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Abstract

Fog Computing is a promising networking paradigm enabling the nodes at the edge to share computational and storage
resources. Being pervasively distributed, Fog Nodes are often battery powered and, for this reason, an efficient energy
management should be considered to prolong network lifetime. In this paper, we introduce a smart energy management
solution able to exploit information about the predicted harvested and consumed energy by Fog Nodes, equipped with
small solar panels. The smart energy management is applied on a cluster based Fog Computing environment where
computation offloading operations are performed. In the experimental section the effect of the smart energy management
is explored in terms of network lifetime by considering variable battery size and Fog Nodes density in a realistic solar-panel

harvesting-model and Fog Nodes setting.
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1. Introduction

The last decades have been characterized by an in-
creasing number of pervasive devices that have been de-
ployed in the environment to support a wide range of ap-
plications, from environmental monitoring [1] and in-home
automation [2] to Smart-cities [3] and Industry 4.0 [4].
Such devices, operating under the technological scenario of
Internet-of-Things (IoT) [5], are generally characterized by
constraints on memory, computation and energy consump-
tion. Hence, information gathered from the environment
by the IoT units are typically transmitted to the Cloud for
storage and processing. Despite being very popular, this
computational paradigm is not suitable when the latency
in making a decision or activating a reaction is very strict
(or at least constrained in time) or when the connection
between the IoT devices and the Cloud is intermittent or
limited in bandwidth.

To overcome these issues a new computational para-
digm, called Fog Computing (FC) [6, 7], has been recently
introduced. The novel approach brought by FC is the
possibility to move computation as close as possible to the
data generation source, i.e., the IoT devices, hence, pro-
viding a distributed framework of computing resources.
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This allows to acquire and process information locally,
hence supporting prompt reactions/decisions and making
FC units autonomous without requiring a permanent con-
nection with the Cloud computing platform. For these rea-
sons, FC enables novel application and technological sce-
narios allowing pervasive processing and analysis. Among
these scenarios, the computation offloading is one of the
most promising [8, 9, 10]. In computation offloading, a
node has the possibility to offload, completely or partially,
a processing task to be executed to another node. This
would bring several advantages (e.g., the ability to exploit
FC nodes characterized by larger energy availability) but,
at the same time, introduces several challenges in terms of
management complexity, energy distribution, nodes coor-
dination, just to name a few.

The FC scenario under consideration is composed by
a set of FC nodes, called Fog Nodes (FN), scattered in a
given area. Such nodes are battery-powered, since we as-
sume no or reduced connection to the electrical network.
In such a scenario, we aim at prolonging the network life-
time, i.e., the time span a certain amount of nodes or the
whole network runs out of energy, by introducing and man-
aging energy harvesting mechanisms in the FC nodes. In
particular, in this paper we are interested in prolonging
the network lifetime of battery-powered FNs by leverag-
ing the presence of energy harvesting devices (e.g., solar
panels) when they offload data/code to be processed to
other FNs. This could be particularly important for those
applications in which the human intervention could be an
issue. In particular we will focus on a distributed inten-
sive processing scenario, e.g., distributed image process-
ing, where the sensors are able to collect data and share



for processing among themselves.

Our goal is to exploit the prediction of the required and
harvested energy to be spent/acquired by each FN over
time to support the optimization of the offloading among
FNs so as to prolong the network lifetime. The considered
application scenario foresees the presence of pervasive FNs
able to organize themselves into clusters. This organiza-
tion has been demonstrated to be effective in terms of both
distributed processing and energy saving, allowing also to
reduce the overall delay [11, 12]. The novel contribution
of this work can be summarized as:

e Designing a green FC environment where the FNs
are equipped with solar panels and capable of re-
charging their batteries from the solar energy.

e A harvesting prediction method is proposed in order
to avoid the network to go off in the future by pre-
dicting the energy consumption of the nodes based
on their harvesting pattern.

e Differently from previous works, we have considered
the energy management among the devices by chang-
ing the role of the nodes between requesting devices
and computing devices, when necessary, in order to
prolong the network lifetime.

e A clustering algorithm is considered based on the en-
ergy status of the devices, so that the cluster mem-
bers in each cluster offload their tasks to the cluster
head for computation, by taking into account both
consumed and harvested energy.

The proposed energy management algorithm for com-
putational offloading has been tested and evaluated in a
synthetic scenario but with real data about the energy
harvesting profiles in Northern Italy [13].

The rest of the paper is organized as follows. In Sec-
tion 2, a literature review is given in the area of FC with
a particular attention on energy harvesting applications
and cluster organizations. In Section 3, the system model
is described by focusing on the energy-related operations
and their impact on the battery capacity. In Section 4, the
prediction-based harvesting algorithm is detailed, and the
clustering overlay is introduced, whereas the experimental
results are given in Section 5. Finally, in Section 6 the
conclusions are drawn.

2. Related Works

FC has been recently investigated by taking into ac-
count different aspects and points of view. Due to the
importance of the energy issues in this area, many of the
works have taken it into consideration.

An Energy-Efficient Computation Offloading (EECO)
algorithm is introduced in [14] and relies on three main
phases: classifying the nodes considering their energy and

cost feature, prioritizing them by giving a higher offload-
ing priority to the nodes which cannot meet the process-
ing latency constraint, and the radio-resource allocation of
the nodes considering the priority. The proposed EECO
algorithm allows to decrease the energy consumption up
to 18% w.r.t. computation without offloading. A heuris-
tic offloading decision algorithm was proposed in [15] with
the aim of maximizing system utility which considers task
completion time and the FN energy consumption in a sin-
gle server Mobile Edge Computing (MEC) scenario. The
authors in [16] proposed energy-efficient offloading poli-
cies for transcoding tasks in a mobile cloud system. With
the objective of minimizing the energy consumption while
meeting the latency constraints, they introduced an on-
line offloading algorithm which decides whether the task
should be offloaded to the Cloud or executed locally. Task
processing in [17] was based on a decision of either lo-
cal processing or total offloading. The authors aimed at
minimizing the local execution energy consumption for ap-
plications with strict deadline constraints. Energy con-
sumption has also been targeted in [18] for an offloading
approach. In this work, the authors targeted energy con-
sumption and response time for offloading to the Cloud.
In [19], the authors aim at maximizing the number of of-
floaded tasks for battery-charged nodes to reduce power
consumption. In their proposed heuristic, they obtain the
optimal transmission power and adjust the offloading de-
cisions. The authors in [20], considered resource manage-
ment and workload allocation in a fog-cloud environment.
They have proposed learning based algorithms to balance
the power consumption and reduce workload processing
delay at the edge.

The solutions concerning energy harvesting, especially
with solar panels, have been widely studied in literature.
The authors in [21, 22] extensively studied all the tech-
nological details and challenges involving the adoption of
solar panels (and/or other energy harvesting techniques).
The authors in [23] studied the problem of unpredictability
associated with renewal energies (including the solar one)
to ensure the quality of a service in an edge computing sys-
tem. The authors in [24] developed a real Wireless Sensor
Network (WSN) with nodes capable of acquiring data at
high frequencies and, at the same time, are equipped with
solar panels. Similar works can be found in [25, 26, 27].

An almost novel approach in energy harvesting is wire-
less energy transfer, that has been considered in different
scenarios. In [28], the authors designed a mechanism to
assign tasks to Unmanned Aerial Vehicles by taking into
account also the possibility to recharge them when they
are at the base station. Similarly, [29] considered the en-
ergy harvesting through wireless when offloading tasks to
the nodes of an Internet of Things network.

In [30], a dynamic algorithm is proposed, aiming at
minimizing energy costs by leveraging dual energy sources,
solar and grid power, to support the FNs. The Lyapunov
technique has been considered to design algorithms in
Cloud of Things system. In [31] the authors took into ac-



count the social relationships of energy harvesting devices
for computation offloading to a fog base station, where
they proposed a game theoretic approach with the objec-
tive of minimizing the execution cost.

An approach having similarities with computation of-
floading, named in-network processing, has been also pro-
posed in the last years [32, 33, 34, 35|, where the focus
is in WSNs, able to interact for cooperatively processing
data generated by themselves. In particular, in [32, 35],
energy harvesting is also considered. In this paper, differ-
ently from [32, 35] we are aiming at jointly exploiting the
energy consumption and harvesting profiles, in order to
dynamically adapt the cluster formation for coping with
the offloading requests by the FNs composing the network.

Clustering in edge networking has also been proposed
in some works. In [36] clustering was performed among the
access points considering channel and caching status. A
clustering algorithm was also proposed in [37] for the radio
access points dealing with joint computation and commu-
nication resource allocation inside the cluster. The same
problem has been also addressed in [38]. In this work,
whenever a user has a packet to offload, the computing
cluster is assigned to it. The main idea is to jointly com-
pute clusters for all active users’ requests simultaneously
in order to distribute computation and communication re-
sources among the users. A similar approach has also been
proposed in [39]. A mobile edge computing clustering al-
gorithm is also proposed in [40], which aims at maximizing
the traffic handled inside the clusters and reduce the traffic
going out to the core network data servers. Channel condi-
tions of the IoT devices have been considered for creating
clusters in [41], where they considered the IoT devices with
best and worst channel condition to be placed in one clus-
ters. In addition, the authors proposed a power allocation
method for each cluster.

In [11], different clustering mechanisms have been stud-
ied considering the energy consumption of the nodes.
Moreover, the impact of cluster updating has been investi-
gated. A centralized and distributed architecture has been
introduced in [12] where, in the centralized architecture,
the nodes are clustered having the possibility of offloading
to the edge devices. The aim of the work is to estimate
the offloading portions to the available devices for compu-
tation.

After studying the previous works we have noticed that,
to the best of our knowledge, most of the works have been
focusing on the offloading decision (i.e., whether to offload
or not), or where to offload in order to minimize the energy
consumption. On the other hand, some works considered
different parameters for cluster formation in different envi-
ronments. However, no paper has studied network lifetime
by considering a joint exploitation of energy harvesting
and offloading decision.

3. System Model

In this work, we are focusing on a scenario composed of
N FNs identified by the set U = {uq,...,u;,...,un}. The
generic ith FN is supposed to periodically generate some
data to be processed, where [; stands for the data unit
generated by the ith FN and §;, accounts for its mem-
ory occupation in Byte!. Each FN is supposed to have
a certain processing capability n?, for each i = 1,..., N,
characterized by the floating point operations per second
(FLOPS) it can handle; to this aim, we suppose that the
[;th data unit requests a certain amount of floating point
operations equal to w;,. The data processing operation im-
pacts the energy consumption of the FN and, to this aim,
we suppose that the power consumption for computing is
P!. Thus, the energy spent by the ith FN for processing
l; can be defined as:
Wy

- (1)

C
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Each FN is supposed to be equipped with an energy har-
vesting device. In particular, in this work, we have consid-
ered that the generic 7th FN is equipped with a small solar
panel able to harvest Ej (t) Joule at the time instant ¢.
The behaviour of E} () depends on several factors, among
which, the FN location, the size of the solar panel, the time
of the day, as well as the relative orientation between the
solar panel and the sun can be mentioned. With respect
to this, in this paper we have considered an energy har-
vesting model based on the data provided by the ENEA
agency [13] that averages daily acquisitions from 1995 to
1999 in the city of Milan, Italy, whose details are given in
Section 4.

The operative scenario is supposed to be an area hav-
ing a dimension of A m?2, in which the FNs are scattered
in random positions, where the generic ith FN is placed in
(x4,y;). By resorting to the FC paradigm, we are suppos-
ing that data can be processed at the originating FN, or
can be offloaded to any other surrounding FN for remote
processing. We suppose that the FNs can communicate
each other within a range R, i.e, any couple of nodes u;
and wu; can interact if and only if d(u;,u;) < R, where
d(-,-) is the Euclidean distance operator and R is the cov-
erage range depending on the considered wireless technol-
ogy. The transmission technology is assumed to be equal
for all the FNs. This operation impacts on the power con-
sumption of the FNs, where we suppose that the ith FN is
characterized by a power Pf, and a power P! , consumed
for transmitting and receiving, respectively.

Any FN can act in two different roles. The FN is an
offloader (OR) when offloads all the generated tasks. The
FN is an offloadee (OE) when gathers the tasks offloaded
to be processed. The OR and the OE always interact

IThe data can be also generated by external sensor nodes con-
nected to the FN; however, from the processing point of view, this
corresponds to have data generated directly by the FN itself.



for performing the offloading operation. By focusing on
the generic ith FN acting as OR and the generic jth FN
acting as OE, having defined the size of the [;th data unit
generated by the ith FN as d;,, and the data rate of the
link between the ith FN and the jth FN as r;;, we can
write the energy spent for transmitting the [;th data unit
as:

e @)
()

Similarly, by focusing on the generic jth FN acting as OE
with respect to the ith OR, we can write the energy spent
for receiving the [;th data unit to be processed as:

4,
Pl —. (3)

Tij

i _ pi
te,l; — Ptm

Ej

re,d; —

In case the ith FN is not transmitting, receiving, or
computing, the energy spent in idle mode corresponds to:
ia = Piatia (4)

(2

where Pfd is the power consumption in idle and ¢!, is the
time interval in which the ith FN is in idle.

The objective of this study is designing an energy-
aware solution able to prolong the network lifetime charac-
terized as the amount of time the FC network can operate
without the need to replace batteries.

To this aim we model the lifetime maximization prob-
lem on an infinite time horizon, as an equivalent problem
characterized by the composition of consecutive time in-
tervals. This allows to simplify the problem by focusing on
minimizing the net energy consumption in each interval,
considering both consumed and harvested energy. In the
following, we focus on a generic time interval having length
t seconds, in which the network energy consumption mini-
mization process is performed. We emphasize that £ tunes
the trade-off between the reclustering period and the adap-
tiveness of the proposed algorithm. This trade-off must be
tailored to the considered application scenario and the en-
vironment in which the system is operating. However, it
has to be pointed out that the algorithm works by con-
sidering the energy level at the end of each reclustering
period £, so as to allow the selection of the higher energy
nodes.

By supposing that the generic ith FN is generating V;
data units I; to be processed within , the energy spent
when acting as an OR can be written as:

5 ,_ Nj) 5
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corresponding to the sum of the energy spent for offloading
the N; generated data units plus the energy spent in idle;
it is worth to be noticed that the energy spent in idle is
evaluated on the time interval minus the time needed for
transmitting the N; tasks to be offloaded.

On the other side, when the jth FN is the OE, it spends
energy for computing its own generated data plus the en-
ergy spent for both receiving and computing the data of-
floaded by the offloader FNs. In addition, the energy spent

in idle is considered. This corresponds to an energy con-
sumption equal to:

Eg)E = NjE;Ja,zj + Z N; <Eiz,li + E;Ja,l,i) + Pi]digd (6)
U,rLEMj
uﬁéuj

where U; = {u;|d(u;, u;) < R} is the set of FNs that can
communicate with the jth FN, being at a distance lower
than the considered wireless coverage range R, and N;
identifies the data units generated by the ith FN offloaded
to the jth FN. The idle time within the interval ¢ for the
ith FN can be written as:
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calculated as the interval minus the time spent for receiv-
ing and computing. It is worth to be noticed that the
computing and receiving actions can be done also in par-
allel; this means that when they are disjoint an equality
should be considered, otherwise the inequality should be
considered.

The amount of energy harvested in a certain time in-
terval with length ¢ at the time ¢ can be defined as:

t+t
Fi(t,7) = / Ei (r)dr (8)

where E} () is the harvested energy at time instant 7. It
is worth to be noticed that the harvested energy depends
on both the starting time ¢ and the interval duration ¢.

In order to have a better view of the consumption and
harvesting patterns in each interval for an offloader node
and an offloadee node, in Figs. 1 and 2 the energy patterns
have been plotted by considering that the offloader gener-
ates two tasks to be computed by the offloadee. Fig. 1
represents the power consumption levels for both the OR
and OE nodes within one interval; it is possible to notice
the different phases during which the FNs can be in trans-
mission, reception, computation or idle. It is possible to
notice that while the OE is computing the tasks, the OR
is in idle. Fig. 2, on the other hand, depicts the time
behaviour of the remaining energy level of both OR and
OE nodes within the same interval. It is possible to notice
that the OR is gaining more from the harvested energy
due to a higher idling with respect to the OE, that instead
spends a higher amount of time in receiving and comput-
ing when the harvested energy is not enough to cover the
reception and processing phases. In the depicted example,
both nodes are harvesting during the whole interval, how-
ever, only during the idle the FNs are able to positively
recharge their batteries.

The previous considerations bring to the observation
that nodes selected for assuming the OE role consumes
more energy than the nodes selected for assuming the OR
role. It should, however, be noted that it is a general as-
sumption that offloading is not always beneficial, while its
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interval
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Figure 2: Remaining Energy profiles for offloader and offloadee in an
interval

usefulness depends on some parameters, e.g., the task size
or computational capability of the devices. However, in
our scenario where there is an energy-constrained compu-
tation offloading application, the OEs consume more en-
ergy consumption than the ORs; hence this drives to the
idea that for prolonging the network lifetime in such com-
putation offloading environment, the nodes role should be
dynamically selected based on the remained energy.

The FNs are supposed to have a rechargeable battery
that can store a maximum amount of energy FEjp.. The
energy stored by the ith FN at a reference starting time
t = 0 can be modeled as:

EL(0) = 7i(0) Eye, 9)

where 7;(0) is a parameter in the range [0,1] modeling
the portion of energy in the battery at the time instant

t = 0; in particular through the parameter ~;(0) it is pos-
sible to model scenarios where the FNs are characterized
by different energy levels at the beginning of the working
operations.

Finally, it is possible to derive the energy stored by
the FNs at the end of any interval by exploiting (5), (6)
and (8):

Ei(t+1) = EL(t) — Ebr + Ej(t,1), if u; is OR  (10a)

Ei(t+1) = Ei(t) — EL, + El(t,%), if uj is OE  (10b)

where

E;'(t) S EbC7 Vta vlu’l

standing that the remaining energy is always upper bounded
by the battery capacity, supposed to be the same for all
FNs.

The goal is to design an energy sustainable procedure
able to select at each time interval the role of each FN (i.e.,
offloader or offloadee) with the aim of maximizing their
life-time and, hence, having a self-sustainable network.

4. Problem Formulation and Proposed Solution

The aim of this section is to introduce a procedure
able to jointly consider the energy consumed and harvested
with respect to the role (i.e., OE or OR) that each FN can
have. In particular, by gaining from appropriate models a
computation offloading procedure exploiting the predicted
harvested and consumed energy levels is considered. The
proposed procedure is able to exploit information about
the predicted harvested energy as well as the consumed
and the available energy by FNs to increase the FN life-
time. To this aim, the FN role selection, between the OR
and the OE roles, is performed with the aim of avoiding
that the FNs are running out of energy during the next
interval.

The daily acquisition curve for the generic ith FN can
be modelled as a Gaussian with mean p; (i.e., the acquisi-
tion peak), for each FN u; € U, and standard deviation o;
defined in a way that the interval (u; — 30y, pi + 30;) cov-
ers the sunshine hours of the considered month [24] (e.g.,
9 hours and 15 minutes in January and 15 hours and 40
minutes in June in the city of Milan, Italy). Hence, (8)
can be rewritten as:

o t+t ] t+t 1 _(7—7;;1-)2
E;(t,t) = E;(T)dr = e 7% dr
W= [ B = [
(11)

for each node u; € U.

Examples of energy harvesting profiles are given in Fig.
3, while the way to define u; and o; are clarified in the
Section 5. As expected, the sunshine daily hours change
during the year and the daily peak is different for each FN
with a discrepancy of at most 30 minutes from the 13:00.

If considering the worst case scenario in terms of energy
consumption, i.e., an FN acting the role of an OE and at
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Figure 3: The energy harvested over different hours of a day for four
different months of the year, i.e., January, April, July, October.

every time instant in the interval receiving and processing
tasks?, it is possible to predict the upper bound of the
consumed energy by the ith FN in the interval ¢ as:

E{= (P, +P)t (12)

Hence, by exploiting (10), we can define the predicted re-
maining energy of a generic ith FN at the end of the vth
interval as:

E} (v +1)0) = Bi(t,) — EL + Ej(t,,0). (13)

where t, = vt for simplifying the notation.

Since the goal is to select the role of each FN based on
its stored energy, we assume that it is possible to dynami-
cally split the FN set into two subsets at the beginning of
each interval:

e Upg(t,), the FNs having a high amount of energy
and being able to support the processing of the other
FNs. We will refer to them as High Energy FNs.

o U (t,) the FNs whose remaining energy is low and
possibly not sufficient for completing the foreseen
processing. We will refer to them as Low Energy
FNs.

In particular, at each interval, the energy level of each FN
is estimated by resorting to the predicted remaining energy
defined in (13).

In order to assign the FNs to the two sets we define a
two-step procedure. At the first step we define:

Uni(t) = {wl B} (v + 1)) 2 0},

2Tt is worth to be noticed that transmitting/receiving can be done
in parallel with respect to processing.

as the set of the candidate High Energy FNs at time in-
stant t,. The FNs whose predicted remaining energy at
the end of the vth interval is positive are considered as the
High Energy potential FNs. Indeed, the FNs not belong-
ing to Uy g cannot guarantee to be able to process all the
potentially required tasks in the next interval.

At the second step we perform the energy-aware FN
classification by using a threshold based approach. The
FNs in Z/NfHE(tV) having a remaining energy higher than
a given threshold 0g, are selected as High Energy nodes
and the rest as Low Energy nodes. We will see in the next
section that, to be effective, threshold fg_ is not a-priori
fixed but it is adapted to the current energy level values
of the nodes thanks to a quantile-based approach.

More specifically, we can define the two sets Uy g (t,)
and Ugg(t,) as follows:

Upp(t,) = {u € Unp(t)|EL(t,) > 9ET} (14)
Ure(t,) =

w; € Upp(t)|Ei(t) < 9E} U {u ¢ z,?HE(tV>}
(15)

=

This rule allows to select the FNs having the highest
energy level as OE nodes and capable of performing more
energy hungry operations, while the rest, selected as Low
Energy nodes, could work as OR nodes.

Algorithm 1 Prediction-based Energy Harvesting
Scheme

1: Input: E! ((v+ 1)f) Vu; €U

2: Output: Uyg and Ur g

3: for all u; € 4 do

4:if Bl ((v+ 1)f) > 0 then
5: Ung < u;
6.
7
8

else
ULp + u;
: end if
9: end for
10: for all u; € Uy g do
11:  if Ei(t,) > 0F, then

12: Z/{HE — U;
13: else

14: Z/{LE — Uu;
15: end if

16: end for

The pseudo-code of the Prediction-based Energy Har-
vesting procedure is shown in Algorithm 1, where the
input is the estimated remaining energy of the FNs calcu-
lated as in (13), and the output is the two subsets U g
and Upp (Lines 1-2). In this algorithm, E? ((v + 1)) of
all FNs is considered as a metric for selecting the role of
the FNs. The FNs, having the estimated energy higher
than zero at the end of the time interval, are considered as
potential High Energy nodes able to work as OE while the
remaining nodes are assumed to be the ORs due to their
high probability of running out of energy before the end
of the interval. Then, among the FNs in Z;{HE, a threshold
is considered so that the FNs with the remaining energy



higher than the threshold are inserted in Uy g, otherwise
they are inserted in Urp (Lines 10-16). In the end, the
OE FNs are selected among those FNs having sufficient
estimated energy level at the end of the time interval.

As a benchmark for evaluating the effectiveness of the
proposed energy harvesting solution, a simple energy har-
vesting scheme is also considered where no prediction is
performed. The FNs having a remaining energy level
higher than a given threshold 0, are selected as OE and
the rest as ORs. This rule allows to select the FNs hav-
ing the highest energy level as the recipient of the more
energy hungry operations. In this case, it is possible to
define UH ;(t,) and U, (t,) as:

UfILIIE(tV) = {ul\Eﬁ(t,,) > GET}
Urlp(t,) = {wil|Ep(t,) < 0g, }

4.1. Clustering-based communication overlay

The FN classification based on their energy level al-
lows to implement an energy-based communication overlay
able to take into account the FN energy level and, at the
same time, to allow optimizing the energy consumption.
To this aim, by relying also on previous studies, we resort
on a cluster organization, considered as a feasible network
structure for energy-efficient Fog Network design [11, 12].

The idea at the basis of the clustering scheme is that
the FNs can transmit or receive the tasks to be processed
depending on their remaining energy level. To this aim
the clustering scheme allows to organize the FNs in a way
that the High Energy FNs can act as Cluster Heads (CHs),
being able to receive and process the tasks, while the Low
Energy FNs can act as Cluster Members (CMs) that of-
fload the data to be processed for saving energy. In addi-
tion, the cluster formation algorithm allows to assist those
nodes with a lower amount of energy, considering them
with a higher priority.

Each cluster is composed of one CH and several CMs.
The CHs are selected among the High Energy FNs, start-
ing from the FN with the highest remaining energy, i.e.,
u; € Upgg such that max,, {Eﬁ(ty)} For each selected
CH, the CMs are selected among the Low Energy FN
whose distance w.r.t. the CH is lower than the FNs cover-
age range R, prioritizing the FNs with the lowest remain-
ing energy level. The CH and CM selection for the cluster
formation is performed such that the CHs with the highest
energy are connected to the CMs with the lowest energy in
order to balance the clusters in terms of remaining energy.
Hence, we can define a generic ith cluster with M FNs,
i.e., having one CH and M — 1 CMs, as:

C;, = {ui € L{HE|max{Eﬁ(tu)}}

U {Uj S ULE| Ini}n (Ej(t,,)) ,d(ui,uj) S R, |Cz| S M}

r

In the following, we will refer to FNs acting as CH as
those nodes processing tasks received from the FNs act-
ing as CMs. After having classified the FNs based on the
Prediction-based Harvesting Scheme, the clustering proce-
dure is performed by considering Uy, p and Uy g sets as an
input, while the output is the cluster list with the belong-
ing FNs.

Algorithm 2 Clustering Scheme

1: Input: Uyg, Urg, Ei(t,) Yu; €U
2: Output: C;Vi
3: while Uy g # 0 do
Select u; € Up | maxy, {E;(ty)}
Ci — Ug
for all u; € Ur g do

if d(ui,uj-) S R then

éi < Uy,

end if
10: end for
11:  while |C;| < M do

© X DT

12: Ci « uj|miny; (BY(t,)) Vu; € C; ;
13: remove u; from Uy, i and éi;

14: end while

15: remove u; from Uy g

16: end while
17: if U # 0 then
18: for each u; €l do

19: C]' — Uj;

20: remove u; from U g
21: end for

22: end if

The pseudo-code of the clustering scheme is shown in
Algorithm 2, where the lists of High Energy FNs and
Low Energy FNs and the remaining energy level of all
FNs are the input, while the output is the clusters list C;
(Lines 1-2). Since the goal is to minimize the energy short-
age, the clustering algorithm starts from the High Energy
set, defined by Algorithm 1, where starting from the ith
FN having the highest remaining energy, the ith cluster
C; is created with the ith FN as the CH (Lines 4-5). By
considering the energy at the end of the reclustering pe-
riod, the selection of the higher energy node is performed
for ensuring that the selected HE nodes have a sufficient
amount of energy for processing the nearby nodes’ tasks.
All the FNs belonging to the Low Energy set are then
considered, and among them, those with a distance with
respect to the selected CH lower than the coverage range
are selected and put in a temporary cluster C; composed
by the candidates CMs of the ith CH, as long as the cover-
age range condition is respected (Lines 6-10). Among the
candidates CMs, the (M —1) FNs with the lowest remain-
ing energy level are put in the cluster C; and removed by
both Upp and C; sets (Lines 11-14). The bound M has
been introduced for taking into account both communi-
cations and computing multiple access limitations, so that
any cluster cannot have more than M FNs. Moreover, set-
ting a bound on the maximum number of FN per cluster
allows to indirectly balance the cluster load between dif-
ferent CHs. The selection of the lowest energy level FNs



allows to go in the direction of increasing the network life-
time by limiting the power consumption of the FNs with
lower energy values. The selected High Energy FNs are
removed from their lists once they are assigned (Line 15).
In the end, the remaining FNs in Uy g are considered as
isolated nodes and hence performing as CHs of a cluster
with no other FNs (Lines 17-22).

At the beginning of the following interval, both the
Prediction-based Harvesting Scheme and the Clustering
Scheme are performed for updating the cluster sets C; in
order to take into account the real amount of energy spent
by each FN.

5. Experimental Results

The computer simulations are performed in Matlab for
two possible spans of the daily time, as depicted in Ta-
ble 1. We have considered two different starting times
and sunshine duration in order to observe the behavior of
the network in two different situations. The simulation pa-
rameters are listed in Table 2, whose values are consistent
with similar papers in the literature [11, 12, 42].

We hypothesize a squared area A equal to 200 x 200 m?,
with a variable number of FNs equal to 200, 500, or 700
randomly placed in the area with uniform distribution.
The FNs generate data units with a Binomial distribution
with p=0.1 and n=10 per reclustering period. All FNs are
supposed to have the same computational capability and
battery capacity; however, in order to have a different ini-
tial energy, we have considered that the initial value of the
remaining energy of the ith FN is +;(0) Ep., where ~;(0) is
uniformly distributed in the range [0.7,1], with different
values for different FNs. The interval ¢ in which the pro-
cedure is performed has been set equal to 50s; this value
has been defined by balancing the need to adapt quickly
to the network changes and the management cost. Indeed,
there is a trade-off between the reclustering period and the
adaptiveness of the proposed algorithm, where shorter pe-
riods allow to have a faster reaction to the energy level
changes but requiring a higher number of control message
exchanges, while longer periods reduce the control mes-
sage exchange at the cost of a reduced reactivity. The
value considered in this work, 50s, is consistent with the
numerical results in [11], where the effect of reclustering
intervals on lifetime and energy consumption of the nodes
have been studied. Finally, it has to be pointed out that
the HE nodes selection ensures that CH nodes have al-
ways a positive energy level by the end of the reclustering
period.

The energy threshold 6, has been defined by resorting
to a 3-quantile classification performed on the energy level
distribution of all the FNs. By using a 3-quantile function
it is possible to classify the nodes based on the distribution
of their remaining energy. At each interval, the FNs energy
levels are evaluated, and then, the FNs are classified in one
of the two groups depending on their residual energy value.

The upper quantile index, used as threshold, is defined as:

0p, = E. such that Fg (E,)=p (17)
where p for the upper 3-quantile index is 2/3, and Fg, ()
represents the cumulative distribution function of the re-
maining energy of all the FNs [12].

The solar panel is supposed to have the size equal to
25cm?, and is south-oriented (i.e., the Azimuth degree is
zero), and has an inclination of 36 degrees w.r.t the hor-
izontal ground. Moreover, it is assumed that there are
no obstacles, and the ground reflection coefficient is set
to 0.20, i.e., the value of stones/rubbles, a value in be-
tween the land (0.14), the asphalt (0.10), the roofs (0.13)
and the dark buildings (0.27), representing a typical urban
landscape with a few clear buildings that have a higher re-
flection coefficient (0.60).

The parameters of the Guassian curve modelling the
energy acquired by the solar panel, as described in Sec-
tion 4, are the peak time p; uniformly distributed be-
tween 12.30 and 13.30, and the variance o; such that
(i —3-0;, i +3-0;) covers the sunshine hours of the
given month.

It is noteworthy to point out that the previous equation
is valid if and only if the interval # is less than 24 hours.
However, if one is interested to analyze acquisition periods
greater than a day, the Gaussian curve is repeated with a
period of 24 hours, hence assuming that the month does
not change?.

For the simulation results, we have considered three
different approaches:

e Harvesting and Prediction (H&P): This is the ap-
proach presented in Section 4, where the FNs are
able to harvest and predict their energy level in the
next clustering period with the parameters listed in
Table 3.

e Harvesting (H): This is a benchmark Harvesting clus-
tering scheme outlined in Section 4 where, differently
form the Harvesting and Prediction, we suppose that
the energy balancing prediction in the following in-
terval is not performed, while the FNs are able to
harvest energy by using a solar panel.

e No Harvesting (NH): The FNs are not equipped with
a solar panel and energy cannot be harvested. This
is the benchmark approach presented in [11].

The NH approach is considered as a benchmark to see
the impact of the harvesting in the network lifetime. In
the NH approach Algorithm 1 is used by considering that
E} =0 for all FNs. On the other side, in the harvesting

3If needed, for periods significantly longer than a day, it is pos-
sible to define more realistic mechanisms. An example sets the sun-
shine hours equal to the monthly mean only in the first fifteenth
day and then progressively changes that value toward the previ-
ous/subsequent month’s mean



Table 1: Scenario Definition

Scenario Starting Length
Time

1 10:00 4 hours

2 noon 12 hours

Table 2: Simulation Parameters

Parameter Value
Dimension 200 x 200 m?
Data Unit Size (d;,) 5MB
Normalized Data Rate @ 1m (7;;) 20 Mbit /s
Battery Capacity (Fp.) 5000 J

FNs’ Coverage Range (R) 25m

Data Unit Operations (wy,) 50 GFLOP

Max Number of FNs per Cluster (M) 5

FN Computation Capability (n?) 12 GFLOPS
FN Computation Power (P?) 0.9W
FN Idle Power (P},) 0.3W
FN Transmission Power (P},) 1.3W
FN Reception Power (P!,) 1.1W

approach, the FNs are equipped with solar panel and are
able to harvest. Algorithm 2 has been considered for the
clustering procedure and (10) for the remaining energy
of the FNs considering the amount of energy they have
harvested. Finally, H&P approach considers Algorithm
1 and Algorithm 2 for the clustering procedure and (13)
for calculating the remaining energy of the FNs. Details
about energy harvesting parameters are given in Table 3.

In the experimental results we are interested in observ-
ing the impact of harvesting solutions on the lifetime of the
network measured as the amount of time the FNs deplete
their battery [43]. In particular, in order to show how the
HEP solution outperforms the others, we are conducting
some experiments in the network where FNs have different
battery capacities.

In order to see the pattern of the nodes going off, we
have performed an experiment, plotting the lifetime ex-
pressed in minutes and seconds when all the FNs deplete
their energy; the results are shown in Fig. 4 for two differ-
ent starting points, different number of FNs and sunshine
hours 4. We have labeled the curves with NH, H, and H&P,
which refer, respectively, to the No harvesting, Harvesting
and HEP based approaches. As seen in both Fig. 4a and

41t is worth to be noticed that different sunshine hours are consid-
ered for mapping the behaviour of different seasons, where in Milan,
Italy, there are 10 hours sunshine in December, 17 hours in June and
14 in April/September

Table 3: Energy Harvesting Parameters

Parameter Value

Solar Panel Area 25 cm?
Azimuth e
Inclination w.r.t. Ground 36 deg
Ground Reflection Coefficient 0.20
Obstacles Occlusion None

Sun Peak Time Hour leligl?tes)(i:go
Sunshine Hours (December—June) 8h52 — 15h42

Table 4: Percentage of performance gain of H&P approach in terms
of network lifetime for 14 hours of sunshine

| 200FN | 500FN | 700FN
Scen. 10 am noon| 10 am noon| 10 am noon
Bench:
NH 55% 37% | 92% 65% | 119% 74%
H 24% 8% 17% 13% | 17% 14%

Fig. 4b, in which all the FNs are supposed to have the
same battery capacity (Ep. = 5000J), the H&P allows to
extend the FNs lifetime, as expected. It can also be seen
that the H&P approach allows to extend the lifetime with
respect to the simple harvesting approach thanks to the
ability to predict the harvested energy. The other point to
be highlighted is that network lifetime in harvesting solu-
tions in Fig. 4a is longer than that in Fig. 4b and that is
due to the higher amount of harvested energy starting at
10:00, owing to the presence of the harvesting peak around
noon. Finally, we can see the effect of different sunshine
hours; as seen even in the shortest duration of presence of
sunshine, the HéP approach outperforms the other bench-
marks. In both scenarios, the NH approach performs in
a similar way since no harvesting is considered. Table 4
presents the percentage of performance gain of the HéP
approach w.r.t. the benchmarks in terms of network life-
time for the 14 hours scenario. It should be noted that, for
the rest of the simulation results, we will fix the sunshine
hours to 14 hours, representing a middle case in terms of
energy harvesting.

In order to identify when the harvesting based solutions
have a higher impact on the network lifetime, we are here
investigating the impact of the battery capacity on the
network lifetime by considering the two different scenarios
defined in Table 1. In particular, the following figures
show the cumulative function of the day hour in which the
FNs are going off.

In Fig. 5, we have compared the results in case of
FNs performing NH with a battery capacity Ep. = 5000 J
while the battery capacity for H and H&P has been set
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Figure 4: Network Life time of the FNs going off with Ep. = 5000 J
for the 3 approaches with different sunshine hours.

to Epe. = 2000J. It is possible to note that even by reduc-
ing the battery capacity to less than one half of the bat-
tery capacity used for the NH approach, the nodes show
a similar behaviour in terms of lifetime, demonstrating
the effectiveness of the harvesting in the network lifetime.
This is particularly important showing that if we are able
to implement the harvesting solution in the IoT scenario
we can reduce the battery size, and consequently its cost,
while having a similar behaviour in terms of lifetime. The
HEP approach allows to reduce even more the number of
nodes depleting their energy. Furthermore, it can be seen
that when the number of FNs increases, the lifetime de-
creases; this is due to the fact that when the network is
composed by a higher number of FNs, also the clusters
are composed by a higher number of nodes reflecting in an
increased interaction among FNs and as a result a higher
energy consumption. The other interesting point is that
the lifetime behaviour in the H&P approach for all the
FNs scenarios is changing with a lower slope; this is due
to the prediction mechanism in which the energy consump-
tion among the FNs is balanced thus reducing the effect
of re-clustering.

In Fig. 6 we have further reduced the battery capac-
ity for FNs with H and H&P by setting Ep. = 1000J
while in case of non harvesting Ep. = 5000J. It is pos-
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Figure 5: FNs off time in Scenario 1 with Ep. = 2000 J

sible to notice that in this case the harvested energy is
not sufficient, hence the FNs consume their energy earlier
than the NH approach in which the nodes are supposed
to have a battery capacity of five times larger. However,
it is worth to be noticed that a reduced number of FNs
still have a certain amount of energy when the nodes with
NH are already out. We emphasize the effect of the H&/P
solution, that allows to extend even more the nodes life-
time for about one half of the nodes with respect to the
situation of NH with a battery capacity five time larger.
As a final result, we have considered the opposite case
in Scenario 2 when the FNs operating the harvesting ap-
proach have a battery capacity Ep. = 5000J, while the
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Figure 6: FNs off time in Scenario 1 with Ep. = 1000 J

FNs performing the non harvesting approach have a bat-
tery capacity Ep. = 8000J. In Fig. 7, the time instant in
which the FNs are going off is depicted. It is possible to
notice that the three solutions have quite the same perfor-
mance. However, thanks to the prediction property, FNs
in the HEP solution consume their energy later than the
other two cases. Moreover, it is worth noticing that the
FNs operating with harvesting solution have a smaller bat-
tery capacity confirming the effectiveness of the proposed
approach.
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Figure 7: FNs off time in Scenario 2 with Ep. = 8000 J

6. Conclusions

In this work, a smart energy management procedure is
proposed for extending the network lifetime of a fog com-
puting network. To this aim, a clustering mechanism at
the network edge is introduced for a computation offload-
ing scenario. We have considered a harvesting scenario
where the FNs are able to harvest energy exploiting on-
board solar panels. We have mathematically modeled the
energy consumption and harvesting in the fog networks.
Later, we proposed a prediction method in which the FNs
can be selected for composing a clustered architecture to
be used for task computation. In order to have a bal-



anced network in terms of energy consumption, the CH
and CM selection in the clustering solution is performed
by considering the FNs consumption and harvesting en-
ergy amount. By analyzing different battery capacity and
node density in a realistic solar-panel harvesting model, in
the experimental results, we have shown how effective the
HEP solution is in terms of network lifetime increase. As
a future work we will consider a distributed approach of
the proposed solution, which is currently meant to operate
in a centralized way. Such a distributed approach would
allow to manage even large-scale distributed systems.
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