tasks allow ensuring that the model is providing a proper rep-
resentation of a problem, and exclude undesired outcomes as the exploitation of arti-
facts in the data, biases, overfitting, and much more. For this reason, examining the 
black box has attracted attention in many different fields of application (Montavon 
et al. 2018; Gevrey et al. 2003; Guidotti et al. 2018). The aim of this section is to 
provide a qualitative analysis of the NFC model, by using two different approaches. 
In the first approach, we study the behavior of NFC with respect to other techniques 
by studying the neighborhood of episodes from the same series. In the second 
approach, we examine the importance that the network gives to the different input 
features, for a better understanding of how the model is exploiting the input data.

8.1 � Neighborhood analysis

In this section, we qualitatively analyze the neighborhoods in the embedding 
space generated by our new NFC model, in order to gain explainable insights on 
why it provides more accurate recommendations. We perform the experiments on 
the Yahoo! movies dataset, since it has a good amount of quality editorial features 
and, due to the popularity of the movie domain, the results are easier to interpret 
and explain. We compare the hybrid embeddings of our new NFC model and two 
models that provide embedded representations for items, LCE, and BPRMF-AFM. 
In the comparison, we also include a hybrid and a content-based representation 
in the original features space with features weights applied, formerly CFW-D and 
ItemKNN-CBF.

This experiment is performed simulating a cold-start scenario. We replicate the 
cold split described in Sect.  7.1, keeping the 80% of the items for the training of 
the models and the other 20% for the test. We train the algorithms using the best 
hyper-parameter configurations found for the cold-start evaluation experiments in 
Sect. 7.2. We analyze the 5 nearest neighbors in the test set, according to different 
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models, of two popular movies: Indiana Jones and the Temple of Doom and The 
World is Not Enough. They are movies belonging to two well-known sagas, Indiana 
Jones, and James Bond, respectively. We ensure that the movie subject of the analy-
sis, in turn, is in the training set, while all the other movies belonging to the same 
saga are included in the test set. Similarities between movies are computed with the 
cosine of the embeddings or the cosine of the weighted features, depending on the 
type of model. We expect to find films belonging to the corresponding sagas among 
the closest neighbors. However, note that this is not a trivial task because, due to the 
experimental setting we adopt, there is no information about the saga in the training 
set.

In the left column of Table 9, we show the 5 neighbors of Indiana Jones and the 
Temple of Doom. For each algorithm, neighbors are ordered from the closest (top) 
to the farthest (bottom). This movie is the second episode of the Indiana Jones tril-
ogy, a very well-known character created by George Lucas, interpreted by Harrison 
Ford, and directed by Steven Spielberg. Since it is part of a trilogy, we expect the 
other two movies (namely Raiders of the Lost Ark and Indiana Jones and the Last 

Table 9   Five nearest neighbors in a cold-start item scenario of the Indiana Jones and the Temple of 
Doom (on the left) and The World Is Not Enough (on the right) movies in the embedding or weighted 
feature spaces for the different algorithms

For each algorithm, neighbors are ordered from the closest (top) to the farthest (bottom)

Algorithm Nearest Neighbors

Indiana Jones and the Temple of Doom The World is Not Enough

ItemKNN-CBF Indiana Jones and the Last Crusade
Raiders of the Lost Ark
Homeward Bound: The Incredible Journey
Star Trek III: The Search For Spock
The Color Purple

Goldeneye
License to Kill
For Your Eyes Only
A View to a Kill
The Spy Who Loved Me

CFW-D Indiana Jones and the Last Crusade
Raiders of the Lost Ark
Sabrina
Minority Report
Empire of the Sun

Goldeneye
License to Kill
Octopussy
A View to a Kill
Dr. No

LCE The Pagemaster
Raiders of the Lost Ark
101 Dalmatians
Star Wars: Episode I
Indiana Jones and the Last Crusade

White Squall
American Movie
Ronin
Shriek If You Know .
Black and White

BPRMF-AFM Indiana Jones and the Last Crusade
X-Men
Bad Company
Frailty
John Carpenter’s Ghosts of Mars

Jackie Chan’s First Strike
The Legend of Drunken Master
No Man’s Land
A View to a Kill
Octopussy

NFC Indiana Jones and the Last Crusade
Raiders of the Lost Ark
Back to the Future Part III
Ransom
Jurassic Park III

Goldeneye
Dr. No
A View to a Kill
Octopussy
License to Kill
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Crusade) to be among the nearest neighbors. Indeed, all the neighborhoods of the 
different models, with the exception of BPRMF-AFM, which is not able to recog-
nize the first as one of the nearest neighbors, include both the additional movies of 
the saga. LCE and BPRMF-AFM struggle more to recognize the saga, since they are 
not able to identify the other two movies of Indiana Jones as the closest neighbors. 
Moreover, their neighborhoods are hardly interpretable, since they contain movies 
aimed to other types of audience. The neighbors generated by BPRMF-AFM are 
far in time from the Indiana Jones saga, since they all have been released in the 
new millennium, while Indiana Jones was released in 1984. Moreover, even though 
they are mainly action movies, they are less popular and quite different from the 
adventure genre of Indiana Jones, as they are closer to the thriller and horror genres. 
The same holds also looking at the neighbors generated by LCE. The Pagemaster is 
a live-action/animated fantasy adventure film, and 101 Dalmatians is a live action 
adaptation of the homonymous animated movie. Both of them are family-friendly 
movies that are also suitable for children, and they are different from the movies of 
the Indiana Jones saga.

Concerning the two feature weighting models, CFW-D and ItemKNN-CBF, they 
both recognize the movies belonging to the saga as the most similar ones, but they 
struggle to fill the rest of the neighborhood with suitable movies for the same audi-
ence. In particular, they mainly focus on one or a small set of features that they 
consider highly relevant, but they include in the neighborhood movies that hardly 
fit with the saga. ItemKNN-CBF includes the coming-of-age period drama film The 
Color Purple, which has Steven Spielberg as director like Indiana Jones and the 
Temple of Doom, but it is a completely different type of movie. Homeward Bound 
- The Incredible Journey has the same adventure genre of Indiana Jones, accord-
ing to the metadata of the Yahoo! dataset, but it is a children’s movie. Looking at 
the neighbors generated by CFW-D, we can notice a similar behavior. Sabrina is a 
comedy with Harrison Ford (the interpreter of the Indiana Jones character) as pro-
tagonist, Minority Report and Empire of the Sun are, respectively, a thriller and a 
war drama both directed by Steven Spielberg. As highlighted, all these movies have 
relevant features in common with the considered Indiana Jones movie, but they are 
very different from it. The neighborhood of NFC instead, beside the two movies of 
the saga, includes action and adventure movies aimed at the same target audience. In 
particular, it inserts two movies belonging to, respectively, the Jurassic Park and the 
Back to the Future sagas. These movies are part of two of the most successful and 
popular sagas of the late ’80s, like the Indiana Jones one. In this scenario, collabora-
tive information plays a fundamental role, allowing NFC to map these movies in the 
same neighborhood in the embedding space learned.

In the right column of Table 9, we show the nearest neighbors of the movie The 
World Is Not Enough, one of the movies belonging to the James Bond saga, also 
known as agent 007. Also in this case, for each algorithm, neighbors are ordered 
from the closest (top) to the farthest (bottom). The recognition of the James Bond 
movies in the cold-start scenario of this experiment is a quite challenging task for 
two main reasons. First, the James Bond saga counts many movies in the Yahoo! 
dataset (14), covers dozens of years, and the casts and the crews of the movies are 
often very different from each other. Second, the models have no information about 
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11  The best configuration of ItemKNN-CBF on Yahoo! includes the BM25 feature weighting technique.

the saga in the training set, as previously mentioned. Despite these difficulties, the 
two feature weighting methods, ItemKNN-CBF and CFW-D, are able to put the 
James Bond saga movies all close together. The same holds also for NFC that inserts 
only James Bond movies in the neighborhood. Interesting to notice that the two 
hybrid models that exploit collaborative information from similarities, CFW-D and 
NFC, identify the same 5 closest neighbors. The other approaches, namely LCE and 
BPRMF-AFM, strongly struggle to recognize the movies of the saga as the closest 
neighbors. LCE, especially, is not able to include even a single James Bond movie 
among the 5 nearest neighbors. BPRMF-AFM, instead, inserts two 007 movies as 
the fourth and fifth closest neighbors, respectively. Note that these two movies are 
also among the nearest neighbors identified by the other hybrid approaches, CFW-D 
and NFC, indicating that collaborative information likely influenced similarly the 
training of these models.

8.2 � Feature weights

In this section, we want to compare the importance, or weight, that the different 
algorithms assign to the content features. Our goal is twofold: assess the differ-
ence between content-based and hybrid models, and analyze what distinguishes 
NFC from the other approaches. Moreover, we want to test the robustness of the 
different techniques, repeating the experiments without some crucial information 
present in the original dataset. Indeed, the unexpectedly good results obtained 
by the content-based algorithms in Sect. 9.1, can be explained by exploring the 
features available in the Yahoo! dataset. One of the richest fields available as 
content information is represented by the synopsis. This field contains some 
hand-crafted, meaningful keywords that describe each movie and, among them, 
there are very explicit ones, that allow even content-based approaches to recog-
nize very different movies that belong to the same sagas. For this reason, to test 
the robustness we replicated the experiments also removing the synopsis fea-
tures from the content information.

We compare NFC with the best performing algorithms in the qualita-
tive experiment presented in Sect.  9.1, namely ItemKNN-CBF11 and CFW-D. 
These last two approaches exploit feature weighting techniques, and assessing 
the feature importance is an integral part of the model. Shedding light on the 
black box represented by deep neural networks, instead, is not an easy task, but 
it has increasingly drawn the attention of researchers in the recent past, due to 
the importance that these techniques have across so many tasks and fields of 
application. In our experiments, we adopt DeepLIFT, proposed by Shrikumar 
et  al. (2017), in order to assess the importance that the NFC model assigns to 
each feature when a specific input sample is provided. Following the categoriza-
tion of the black box explanation problems proposed by Guidotti et al. (2018), 
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DeepLIFT is considered to solve the outcome explanation problem, which con-
sists of providing an explanation for the outcome of the model against a given 
input instance. This approach backpropagates the contributions of all neurons in 
the network to every feature of the input, assigning scores according to the dif-
ference between the activation of each neuron and its reference activation. In our 
experiments, we used a zero-valued array as reference. We employed the imple-
mentation of DeepLIFT proposed by Ancona et  al. (2018) in the DeepExplain 
python framework.12

In Fig. 4, we show the weights that the different techniques assign to the con-
tent features. We focus on the James Bond saga because it is the one that counts 
the highest number of movies (14) with a high diversity in terms of features 
among the movies that compose it, as mentioned in Sect. 9.1. For each recom-
mender, we selected the 10 features with the highest average weight on all the 
movies that belong to the saga. In Fig. 4a, we show the weights of the models 
trained on the dataset including synopsis features, while in Fig.  4b these fea-
tures are excluded. For a clearer representation, the average weights have been 
max-normalized.

Figure 4a shows that explicit synopsis features like 007 and bond have a largely 
higher importance compared to all the others. The importance that ItemKNN-CBF 
and CFW-D give to the two aforementioned features is so high to make the presence 
of all the other features almost irrelevant, with weights five or more times lower than 
the highest ones. NFC, instead, is able to take into account also less specific fea-
tures, assigning them higher weights. Moreover, NFC is able to consider the genre 
action/adventure as a very important feature, which is a quite difficult task, as it 
appears in 13 movies of the saga, but also in other 455 movies. Clearly, ItemKNN-
CBF and CFW-D are completely focused on the features that uniquely identify the 
James Bond saga, but they end up with a very narrow perspective. Valuing more 
generic features, like the genre, allows recognizing similar movies that do not nec-
essarily belong to the same saga and help to provide more diverse and explainable 
recommendations. Thanks to the expressive power of neural networks, NFC is able 
to effectively combine specific and generic features and to assess their importance 
more carefully, according to the collaborative information exploited. Consequently, 
we also expect our approach to smooth the over-specialization problem (Lops et al. 
2011). Thanks to the collaborative information enclosed in collaborative similari-
ties, NFC can pay attention only to those features that are relevant to the users, 
reducing the risk of overweighting less popular features, as it happens when using 
information-based normalization schemes (such as TF-IDF or BM25).

The same result is reflected also in Fig. 4b, where the explicit and impactful syn-
opsis features are missing. All the algorithms assess desmond llewelyn13 and albert 
broccoli14 as the two most important features. Looking at all the non-synopsis 

13  Desmond Llewelyn is the actor that interpreted Q, the head of the research and development division 
of MI6 in James Bond movies between 1963 and 1999.
14  Albert Broccoli is the producer of most of the James Bond movies until 1995.

12  https://​github.​com/​marco​ancona/​DeepE​xplain.

https://github.com/marcoancona/DeepExplain
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Fig. 4   Comparison of the average importance assigned by three recommenders to the features of the 
movies belonging to the James Bond saga. The experiment is performed with and without the synopsis 
features

features of James Bond movies, these two are the most characterizing ones, since 
they both appear in 9 movies of the saga and in almost no other movie in the dataset. 
However, users most likely do not watch James Bond movies due to their contribu-
tion. On the contrary, Roger Moore and Sean Connery are very famous actors that 
interpreted the James Bond character in a number of movies. Due to their popular-
ity, it is not uncommon that people watch films where they appear mainly because 
of their acting skills. However, ItemKNN-CBF and CFW-D can only recognize 
Roger Moore as a relevant feature, while Sean Connery is not among the 10 most 
important ones. This happens because Roger Moore appears in only 5 movies that 
do not belong to the James Bond saga, while Sean Connery acts in 34, excluding 
the saga’s ones. Even in this case, ItemKNN-CBF and CFW-D are strongly biased 
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toward characterizing singular features, while NFC confirms its ability to exploit 
also important, but more popular features.

9 � Limitations and future directions

In the previous sections, we have shown the potential of our new NFC model, 
demonstrating that it represents an interesting advancement for cold-start item 
recommendation. However, this work also presents some limitations that can 
become the subject of future studies.

The first limitation of our study is represented by the offline setting of the exper-
iments performed. It is widely known in literature that offline evaluation is often 
affected by several biases (Shani and Gunawardana 2011; Bellogín et  al. 2017). 
Moreover, the offline qualitative study presented in Sect. 9 cannot be reliably gen-
eralized to every scenario. An online evaluation of the accuracy and the quality 
of the recommendations generated by NFC would confirm or deny its perceived 
effectiveness.

The second limitation of our study is the absence of an analysis about the conse-
quences of using different collaborative similarities. The NFC model learns to repro-
duce a given collaborative item similarity matrix. In this work, the algorithm used 
to generate the similarities has been treated as a hyper-parameter of NFC. However, 
the qualitative and quantitative differences produced by the usage of different collab-
orative algorithms in the generation of the similarity matrix to learn have not been 
thoroughly investigated. This type of analysis represents an interesting direction for 
future works.

A third limitation of this work is represented by the absence of a study on the 
impact of item popularity or, in other words, the amount of collaborative informa-
tion available for an item. Collaborative algorithms usually benefit from rich collab-
orative information, resulting in higher accuracy of the recommendations generated. 
It could be valuable to assess whether this statement is true also for our NFC model.

Finally, in the implementation proposed in this paper, NFC adopts a unique and 
collective concept of similarity, which is the most common approach in item-based 
similarity models. As a future direction, it could be beneficial to enhance NFC in 
order to take into account multiple user-specific views of the similarities exploiting 
individual user preferences.

10 � Conclusions

In this paper, we proposed NFC, a novel deep learning model for cold-start item rec-
ommendation. The model learns to map the content representation of an item into a 
hybrid embedding space and to combine the features that compose the embedding in 
order to reproduce collaborative similarity values.

We presented three additional variants of NFC that learn from user ratings, using 
different optimization procedures. With extensive experiments on four datasets, we 
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showed that learning from similarity values has several advantages over these alter-
natives, including higher accuracy and lower convergence times.

We compared NFC with a number of state-of-the-art approaches for item cold-
start recommendation. The results proved that the new model outperforms the accu-
racy of all its competitors by a large margin. The experiments in extremely cold 
scenarios demonstrated that NFC effectively exploits collaborative information, but 
struggles more than other techniques when the amount of ratings available during 
training is very low. The tests in a hybrid scenario confirmed that NFC outperforms 
its counterparts in cold scenarios, while it fills the gap between cold-start recom-
mendation techniques and the best collaborative approaches in warm ones.

Finally, we conducted a qualitative analysis of the embeddings generated by 
NFC. We showed its capability to recognize similar movies in the embedding space 
learned, comparing it with other state-of-the-art techniques. Moreover, we assessed 
the relevance of collaborative information with a feature importance analysis, show-
ing the ability of NFC to combine specific and more generic, but significant, features 
together.

Besides the interesting and promising results obtained, our work also presents 
some limitations. The generality of the results obtained in our experiments is 
bounded by the offline setting. The consequences of using different collaborative 
similarity matrices and the impact of item popularity on the recommendation qual-
ity and accuracy have not been thoroughly investigated. Future works should aim to 
address these limitations.
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