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Abstract: Flood damage assessment is an essential asset in flood risk management, and the literature
brings several models, most based on damage curves. This kind of approach is essential and well
established but not suitable for being applied in the immediate aftermaths of a flood. Herein, a
new application of a zero-order model for the Po-Venetian plain area, which covers more than 20%
of the Italian territory, is conceived and implemented. At first, a calibration of the model with
damage data coming from past events in the region is carried out, showing that the calibration is
site-specific. In particular, it is shown how the exponent in the power-law form of the model is the
same as obtained in a previous work on another territory, while the intercept, defined as specific
damage, varies. Then the algorithm is applied to the area affected during the flood that hit the
Emilia-Romagna region (Northern Italy), in December 2020, for validation. Knowledge of the affected
area comes from the quick assessment procedure commonly performed by the National Fire Corps in
any significant flood, employing low-altitude all-weather helicopter GPS surveys. The paper shows
that combining the model with such a rapid mapping technique leads to a near real-time estimation
of damages in the aftermath of floods. The results are aimed at obtaining a first approximation figure.
The estimation error shows this figure to be not far from those obtained with much more detailed
approaches, requiring a much longer time for their setting. For that reason, the model results can
contribute, among other things, by directing the immediate post-emergency management operations
and promptly allocating financial resources for recovery.

Keywords: floods; damage; rapid mapping; Fire Corps surveys; damage estimation

1. Introduction

In the last decades, damage assessment has gained an essential role in the chain of
flood risk evaluation. An assessment of expected damage is crucial in situations where
structural or non-structural interventions are necessary to reduce the natural risk [1]. At
the same time, rapid damage appraisal in the aftermath of floods is fundamental to support
emergency management and address resources by identifying intervention priorities [2].
Flood damage data represent an essential source of knowledge for the scientific community
to understand damage mechanisms and develop damage models [3]. Since flooding
represented the third major cause of economic loss worldwide [4] between 2006 and 2015,
European countries started to improve their damage data collection systems and damage
modeling [5].

In Italy, since 2013, data are collected for the most intense events and are based on
the self-declaration of citizens [6]. Forms filled in by citizens represent good pieces of
information to analyze damage mechanisms, but they keep a subjective part on damage
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estimation that is impossible to be removed (such as the level of maintenance of the
damaged buildings). The archive, however, is still neither complete and uniform nor
available in an easy way. We managed to collect a good portion of this data, with a dataset
that is continuously in development and being updated.

Moreover, a significant effort has been made in the last decades to formulate models to
estimate flood damage [7,8]. Numerous tools are now available to estimate the damage to
the different assets exposed to flood. Assessing the damage may refer to expected annual
damage in the whole or in the damage itself, which can include or not the intangible and
indirect components [9], as well as being expressed in economic or financial units [10].
Here, we refer to the only estimation of direct damages to the private property in financial
terms. The typical approach to deal with such a theme is based on the formulation of a
model that relates to the simulation of the whole hydrologic cycle: a first step requires the
model of hydrologic events producing a certain distribution of hydrologic variables (such
as water depth, water velocity, and pollution) [11–13] in the affected area that, again, can
be identified running the model. In the second step, the relation between such variables
and the damage itself is determined. Roughly, it can be stated that the main physical
variable is the water depth [14,15], to be put in relation with the available information on
the urban assets (type, material, and maintenance of buildings) [12] to obtain the well-
known empirical stage–damage curve [16,17]. This kind of approach is very useful and
largely adopted; the theoretical amount of data is reduced to small numbers of samples [18].
Some problems may arise for areas with data scarcity and lack of hydraulic modeling,
but they have been overcome with approaches such as expert-based methods and expert
elicitation [19–21]. However, the implementation in the aftermath of an event remains
tricky still as the already mentioned parameters describing the hydrologic development of
the flood may take weeks or months to be evaluated [11].

To overcome this problem, and to provide an additional tool suitable to be imple-
mented right after the event, we developed a prototype “zero-order” damage model, which
allows a quick estimation of direct flood damage to residential buildings based upon
the simple knowledge of the perimeter of the flooded area [22]. Indeed, this piece of
information is usually available in the aftermath of the flood by several quick assessment
techniques [23,24]. This model does not intend to compete with more complex and de-
tailed approaches but is in synergy with them, providing immediate results, otherwise
impossible to obtain. It can be seen as a tool suitable for the very first phases of emergency
management, to help administrators in prioritizing areas where to concentrate funds and
interventions. The aim is not to precisely explain what happened but to provide the order
of magnitude on the damage on the whole affected area: it provides the first level of knowl-
edge on the territory, to be empowered and enlarged in the upcoming phases using the
other methodologies. However, it is worth noting how the performances are indeed quite
similar to the average results of methods that are much more complex. In fact, a previous
study that carried out an extensive comparison of different damage models showed that,
on average, the error considering the only model developed and calibrated for Italy—the
most affordable for the authors—was 46% [25]. This value can be compared to those that
are presented in the conclusion section.

This paper aims to further investigate and demonstrate the effectiveness of the “zero-
order” model, going deep into a specific case history and introducing a quick surveying
technique. In particular, we analyze the flood event in Emilia-Romagna, Northern Italy, in
early December 2020. The workflow is shown in Figure 1.

We first briefly introduce the case study in Emilia-Romagna and the quick surveying
methods in the post-event. We then discuss the implementation of the model, which was
possible due to a new calibration and validation performed on a specific homogeneous
area (HA) covering most of Northern Italy. The results are then shown, together with the
discussion.
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Figure 1. Workflow.

2. Case Study

The flood originated from two subsequent events that hit Northern Italy at the end
of 2020. In the Emilia-Romagna region, the descent of a deep depression wave caused
the irruption of cold air and a sharp drop in temperatures in the first days of December.
The polar currents caused abundant snowfalls down to lowland altitudes. From 4th to 8th
December, hot and humid air flows fed intense and persistent rainfall on the whole region,
giving rise to several successive thunderstorms, definitely unusual in the winter period
in Italy.

The rapid increase in temperatures caused the partial melting of the snow that had
fallen in the preceding days. This snowmelt heavily increased the runoff from the Apennine
basins, generating floods with sequences of peaks close together on all watercourses [26].
The main focus of the analysis is the Panaro river, which is the last right tributary down-
stream of the Po River and which flows in the outskirts of the town of Modena (Figure 2).
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Figure 2. Case study: levee failure in the municipality of Castelfranco Emilia that caused river Panaro
flooding.

The flood peak exceeded all historical records in the Panaro river plain sensors, causing
a breach in the right bank levee, which occurred on the morning of 6 December by the
village called Gaggio. An area of around 15 km2 in Castelfranco Emilia and Nonantola was
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flooded, giving rise to severe damages. The flood then proceeded in a northeast direction
during the morning.

The Governor of the Region asked the national Government for the proclamation of a
state of emergency (https://www.protezionecivile.gov.it/it/dipartimento/amministrazione-
trasparente/interventi-straordinari-e-di-emergenza, last access on 20 January 2022). The
state of emergency is the measure through which the Government deals with extraordinary
events by allocating an adequate amount of money for the emergency management and
teams for rescue intervention and first aid to the population. This enabled the damage
self-declarations procedure carried out by citizens. As we can observe in Figure 3, the
territory was completely flooded, both in the rural part of the town and in the city center.
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Figure 3. Picture of the flooded area of Nonantola (courtesy of the Italian National Fire Corps).

Moreover, intense activities are carried out over the flooded territories to map the
flood’s perimeter and take notes of the damages reported by citizens. Indeed, people
affected by the flood can ask for economic compensation damages to private houses, public
goods, and economic activities by filling in forms collected in the aftermath of the flood,
which are then processed and stored by the region [22].

In the specific case under investigation, information regarding the flood extension
and local water elevation was quickly collected by different actors in the aftermath of
the event. All available data have been integrated with further investigations to obtain
the detailed flood mapping necessary to run the zero-order damage model. Moreover,
citizens’ claims for damage refunds were made available by the Emilia-Romagna Regional
Authority. Table 1 shows the number of available data, including both damages to primary
dwellings and holiday houses. It is worth noting that they refer only to damages produced
by the levee breach. Other minor damages, mainly due to stagnation, were observed in the
town of Modena but are not treated in this paper.

Table 1. The available dataset in terms of single claims and observed economic damage.

Damaged Properties Number of Claims Total Observed Damage

Main dwellings 2394 EUR 47,5 M
Holiday houses 237 EUR 4,5 M

https://www.protezionecivile.gov.it/it/dipartimento/amministrazione-trasparente/interventi-straordinari-e-di-emergenza
https://www.protezionecivile.gov.it/it/dipartimento/amministrazione-trasparente/interventi-straordinari-e-di-emergenza
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3. Materials and Methods
3.1. Model

The “zero-order” damage model is a regression model in the form

D = sFa
m (1)

where D is the total damage to residential buildings in the area under investigation, in
currency units, Fa is the residential flooded area footprint (m2), s a “specific damage”
parameter denoting the damage (also in currency units) corresponding to the unit surface
of buildings, and m an exponent of the power-law 9, derived by the regression analysis. It
can be observed that the model allows estimating damage to residential buildings with just
a few pieces of information: the only variable requested for damage calculation is indeed
the residential flooded area Fa, which can be obtained by combining national statistical
data once the total flooded surface envelope S0 is known. “Zero-order” means indeed that
the model does not account for the flood water elevation. The dependence of damage on
the surface has been proven to be meaningful in many applications [27]. Height is also
important but is here neglected in the top-down approach, which needs to be applied
within a time window where this piece of information cannot be available.

The model was initially calibrated and validated on a set of 3729 citizens’ claims
collected after 8 different national emergency states in Southern Italy. Given that signif-
icant differences exist between the physical and the socio-economic context of the area
under investigation and South Italy [28], the implementation of the model required a new
calibration for its application over the case study.

This new application allows us to underline some points on the definition of a homoge-
nous area concept: in fact, here we introduce a new dataset for calibration and validation
that, even though it is in Italy, refers to a completely different context. It is important to
understand how a homogeneous area can be identified to properly apply the model. How
the socio-economic variables, together with the morphologic ones, affect the equation’s
parameters is still under investigation and will be the topic of the next work.

3.2. Calibration Area

The calibration area was defined looking for homogeneity for two factors: the first
concerns the morphologic context where the flood occurs, the second deals with the social
and economic fabric of the flooded areas. For example, we might consider a lowland
environment, characterized by large extensions of flooded areas, relatively low water
velocity values, and high residence times; alternatively, we could be facing a more typically
mountainous environment, with narrower valleys, high slopes, high flow speeds, high
potential momentum exchange with exposed assets, and typically shorter residence times.
Regarding social and economic texture, we need to consider, for example, that agricultural
zones with a dispersed urban texture are quite different from a typical urban environment
with high population, and commercial and infrastructural density [29]. Indeed, the specific
damage parameter s accounts for all these aspects, and its rating strongly depends on the
spatial scale at which the calibration is performed.

The case study covers a small portion of the Po Valley, which can be considered typical
of the physical and socio-economic context of the whole Po-Venetian plain region. The
model was then calibrated and validated at the scale of the whole plain.

The Po-Venetian plain is the most extensive floodplain in Italy, covering an area of
42,000 km2 within the Po River watershed. The Po is the longest Italian river with a length
of over 650 km; its watershed is 75,000 km2 and covers most of Northern Italy [30]. In the
national framework, it represents the highest concentration of inhabitants and economic ac-
tivities. The plain covers just one-eighth of the national territory and hosts nearly 15 million
inhabitants, equal to over a quarter of the Italian population. The demographic density,
355 inhabitants per square kilometers, is almost double the national average. Though
agriculture remains a strategic asset in the territory, the importance of economic activities
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emerges even more clearly as we consider on the national scale that 40% of employees in
industry and 33% of employees in the tertiary sector work in this area [31]. Municipalities
in the plain settle mostly at low elevations and in a quite similar morphological context.
The built environment [32] follows main road infrastructures and river lines as a nearly
continuous sequence, as easily seen in any satellite image of Northern Italy taken at night.
The Po Valley, as a whole, is also typically a specific flood-prone area protected by hundreds
of kilometers of embankment lines [33]. Disastrous floods mainly occur as a result of
the overtopping of the embankments [34] due to breaches caused, e.g., by the action of
burrowing animals [35] or seepage and piping problems [36]. Together with the analysis of
long records of floods on the Po River [37], these considerations support the assumption
that the flood type as damage forcing agent is reasonably uniform on the Po-Venetian plain.

3.3. Calibration Data

Damage data are not always made available by regional authorities for research
purposes. For this work, we obtained data related to 21 floods that occurred in the latest
years in the Po-Venetian area.

Damage claims are available for 406 municipalities that were strongly damaged by
some past flood events [22]. Of these municipalities, around 60% show an average altitude
of less than 350 m a.s.l. We limited the calibration and validation dataset to this subset to be
sure to deal with a typical plain environment, such as the one characterizing the case study
area. Moreover, municipalities with a few claims (1–2 units) have been excluded as they are
less meaningful for the model calibration. The final dataset is then composed of data from
187 municipalities, shown in Figure 4, located in the regions Emilia-Romagna, Lombardia,
and Veneto, and corresponding to 7907 single damage claims (i.e., damage to an individual
residential building), collected after the declaration of 11 national states of emergency.
The total dataset has been divided into two datasets to calibrate and validate the model
with a random choice: actually, damage data collected in the same region were used in
part for the calibration, in part for the validation phase. In particular, 113 municipalities
have been considered for model calibration (corresponding to 4453 damage claims), while
74 municipalities for validation (3454 claims).
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3.4. Definition of the Residential Flooded Area

As already discussed, the only variable requested by the model for damage assessment
is the residential flooded area Fa 9 m2). This variable is an indicator of the overall building
footprint surface within the event flooded perimeter and can be obtained from national
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statistical data once the total flooded surface envelope S0 is known. Indeed, the Italian
National Statistics Institute (ISTAT) (http://dati.istat.it/, last access on 20 January 2022)
provides different data about the housing stock such as surface, number of floors, con-
struction typology, materials, etc. Such data are aggregated at the resolution of the “census
areas”, polygons from an irregular adaptative mesh covering the whole country (for a total
of 402,678 census areas), with an average size of 0.8 km2. The dimension decreases with
the increase in the complexity of the urban texture [38]. In an urban environment, the size
of a census area can reach that of a single block. Census data were published every ten
years after the general national census in 1991, and in this paper, we stick to data published
in 2011 since they are the most recent available, and the most suitable to deal with events
that occurred after 2013. Indeed, the national statistical system is currently transitioning
towards a new “permanent” model with the resolution of the data at the scale of a single
building, but data are not available yet. The use of building census data in natural risk
reduction policies is not new. For example, it is used for seismic vulnerability distribution
assessment at the national scale [39]. We then cropped the census areas mesh (available
in the ISTAT national geodatabase) with the total flooded surface S0, thus obtaining an
estimate of Fa by simple GIS operations.

The total flooded area S0 was derived by combining several pieces of information. First,
we analyzed satellite data. In the aftermath of major floods, delineation of flooded areas is
usually performed by multispectral satellite data, SAR (Synthetic Aperture Radar) images,
or a combination of both [40]. In our case, the Italian Civil Protection is an authorized user
of the Copernicus Emergency Management Service Mapping (CEMS) [23], whose Rapid
Mapping service provides on demand a pre-event [41] and three post-event maps of the
affected area, for emergencies arising from natural or anthropogenic disasters anywhere in
the world. The service was activated 9 h after the breach had started with the following tag
of the Emergency Management Service, Rapid Mapping activation: “EMSR487: Flood in
Emilia-Romagna Region, Italy” (Figure 5).
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In Italy, during 2020, there were 5 CEMS activations due to floods. In the same period,
12 national emergency states were declared by the Government in Italy due to meteorologi-
cal and hydrological factors (Data from the government site https://www.protezionecivile.
it/it/dipartimento/amministrazione-trasparente/interventi-straordinari-e-di-emergenza/
emergenze-il-rischio-meteo-idro, last access on 20 January 2022). Many of these cases in-
volved multiple flood events. From these data, it is clear that activations only take place
on major events for which strategic support is required for the emergency and rescue

http://dati.istat.it/
https://www.protezionecivile.it/it/dipartimento/amministrazione-trasparente/interventi-straordinari-e-di-emergenza/emergenze-il-rischio-meteo-idro
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organization. These conditions are not always the case. On the other hand, damage due to
hydrogeological emergencies is increasing due to climate change [42], and it is crucial to be
able to systematically have a rapid estimate of the damage to understand the intensity of
the impact, starting with the assessment of flooded area boundaries.

It should also be remembered that satellite assessments, however accurate, involve
approximations due to the delay with which the satellite visits the disaster site, compared to
the actual event time. CEMS largely corrects these aspects by integrating more surveys, even
from the ground. The fact remains that it is convenient to have a flexible and timely parallel
procedure, suitable for localized events and with low residence times, available even in
the case of the non-activation of CEMS. For this reason, the Italian National Fire Corp has
developed a rapid assessment procedure of flooded areas. The widespread diffusion of the
Corps assets throughout the territory allows immediate activation due to the direct and
trusting attitude citizens naturally have with the Fire Brigade in any calamity. The Fire
Corps, using a geographic information system (GIS), creates, manages, and analyzes data
related to floods, integrating location data (where things are) with all types of descriptive
information (water depth, building damages, search and rescue operations, etc.). This
provides a foundation for mapping and analysis to understand flood patterns, citizens’
needs, and future planning. The benefits include improved communication and efficiency
as well as better management and decision making. The report of substantial flooding of
the territory also triggers the take-off of an all-weather helicopter that moves to the disaster
site. Once the edge of the flooded area is reached, the helicopter follows its entire length.
A GPS device records the track, which is immediately made available via radio. This
procedure can be repeated several times during the same event, also providing indications
of the dynamics of the flood.

A further class of data reinforces this assessment. Every intervention that the fire
brigade teams carry out on the territory is georeferenced with a GPS point. During a
flood, the calls are generally many dozen; they counted 640 interventions in three days
in this specific case. This punctual information can provide some advice on the intensity
of the event and confirm the quality of the assessment. Examples of the raw data directly
from GPS tracks and the final result after data processing are respectively reported in
Figures 5 and 6.
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Once the flooded area S0 has been delimited, after a comparison among Copernicus
data, Fire Corps mapping, and local verification, we can assess the total flooded buildings’
footprint area Fa by elaborating on statistical data referring to the census areas included in
S0. In detail, for the analysis, we refer to three census variables that are Sr (m2), the surface
area of dwellings occupied by at least one resident person, Nb (-), the number of residential
buildings occupied by at least one resident person, and the group of variables Ri (-), the
number of dwellings with i-storeys.

For each census area included in the flooded perimeter, we evaluated the total surface
Ss (m2). The average surface of a floor M f s (m2) was then evaluated (for every census area)
as the ratio between the surface area of dwellings occupied by at least one resident person
Sr and the total number of floors.

M f s =
Sr

(∑n
i=1 iRi)

(2)

where n is the maximum number of floors. We thus obtained the total footprint area Ar
(m2) of residential buildings in each section by multiplying the average surface by the total
number of dwellings Nb (-). By assuming that each building has just one flooded floor, i.e.,
the maximum water level on the ground less than 2.50–3.00 m, Ar is actually an estimation
of Fa.

Ar = M f sNb (3)

For the section only partially included in the flooded area, we estimated the surface of
the flooded building Fa proportionally for the partially flooded surface Fs.

Fa =
ArFs

Ss
(4)

4. Results
4.1. Model Calibration on the Po-Venetian Floodplain HA

As previously explained, the “zero-order” damage model has been calibrated and val-
idated on two different randomly generated damage datasets chosen in the homogeneous
area (HA) of the Po-Venetian floodplain. The damage is then expressed by the formula

D = 110.47F0.96
a (5)

We show the results of the calibration/validation process in Figure 7, where each
point represents a single municipality with the aggregated conventional surface Fa and
the related claimed damage D. The orange line represents the regression line, built on
calibration data, on the log-log plane.

We note the “quasi-linear” relationship due to the power-law exponent being close to
one. On the other side, the coefficient of the same power-law indicates the specific damage
in the order of 110 EUR/m2. The correlation coefficient of the regression is R2 = 0.70. The
error distribution analysis is shown in Figure 8. We observe that half of the data stand in
the +/−50% relative error range.

The same can be observed in the graph in Figure 9 where the distribution of observed
versus estimated damages is shown. The green line is the best agreement and points
represent the values for those municipalities considered in the validation phase. We
observed during the validation that points far from the line are those with a few claims.
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4.2. Implementation of the Model in Emilia-Romagna December 2020 Flood

The flooded surface S0, at its maximum extension, was estimated around 13 km2 by
the Fire Corps assessment. Further surveys on the ground were performed later on by the
municipality that confirmed the estimate. Such an area involves two municipalities, Castel-
franco Emilia and Nonantola. For them, we evaluated the flooded residential area (through
the method previously described) and finally the expected damage with Equation (5).

Results in terms of the flooded area Fa, estimated damage D, observed damage D0
and global relative estimation errors are summarized in Table 2. It must be noted that
Castelfranco Emilia was flooded just over a single census area. The town of Nonantola
instead was significantly hit by the event giving rise to a higher characteristic surface
area Fa.

Table 2. Results of the model application.

Municipality Flooded Area Fa
Estimated
Damage D

Observed
Damage D0

Error

Castelfranco Emilia 926.67 m2 77,900 EUR 466,400 EUR 83%
Nonantola 367,109.93 m2 24,3 MEUR 48,6 MEUR 50%

5. Discussion
5.1. Comparison between HA

The first level of reasoning must be devoted to comparing the models derived for the
Po-Venetian plan and for the South of Italy that, as previously discussed, can be considered
homogeneous areas for flood damage model estimation.

The Po-Venetian plain covers 64,662 km2, while the HA considered in the previous
work deals with 84,339 km2. These areas are the mosaics of respectively 3 and 5 regions
for which more than one national state of emergency has been declared for flood events
in the last decade in several municipalities. Although the surface areas of the two HA
are substantially close to each other (21.5% and 28.0% of the entire national territory),
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the two samples are different regarding climatic, demographic, social, and economic
characteristics. In essence, all the elements that lead to the production of flood damage are
inherently different.

We compare the two case study areas’ climates, to underline that the features of the
two territories, even though they are in the same country, are completely different. The
comparison is carried out by following the usual scheme proposed by W. Köppen [43],
adding a few brief notes on the rainfall and temperature regime [44]. As far as the Po-
Venetian plain is concerned, we can observe both “sub-continental temperate” and mainly
the “continental temperate” “Cf” types. The mean annual temperature ranges between
9.5 ◦C and 25 ◦C. The rainfall trend presents a remarkable variability in Italy [45]. The
precipitation regime in the HA shows two maximum rain periods in spring and autumn
and two minimum periods in summer and winter. Generally, the autumn maximum is
prevalent, and severe flood events usually occur in this period [46].

In the Southern Italy HA, we observe a “subtropical temperate” (Cs) in the Ionic,
Mediterranean, and Sicily Island coastal strip, marked by quite limited and very irregular
rainfall. The mean annual temperature is higher than 17 ◦C. On the Tyrrhenian side down
to Calabria and Apulia, we find the “hot temperate” type, usually characterized by summer
droughts (Csa). The mean annual temperature ranges from 14.5 to 16.9 ◦C. Mainly, the
Mediterranean precipitation regime is typical of nearly the whole of Southern Italy, which
presents a maximum winter rainfall and a minimum summer rainfall: it affects Sicily,
Calabria, and parts of Apulia. Rainfall is more abundant along the Tyrrhenian side, which
is open to the west’s perturbations, rather than on the Adriatic–Ionian coast. Over the whole
of the Southern Italy HA, heavy convective thunderstorms often induce flooding, one of
the natural disasters most responsible for damage to the built environment, infrastructures,
and loss of lives [47].

The difference between the two HAs under demographic, social, and economic char-
acters is summarized in Table 3: the duality of the Italian macro regions under different
points of view is clear, starting, for example, from the productivity per capita values [28].
All data are derived by the National Institute of Statistics data warehouse [48]. Since the
analyses are conducted on recent events (in fact, the damage self-declaration’s collection in
Italy has started with uniform national criteria only in 2013), we here refer to 2011 census
data. However, it is also worth noticing that the built environment is developing slowly in
Italy, and the built heritage is mainly old [49]. We can observe how the two areas are in fact
pretty different from both climatic and demographic points of view.

Table 3. Main demographic, social, and demographic indexes for the case study area.

Main Indexes Po-Venetian Plain Southern Italy Relative Difference

Surface area (km2) 64,662 84,339 −23%
Inhabitants (-) 19,478,791 17,244,202 +13%
Density (km−2) 301 204 +47%
GDP (millionEUR) 703,193 314,523 +124%
Per capita GDP (EUR) 36,100 18,239 +98%
Net annual income per
family (EUR) 34,427 25,783 +34%

Figure 10 compares the empirical curves derived by the model calibration for the two
case studies. The power-law parameters are presented in the following Table 4. It is worth
observing that the exponent deriving from the power-law regression is the same, m = 0.96,
for the two case studies. The degree of data dispersion is also absolutely comparable. We
can deduce that the quasi-linearity hypothesized for the model between the characteristic
surface and the damage constitutes a reasonably robust assumption, independent of the
territorial context considered.
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Table 4. Model power-law parameters.

Po-Venetian Plain Southern Italy

Exponent (-) 0.96 0.96
Coefficient (EUR/m2) 110.47 532.14

The same calibration process leads to a specific damage estimate for the Po-Venetian
floodplain, nearly equal to one-fifth of that obtained for Southern Italian regions. The
following considerations can explain this fact.

In Northern Italy, multi-story buildings are much more diffuse than single-floor houses.
ISTAT data are reported in Figure 11. We observe how one-story buildings are around 9%
of the total in the Po-Venetian plain and nearly 30% in the Southern Italy region. This fact,
for a given flood event, is assumed to increase the intensity of the damage.
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A first screening has been performed for both HAs’ calibrations to consider just direct
inundation from floodplain events. However, the characteristics of flood processes are
pretty different in the two HAs. Po-Venetian plain flood processes are typical of extensive
plain contexts, with inundation processes very different from those of the Southern Italy
basins’ typical Apennine and coastal environment valleys. Coastal convective thunder-
storms determine most floods in Southern Italy. As noticed before, Mediterranean coastal
regions are frequently affected by heavy precipitation events that produce flash floods
and landslides [50]. As well as convective rainfall events, most flood processes in the
Po-Venetian plain are connected to mesoscale stratiform precipitation patterns, especially
relevant for flooding when associated with orographic forcing [51]. This peculiarity, to-
gether with the typically flat Padanian landscape, gives rise to different damage-generating
phenomena.

A further observation stands in the social vulnerability to natural hazards in Italy [52,53].
There is a significant gap between vulnerability in the North of Italy, which is significantly
lower than in the South. Although the gap decreases in time [54], the difference remains
unfortunately high, enough to explain at least a part of the corresponding gap in specific
damage.

5.2. Discussion of the Results

The validated model has been applied to the two municipalities most affected by the
flood, Nonantola, and Castelfranco Emilia, both located in the region Emilia-Romagna in
the province of Modena. The main characteristics of the two municipalities are reported in
Table 5.

Table 5. Main characteristics of the case study municipalities.

Main Features Nonantola Castelfranco Emilia

Surface (km2) 55.32 102.51
Inhabitants (-) 16,119 33,046

Density (km−2) 291.38 322.37
Elevation (m a.s.l.) 20 40

Total residential buildings 6349 15,029
Buildings with 1 floor 54 274
Buildings with 2 floors 1218 2186
Buildings with 3 floors 919 1348

Buildings with 4+ floors 113 552
Classification of degree of urbanization Town and suburbs Rural areas

Low flood hazard mapping surface (km2) 55.32 (100%) 102.24 (100%)
Medium flood hazard mapping surface (km2) 55.32 (100%) 102.24 (100%)

High flood hazard mapping surface (km2) 8.09 (15%) 8.19 (8%)

The surface of Castelfranco Emilia is almost twice the area of Nonantola, and the
same can be said for the number of inhabitants. For this reason, the number of residential
buildings is higher in the larger municipality, even though the degree of urbanization is
lower. Indeed, Nonantola is a small town with suburbs, while Castelfranco Emilia as a
whole, can be seen as a rural area. The entire surface of the two municipalities is included
in the delimitation of the medium flood hazard zone identified within the context of the
Flood Directive, corresponding to return periods between 500 (low hazard) and 200 years
(medium hazard). The “high hazard” zone (20–50 years return period) is instead limited to
8% of the municipality area in Castelfranco and 15% in Nonantola. In the specific case study,
inundation was due to a levee failure during a lower return period rainfall event even
though the ground effects were coherent with the hazard level considered in the mapping.

From the map of Figure 12, we observe that the municipal territory of Castelfranco
Emilia was flooded just for a small portion of the total area. Moreover, residential buildings
in the flooded area were few and dispersed, and the flood-invested area was mainly crops.
From Table 2, we can observe that the model underestimates the observed damage with a
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relatively high error. Actually, the observed damage is made by the sum of only 16 damage
claims, two orders of magnitude less than those of Nonantola, thus decreasing the reliability
of the model estimation.
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Figure 12. Mapping of the three different flood hazard classes in the study area, and representation of
the footprint of the residential buildings inside the flooded surface. The town of Castelfranco Emilia
was only in part involved in the flood.

The town of Nonantola and its urban settlement were strongly damaged. The model
estimation is much more significant in claims availability, leading to a lower estimation
error. In Figure 13, we show the difference between the observed and the estimated values,
and the comparison with the calibration dataset.
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As in our previous work on South Italy, we can observe that the order of magnitude
is the same between the observed and estimated damage (at least for the most significant
case), which, even though it may seem to be a rather rough estimate, is in line with results
obtained by more sophisticated damage models, which required a level of analysis and an
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amount of time unsuitable for application in the flood’s aftermath [25]. This is undoubtedly
an encouraging result that further corroborates our intention to implement the model as a
quick tool to obtain a first-order estimation of damages.

6. Conclusions

We have presented here a procedure for a quick estimate of the damage in the aftermath
of a flood event. Private asset damage is considered, while that related to productive
activities will be treated in a forthcoming paper. We have discussed the whole assessment
cycle, starting from outlining the inundated area down to the economic estimate of the loss.
The quick assessment of the flooded area boundaries is performed by low-altitude GPS
surveys performed by all-weather capability helicopters. This kind of survey is a standard
practice of the Italian National Fire Corps in any significant flood event. GPS tracks
once processed and analysed, allow a detailed reconstruction of the flooded perimeter.
Sometimes multiple surveys are performed, leading to a view on the inundation process
dynamics. This kind of data, integrated into the zero-order flood damage model, allows
a near real-time estimation of damages. Such information can contribute, among other
things, to addressing the immediate post-emergency management operations and helps
policymakers to correctly and promptly allocate financial resources. In the chaos of the post-
event, the priorities are to recover the injured, take care of the displaced, and re-establish
essential services. There is no time (and frequently no way) for a detailed field damage
survey. Even though the methodology may appear quite rough, the results, considering
the aims of the model, seem to be promising. However, a direct comparison between the
zero-order and the traditional damage curve approach could be interesting and will be
carried out in the future.

The “zero-order” method was introduced in a previous paper with a successful ap-
plication in Southern Italy. With the present work, the model is implemented on the
Po-Venetian plain area, which covers more than 20% of the Italian territory and presents
completely different characteristics from climate, morphologic, demographic, social, and
economic points of view. Comparing the two case studies confirms that the “zero-order”
approach can lead to the first estimate of damages, at least in the order of magnitude. The
results are obtained by calibrating a single parameter, given by the specific damage per
unit flooded area. In particular, the paper shows how a single calibration can account for
estimates on areas of the order of thousands of square kilometers. The calibration process
requires a previous detailed analysis at the regional scale to obtain homogeneous areas that
can be treated as a unique environment for quick damage estimation.
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