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TinyV3RSE: The DART Vision-Based Navigation Test Bench

Mattia Pugliatti∗, Paolo Panicucci†, Vittorio Franzese‡, and Francesco Topputo§
Politecnico di Milano, Via La Masa 34, 20156, Milan, Italy

Image processing and vision-based navigation algorithms require images for design, testing,
and validation. For space exploration purposes, it is complex if not impossible to retrieve realistic
images. To mitigate this, two approaches can be used: high-fidelity rendering of celestial bodies
or hardware-in-the-loop testing. In this work, we focus on the latter by elaborating on the
design, implementation, validation, and calibration of a vision-based navigation test bench
called TinyV3RSE . The design of such facility has been a collaborative effort at the Deep-space
Astrodynamics Research & Technology (DART) group, which will benefit from its usage in
various projects and missions in which is involved. In this work, for the first time, we present the
facility design, the current calibration procedure, and also some preliminary results. These are
focused on the image processing in a small-body mission and on the performance of a traditional
and well-known optical navigation algorithm about the Moon.

I. Introduction

Solar System exploration is booming. The recent discovery of ocean worlds, the scientific and economic interestfor small bodies, and the future human and robotic exploration of the main ones are pushing for numerous mission
concepts aimed at the massive exploration and exploitation of the Solar System [1]. The increasing number of
space missions, also promoted by deep-space small satellites, raises issues in how to operate them. First, traditional
ground-based control centers and tracking facilities (e.g., the Deep Space Network – DSN) have limited number of
communications slots. Second, the impetus for compelling science implies riskier operations, such as touch-and-go
and landing on small bodies, or real-time and accurate state estimation, which is currently limited by the delayed
DSN communications and cut-off time. Third, the current approach to spacecraft navigation implies high costs due to
human-in-the-loop intervention that could become a critical driver with the increase of mission number.
Autonomous vision-based navigation (VBN) and robust Image Processing (IP) are crucial to overcome these

limitations. This is because of the capability of such algorithms to provide near real-time information to navigation filters
on-board. Among all the navigation sensors available on the market, cameras are usually preferred as they are light,
compact and low power demanding when compared to other advanced navigation sensors, such as LIDARs. For these
reasons the use of passive cameras, in combination with IP algorithms, provides compelling navigation performances
with light and cost-effective hardware.
IP and VBN require images for design, testing, and validation. In exploration missions, it is complex if not

impossible to gather images to perform such studies during the design phase of the algorithms. This is due to several
reasons. First, even though the number of interplanetary missions is increasing, few missions are flown every year. This
implies limited publicly available databases to be exploited, which could lead to limited testing capabilities. Second,
archived images are associated with a spacecraft state estimate from the orbit determination solution. This, however, is
affected by navigation errors that make the true spacecraft state not available if not with uncertainty associated with it.
Thus, the VBN state estimate cannot be compared against the true spacecraft state and image renderings could lead to
rendering errors [2]. Furthermore, available datasets are associated with specific missions. This implies that images are
directly constrained to the flown trajectory and designed spacecraft. Given these constraints, it is not possible to change
illumination conditions, camera parameters, and the dynamical context.
As space missions data are affected by navigation errors, two approaches are usually used to address the testing of

VBN algorithms: high-fidelity rendering simulations or hardware-in-the-loop (HIL) testing. High-fidelity rendering
engines, such as ESA’s PANGU [3] or Airbus Defence & Space’s SurRender [4], enable reproducing the data received at
the processors by simulating not only the light propagation from the source to the sensor, but also the camera electronics
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[5]. On the contrary, HIL test benches rely on the manufactured sensor or a flight model in a laboratory environment to
characterize the performances without any sensor simulation.
The former solution is generally more convenient as a broad series of sensors can be implemented without any

additional expense in terms of equipment. Moreover, it enables the true spacecraft trajectory to be simulated without
any constraints on the camera position, as is the case with robotic arms. A major drawback of this approach is the
validation of the rendering simulator in reproducing the real world. Validation procedures could last years, if not
decades, which lead to costs growth. Moreover, additional issues of this approach are the software licenses. Some
of them, as PANGU and SurRender, are not open-source, while others like Blender∗ or POVray† are not specifically
designed for the rendering of celestial objects nor for engineer applications. The latter solution requires reproducing the
mission dynamical environment and a trustworthy representation of the observed scene to generate images affected by
error. The HIL test bench is generally more expensive - at least in terms of equipment - as the representative dynamics
or the observed scene requires expensive hardware as robotic arms or terrains analogs. Moreover, the use of real sensors
and simulation hardware implies efforts in calibration which are not needed for high-fidelity rendering engines since the
sensor is simulated numerically. Despite these limitations, HIL test benches are generally preferred as the hardware
used within the simulation loop is more representative of the mission scenario.
Historically VBN test benches have been designed on optical tables to characterize star trackers performances

[6–11] or to simulate close proximity or landing operations in highly-non-linear dynamics exploiting robotic arms
[12–15]. Only recently, work has been done to design and build test benches that aim to validate VBN algorithms and
their integration with cameras [16]. This work presents TinyV3RSE , the vision-based navigation test bench designed
and built at the Deep-space Astrodynamics Research & Technology ‡ (DART) group. TinyV3RSE stands for Tiny
Versatile 3D Reality Simulation Environment and it is used to support the design, validation, and testing of IP and VBN
algorithms. This facility has been designed as a collaborative effort at the DART group and will play a pivotal role in
the current and future projects in which the group is involved.
The rest of the paper is organized as follows. Section II provides a description of the facility design. Then, Section

III illustrates the TinyV3RSE calibration procedure. Section IV reports some preliminary results that have been obtained
through imaging in the facility. Finally, Section V summarizes the conclusions of this work.

II. TinyV3RSE design

A. Design drivers
TinyV3RSE is composed of three main elements: a screen, a collimator, and a camera, positioned as in Figure 4.

When the light emitted by the screen passes through the collimating lens, it respects the thin lens equation. Thus:

1
𝑓coll

=
1
𝑑r

+ 1
𝑑i

(1)

where 𝑓coll is the collimating lens focal length, 𝑑i is the distance between the collimating lens and the image, and 𝑑r
is the distance between the collimating lens and the object, i.e., the screen. Recall that 𝑓coll is positive for converging
lenses and negative for diverging ones. Moreover, note that 𝑑r is positive when it is placed on the left side of the lens
and negative otherwise. Finally 𝑑i is positive when the image is generated on the right side of the lens, i.e. a real image
is formed, and negative otherwise, i.e., a virtual image is formed. Figure 1 shows the geometrical configuration under
study, which in this case generates a virtual image.
Equation 1 can be rewritten to explicitly compute the image distance as:

𝑑i =

(
𝑑r

𝑑r − 𝑓coll

)
𝑓coll (2)

This shows that the object to be observed, i.e., the screen, must be placed at the focal length distance. The perfect design
choice would be that the screen image fully fits the camera field of view (FOV). To simplify the design procedure, the
vertical FOV is considered since it is smaller than the horizontal one. Under the assumption of perfect components’
alignment, the problem can be studied as outlined in Figure 2. Thanks to basic geometrical relationships, it is easy to
show that:

∗https://www.blender.org/, last accessed 20th November 2021.
†http://www.povray.org/, last accessed 20th November 2021.
‡https://dart.polimi.it/, last time accessed: November 5th 2021
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Fig. 1 Geometrical configuration for the lens equation of the collimator in the case considered in TinyV3RSE .
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where 𝜃 is the camera FOV, ℎs is the vertical screen size, and 𝜃1 = 𝜃2 =
𝜃
2 = 𝐹𝑂𝑉

2 . Equation 3 links the three components
of TinyV3RSE , showing that their design choice is not arbitrary.
Note that, because of the collimation, the distance between the camera and the collimating lens 𝑑cam is not a design

parameter that depends on the collimator focal length. This parameter is important to determine the diameter of the
collimating lens [6]. To avoid that the camera observes outside of the collimating lens, the following relation has to be
satisfied:

𝑅coll ≤ 𝑅cam + 𝑑cam tan
(
𝜃

2

)
(4)

where 𝑅coll is the collimating lens radius and 𝑅cam is the camera lens objective radius. Moreover, to ensure to work in
paraxial area of the collimating lens, i.e., where the thin lens equation hypothesis holds, 𝑑cam must be chosen as small as
possible.
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θ1

θ2

θ2

fcoll

θ1

θ2hs

Fig. 2 Optical configuration of the components of the TinyV3RSE facility.

B. Components description
TinyV3RSE is composed of three main modules mounted on an optical table:
1) The camera, rigidly mounted on its mechanical support which enables vertical translation, pitch, and yaw
mechanical adjustments;

2) The high-resolution screen, whose orientation is set to ensure that the screen and the optical plane of the camera
are parallel;

3) The collimator, which ensures that the light coming from the screen and entering the camera is simulated as
coming from infinity (or from a very high distance). The collimator is mounted on an optical support that can
rotate, change in elevation, and can be finely adjusted laterally and transversely.

These three modules are visible from the CAD model in Figure 3 and from the top view of the TinyV3RSE facility in
Figure 4, while their relationships and functional connections are illustrated in Figure 6. Each module is now described
in detail.
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Fig. 3 CAD model of TinyV3RSE

The camera currently in use is a Basler acA1300-22gm (CS-Mount)§ with a 12mm C series fixed focal length lens¶.
The key data-sheet characteristics of the camera assembly are a focal length of 12 mm, a resolution of 1280 pixels ×
960 pixels, a pixel size of 3.75 𝜇m × 3.75 𝜇m, and a sensor size of 4.9 mm × 3.6 mm. The camera FOV is 22.6◦ × 17◦.
The camera is mounted on a dedicated assembly which is composed of three parts. The first one is a vertical translation
stage ensuring vertical control of the assembly. The second one is a goniometer enabling pitch and roll. The third
and last part is a custom mounting adapter to interface between the camera and the optical assembly. In Figure 5 it is
possible to see a close-up view of the camera assembly pointed towards the collimator. As explained in Section II.A, the
distance between the collimator and the camera is kept as small as possible.
The screen is represented by a Galaxy S7 smartphone‖ with a resolution of 2560 pixels × 1440 pixels, a pixel size of

44.1 𝜇m × 44.1 𝜇m and a screen size of 112.9 mm × 63.5 mm. As for the camera and collimator, the screen is mounted
on a dedicated assembly composed of two parts. The first one is a translational stage enabling movements of the
screen on a plane parallel to the optical one. The second one is a screen holding mechanism that enables re-orientation
by changing 4 pins disposed close to the screen’s corners. The choice to use a commercial smartphone as a screen
presents several advantages. First, in terms of the sizing of the facility, having a compact high-resolution screen makes
it possible to position it within a limited distance from the camera-collimator assemblies, thus ultimately ensuring a
compact facility. This is an advantage both in terms of laboratory space but also in terms of portability and eventual
external testing since the optical test bench could easily be moved as carry-on luggage to a different location. Having a
smartphone as a screen is also simple to set up the interfaces with the server. The smartphone is therefore a commercial,
hence low-cost solution, which also possesses interesting properties in terms of image contrast. The screen used is
an OLED one, which does not suffer from screen bleeding phenomena typical of Liquid Crystal Displays (LCDs)
and exhibits a high contrast between inactive and active pixels. This is of particular interest in the rendering of the
pitch-black background of a celestial scene, before considering camera noise. The smartphone as a screen solution
exhibits also a drawback, which is given by the screen resolution. Some facilities designed in the past seems to abide by
an empirical sampling law for which each pixel of the sensor is to be stimulated at least by 4 pixels of the screen (or 1:2
if considered linear) [17, 18]. This is to ensure a continuous representation of the environment to the sensor and to

§Camera data-sheet, last time accessed: November 5th 2021
¶Lens data-sheet, last time accessed: November 5th 2021
‖Screen data-sheet, last time accessed: November 5th 2021
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Fig. 4 Top view of the TinyV3RSE facility.

satisfy Nyquist sampling theorem. However, at the time of the facility design, a higher resolution screen than the one
considered has not been identified from existing commercial smartphones. The current setup has roughly a 1:1.43 ratio
between sensor and screen pixels. It is also observed that this phenomenon did not seem to have played an important
disturbance on the performance of the algorithms tested so far.
Finally, the collimator used is a 2" diameter N-BK7 plano-convex lens (AR Coating: 350 - 700 nm)∗∗ with a focal

length of 200 mm. The collimator is mounted on a dedicated assembly which is composed of a roto-translational stage
and a post holder which is used to gain vertical alignment between the collimator and the camera.
By considering the screen and camera characteristics and using Equation 3, the camera should be placed at 211.7 mm

in order to perfectly fit the screen vertical dimension with the vertical length of the camera’s FOV. Because of that, the
collimator has been chosen with a trade-off study among the plano-convex lenses available as off-the-shelf components.
The selected one has been chosen to maximize the observed portion of the screen while avoiding vignetting. Note that,
when an image is displayed on the screen, it has the size of 112.9 mm × 63.5 mm. By taking out the calculation with
the camera FOV and a collimating distance of 200 mm under the hypothesis of perfectly aligned optical components, a
coarse estimation give that only 80 mm × 60 mm of the screen is covered by the facility camera FOV. Thus the image
taken by the facility camera is just a portion of the image displayed on the screen. This is important to be considered
when operating and calibrating TinyV3RSE .
The functional architecture of the facility is illustrated in Figure 6. The screen and server are directly connected to a

power outlet while the camera is exchanging data and power via a Power over Ethernet cable (PoE). Virtual scenes are
rendered on the server with Blender or PovRay (depending on the user preference) and then sent to the screen via a
Wi-Fi or USB connection. The server is also responsible for activating the camera, receiving and eventually processing
the images obtained by the same. The screen, collimator, and camera are all enclosed in a box that is closed during the
collection of the images. This is done to ensure that proper illumination conditions are met and that no light artifacts
are generated on the screen due to the external conditions (such as reflections, external lighting, shadows of personnel
working next to the facility).
In Figure 7 the functional workflow used to generate images with the facility is illustrated. The starting point is the

simulated world, in which the physical and geometrical properties of the celestial bodies of interest are simulated in a
∗∗Collimator data-sheet, last time accessed: November 5th 2021

5

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3279
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Vertical Stage

Fig. 5 Close-up view of the camera and collimator assemblies.

Fig. 6 Functional architecture of the TinyV3RSE facility.

virtual environment. Choosing a rendering software to do so is convenient since it enables sampling of such a virtual
environment assuming a certain camera model positioned from a specific point of view. A rendering of a scene can
thus be seen as a sampling of this simulated synthetic environment through the physical model of the camera. As it is
possible to see from Figure 7, this is done twice for any given camera position: The first time to generate an image
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Fig. 7 Functional work-flow in TinyV3RSE

representative of what the mission camera would be seeing and the second time to get the scene to be projected on the
screen at the proper resolution. These are respectively the "Ideal Mission Image" and "Screen Image" illustrated in
Figure 7. Once the screen image is projected, it will then stimulate the collimator and camera, which will capture this
scene with the real sensor properly positioned, given that a successful calibration ensures the correct alignment of all the
components of TinyV3RSE . A final step is required to transform the image captured with the sensor in the facility
to an equivalent version of the one captured in the virtual environment. This step is fundamental since, apart from
calibration errors, these two images should be geometrically equivalent, yet photometrically different. The synthetic one
has been generated with an ideal camera model, with no noise and perfect environmental conditions while the image
from the facility encompasses noise and all phenomena typical of a sensor reading. The difference between these two
images also represents the same domain gap between real and synthetic images which TinyV3RSE aims to reproduce
for validation. A previous version of the facility presented in this work is also illustrated in [19]. In such a version, all
the design choices are illustrated in detail, the interested reader is directed towards it.

III. Geometrical Calibration
Before using TinyV3RSE , a geometrical calibration procedure is necessary. This section describes such procedure.

First, the calibration is required to find the intrinsic camera matrix of the equivalent pinhole camera model for the
camera mounted in the facility [20]. Second, the calibration is necessary to take into account the lenses distortion.
When the light emitted by the display passes through the collimator and the optical head lenses, it is distorted by the
lenses. Thus, the image projected into the screen is warped by the lenses apparatus, therefore changing the observed
image. The distortion is a major factor when a series of lenses is used. A previous work Tang et al. [21] introduces
various mathematical representations to model the optical distortion introduced by lenses. In this work, the radial and
tangential distortion model [22] is used for its physical interpretation. Other representations can be used to capture
distortion losing the physical interpretation, such as in [16] and Samaan et al. [7]. Lastly, the geometrical calibration is
necessary to estimate the misalignment among the components in the facility. Large angular errors would cause wrong
functioning of IP and VBN algorithms to be tested, which could invalidate their performances and comparability. These
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problems are solved in a sequential procedure. First, the camera mounted on the facility is calibrated with the algorithm
proposed in Zhang [23] to find the equivalent pinhole camera model. Then, the alignment of the screen with respect to
the camera assembly is estimated by displaying on the screen a series of checkerboards with different orientations, as
shown in Figure 8. The procedure followed is similar to the one presented in Samaan et al. [7].

Fig. 8 A picture of the TinyV3RSE test bench during calibration while using a checkerboard pattern.

At the end of the procedure, the camera intrinsic matrix, the radial, and tangential distortion coefficients, and the
facility misalignment are all estimated. This helps in converting the IP output to a consistent measurement as it would
have been seen from the real camera without alignment errors from the correct view. The error obtained with this
procedure is shown in Figure 9 in terms of root mean squared error (RMSE).

Fig. 9 Pixel reprojection error after the calibration procedure.
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IV. Preliminary results
In this Section, preliminary results that have been obtained by the DART group using the TinyV3RSE facility are

illustrated. These results demonstrate the type of analysis that can be performed with the use of such facility within the
framework of validation and verification of IP and VBN algorithms.

A. Small bodies case
In the work presented in [24], a Convolutional Neural Network (CNN) is designed for object classification. The

purpose is to develop a generalized classification algorithm that can be used to classify the shape of an unknown small
body into one of eight different archetypal shapes. The performances of the CNN are compared with those of other 3
explicit features-based algorithms. The work shows how the CNN is capable of greatly outperform all other methods
considered, as well as to generalize both in terms of illumination conditions and small body shapes never seen during
training. All techniques used have been applied to binary images.
In this work, we present a brief continuation of the analysis illustrated in [24] with a performance assessment of

the CNN on images of the test set generated using TinyV3RSE . The CNN works in inference on those images and
no additional training is performed on the network illustrated in [24]. This analysis serves to illustrate the robustness
region of the CNN method and to demonstrate an exemplar use of the facility.

Fig. 10 Performance of the CNN used for classification as function of the binary threshold used on the images
acquired in the TinyV3RSE facility. The red line represents the accuracy of a random guess at the classification
task.

The accuracy of the CNN reported on the test set in [24] is 98.52%. In Figure 10, it is possible to see the accuracy of
the same network on the same images obtained in TinyV3RSE across several values of the binary threshold used. It is
possible to observe the existence of an interval for the binary threshold between 5 and 42 in which the CNN retains high
accuracy (> 90%) but suffers a small drop in peak performances (from 98.52% with synthetic images to 96.45% with
TinyV3RSE images). The robustness of the CNN in this interval is possible since the network in [24] has been trained
on binary images to properly handle real case scenarios. This choice seems to be supported by the results presented
here, which introduce noise elements from the camera side. Indeed, the introduction of noise from a real camera and
by the TinyV3RSE setup is not having a large impact on the CNN performance, given that these factors are properly
handled by the binarization procedure used (Otsu in this case). When considering a binary threshold above 42, the
performance steeply degrades. Starting from a value of 150, the CNN is less accurate than a random guess and thus
completely unreliable for inference. To provide some context, in Figure 11 it is possible to observe the effect of the
binary threshold on the silhouette of a small body at 4 different values on the same image taken in the facility. Thus,
there seems to be a domain gap between synthetic and real images, but in this case, it seems to be handled well given the
fact that binary images have been used to train the CNN.
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Fig. 11 Examples of binarized images acquired in the facility and processed with different values of binary
thresholds: from top to bottom, left to right 5, 50, 100, 130.

B. Moon case
In the work presented in [19] a preliminary analysis of a VBN algorithm is illustrated for a spacecraft around the

Moon adopting the full-disk navigation method [25]. The same face of the moon is rendered at varying distances from
5000 km to 100000 km, every 500 km. Some intermediate steps of this algorithm are illustrated in Figure 12. In the
same figure it is possible to see the synthetic capture of the Moon as well as the one seen by the camera in the facility. It
is also possible to see an example of horizon fit and ellipse fit with respect to the Moon. The error on the position
estimate obtained with these images is illustrated in Figure 13, decomposed in the 3 axes of the camera frame. The 𝑥
and 𝑦 are the ones co-planar with the image plane, while the 𝑧-axis represents the bore-sight direction. The error is
computed as relative percentage error, as the ratio between the absolute positioning error and the true range from the
Moon, expressed as a percentage error. By inspection of Figure 13, it is possible to see that that error remains small in
the 𝑥 and 𝑦 axes, never exceeding 0.1%, while it grows in the radial direction (𝑧), as expected in optical navigation. This
gradually increases from roughly 18000 km onward, reaching a maximum value of about 4% roughly at 100000 km.
This effect is caused by the natural behavior of optical navigation methods and uncertainty in calibration procedures.

In general, it is natural for an optical navigation algorithm to be less precise in the depth axis with respect to the other
ones because the optical information does not lie on the radial direction. To compensate for this, an altimeter could be
used to provide more precise estimates on the z-axis. However, analysis of the VBN algorithm applied to the synthetic
images has shown this effect should be smaller than the one recorded on real images. The second contribution is due to
the calibration. The convergence of the calibration algorithm to the principal point of the camera can not be exact. Thus,
some errors in the calibration procedure are affecting the intrinsic camera matrix and thus the solution provided by the
VBN algorithm.

V. Conclusions and future works
In this work we have presented for the first time the design of the DART’s vision-based navigation test bench,

TinyV3RSE , a hardware-in-the-loop test bench used by the DART group for the development, validation, and testing of
IP and VBN algorithms. The design and calibration procedures adopted within TinyV3RSE have been briefly illustrated
as well its exploitation for IP and VBN algorithms applied to small bodies and in the lunar environment. The results
presented here are preliminary, future works are planned to further extend the analysis performed with TinyV3RSE
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Fig. 12 From left to right, top to bottom: original image of the moon projected to screen, image captured by the
camera in the TinyV3RSE facility, identification of the lit horizon (red), identification of the ellipse fit (blue).

Fig. 13 Relative positioning error per axis of the VBN algorithm used in the moon case at varying distances.
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as well as to further refine the design of the optomechanical components (especially relative to the screen-support
mounting) and overall calibration procedure. The facility will be exploited to assess the VBN and IP performances of
on-going space missions [25–27] and projects of the DART’s group.
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