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Abstract: Recent advances in nonlinear time-series prediction demonstrated the ability of
recurrent neural network to forecast chaotic time series on a multi-step horizon, outperforming
previous approaches. Researches considered chaotic systems with different degree of complexity,
but the analysis was mainly limited to the noise-free case. In this work, we extend the analysis
to a noisy environment, in order to fill the gap between deterministic and real-world time series.
We consider four archetypal deterministic chaotic systems each with different levels of additive
noise, representing the observation uncertainty always affecting practical applications. A time
series of solar irradiance is also taken into account as a real-world case study. Various neural
architectures, including feed-forward and recurrent networks, are adopted as predictors. LSTM
cells are used as recurrent neurons, with a special focus on the training approach. As in the
noise-free case, LSTM trained without the traditional teacher forcing, i.e., with a training that
replicates the forecasting conditions, proved to be the best architecture. The experiments on
the archetypal systems also shows that the error due to the model identification is negligible if
compared to the one caused by a small observation noise. In other words, system identification

and predictions are well distinct tasks.
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1. INTRODUCTION

Machine learning techniques have recently emerged as
efficient tools in the context of the data-driven prediction
of chaotic systems. In particular, recurrent neural networks
(RNNs) achieved significant results in terms of forecasting
accuracy and robustness when trained with backpropaga-
tion algorithms as well as following the reservoir computing
approach (Pathak et al., 2018; Sangiorgio and Dercole, 2020;
Vlachas et al., 2020).

The works in the field of chaotic dynamics forecasting,
besides few recent exceptions (Brajard et al., 2020; Chen
et al., 2020), usually study only noise-free time series.
Under this assumption, machine learning approaches can
reproduce with high accuracy the dynamics of chaotic
systems up to 6-7 Lyapunov times. Since this limit has
been found in a wide range of systems of different degree of
complexity and chaoticity, both in continuous and discrete
time, it can be somehow considered as the predictability
threshold nowadays achievable.

In this work, we analyze how the forecasting skills of four
feed-forward and recurrent neural predictors are affected
by additive noise, which mimics the role of observation
uncertainty always involved in practical applications. In
particular, we superimpose different levels of artificially-
generated white noise to the time series. The experiment
is performed on four time series obtained from archetypal

chaotic systems, which have been analyzed in the noise-free
case in Sangiorgio and Dercole (2020).

Finally, we evaluate the neural predictors on a real-world
application: a solar irradiance time series whose behavior
has been proved to be chaotic.

The rest of this paper is organized as follows. In Section 2
we present the neural architectures used as predictors.
Section 3 investigates the sensitivity of the predictive
performance in presence of an increasing level of noise
on the archetypal chaotic systems. In Section 4 we report
the results obtained on the solar irradiance time series.
Section 5 summarizes the contributions of this work and
draws some concluding remarks.

2. NEURAL PREDICTORS

The problem of forecasting a time series y(¢) on a multi-
step horizon consists of identifying a predictor that takes
as input the m lags, y(t —m+1), ..., y(t — 1), y(¢), and
produces as output the forecasted values for the subsequent
hleads, g(t+ 1), y(t +2), ..., g(t + h) corresponding to
the target values y(t 4+ 1), y(t + 2), ..., y(t + h).

The learning problem is feasible if the number m of lags—
the autoregressive terms that the model takes as input—is
large enough to establish a relation between the input and
the one-step target (¢4 1) (Takens, 1981). In the nonlinear
system terminology, the minimum of such m’s is the dataset
embedding dimension.
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We focus on neural architectures either composed of purely
feed-forward (FF) layers, or with the addition of recurrent
neurons. The former try to reproduce the mapping between
the input and output sets in a static way, the latter tackle
the problem under a dynamical perspective. In both cases, it
is necessary to frame the time series, y(1), y(2),...,y(t), ...,
in N pairs of input and output vectors, [y(t —m+1), ...,
y(t—1), y(t)] and [y(t +1), y(t+2), ..., y(t + h)]. The
learning task is thus to reproduce the mapping between
the m-dimensional input space and the h-dimensional
output space minimizing a loss function which measures
the distance between target and predicted output values.

The traditional loss function in regression tasks is the
mean squared error (MSE). We consider N target samples
¥y = [y1,¥2,-.-,yn], and the corresponding i-step ahead
predictions y“) = [ U,g}é ), .. .,y( )]. For each target
sample y, there is a time step ¢ in the dataset such that
yr = y(tr + 1), so that g},(;) is the i*" element of the output
vector [y(ty +1), y(tx +2), ..., y(ty + k)] computed on
the input [y(ty —m+1), ..., y(tx — 1), y(te)].

The i-step-ahead MSE is then defined as:

N
. 1 ()32
MSE(y,3%) = & > (e — i) (1)
k=1
However, the MSE is not a suitable performance metric,

since it is not normalized to the variability of the data.

To assess the prediction quality, it is preferable to use a
relative metric, such as the R? score:
N
RQ(y7y(i)) —1_ D k=1 (yk - yl(c)z 7 2)
Ek 1 (e —9)

where % is the mean of the target data. The R? score is
a normalized version of the MSE. It varies in the range
(=00, 1], with the upper bound corresponding to a perfect
forecasting, and 0 to the predictive power of the trivial
model which always forecasts the data mean value.

Both MSE and R? score, defined for the i*? step ahead can
be averaged over the entire forecasting horizon:

Z MSE(y
R2> _ %ZR2<y y(z)
=1

In the context of chaotic data forecasting, the predictive
horizon is usually rescaled in terms of the Lyapunov time
(LT)—the inverse of the largest Lyapunov exponent (LLE)
measuring the average exponential rate of divergence of
nearby trajectories. This allows the fair comparison of the
predictive power among both artificial and real systems
with different degrees of chaoticity.

(MSE)
()

2.1 Feed-forward architectures

The simplest and most common forecasting approach
consists of identifying the best one-step predictor and
then use it in a recursive way, feeding the previous step
predictions as input for the subsequent steps. Despite the
dynamic nature of the time series, this identification is a

static task, which requires to reproduce the relation from
the m lags to a single output. It can therefore solved with
a feed-forward network (see Table 1, FF-recursive).

The main advantage of this approach is that, once the
one-step predictor is trained, it can be used recursively
to forecast an arbitrarily long future sequence. This is, at
the same time, the main drawback of the FF-recursive
approach, as it is not optimized for a multi-step prediction.

To this purpose, it is necessary to define a model that
predicts multiple values. Within the FF' class, we can use
the same structure used for the one-step predictor, with
the only difference of increasing, from 1 to h, the number
of nodes in the output layer. Each output neuron focuses
on the prediction at a specific time step ahead (see Table 1,
FF-multi-output). The main issue with this architecture
is that it does not take into account that the outputs
are sequential—i.e., the same variable at different time
steps—but it acts as if the outputs were different variables
(Guariso et al., 2020).

2.2 Recurrent architectures

The idea behind RNNSs is to explicitly take into account the
sequentiality of the time series. To do so, the hidden nodes
are endowed with an internal state that is recurrently up-
dated using the sequence of the m lags and the predictions
up to i — 1 steps ahead to sequentially contribute to the
prediction at step i, ¢ > 2. We consider, in particular, the
widely used LSTM cells (Hochreiter and Schmidhuber,
1997), advanced recurrent cells in which the input-to-
state, state-to-state, and state-to-output contributions are
regulated by extra internal variables, called gates, whose
dynamics are optimized during training.

This architecture potentially overcomes the limitations of
the FF-recursive and multi-output predictors, because it is
trained to reproduce the entire sequence of output variables
and explicitly takes into account that these h outputs are
sequential values of the same variable (Sangiorgio, 2021).

The issue with RNNs is that they are systematically trained
using a technique known as teacher forcing (TF) (Williams
and Zipser, 1989). It consists of using the target data as
input, rather than the predictions produced by the network
from 1 to ¢ — 1 steps ahead, to compute the loss of the
prediction at step i (see Table 1, LSTM-TF).

In inference mode, the target data are obviously unknown
beyond the current time, so that the RNN network feeds
back its own predictions to complete the horizon of h > 2
leads. TF therefore introduces a discrepancy between
training and inference, that is known as exposure bias.

TF proved to be efficient on natural language processing
related tasks, granting faster convergence and avoiding
the accumulation of errors in the initial phase of training
(Bengio et al., 2015). For these reasons, all the high-level
application programming interfaces (API) for deep learning
adopt TF by default (Mihaylova and Martins, 2019),
whereas implementing a training without TF requires to
code with a low-level API, such as TensorFlow or PyTorch.

However, TF is not a good idea in the context of time
series forecasting (Sangiorgio and Dercole, 2020). Basically,
training with TF is somehow analogue to train a FF-
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Table 1. Training and inference phases of the four considered neural predictors for m = 2 and

h = 2. y(t) is the variable to be predicted, and s(¢

s(t —

m) is the initial internal state

) the internal state of the recurrent architecture.
vector, whose elements are set to 0.

Predictor Training phase

Inference phase

Froeursive 9t +1) = ferree(y(t), y(t = 1)) 9+ 1) = fere ((0), 40— 1)
gt +2) =fFF,m(y(t+1),y(t)) it +2) :fFFm( ), y(0)
FE-multi-output [t +2), 5(t + 1)] = frrmo (y(£), y(t — 1)) [9(t +2),5(t +1)] = frrmo (y(1), y(t — 1))
[9(2) ] = fusmarr (y(t — 1), ) [9(t), s(0 = 1] = fusmaerr (y(t = 1), 5(0 — 2))
LSTM-TF [t + 1), 5(1)] = Frsmmerr (y(2), ' ) [9(t +1),5(0) 1 = fusmre (y(0), s(0 — 1))
[9(t+2) | = fusomere (y(t + 1), ! ) [g(Hz) t+1)] = fLSTM_TF(g(tL 1),.\}/\,)
[5(), 51— 1)] = fusraenorr (u(t = 1), ) [i(t), | = fustammote (y(t — 1), )
LSTM-no-TF [z?(t:ul), 1] = fusmaenore (y(8), j )i [o(t Tl)’ 0] = fusmrenocrs (411). j )i
[9(t +2), | = fistatno-te (§(t + 1), 5(1)) [9(t +2), ] — fistataore (36 1), 501)

recursive predictor, as the optimized losses essentially
contain only one-step-ahead predictions (more precisely,
predictions obtained with input target values up to the
previous step, though with the contribution of the internal
state). Similar to FF-recursive predictors, TF therefore
suffers the accumulation of errors along the sequence of
predictions (Ranzato et al., 2015; Bengio et al., 2015).

As done in the noise-free case in Sangiorgio and Dercole
(2020), we thus trained the LSTM architecture also without
TF (LSTM-no-TF in Table 1). Coupling these two elements,
recurrent neurons and no-TF, solves at the same time the
drawbacks of the FF predictors and of LSTM-TF. Indeed,
this architecture is trained to predict the entire sequence
of output variables taking into account their temporal
connection, and makes the training and inference modes
coherent, so that the network can limit the propagation of
prediction errors through the sequence of predictions.

2.3 Networks’ hyper-parameters

To limit the number of networks’ hyper-parameters to be
tuned we fixed the number of hidden layers (3), and the
number of neurons per layer (10). Other hyper-parameters
have been optimized through a grid search. We tested a
batch size of 256, 512, and 1024; learning rates equal to
0.1, 0.01, and 0.001; decay factor of 0.001, and 0. The
number of epochs has been fixed to 5000 to guarantee the
convergence of each training. The gradient descent have
been performed adopting Adam optimizer by Kingma and

a (2014), an algorithm that is extensively used in deep
learning applications.

3. TIME SERIES FROM ARCHETYPAL SYSTEMS

We test the robustness of the neural predictors to the
observation noise on four archetypal chaotic systems: the
logistic map, the Hénon map, and two versions of the
generalized Hénon map. We limit the analysis to a single
output variable for each system.

The one-dimensional logistic map describes growth pro-
cesses in many fields. It is defined by the following recur-

rence:

y(t+1) =r-yt)- (1-y(t)), (4)
where r is the growth rate at low density. This map has a
chaotic behavior for most of the r values in the range 3.6-4
(we use 7 = 3.7 in the following computations).

We then consider three versions of the Hénon map. The
classical two-dimensional map and a 3D and 10D general-
ized Hénon maps that can be written as a m-dimensional
nonlinear autoregression:

yt+1) =1—-a-yt—-—m+2>+b-yt—m+1), (5)
where m is the system’s dimension. The parameters a and
b assume the values 1.4 and 0.3 for the 2D case as in Hénon
(1976), and a = 1.9 and b = —0.03 for the generalized maps
which exhibit a hyperchaotic behavior (Baier and Klein,
1990; Richter, 2002).

The results relative to the noise-free case are taken from a
previous work by Sangiorgio and Dercole (2020), based on
the same experimental setting. Here, we retrain the neural
predictors on noisy data, adding a white Gaussian noise to
the deterministic systems’ simulations. Three noise levels
are considered, with standard deviation equal to 0.5%, 1%,
and 5% of the process standard deviation.

Fig. 1 reports the results obtained with the intermediate
noise level (1%). FF-recursive and LSTM-TF predictors
exhibit nearly the same performance in the four cases. Their
accuracy is high in the initial part of the forecasting horizon,
and rapidly degrades to -1, meaning that the actual and
predicted trajectories have become uncorrelated (Dercole
et al., 2020). FF-multi-output ensures a positive (at worst
null) R? score, providing acceptable performances only
when the multi-step forecasting horizon is short. LSTM-
no-TF shows the same performance of FF-recursive and
LSTM-TF in the first part of the horizon, its R? score is
always positive as the FF-multi-output (see the last part
of the horizon) and it outperforms the three competitors
in the central part of the horizon.
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Fig. 1. R? (y, y“)) score for the four neural nets and the
real system used as predictor on the logistic (a), Hénon
(b), 3D (c), and 10D (d) generalized Hénon maps. Test
dataset with a 1% noise level.

An interesting benchmark is the real system used as
predictor (real system, in Fig. 1 and Table 2). In the
noise-free case, the real system always provides a perfect
forecast; R? score is always equal to one. When considering
noisy data, predictions are obtained by simulating the
system from a perturbed initial condition set by the d

Table 2. Performance of the predictors with
different levels of noise

# LT R2>05
System  Predictor noise  0.5% 1% 5%
free noise noise noise
FF-recursive 6.37 4.25 3.54 2.12
FF-multi-output 3.18 2.83 2.83 2.12
Logistic LSTM-TF > 7.07 4.25 3.54 2.12
LSTM-no-TF > 7.07 4.60 3.89 2.12
Real system [e%9) 4.24 3.53 2.12
FF-recursive 6.43 3.86 3.43 2.14
FF-multi-output 3.00 3.00 2.57 2.14
Hénon LSTM-TF > 7.28 3.86 3.43 2.14
LSTM-no-TF > 7.28 4.29 3.86 2.57
Real system [eS) 3.86 3.43 2.16
FF-recursive 6.07 3.86 3.31 2.21
3D FF-multi-output 2.76 2.76 2.48 2.21
gen. LSTM-TF 6.62 4.42 3.31 2.21
Hénon LSTM-no-TF > 745 442 3.86 2.21
Real system [e's) 4.42 3.31 2.21
FF-recursive 6.23 3.97 3.40 2.27
10D FF-multi-output 0.00 0.01 0.00 0.01
gen. LSTM-TF 6.23 3.97 3.40 2.27
Hénon LSTM-no-TF 6.80 4.54 3.97 2.27
Real system 00 4.54 3.40 2.27

noisy lags, so that the obtained trajectory diverges from
the one generating the target data due to the system’s
chaoticity. In other words, even if one could identify the
perfect model of the system, it would not be possible to
prevent the multi-step error divergence.

Looking across the different panels of Fig. 1, it is clear that
the decreasing trends are quite similar for all the chaotic
maps considered. This fact is interesting since it proves
that adopting the system’s Lyapunov time as temporal
unit (horizontal axis) and the R? score as metric (vertical
axis) is an appropriate way to standardize the dimension
of the problem.

Table 2 reports the sensitivity analysis performed by testing
three noise levels in terms of number of LTs for which the
RZ score is higher than 0.5. As expected, the performances
are considerably worse than those obtained in the noise-
free case since the chaotic behavior of the considered maps
exponentially amplify the noise on the initial condition. The
predictors’ performances decrease faster when the noise
level is higher.

The comparison between colored and grey curves allows to
analyze the differences between the four neural networks
and the real system used as predictor. FF-recursive and
LSTM-TF exhibit almost the same trend of the real system
used as predictor because they minimize the 1-step-ahead
prediction error. They thus solve a system identification
task, instead of specifically searching for the best multi-
step predictor. Conversely, the LSTM-no-TF is optimized
for the considered horizon and, for this reason, provides
a better performance then the other competitors on the
forecasting task.

The comparison also allows to separately evaluate the two
components of the prediction error, the first caused by
the uncertainty in the identification process (identification
error), the second due to the propagation of the observation
noise from the input data to the output (observation error).
The fact that the FF-recursive and LSTM-TF architectures
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Fig. 2. Output of the false nearest neighbors algorithm (a)
and estimation of the LLE = 0.062 (b) for the solar
irradiance time series.

have a predictive power similar to the real system used
as predictor, shows that identification error is a minor
component. This means that the knowledge the actual
system does not help improving the predictive accuracy
when dealing with a chaotic dataset affected by observation
noise.

4. REAL-WORLD TIME SERIES

We now test our neural predictors on a real case study,
considering a solar irradiance dataset (2014-2019) mea-

sured in Como, Italy, and provided by CML (www.

centrometeolombardo.com).

We first evaluate a suitable embedding dimension for
the dataset, using the false nearest neighbors algorithm
Kennel et al. (1992). The fraction of false neighbors
becomes negligible starting from m = 48 (see Fig. 2a),
meaning that such value is appropriate to reconstruct the
system dynamics (Takens, 1981). In other words, the finite
embedding allows us to describe the time series as produced
by a deterministic nonlinear process with the addition of
an observation noise.

To check whether the process is chaotic, we estimate the
LLE in the 48-dimensional space of delayed coordinates.
Essentially, starting from similar windows of 48 consecutive
data, the algorithm estimates the average exponential rate
of divergence of the data that follow the considered windows.
The rate is obtained as the slope of the linear part of the
log-divergence plot reported in Fig. 2b. The resulting value
is LLE = 0.062, that confirms the caoticity of the series,
as already shown by Fortuna et al. (2016).

The comparison of the multi-step prediction of solar
irradiance with LSTM and FF networks is performed using
data from 2014 to 2017 for parameters training, 2018 for
the validation, and 2019 for testing.

Before presenting the results, it is worth noticing that the
classical indicators may overestimate the actual perfor-
mances of models when applied to the complete time series.
When dealing with solar irradiance, there is always a strong
bias due to the presence of many null values. In the case at
hand, they are about 57% of the sample due to different
factors: the rotation and revolution motion of earth, the
additional shadowing of the nearby mountains and the
sensitivity of the sensors. When the recorded value is zero,
also the forecast is zero (or very close) and all these small
errors substantially reduce the average errors, increasing
the R? score. Additionally, forecasting the solar irradiance
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Fig. 3. R? (y, y“)) score for the four predictors of the solar
irradiance. Performance in the whole day (top), and
daytime only (bottom). Test dataset.

during the night is useless, and the power network manager
that may use the forecast, for instance, to balance electricity
production may well turn the forecasting model off. In order
to overcome this common deficiency and allow the models’
performances to be compared when they may indeed be
useful, we have also computed the performance indicators
considering only values above 25 Wm =2 (daytime, in what
follows).

Fig. 3 reports the results obtained with the four neural
predictors in terms of R? score both in the whole day
and on daytime samples only. Again, the LSTM-no-TF
predictor provides the best performances. Comparing the
latter with the FF-multi-output predictor, it emerges that
the two have a similar accuracy on the 12-step horizon,
while FF-multi-output predictor performs slightly worse
after 24 steps ahead. Adopting the FF-recursive approach,
the R? score decreases, specifically after 5 hours. Finally,
considering the LSTM-TF predictor the performance drops
dramatically. This is probably due to the highly periodic
trend characterizing the solar irradiance, which requires to
properly propagate the information through the internal
state of the recurrent cells. The LSTM architecture fails
in such task if it is trained with the traditional teacher
forcing procedure. For all the considered neural predictors,
the difference between the whole time series (average
value 140.37 Wm™2) and the daytime case (average 328.62
Wm~™2), emerges clearly, given that during all nights the
forecasting errors are negligible.

5. CONCLUSION

In this paper, we analyzed how the forecasting skills of
feed-forward and recurrent neural predictors on a multi-
step horizon are affected by the presence of observation
uncertainty. First, we investigated the effect of artificially-
generated additive noise on four deterministic time series
of different complexity and chaoticity, including a case of
hyperchaos. We then considered a solar irradiance time
series to evaluate how the situation changes when going
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from artificial to real-world systems. The finite embedding
and the positive (though small) Lyapunov exponent suggest
that the series is generated by a nonlinear chaotic process.

Whatever the system or the level of noise, our results
show that LSTM-no-TF is the most performing multi-
step predictor. This confirms the same conclusion recently
reached in the noise-fee case (Sangiorgio and Dercole, 2020)
and makes it robust to observation uncertainty.

Our experiments also proved that the error due to the
model identification process is negligible if compared to the
one caused by the observation noise, even when this latter
is really limited (its dispersion is in the order of 0.5% of
the process standard deviation). In other words, knowing
the actual model of the system is practically useless, in
terms of predictive accuracy, if one can properly identify a
neural predictor.

The results also confirm the suitability of FF and LSTM
networks in the forecasting of time series related to environ-
mental variables. FF-multi-output provides a forecasting
accuracy almost identical to LSTM-no-TF, while the FF-
recursive and LSTM-TF predictors have a lower predictive
power. Focusing on LSTM nets, it emerges the importance
of the training approach used also in real-world dataset.
Another interesting conclusion is that between the FF-
recursive and FF-multi-output, the former exhibits the
lowest performances. This is due to the fact that its
parameters are optimized over a time horizon of 1 step, but
then used for a longer horizon, thus propagating the error.
Therefore, the common practice to identify a single-step
predictor, and then to use it in a recursive way to forecast
the sequence §(t 4+ 1), §(t + 2),...,9(t + h), may not be
the best choice. A FF-multi-output may represent a more
suitable alternative.

Expanding this idea to a broader context, we can conclude
that prediction and system identification are related but
different tasks. A FF network trained on the one-step
prediction can mimic fairly well the behavior of a chaotic
system but other configurations exhibit greater predictive
power and robustness over multiple steps.

This paper represents the first attempt of systematically
evaluating the effect of observation noise in forecasting
chaotic dynamics. The other two papers on the same topic
(Brajard et al., 2020; Chen et al., 2020) only investigate the
effect of noise in Lorenz 96-like systems in the case in which
the full state vector—or a large part of it—is accessible.
This is a critical issue because the system’s state is not
accessible, and even unknown, in most applications. In
such situations, we believe that neural predictors directly
derived from the single (or the few) time series of interest
provide more robust results to be transferred to real-world
datasets.
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