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Abstract

The continuous evolution of low-thrust propulsion technologies, both in performance and the range of platforms 

that can equip them, provides increasing advantages in propellant efficiency and enables new kinds of missions. 

However, their smaller control authority compared to impulsive thrusters makes it more challenging to react to 

unforeseen situations such as collision avoidance activities. Whereas impulsive propulsion allows for efficient 

Collision Avoidance Manoeuvres (CAMs) performed just a few orbits before the predicted close approach, low thrust 

CAMs can require a longer acting time. Moreover, low-thrust CAM models are more computationally costly to perform 

parametric analyses and optimisations to inform the decision-making process. 

To tackle some of these issues, we propose analytical and semi-analytical models for low-thrust CAMs, based on 

averaging techniques and with focus on computational efficiency. They are part of the latest iteration of the Manoeuvre 

Intelligence for Space Safety (MISS) software tool for CAM design. The main goal in this work is to improve the 

characterisation of the phasing change at the predicted close approach, as this is the leading contribution to collision 

probability reduction. To this end, the fully analytical model for constant, tangential low-thrust CAMs introduced in 

previous works is updated to use a differential time law in eccentric anomaly including first-order terms in thrust 

acceleration, replacing the previous time law derived from Kepler’s equation. Numerical tests show that the new 

approach significantly improves the accuracy with no additional model complexity, except for quasi-circular orbits. 

For this case, the zeroth-order time law with a correction for the displacement of the apse line deals better with the 

singularity of Gauss equations at zero eccentricity. The computational efficiency of the model is leveraged to perform 

sensitivity analyses for representative test cases, highlight their qualitative characteristics. 

Finally, two future improvements and applications are introduced. First, the inclusion of normal thrust acceleration 

components is treated. Although an analytical result can be obtained, its complexity prevents from using it for efficient 

CAM computation in its current form. Then, the synergies with machine learning techniques for achieving on-board 

CAM autonomy are briefly discussed. 

Keywords: Collision avoidance manoeuvre, low-thrust, analytical methods, Space Traffic Management, Space 

Situational Awareness, on-board autonomy 

 

Nomenclature 

𝑎  Semi-major axis, km 

𝑎𝑛  Normal thrust acceleration, km/s2 

𝑎𝑡  Tangential thrust acceleration, km/s2 

𝑏  Semi-minor axis, km 

𝑒  Eccentricity 

𝐸  Eccentric anomaly, deg or rad 

E[⋅]  Complete elliptic integral of the second kind 

𝑓  True anomaly, deg or rad 

F[⋅]  Complete elliptic integral of the first kind 

𝑛  Mean motion of the spacecraft, 1/s 

𝑟  Orbital radius, km 

𝑡  Time, s 

𝑣  Orbital velocity (magnitude), km/s 

𝜀  Non-dimensional thrust parameter 𝑎𝑡/(𝜇/𝑎𝑟𝑒𝑓
2 ) 

𝜇  Gravitational parameter of the primary, km3/ s2 

𝜔  Argument of pericentre, deg or rad 

Ω  Right ascension of the ascending node, deg or rad 

 

Acronyms/Abbreviations 

CA Close approach 

CAM Collision avoidance manoeuvre 

CDM Conjunction data message 

ML Machine learning 

ref Reference value 

RMSE Root-mean-square error 

TCA Time of closest approach 

 

1. Introduction 

Low-thrust propulsion technologies are experiencing 

a continuous increase both in their performance and the 

range of platforms that can equip them. Particularly 

interesting are novel propulsion solutions for small 

satellites and even CubeSats in Low Earth orbit, 

enlarging the envelope of missions they can perform. 

However, although low-thrust propulsion provides 

significant advantages in propellant efficiency, it also 

suffers from a smaller control authority compared to 

impulsive thrusters. This aspect must be considered 
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during mission design, allocating longer times for phases 

such as achieving the initial operational orbit or post-

mission disposal (when implement). But one of the main 

challenges is to react to unforeseen situations, including 

collision avoidance activities. While impulsive 

propulsion allows for efficient Collision Avoidance 

Manoeuvres (CAMs) performed just a few orbits before 

the predicted close approach (CA), low thrust CAMs can 

require a longer acting time. Moreover, the higher 

complexity of low thrust CAM models makes it more 

computationally costly to perform parametrical analyses 

and optimisations to inform the decision-making process. 

Aiming to address this need for efficient 

computational tools for the design of low-thrust CAMs, 

this work proposes advanced analytical low-thrust CAM 

models based on averaging techniques. They expand 

previous results from the Manoeuvre Intelligence for 

Space Safety (MISS) software tool [1], which uses Gauss 

planetary equations to model the orbit modification due 

to an impulsive or low-thrust-tangential CAM. Two main 

limitations were identified in the previous models for the 

low-thrust case  [2]. First, to perform the change of 

independent variable from time to eccentric anomaly, 

required for the averaging process, an approximate 

differential time law derived from Kepler’s equation was 

employed. This can have a significant impact on the 

accuracy of the results, as phasing change at the predicted 

CA is the leading contribution to collision probability 

reduction. In [2] a first improvement was proposed by 

adding the information on the displacement of the line of 

apses, neglected in the approximate time law, through the 

variation in argument of pericentre. In this new work, 

instead, a time law retaining first-order contributions in 

thrust acceleration is proposed, and its performance is 

compared with the previous solution for a wide range of 

values in eccentricity and thrust acceleration. Second, the 

models in [1][2] are restricted to tangential thrust actions, 

as they are normally a pseudo-optimal solution for low-

thrust CAMs. In the second part of this paper, a first 

approximation to the development of an analytical 

formulation of low-thrust CAMs in the normal direction 

is presented, and future steps are briefly discussed. 

One possible application for these analytical CAM 

models is on-board applications. However, to achieve 

autonomous operation capabilities, it is also needed to 

have a decision-making component that, based of space 

situational information, determines whether the expected 

risk at the time of the CA exceeds the acceptable 

threshold and triggers the CAM design. The final part of 

this paper discusses a framework for autonomous CAM 

capabilities, proposed as part of the e.Cube CubeSat 

demonstration mission and using the CAM models in 

MISS [1]. 

The rest of this paper is organized as follows. 

Section 2 presents a brief description of the CAM 

modelling framework implemented in MISS, 

highlighting its main blocks and dynamical models. 

Then, the new time law for the tangential low-thrust case 

is introduced in Subsection 2.1. Several numerical test 

cases are presented to characterize the behaviour of the 

new time law, comparing it with previous approaches. 

Also, a test case for a representative CA is presented. The 

discussion on the analytical CAM model is concluded in 

Subsection 2.2, where the first outcomes for the 

extension of the model to the normal-thrust case are 

presented and next steps discussed. Finally, Section 3 

briefly introduces the framework for autonomous on-

board CAM capabilities, as part of the e.Cube 

demonstration mission. 

 

2. CAM modelling framework  

Let us consider a CA between a manoeuvrable 

spacecraft and a debris. The spacecraft is equipped with 

either impulsive of low-thrust propulsion capabilities, 

and it performs a CAM a given lead time before the 

predicted time of closest approach (TCA). The effect of 

this CAM is modelled following the framework 

presented in [1], composed of three main blocks: 

1. Characterization of the orbit modification due to the 

CAM, expressed in terms of Keplerian elements. 

2. Determination of the deviation at the TCA, using 

linearized relative motion equations to map changes 

in Keplerian elements at TCA into changes in 

relative position and velocity [3]. 

3. Post-processing operations, for analysis and 

optimization purposes. 

These blocks are designed to be highly independent 

from one another. The mathematical formulation of the 

first block for impulsive CAMs in an arbitrary direction 

was already presented in [4][5], together with an 

analytical expression of the linear state transition matrix 

of the problem. Instead, the low-thrust case was tackled 

with increasing level of detail in [6][1][2]. In all cases, 

Gauss planetary equations are averaged over one 

revolution to obtain semi-analytical or analytical 

expressions for the evolution of the Keplerian elements 

and the change in phasing. To do this, the independent 

variable has to be changed from time to eccentric 

anomaly using an approximate time law, as detailed 

in [1][7]. In all cases, the tangential orientation of thrust 

was preferred because it is the asymptotically optimal 

solution for long lead times, and it offers advantages for 

the analytical manipulations. The first model in [6] was 

semi-analytical, reducing the evolutions of semi-major 

axis and eccentricity to their mean secular terms and 

introducing several corrections for the determination of 

the change in phasing. However, the neglected 

oscillatory terms of semi-major axis and eccentricity 

have an impact on the determination of the phasing 

change during the last orbital revolution before TCA, 

which prompted the use of numerical fittings in [1] to 

approximate these contributions. Both models are semi-
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analytical, as they require a numerical integration for the 

evaluation of the time law during the whole manoeuvre, 

as well as the numerical integration of the equation for 

mean anomaly during the last orbital revolution. 

To improve both accuracy and computational 

performance, a recent iteration of the model presented 

in  [2] reached a fully analytical model for semi-major 

axis, eccentricity, argument of pericentre and time as 

function of eccentric anomaly. Using this model, the 

determination of the change in Keplerian elements at the 

TCA is reduced to a root finding problem in the 𝑡(𝐸) 

time law. Furthermore, the results showed that the 

solution contains infinite harmonics of eccentric 

anomaly, explaining the accuracy limitation of the 

sinusoidal fitting (first harmonic) in [1]. 

Despite these advances, there are two limitations to 

be addressed. First, the use of an approximate time law 

for the change of independent variable prior to averaging 

sets an upper limit for the attainable accuracy of the 

model, regardless of the improvements in the analytical 

or semi-analytical approximate solutions for the resulting 

system of ODEs. Second, although the approximation of 

tangential thrust provides good solutions, a more accurate 

description would require considering also the normal 

and out-of-plane components. The choice of a more 

accurate time law is discussed in Subsection 2.1, while 

the inclusion of the solutions for the normal component 

is briefly discussed in Subsection 2.2. 

 

2.1 First-order time law 

To obtain the single-average of the equations of 

motion over one revolution, it is first needed to perform 

a change of independent variable from time to the chosen 

anomaly, in this case the eccentric anomaly. Both the 

semi-analytical solution in [6][1] and the analytical one 

in [2] relied on an approximate differential time law in 

eccentric anomaly in the form [7][8]: 

 

d𝐸

d𝑡
= √

𝜇

𝑎3

1

1 − 𝑒 cos𝐸
 (1) 

 

where 𝐸  is the eccentric anomaly, 𝑎  is the semi-major 

axis, 𝑒  is the eccentricity, and 𝜇  is the gravitational 

parameter of the primary. A physical interpretation of 

this time law can be given considering Kepler’s law. 

Indeed, Eq. (1) can be retrieved by taking the time 

derivative of Kepler’s law, assuming that the derivatives 

of semi-major axis and eccentricity can be neglected and 

retaining only the derivative of the eccentric anomaly. 

This is a reasonable assumption for low-thrust scenarios 

because the magnitudes of the derivatives of semi-major 

axis and eccentricity scale with thrust magnitude, 

whereas eccentric anomaly has to complete a full 

revolution each period. However, this assumption limits 

the accuracy of the resulting models. This circumstance 

was observed and quantified for the analytical model 

in  [2], where the error of the analytical expressions when 

compared to a high-precision numerical propagation of 

the equations of motion in eccentric anomaly was smaller 

than the error between the exact and approximate time 

laws (both integrated numerically). The importance of 

the determination of the phasing in a low-thrust 

deflection was already identified as a key issue in [9], for 

the case of continuous-thrust deflection of asteroids using 

single-averaged semi-analytical methods. 

A first correction to the approximate time law was 

proposed in [2], in the form of an apse line correction. In 

order to capture the small displacements of the line of 

apses during the manoeuvre, not described by Eq. (1), the 

change in argument of pericentre was added to the 

analytical time law resulting from the integration of 

Eq. (1), using the analytical models for semi-major axis, 

eccentricity, and argument of pericentre. While this 

provided significant advantages, a more accurate model 

can be derived as presented in the following. 

In order to retain the effect of thrust in the time law, 

the full Gauss planetary equations for a constant thrust 

acceleration 𝑎𝑡 are considered [10]: 

 

d𝑎

d𝑡
=

2𝑎2𝑣

𝜇
𝑎𝑡 

d𝑒

d𝑡
=

1

𝑣
2(𝑒 + cos 𝑓)𝑎𝑡 

d𝜔

d𝑡
=

1

𝑒𝑣
2 sin𝑓 𝑎𝑡 

d𝐸

d𝑡
=

𝑛𝑎

𝑟
−

1

𝑒𝑏𝑣
2𝑎 sin𝑓 𝑎𝑡 

(2) 

 

where 𝑓  is the true anomaly, 𝜔  is the argument of 

pericentre, 𝑛 = √𝜇/𝑎3  is the mean motion of the 

spacecraft, 𝑣 is the magnitude of the orbital velocity, 𝑟 is 

the orbital radius, and 𝑏  is the semi-minor axis. The 

equations for inclination 𝑖  and right ascension of the 

ascending node Ω are not given because these elements 

are not affected by tangential thrust. 

Note that, by neglecting small terms in thrust 

acceleration in the differential equation for 𝐸  and 

substituting the polar equation of the orbit in eccentric 

anomaly, the same approximate time law in Eq. (1) is 

recovered. Consequently, the approximate time law is 

neglecting first-order terms in the thrust acceleration, 

which are instead the leading ones for the orbital 

elements in the analytical and semi-analytical solutions. 

This supports the observation from [2] that the errors in 

the differential time law were of higher order than those 

from the analytical solution. 

To address this limitation, in this work the time law 

from Eq. (2) is used instead. Performing the change of 

independent variable, terms on the small thrust 
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acceleration will now appear in the denominator of the 

equations of motion. Expanding in power series of 𝑎𝑡, the 

resulting system of ODEs is: 

 

d𝑎

d𝐸
= 𝑎𝑡

2𝑎3

𝜇
√1 − 𝑒2 cos2 𝐸 + 𝒪(𝑎𝑡

2) 

d𝑒

d𝐸
= 𝑎𝑡

2𝑎2(1 − 𝑒2)

𝜇
√

1 − 𝑒 cos 𝐸

1 + 𝑒 cos 𝐸
cos 𝐸 + 𝒪(𝑎𝑡

2) 

d𝜔

d𝐸
= 𝑎𝑡

2𝑎2√1 − 𝑒2

𝜇𝑒
√

1 − 𝑒 cos 𝐸

1 + 𝑒 cos 𝐸
sin 𝐸 + 𝒪(𝑎𝑡

2) 

(3) 

 

which coincides up to first order terms with that obtained 

using the approximate time law in Eq. (1). The difference 

lies in the terms of order 2 and higher, coming from the 

series expansion of the inverse of the last of Eq. (2). On 

the other hand, the differential equation for the time law 

𝑡(𝐸) takes the form: 

 

d𝑡

d𝐸
=

𝑟

𝑎𝑛
+ 𝑎𝑡

2𝑟2 sin 𝑓

𝑎𝑏𝑒𝑛2𝑣
+ 𝒪(𝑎𝑡

2) (4) 

 

Recalling the polar equation of the orbit in eccentric 

anomaly, 𝑟 = 𝑎(1 − 𝑒 cos 𝐸) , this equation coincides 

with the inverse of Eq. (1) only on the zeroth order term, 

showing that the first-order solution in [2] was not 

complete. Consequently, the results for semi-major axis, 

eccentricity, and argument of pericentre in the analytical 

tangential thrust model from [2] are already valid up to 

first order terms in thrust acceleration, and only the time 

law needs to be corrected to include the missing terms. 

For this reason, hereafter the original time law neglecting 

the acceleration terms in Gauss planetary equations will 

be referred to as zeroth-order time law. 

The solutions for semi-major axis and eccentricity are 

expressed as [2]: 

 

𝑎(𝐸) = 𝑎𝑟𝑒𝑓 + 𝜀 𝐾𝑎 𝐸 + 𝜀 𝑎𝑜𝑠𝑐(𝐸) 

𝑒(𝐸) = 𝑒𝑟𝑒𝑓 + 𝜀 𝐾𝑒 𝐸 + 𝜀 𝑒𝑜𝑠𝑐(𝐸) 
(5) 

 

where the thrust parameter 𝜀 = 𝑎𝑡/(𝜇/𝑎𝑟𝑒𝑓
2 )  has been 

introduced, and the subindex ‘ref’ denotes a constant, 

reference value. The coefficients of the linear secular 

terms can be computed in terms of the complete elliptic 

integrals of the first and second kind F[⋅]  and E[⋅]  as 

follows: 

 

𝐾𝑎 =
4𝑎𝑟𝑒𝑓 E[𝑒𝑟𝑒𝑓

2 ]

𝜋
 

𝐾𝑒 =
4(1 − 𝑒𝑟𝑒𝑓

2 )

𝑒𝑟𝑒𝑓𝜋
(E[𝑒𝑟𝑒𝑓

2 ] − F[𝑒𝑟𝑒𝑓
2 ]) 

(6) 

The terms 𝑎𝑜𝑠𝑐(𝐸) and 𝑒𝑜𝑠𝑐(𝐸) represent an oscillatory 

contribution, expressed as a power series in small 

reference eccentricity 𝑒𝑟𝑒𝑓 . The full expressions are 

provided in [2], and reported in Appendix A for the 

reader’s convenience. Note that that 𝑒𝑜𝑠𝑐 contains all the 

harmonics in eccentric anomaly up to the order of the 

expansion, while 𝑎𝑜𝑠𝑐  only includes the even ones. 

To derive the analytical time law in [2], the solutions 

for semi-major axis and eccentricity, Eq. (5), are 

introduced into the inverse of the time law in Eq. (1). 

Then, a series expansion in eccentricity is performed, and 

the resulting terms are integrated one by one. Finally, the 

apse line correction, corresponding to the change in 

argument of pericentre, is added. For the first-order time 

law, instead, we introduce Eq. (5) into Eq. (4), 

performing the change from 𝑎𝑡 to 𝜀. It is straightforward 

to check that some terms in 𝜀2  will appear when we 

substitute the solutions for semi-major axis and 

eccentricity into the second term of the right-hand side of 

d𝑡/d𝐸. These second order terms should not be retained, 

as we have already neglected second order terms in the 

rest of the model. Therefore, we take the series expansion 

in small thrust parameter up to first order, which gives 

raise to two well-separated contributions. The first one 

corresponds to the solution already presented in [2] 

(without the apse line correction). The second one comes 

from introducing the reference values of the orbital 

elements into the term of the time law explicitly 

dependent on thrust. The secular and oscillatory 

components of 𝑎 and 𝑒 are already scaled by the thrust 

parameter, so their contribution would be of second 

order. This new contribution to the time law can be 

integrated analytically, leading to: 

 

Δ𝑡∗𝑛𝑟𝑒𝑓 =
𝐶1 − 𝐶2

𝑒2(𝑒 𝑐𝐸 − 1)√−1 −
2

−1 + 𝑒 𝑐𝐸

||

𝐸0

𝐸

 

with 

𝐶1 = (−4 + 𝑒 𝑐𝐸)(−1 + 𝑒𝑐𝐸)(1 + 𝑒𝑐𝐸) 

𝐶2 = 6√1 − 𝑒2𝑐𝐸
2 asin [

√1 − 𝑒𝑐𝐸

√2
] 

(7) 

 

where 𝑐𝐸 = cos 𝐸 

 

The accuracy improvement obtained from the new 

model is qualitatively assessed through several test cases. 

In the first one, the exact time law obtained from the 

numerical integration of the full Gauss planetary 

equations, Eq. (2), is used as reference value to determine 

the error of the zeroth-order approximate time law, 

Eq. (1), and the first-order one, Eq. (4). In both cases, the 

approximate time law is integrated together with the 

differential equations in eccentric anomaly for semi-
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major axis, eccentricity, and argument of pericentre, 

Eq. (3). The error is measured as the root-mean-square 

error (RMSE) between the exact and approximate time 

law over 10 orbital revolutions around Earth, with 𝜇 =
398,600.433 km3/s2, for an initial semi-major axis of 

10,000 km and several values of thrust acceleration and 

initial eccentricity. The rest of initial orbital elements will 

not affect the time law under the force model used. It 

must be noted that a large range of initial eccentricities 

up to 0.9 is considered in order to assess the mathematical 

performance of the time laws, but many of these values 

will not correspond to physically valid orbits. Particularly, 

for the given value of initial semi-major axis, any orbit 

with an initial eccentricity higher than 0.34 would present 

an altitude at pericentre below 200 km. 

The results in Fig. 1 show a clear improvement in 

accuracy as we move from the zeroth-order time law to 

the zeroth-order one with apse line correction, and finally 

to the first-order time law. Particularly, the apse line 

correction successfully reduces the significant error of 

the zeroth-order time law for quasi-circular and small 

eccentricity orbits. The physical reason is that the line of 

apses shows more mobility due to perturbations as the 

orbit becomes closer to the circular case, where the line 

of apses is not properly defined and Gauss planetary 

equations become singular. The zeroth-order time law 

with apse line correction also shows significant errors for 

eccentricities close to 1. However, this is not a practically 

relevant scenario for collision avoidance activities of 

Earth-bound objects, where the highest eccentricities we 

typically find are those of GTOs, with 𝑒  around 0.73. 

Interestingly, the error surface shows a rift with global 

minima of the errors around these values of initial 

eccentricity. 

The new first-order solution, instead, shows a more 

regular and smooth behaviour, no longer presenting the 

rift, and providing significantly smaller errors in general. 

The only exceptions are the regions 𝑒 ≈ 0 and 𝑒 ≈ 0.73 

for high values of the thrust acceleration, where the 

zeroth-order time law with apse line correction 

outperforms the first-order one. This is particularly 

interesting for the quasi-circular case, because it shows 

that the mathematical formulation of the zeroth-order 

model with apse line correction is less affected by the 

circular orbit singularity in Gauss planetary equations. 

Indeed, the first-order time law displays a region of fast 

growth of the RMSE towards the lower end of the range, 

corresponding to 𝑒0 = 0.01. This suggests the practical 

approach of using the zeroth-order time law with apse 

line correction for the case of quasi-circular orbits and 

high thrust acceleration, and the first-order one for the 

remainder of the range in 𝑒0. Finally, it can be observed 

that the errors increase slightly towards the high-

eccentricity end of the range, consistently with the 

behaviour of the zeroth-order model with apse line 

correction. 

 
 

(a) Zeroth-order time law 

 

 
 

(b) Zeroth-order time law with apse line correction 

 

 
 

(c) First-order time law 

 

Fig. 1. RMSE over 10 periods for the zeroth-order and 

first-order approximate differential time laws 
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Table 1. Keplerian orbital elements of spacecraft and debris at CA 

Object 𝑎 [km] 𝑒 [-] 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝑓0 [deg] 

Molniya 2-9 23236.962 0.66819 64.209 286.999 285.583 14.043 

Debris 12962.638 0.31805 84.017 286.871 282.796 76.864 

 

The previous test served to evaluate the error incurred 

due to the use of an approximate time law for the change 

of independent variable in the equations of motion. 

Instead, the error of the analytical solution with respect 

to the exact numerical integration for the first-order time 

law is represented in Fig. 2. The results correspond to an 

expansion for 𝑡(𝐸)  up to forth order in 𝑒𝑟𝑒𝑓 , which 

allows to reproduce up to the sixth harmonic in eccentric 

anomaly. It is observed that the error is higher than the 

one due to the introduction of the approximate 

differential time law, addressing the issue identified 

in [2]. In other words, the accuracy of the solution is now 

limited by the quality of the analytic approximation, and 

not the dynamical model. The error of the analytical 

solution could be reduced by increasing the order of the 

expansion in 𝑒𝑟𝑒𝑓 , but numerical tests reveal that the 

gains are small. Alternatively, the expansion could be 

avoided by using the full expressions in incomplete 

elliptic integrals of the first and second kind for 𝑎 and 𝑒, 

as developed in [2]. However, this would have a penalty 

in computational cost because the time law would no 

longer reduce to an analytical expression and a numerical 

quadrature procedure would be required (i.e., semi-

analytical model).  Finally, the accuracy of both the 

differential time law and the analytical solution could be 

further improved by moving to a second-order model in 

thrust acceleration. 

 

To close this section, the performance of the first-

order and zeroth-order (with apse line correction) time 

laws is compared for a practical collision avoidance 

scenario. We consider a nominal zero-miss-distance CA 

taken from [2], between object “Molniya 2-9” (NORAD 

ID 7276) and a debris. The Keplerian elements for the 

spacecraft are retrieved from Space-Track  [11] at epoch 

2021-05-09, 17:32:21, while the debris has been 

generated setting a random relative velocity at CA. The 

resulting initial orbital elements of spacecraft and debris 

are reported in Table 1. Given this CA, the spacecraft 

performs a low-thrust CAM composed of a single 

thrusting arc of duration Δ𝑡𝐶𝐴𝑀  and constant tangential 

acceleration magnitude 𝑎𝑡, followed by a coasting arc of 

duration Δ𝑡𝑐𝑜𝑎𝑠𝑡  up to the TCA. Fig. 3 depicts the 

achievable miss distances 𝛿𝑏 in the encounter plane (i.e., 

the plane perpendicular to the relative velocity of the 

spacecraft with respect to the debris at the nominal CA), 

for a fixed thrust acceleration of 10−6 m/s2 , and 

different durations of the coast arc and thrust arc. These 

results are computed using the new model with the first-

order time law. As expected, the achievable deviation 

grows both with Δ𝑡𝐶𝐴𝑀 , which implies a higher 

consumption of propellant, and Δ𝑡𝑐𝑜𝑎𝑠𝑡. Furthermore, the 

solution shows some characteristic oscillatory patterns, 

due to the different effect of thrusting close to the 

pericentre or the apocentre. 

 
Fig. 2. RMSE over 10 periods of the first-order analytic 

time law 

 
Fig. 3. Displacements in the encounter plane, for the 

nominal CA in Table 1 and 𝑎𝑡 = 10−6 m/s2 
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The accuracy of both analytical models is quantified 

in Fig. 4, in terms of the relative error in the predicted 

displacement compared to a high-accuracy numerical 

evaluation. As expected, the first-order time law presents 

relative errors significantly smaller than those of the 

zeroth-order model with apse line correction. 

Interestingly, the errors of both models are highest for 

very short thrust and coast arc times; in these cases, the 

conceptual validity of the averaging procedure is limited. 

 

2.2 A first exploration of normal-thrust CAMs 

Once the first-order model for tangential thrust is 

completed in a consistent way, the next step would be to 

include the effects of thrust actions in directions other 

than tangential. Still considering a manoeuvrer without 

change of plane, an analytical model for a normal thrust 

action is sought for. The normal direction is defined as: 

 

𝐧̂ =
𝐡

ℎ
×

𝐯

𝑣
 (8) 

 

where 𝐡  and ℎ  are the angular momentum vector and 

magnitude, respectively. For a first-order approximation 

in the total magnitude of the thrust acceleration, the 

contributions in 𝑎𝑡  and 𝑎𝑛  become decoupled, and the 

single-averaged analytical solutions for tangential and 

normal thrust can be computed separately. The non-zero 

Gauss planetary equations for a normal thrust action take 

the form [10]: 

 

d𝑒

d𝑡
= −𝑎𝑛

𝑟 sin 𝑓

𝑎𝑣
 

d𝜔

d𝑡
= 𝑎𝑛

(2𝑒 +
𝑟
𝑎

cos 𝑓)

𝑒𝑣
 

d𝐸

d𝑡
=

𝑎𝑛

𝑟
− 𝑎𝑛

𝑟(𝑒 + cos𝑓)

𝑏𝑒𝑣
 

(9) 

 

Same as before, to perform the change of independent 

variable to eccentric anomaly we take the inverse of the 

differential equation for 𝐸 and expand it in power series 

of the thrust acceleration up to first order terms, yielding: 

 

d𝑡

d𝐸
=

𝑟

𝑎𝑛
+

𝑟3(𝑒 + cos𝑓)

𝑎2𝑏𝑒𝑛2𝑣
+ 𝒪(𝑎𝑛

2) (10) 

 

As expected, the zeroth-order term coincides with that of 

the tangential case, Eq. (4). Introducing this relation for 

the change of independent variable and retaining terms 

up to order one in 𝑎𝑛 , the differential equations for 

eccentricity and argument of pericentre take the form: 

 

d𝑒

d𝐸
= 𝑎𝑛

𝑎2(−1 + 𝑒 𝑐𝐸) 𝑠𝐸

𝜇√
1 + 𝑒 𝑐𝐸

(−1 + 𝑒2)(−1 + 𝑒 𝑐𝐸)

+ 𝒪(𝑎𝑛
2) 

d𝜔

d𝐸
= −𝑎𝑛

𝑎2(𝑒 + 𝑐𝐸)(−1 + 𝑒 𝑐𝐸)

𝑒 𝜇√−1 −
2

−1 + 𝑒 𝑐𝐸

+ 𝒪(𝑎𝑛
2) 

(11) 

 

where 𝑠𝐸 = sin 𝐸. It is straightforward to solve the first 

equation analytically using a symbolical manipulator, 

reaching: 

 

𝑒(𝐸) = 𝜀𝑛

𝐶1 + 𝐶2

2𝑒(−1 + 𝑒𝑐𝐸)√
1 + 𝑒 𝑐𝐸

(−1 + 𝑒2)(−1 + 𝑒 𝑐𝐸)

 
(12) 

 

 
 

(a)  Zeroth-order time law with apse line correction 

 

 
 

(b)  First-order time law 

 

Fig. 4. Relative errors of the displacement in the 

encounter plane for the zeroth-order (with apse line 

correction) and first-order time laws, for the nominal 

CA in Table 1 and 𝑎𝑡 = 10−6 m/s2 
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where 𝐶1 and 𝐶2 coincide with those defined in Eq. (7), 

and 𝜀𝑛 = 𝑎𝑛/(𝜇/𝑎𝑟𝑒𝑓
2 )  is a non-dimensional thrust 

parameter. 

Analytic solutions can also be achieved for the 

argument of pericentre and the time law 𝑡(𝐸). However, 

they have long and cumbersome expressions, involving 

incomplete elliptic integrals of the first and second kind, 

as well as inverse trigonometric functions. For brevity, 

they are not reproduced here. While they are valid 

solutions, their functional form defeats the purpose of 

building a highly efficient model. Future works will 

focus on the approximate decomposition of these 

expressions, aiming to reach simpler expressions similar 

to those for the tangential case. 

 

3. On-board applications. The e.Cube mission 

The analytical model for low-thrust tangential CAM 

can be suitable for on-board implementation given its 

simple algorithmic structure and reduced computational 

cost. However, total on-board CAM autonomy is not 

limited to the design and optimization of the manoeuvre, 

but also requires the capability to autonomously decide if 

and when said CAM is required. Recent works by 

different authors have studied the possibility of 

performing this task using artificial intelligence (AI) and 

machine learning (ML) techniques [12], taking as input 

data a series of Conjunction Data Messages (CDMs). 

Although some promising results have been obtained, 

two key issues remain: the selection of the most 

appropriate AI/ML algorithm, and the lack of real-world 

data to train it. 

A framework for autonomous on-board collision 

avoidance operations is proposed based on two modules: 

a ML-powered decision-making module, and a CAM 

design module. Testing this framework is one of the goals 

of the e.Cube mission, a CubeSat demonstration mission 

recently proposed by the COMPASS group in 

collaboration with several Italian partners [13]. The goal 

of e.Cube is to contribute to the advancement of 

technologies and methodologies dedicated to space 

debris mitigation and remediation, through three 

experiments: 1) on-board autonomous collision 

avoidance capabilities; 2) untraceable space debris in-situ 

detection, acquiring data to support current and future 

models for small debris; 3) re-entry characterization, 

providing direct measurements on the atmospheric 

conditions and the spacecraft mechanical behaviour. 

The collision avoidance experiment consists of 

several in-flight impulsive CAM tests for simulated CAs 

with a virtual debris. The CA is characterized by a 

sequence of CDM-like messages, uploaded to e.Cube 

from ground. Based on them, the decision-making 

module determines if the predicted risk at TCA may 

become unacceptable, triggering the design and 

execution of a CAM. The CAM design module leverages 

the same framework used in this work [1], but 

formulating the dynamics with the impulsive CAM 

analytical models in [4]. Although low-thrust CAMs will 

not be tested, the results will serve to validate both the 

CAM design framework and the decision-making 

module, as well as the interaction between them. 

 

4. Conclusions  

A fully analytical model for low-thrust CAMs under 

a tangential thrust orientation control law has been 

presented. It is based on Gauss planetary equations, 

expressed in terms of the eccentric anomaly and single-

averaged over one revolution. This model is the last 

iteration in a series of analytical and semi-analytical 

formulations, being the key novelty that the differential 

time law, needed to change the independent variable 

from time to eccentric anomaly before averaging, 

includes up to first order terms in the thrust acceleration. 

Previous models used a differential time law that 

neglected the direct contribution of thrust, and relied on 

a correction of the apse line position through the variation 

of the argument of periapsis to account for these effects. 

Numerical tests show that the first-order time law 

provides in general significant improvements with 

respect to the previous, zeroth-order time law, 

particularly for small thrust acceleration. The one 

significant exception is quasi-circular orbits, for which 

the zeroth-order time law with apse line correction is less 

affected by the numerical issues linked to the singularity 

of Gauss equations for circular orbit. This suggests the 

use of the zeroth-order time law for very-low-eccentricity 

scenarios, and the first-order one for the rest. These 

findings are sustained by different numerical test 

scenarios. 

Once the tangential thrust case is fully characterized, 

the next step is to include normal components in the 

thrust acceleration. Although low-thrust CAMs are 

usually aligned close to the tangential direction, an 

optimal solution will also contain small components in 

the other directions. Analytical solutions for the 

Keplerian elements affected by a normal thrust 

acceleration have been obtained; however, their 

expressions are too cumbersome to be used for a highly 

efficient computational implementation. Further work is 

needed to reduce these exact, analytical solutions into 

approximate ones that are suitable for manipulation and 

efficient CAM computation and design. 

The simple implementation and high computational 

efficiency of the tangential low-thrust CAM model make 

it suitable for on-board applications. A framework for 

autonomous on-board collision capabilities, part of the 

e.Cube CubeSat demonstration mission, has been 

presented. This framework is composed of a ML-

powered decision-making module, and a CAM design 

module based on analytical models. 
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Appendix A 

This appendix presents a summary of the expressions 

for the tangential low-thrust CAM analytical model. For 

a detailed derivation of these expressions and additional 

details, the reader can refer to [2]. 

The general expressions for semi-major axis and 

eccentricity were already presented in Eq. (5), while the 

slopes 𝐾𝑎  and 𝐾𝑒  of the mean, linear evolution 

correspond to Eq. (6).The oscillatory components are of 

the form: 

 

𝑎𝑜𝑠𝑐(𝐸) = ∑ 𝑒𝑟𝑒𝑓
2𝑢 ∑ 𝐾𝑢𝑤

𝑎 sin2𝑤𝐸

𝑢

𝑤=1𝑢=1,2,..

 

𝑒𝑜𝑠𝑐(𝐸) = ∑ 𝑒𝑟𝑒𝑓
𝑢−1 ∑ 𝐾𝑢𝑤

𝑒 sin𝑤𝐸

𝑢

𝑤=1𝑢=1,2,..

 

(13) 

 

with coefficient matrices up to order 6 (the coefficients 

up to order 8 can be found in [2]): 

 

𝐾𝑎 = 𝑎𝑟𝑒𝑓

[
 
 
 
 
 −

1

4
0 0

−
1

16
−

1

128
0

−
15

512
−

3

512
−

1

1536]
 
 
 
 
 

 

 

𝐾𝑒 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

2 0 0 0 0 0

0 −
1

2
0 0 0 0

−
5

4
0

1

12
0 0 0

0
1

4
0 −

1

32
0 0

−
9

32
0 −

1

192
0

3

320
0

0
19

256
0 −

1

256
0 −

1

256

−
65

512
0 −

5

512
0

11

2560
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Note that the values 𝑎𝑟𝑒𝑓  and 𝑒𝑟𝑒𝑓  can be obtained 

imposing the initial conditions 𝑎(𝐸0; 𝑎𝑟𝑒𝑓 , 𝑒𝑟𝑒𝑓) = 𝑎0 

and 𝑒(𝐸0; 𝑎𝑟𝑒𝑓 , 𝑒𝑟𝑒𝑓) = 𝑒𝑟𝑒𝑓. 

The expression for the argument of pericentre takes the 

form: 

 

Δ𝜔 = 𝜀

2√1 − 𝑒𝑟𝑒𝑓
2

𝑒𝑟𝑒𝑓
2 (2asin√

1 − 𝑒𝑟𝑒𝑓𝑐𝐸

2

− √1 − 𝑒𝑟𝑒𝑓
2 𝑐𝐸

2)||

𝐸0

𝐸

 

(14) 

 

Finally, the expression for the zeroth-order time law 

(without the apse line correction) is: 

 

Δ𝑡 𝑛𝑟𝑒𝑓 = 𝐸 − 𝑒𝑟𝑒𝑓 sin𝐸 + 

+𝜀 [𝐸2
3

4

𝐾𝑎

𝑎𝑟𝑒𝑓
− 𝐸 (𝐾𝑒 +

3

2
𝑒𝑟𝑒𝑓

𝐾𝑎

𝑎𝑟𝑒𝑓
) sin𝐸

+ ∑ 𝑒𝑟𝑒𝑓
𝑢−1 ∑ 𝐾𝑢𝑣

𝐸 cos𝑤𝐸

𝑢

𝑤=1𝑢=1,..

 ]|

𝐸0

𝐸

 

(15) 

 

with coefficients up to third order in 𝑒𝑟𝑒𝑓  (the 

coefficients up to order 4 can be found in [2]) 

 

𝐾𝐸 =

[
 
 
 
 
 
 
 
 −𝐾𝑒

1

2
0 0 0

−

3 +
18𝐾𝑎
𝑎𝑟𝑒𝑓

12
0 1/12 0 0

0 −
5

48
0

1

96
0

−1/16 0 −
5

192
0 −

1

320]
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