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Abstract. The asymptotic homogenization technique is applied to evaluate the effective properties of
thin plates with periodic heterogeneity. The effect of shear deformation in the homogenization process
is evidenced and the role of cell slenderness, besides that of the plate, is clarified by several numerical
analyses.

1. Introduction
The numerical simulations of thin plates with periodic heterogeneity, or metamaterials plates, have a
high computational burden, especially when the size of the heterogeneity is small if compared with the
global dimension of the plate. In the elastic field, asymptotic homogenization have been effectively and
widely employed to obtain equivalent properties of periodic solids, both in statics and dynamics [1, 5].

For plates the procedure can be developed starting from a three-dimensional formulation [3, 4, 7, 9].
This leads to local 3D cell problems, which can be treated in a simplified manner if the unit cell can be
modelled as a plate. A possible way to proceed is introducing in the 3D cell problems the kinematic
constraints of plate theories [8, 9].

In this work, following a different path, we develop the homogenization procedure directly from the
structural model, as done originally in [6] for the Kirchhoff-Love plate theory, and in [2] for the Mindlin-
Reissner formulation and we apply it to several problems to evidence the role of shear deformation
in the numerical results when the typical dimension of the heterogeneity decreases and hence the cell
slenderness decreases.

2. Two-scale asymptotic homogenization
Let us consider a heterogeneous plate of mid-surface Ω characterized by an in-plane periodicity, with
unit cell Y ε, as depicted e.g. in Figure 1 (left), made of linear elastic isotropic materials. The typical
dimension of the unit cell is denoted by aε = εa, being ε a small parameter. Besides the macroscopic
in-plane coordinate x = (x1,x2), according to the two-scale asymptotic method, we introduce the fast
variable y = x/ε, which lives in the in-plane re-scaled unit cell Y = Y ε/ε, of size a, as shown e.g. in
Figure 1 (middle). We assume that the thickness of the plate does not scale with ε, i.e. tε(x) = t(x/ε).
Similarly, we consider the transversal load pε(x) = p(x/ε) and the periodically varying Young’s modulus
and Poisson’s ratio, Eε(x) = E(x/ε) and νε(x) = ν(x/ε) respectively, independent from ε.

The homogenized (effective) properties of the plate are obtained by analyzing the asymptotic
behaviour as ε→ 0.
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2.1. Homogenization of Kirchhoff-Love plates
The kinematic of a Kirchhoff-Love (K-L) plate is completely described by the out of plane displacement
wε, while the equilibrium requires that:

div div (−Bε : ∇�∇wε)+ pε = 0 in Ω with Bε =
Eεtε3

12(1−νε2)
[(1−ν

ε)I+ν
εI⊗ I] (1)

Bε is the bending stiffness tensor, div is the in-plane divergence operator and � denotes the symmetric
part of the tensorial product. The solution of the problem can be searched in the form of the asymptotic
expansion:

wε(x) = w0(x,x/ε)+ εw1(x,x/ε)+ ε2w2(x,x/ε)+ ε3w3(x,x/ε)+ . . . (2)

where the fields wi(x,y) are defined on Ω×R2 and are Y−periodic with respect the fast variable.
Substituting (2) into (1) one obtains a sequence of differential problems from which is possible to obtain
the effective homogenized bending stiffness of K-L plate, which components can be computed as:

B0
i jhk =

1
|Y |

∫
Y
(ei� e j−∇y�∇yα

i j) : B : (eh� ek−∇y�∇yα
hk) dy i, j,h,k ∈ {1,2} (3)

where ei is the unit vector in the i−th direction and |Y | is the area of the re-scaled unit cell. The functions
α i j(y) in (3) are the Y−periodic solutions of the cell problems:

divydivy
[
B : (−∇y�∇yα

i j + ei� e j)
]
= 0 in Y (4)

2.2. Homogenization of Mindlin-Reissner plates
In the Mindlin-Reissner (M-R) formulation, the kinematic of the plate is described by the out of
plane displacement wε and the rotation ϕε of the thickness segments normal to the mid-surface. The
equilibrium conditions are given by:

div [Cε · (∇wε−ϕε)]+ pε = 0 and div(−Bε : ∇ϕε) = Cε · (∇wε−ϕε) in Ω (5)

where Bε is the plate bending stiffness defined in (1), while Cε = 5/6 GεI is the plate shear stiffness
tensor, Gε being the shear modulus of the material. In addition to the expansion (2) adopted in the
previous subsection, we assume the following asymptotic expansions of the rotation:

ϕε(x) =ϕ0(x,x/ε)+ εϕ1(x,x/ε)+ ε2ϕ2(x,x/ε)+ . . . (6)

where the fields ϕi(x,y) are defined on Ω×R2 and are Y−periodic with respect the second variable.
Substituting (2,6) in equation (5) one obtains the effective bending and shear stiffnesses of M-R plate,
which components are:

B0
i jhk =

1
|Y |

∫
Y
(ei� e j−∇yβ

i j) : B : (eh� ek−∇yβ
hk) dy

C0
i j =

1
|Y |

∫
Y
(ei +∇yγ

i) ·C · (e j +∇yγ
j) dy

(7)

where βi j(y) and γ i(y) are the Y−periodic solutions, respectively, of the two cell problems:

divy
[
B : (−∇yβ

i j + ei� e j)
]
= 0 and divy

[
C · (∇yγ

i + ei)
]
= 0 in Y (8)

The presented K-L and M-R homogenization are not able to take into account the real slenderness of
the unit cell, since they are derived with an in-plane re-scaling. Better results are obtained by scaling
also the thickness (tε(x) = εt(x/ε)) in the cell problems as in the refined M-R (R-M-R) homogenization
proposed in [9].
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Figure 1: Periodic perforated plate with circular holes (left); re-scaled unit cell (middle); maximum
deflection versus aε/tε for the holed plate (markers) and the homogenized one (continuos lines), (right).

3. Numerical analyses
To validate the above homogenized formulations and to set the level of approximation for different values
of ε, two reference problems are considered. The results obtained of homogenized plates, with stiffness
evaluated through (3) or (7), are compared with those obtained with finite element analyses on the actual
heterogeneous plates.

To verify the convergence of the homogenization solution as ε→ 0, and to investigate the effect of the
unit cell slenderness, different analyses are conducted on plates with increasing numbers of cells keeping
fix the global dimensions of the plate and its thickness tε.

3.1. Periodic perforated plate
As the first example, we consider a square plate, of side A and constant thickness t = A/100, with
cylindrical holes of radius Rε = εR, periodically distributed in a square lattice of side aε, see Figure 1
(left). In the mid-plane of the plate, the re-scaled unit cell, shown in Figure 1 (middle), is hence a square
of side a with a circular hole of radius R. The plate is subject to a uniform transversal load p and it is
simply supported on its boundary.

Figure 1 (right) shows the maximum displacement wmax numerically computed on the holed M-R
plates (markers) and the same quantity evaluated through homogenization (continuos line), for different
values of R/a, as a function of the unit cell slenderness aε/tε. Green curves are obtained considering the
R-M-R homogenization, while the blue and the orange ones refer to the M-R and K-L ones (for clarity
these latters are only shown for R/a = 0.3 and 0.48). All results are normalized with the maximum
displacement w∗ of the uniform plate without holes (R/a → 0). The results obtained with R-M-R
homogenization are very close to those of the real holed plate, except when there are few cells (i.e.
for high values of aε/tε). This is due to the lack of separation between macro and micro-scale, which is a
fundamental hypothesis for the validity of the homogenization technique. K-L and M-R homogenization,
conversely, can be used only for large and small values of the cell slenderness (respectively). In particular
as the size of the holes increases (compare the curves R/a = 0.3 and 0.48) the shear deformation of the
unit cell becomes relevant. Hence, the K-L solution significantly differ from the R-M-R one even for
very slender cells.

Figure 2 shows the deformed configurations of the holed plate and of the equivalent homogeneous
one for aε/tε = 10 and R/a = 0.45. Even though the number of cells is small (10×10), the homogenized
approach is very accurate.
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Figure 2: Contour of deflection on deformed shapes for the holed plate (left) and the R-M-R homogenized
one (right), for aε/tε = 10 and R/a = 0.45.
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Figure 3: Two-way ribbed plate with a square inclusion (left); re-scaled unit cell (middle); maximum
deflection versus aε/tε for the real problem (markers) and the R-M-R homogenized one (continuos lines),
(right).

3.2. Two-ways ribbed plate
We consider a circular two-ways ribbed plate of diameter A made of a homogeneous material, as shown
in Figure 3 (left). We denote by tε = A/100 the thickness of the plate and, as in waffle slabs, we consider
a reinforcement with a square pattern (shown in dark grey in Figure 3) of thickness ψtε, with ψ ≥ 1,
and width aε− bε = 0.25aε. The re-scaled unit cell (Figure 3, middle) is a square of side a. The plate
is clamped on its boundary and is loaded with a uniform transversal load p on the top-right quarter (the
light blue region in the figure).

The maximum deflection wmax numerically obtained accounting for the real geometry with
reinforcements and the same quantity obtained on the homogenized plate are compared in Figure 3
(right) for some values of ψ . The values are normalized with w∗, which is the maximum displacement
for the case of uniform thickness plate (ψ = 1). As for the previous example, for few cells (i.e. for high
ratios aε/tε) the R-M-R homogenized solution (continuous line) differs from the real one (markers) due
to the lack of scale separation. For small values of aε/tε the shear deformability of the unit cell is no
more negligible and seems rather independent on ψ .

Figure 4 shows the contour plots of the displacement w (Figure 4a and b) and of the bending moment
M11 (Figure 4c and d) for ψ = 2 with 3 and 10 cells along the diameter. The first row refers to the
analysis with the real geometry, the second refers to the homogenized plate. With few cells (Figure 4a),
the displacement of the homogenized plate significantly differs from the real one, while with more cells
(Figure 4b) the two solutions are practically equal. On the contrary, even with a lot of cells, the solution
of the homogenized plate provides only average values of the bending moments, therefore it is unable
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Figure 4: Top: analysis on real geometry; bottom: analysis on homogenized plate. Contours of
displacement w (left) and bending moment M11 (right) for the cases aε/tε = 33.33 (a,c) and aε/tε = 10
(b,d) with ψ = 2.

to capture their maxima and minima (see Figure 4d ). However, peak values can be taken into account
through the so-called stress localization tensor, which is not considered in the present work.

4. Conclusions
The presented homogenization methods can be effectively adopted to simulate elastic periodic
metamaterial plates when a proper scale separation (at least one order of magnitude between the lattice
and the global dimensions) is guaranteed. The methods gives good results also when the load is non-
uniform and the boundary of the plate does not match the periodicity of the lattice. However, one should
select carefully the homogenization techinque to adopt. In particular, even for very thin plates, when the
heterogeneity dimension aε is of the same order of the plate thickness tε, the shear deformation plays
a significant role in the homogenization and the K-L theory cannot be used. Since, on the other hand,
the separation of scales requires small values of aε, the homogenized K-L formulation has little practical
use. Conversely, the homogenized R-M-R formulation, can be effectively applied in a wide range of
geometric parameters, as shown by the examples here considered.
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[3] D. Caillerie. Plaques élastiques minces à structure périodique de période et d’épaisseur comparables. C.R. acad. Sci. Paris,

294:159–162, 1982.
[4] D. Caillerie. Thin elastic and periodic plates. Mathematical Methods in the Applied Sciences, 6(1):159–191, 1984.
[5] C. Comi and J.J. Marigo. Homogenization Approach and Bloch-Floquet Theory for Band-Gap Prediction in 2D Locally

Resonant Metamaterials. Journal of Elasticity, 139(1):61–90, 2020.
[6] G. Duvaut. Comportement macroscopique d’une plaque perforee periodiquement. In Singular Perturbations and Boundary

Layer Theory. Lecture Notes in Mathematics, pages 131–145 (1997). Springer-Verlag, Berlin.
[7] T. Lewiński. Effective models of composite periodic plates-I. Asymptotic solution. International Journal of Solids and

Structures, 27(9), 1991.
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