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Abstract

We address the problem of characterizing spatially variable Natural Background Levels (NBLs)
of concentrations of chemical species of environmental concern in a large-scale groundwater body.
Assessment of NBLs is critical to identify significant trends of (possibly hazardous) chemical con-
centrations in aquifer systems, the latter being typically associated with spatially heterogeneous
hydrogeochemical characteristics. Our study considers the entire probability density function
(PDF) of the concentration of the chemical species of interest as atom of the statistical analysis.
These PDFs are estimated across a network of observation boreholes in the investigated spa-
tial domain, and modeled as random points in a Bayes Hilbert space, in the context of Object
Oriented Data Analysis. This approach enables one to take advantage of the entire informa-
tion content provided by these objects for the purpose of spatial prediction and uncertainty
quantification. As a key element of innovation, we investigate the use of depth measures for dis-
tributional data with the distinctive aims of (i) detecting central and outlying NBL distributions
in the dataset, and (ii) building prediction regions for NBL distribution at unsampled locations.
We illustrate the results of the proposed approach to the analysis of NBLs of a selected chemical
species detected at an environmental monitoring network within a large-scale alluvial aquifer in
Northern Italy.
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1. Introduction

Natural background levels (NBLs) of a chemical species in a groundwater body are concen-
trations that can be considered as unaffected by anthropogenic actions (Directive 2006/118/EC
GWDD, 2006). An appropriate assessment of these concentrations is key to identify trends of
contaminations and/or plan activities to manage unfavorable trends which might be detected.
In this context, characterizing the natural chemical signature of a groundwater body is set as a
priority in the EU Water Framework Directive (Directive 2000/60/EC WFD, 2000, art. 17) and
in the Ground Water Daughter Directive (2014/80/EU, 2014).

NBL estimates are generally grounded on analyses of monitored concentration samples (Ed-
munds et al., 2003; Wendland et al., 2005; Panno et al., 2006; Walter, 2008; Urresti-Estala et al.,
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2013; Kim et al., 2015). One can rely on the so-called Pre-Selection (PS) approach (Hinsby and
de Melo, 2006; Coetsiers et al., 2009, and references therein), which consists of (i) identifying
groundwater samples within an available set of observations that can be defined as pristine and
representative of the population of the natural resident concentration, and (ii) inferring from
these a unique (or bulk) NBL value, which is then taken to represent the environmental status
of the examined subsurface reservoir. Concentrations exceeding such an NBL should be ascribed
to anthropogenic sources. Even as Directive 2014/80/EC explicitly recognizes the importance
of the spatial variability of groundwater chemistry, current regulatory frameworks are based on
requirements according to which one needs to estimate only a single threshold value, the latter
being then considered as uniform across the target water body and employed as a threshold
against which anthropogenic contamination is assessed (Reimann and Garrett, 2005).

While a series of studies (e.g., Reimann and Garrett (2005); Hinsby and de Melo (2006); Ed-
munds et al. (2003); Wendland et al. (2005); Panno et al. (2006); European Commission (2009))
evidence that the qualitative status of a groundwater body may be defined through a range of
concentrations of a given chemical species rather than a unique value, it is nowadays recognized
that the assessment of NBLs in large-scale groundwater systems should explicitly account for
possible spatial (or temporal) variability of NBLs due to local hydrogeochemical features of the
target aquifer. This is also consistent with approaches treating the characterization of spatial
arrangement of geomaterials constituting the internal architecture of aquifer systems within a
probabilistic context (see, e.g., Winter et al. (2003); Short et al. (2010); Perulero Serrano et al.
(2014); Bianchi Janetti et al. (2021) and references therein). As such, modern approaches to the
management and assessment of the quality of groundwater resources should take full advantage
of refined probabilistic approaches to properly characterize the spatial distribution of NBLs.
This is, for instance, the case of the exemplary application we consider in our study, where we
focus on a large-scale aquifer body located in the Po Basin fill in Italy and encompassing an area
of approximately 200 km2 (see Figure 1 and Section 5).

Although recent works have proposed methods to characterize the spatial variability of NBL
concentrations (Molinari et al., 2012; Ducci et al., 2016; Libera et al., 2017; Molinari et al., 2019),
none of these yield a full spatial characterization of NBL distributions. For instance, Ducci et al.
(2016) apply indicator kriging to delineate regions with the same probability of exceeding a
pre-defined NBL value. Libera et al. (2017) rely on geostatistical tools (i.e., kriging) to provide
a zoned map of (piece-wise constant) NBL concentrations. The latter are set to the 90th per-
centile of predicted NBL values which are then reclassified according to three given concentration
ranges. Molinari et al. (2019) provide spatially variable estimates of NBLs through geostatistical
analysis of the 90th percentile of sample NBL distributions detected at a collection of observa-
tion boreholes. The resulting kriged values and associated variance are then used to assess local
probabilities of exceedance of certain threshold concentrations assuming a log-normal distribu-
tion for NBL values. In all of these cases, measured natural background concentrations are first
represented through scalar summaries (i.e., indicators, probability of exceedance thresholds or
quantiles), these summaries being then projected onto unsampled locations in the system. This
inevitably yields loss of information and requires resorting to parametric assumptions to obtain
further summaries in addition to those considered for the spatial analysis (as in, e.g., Molinari
et al. (2019)).

Following our preliminary study presented in Guadagnini et al. (2020), we here rest on the
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paradigm of Object Oriented Data Analysis (Marron and Alonso, 2014) and consider the entire
distribution function of the NBL concentrations as the object of the spatial analysis. Our
approach enables us to provide (a) spatial predictions and uncertainty quantification of the
entire distribution of NBL concentration in a fully non-parametric setting, and (b) consistent
joint assessment of all summaries of interest (e.g., quantiles, probabilities). We embed NBL
distributions in a space whose elements are probability density functions (i.e., a Bayes Hilbert
space Egozcue et al. (2006); van den Boogaart et al. (2014)), and rely on the framework of
Object Oriented Spatial Statistics (O2S2, Menafoglio and Secchi (2017)) to characterize the
spatial dependence among observations, provide spatial prediction through kriging, and quantify
the associated uncertainty via stochastic simulation.

As a key element of innovation, here we investigate the use of depth measures for distribu-
tional data with the distinctive aims of (i) detecting central and outlying NBL distributions in
the dataset, and (ii) building prediction regions for NBL distribution at unsampled locations.
Achieving this objective requires extending the approach of Sun and Genton (2009) for the con-
struction of functional boxplots, to comply with the intrinsic constraints of density data. To this
end, we rely on the notion of spatial depth measures, that are naturally prone to be used in any
Hilbert (and Banach) space (Chakraborty and Chaudhuri, 2014).

The study is organized as follows. Section 2 describes the motivating case study and the
available dataset; Section 3 illustrates the modeling approach and introduces the depth measure
that is used to provide center-outward ordering of density data. Section 4 introduces the methods
used for spatial prediction and uncertainty quantification, detailing the use of depth measures to
demarcate prediction bands for NBL distributions at unsampled locations. Section 5 illustrates
the results obtained in a field scale context, conclusions being presented in Section 6.

2. Motivating case study

Study area and available data. The area where our study is framed is part of the Po Basin fill,
in Italy. Details about the hydrogeological setting of the region are available in Molinari et al.
(2012); Farina et al. (2014). The information acquired from sedimentological and hydrogeologi-
cal analyses supports the identification of three main hydrogeological complexes, i.e., Apennines
alluvial fans, Apennine alluvial plain, and alluvial and deltaic Po plain. As an exemplary show-
case for the application of our approach, we focus on the groundwater body termed 0630. The
latter is located in the upper confined portion of the aquifer system of the Po Basin fill, has an
average depth of 65 m, average thickness of 110 m and area of about 1995 km2; Figure 1 depicts
its limits and planar extent. Here, the area colored in red corresponds to the location of the
entire Emilia Romagna region within Italy, the inset showing the complete set of groundwater
bodies demarcated in the area, including the large scale aquifer (in cyan, denoted as 0630) which
is the subject of our study. We consider this aquifer because it is characterized by a significant
planar extent (with a representative scale of the order of hundreds of kilometers) and constitutes
a stark example of a setting where the need to take into account regional-scale spatially varying
NBL distributions for the assessment of groundwater quality is markedly evident.

We ground our analyses on temporal series of concentrations collected at monitoring stations
where records of about 20 years of observations are available (collected at a six-month interval
between 1987 and 2008, albeit not continuously for some wells). For the purpose of demonstrating
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Figure 1: Planar extent of water body 0630.

our methodological workflow and approach, the chemical species considered in this study is
ammonium (NH4). The latter (see also Molinari et al. (2012), to which we refer for further
details) is a key element for the assessment of the quality of the chemical status of a groundwater
body, according to Italian and European Regulation (D. Lgs. 30/09, i.e., Decreto Legislativo
n. 30, 16 March 2009; Directive 2006/118/EC GWDD (2006)) and it is documented to be
associated with concentrations which can be markedly higher than reference values provided by
Italian regulations.

NBL Estimation. Pre-Selection (PS) was applied to available raw data for the identification
of NBL values. The approach is based on the analysis of concentration data collected across
the network of monitoring boreholes to select samples that meet certain criteria and can thus
be considered unaffected by anthropogenic influence. Criteria typically employed to classify a
sample as affected by anthropogenic actions include: (a) chloride concentrations > 1000 mg/l,
as indicator of salinity; (b) nitrates (NO3) concentrations > 10 mg/l, as indicator of human
influence caused by, e.g., fertilizers; and (c) ammonium (NH4) concentrations > 0.5 mg/l, as
indicator of human impact under reducing conditions. Additional criteria, such as redox con-
ditions, dissolved oxygen, sulfate concentration, can be considered for sample exclusion (see,
e.g., Hinsby and de Melo (2006); Hinsby et al. (2008)). Here, we apply the exclusion criteria
described above upon disregarding NH4 because sample cores collected within the study area
provide evidence of natural occurrence of paleo-peats (Amorosi et al., 1996; Cremonini et al.,
2008) consistent with large values of NH4 concentrations in the investigated groundwater body
(see also Molinari et al. (2012)). Samples characterized by markers of anthropogenic contamina-
tion (e.g., nitrates or pesticides) larger than a given value have been disregarded from the original
data set. We recall that Molinari et al. (2012) applied the standard PS procedure to obtain a
unique reference NBL value of 5.2 mg/l at the regional scale (i.e., to be considered as constant
for the entire groundwater body), such an estimate exceeding the EU Drinking Water Standard
for ammonium, which is set to 0.5 mg/l. This result evidences the global critical status with
respect to ammonium for the groundwater body we consider. It also highlights the importance
of a robust and clear delineation of spatial variability patterns of NBLs to assist decision making
under uncertainty.
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Data pre-processing. Our preparatory analyses are consistent with Guadagnini et al. (2020),
who focus on a nearby aquifer body. In this context, the raw data after PS were considered as
observations of naturally occurring (or NBL) concentrations at diverse time instants across the
window 1987–2008. On average, 26.48 observations per location were available, with a range of
6 to 43 observations/locations – most locations including more than 15 temporal observations.
Note that, while our methodological approach is envisioned to perform best within a context
where sample size is relatively high, it can viably assist the analysis of environmental settings
where the sample size is moderate, as in the case here considered.

A preliminary analysis of the data showed that most locations (58 out of 60) do not display
any autocorrelation in the time series of NBL concentrations (level 1%, a result obtained through
a Durbin-Watson test on each time series, the p-value of single tests being corrected via Holm’s
method), the only exceptions being locations PC80-00 and PR03-01 (marked with crosses in
Figure 2). Analogous results are obtained when considering the data on a log-scale. Note
that the lack of correlation may be due to the temporal lag taking place between observations
(6 months), which might shadow possible correlations at shorter time scales. In this sense,
having at our disposal more dense measurement may reveal stronger autocorrelations than those
displayed by the currently available data. The estimation of the PDF of NBL concentration
was thus performed at each borehole location and upon neglecting the temporal autocorrelation.
PDF estimation at a given location is structured according to two steps, i.e., (i) histogram
computation and (ii) representation of histograms through a compositional smoothing B-spline
basis (Machalová et al., 2016). The latter method was selected because of its consistency with
the modeling framework considered for this study, which is developed in Bayes spaces. We note
that the strategy of analysis we propose is not substantially affected by the selection of any other
method of smoothing.

Evaluation of histograms is performed by subdividing the common support of the log-
transformed observations T = [−6, 3] into 25 equally spaced classes. The number of non-empty
classes was found to range between 2 to 11 across the collection of spatial locations where data
are available. To cope with the issue of classes with zero frequency, which poses challenges when
using a compositional approach, we followed the Bayesian-multiplicative strategy suggested by
(Machalová et al., 2016). The latter represents the standard choice in this literature stream, and
is implemented in the R package robCompositions (Templ et al., 2011). Alternative strategies
for zero-replacement could be used, including, e.g., the model-based approaches proposed by
Martín-Fernández et al. (2015). Studying the robustness of the smoothing methods in Bayes
spaces to the zero-replacement strategies is still an research challenge, which will be subject to
future investigations. Note also that the use of a log-transformation for concentrations enables us
to obtain a good reproduction of the PDFs associated with either very low or high concentration
values, which are of major interest in environmental applications due to proper management and
health implications, depending on the chemical species considered. This pre-processing choice
also allows accounting for the relative scale of concentration values, which has been recognized as
a key property of concentration data in the context of compositional data analysis (Pawlowsky-
Glahn et al., 2015). We further note that it has been suggested that geochemical elements should
not be considered singularly but otherwise relative to other elements, a feature which is typically
referred to as the problem of single element mapping (McKinley et al., 2016). For the scope
of this work – which is mainly devoted to the development of the workflow for the character-
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Figure 2: Smoothed data and corresponding spatial locations in the investigated domain. Colors are given
according to the mean associated with the corresponding smoothed density. Crosses in panel (b) represent the
only two locations characterized by a significant autocorrelation in the time series of NBL concentrations, which
was not considered during data smoothing.

ization of NBL spatial variability – we consider the distribution of NBL log-concentrations of
the single element NH4, which is taken as a key environmental performance metric in EU-wide
and national-level regulations. We emphasize that the methodology we illustrate could be ex-
tended to accommodate the observations of McKinley et al. (2016) upon considering the log-ratio
between different available elements by, e.g., evaluating the PDFs of such a log-ratio.

Each pre-processed histogram was then smoothed through a cubic B-spline basis, with 9
equally spaced knots and smoothing parameter α = 103 (the value of the latter is set on the
basis of cross-validation). The smoothing procedure takes into account the occurrence of zero
frequency classes by down-weighting the influence of these to one tenth of the weight of those
with non-zero frequency. The smoothed data are depicted in Fig. 2a. In the following, we refer
to the PDF of the NBL log-concentrations as NBL densities or NBL PDFs for simplicity.

3. Estimating the centrality of a set of PDFs through spatial depth measures

3.1. Problem setting
We denote by s1, ..., sn the n sampling locations in the studied spatial domain D, and term

Xs1 , ...,Xsn the NBL PDFs at these locations. In the following, Xs1 , ...,Xsn indicate random ele-
ments, whereas xs1 , ..., xsn denote the actual observed data (i.e., realizations). As in Guadagnini
et al. (2020), we consider NBL PDFs Xs1 , ...,Xsn to belong to the Bayes Hilbert space B2 (Egozcue
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et al., 2006; van den Boogaart et al., 2014), whose elements are positive functions defined on the
compact set T ⊂ R with square-integrable logarithm. In B2, two elements f and g are considered
equivalent (i.e., f =B2 g or f = g for short) if they are proportional. The vector structure of B2
is defined by the following operations

(f + g)(t) =B2 f(t)g(t), t ∈ T ; (α · f)(t) =B2 (f(t))α, t ∈ T ; (1)

for f, g ∈ B2, and α ∈ R. The difference operation induced by (1) reads f − g = f + (−1) · g,
for f, g ∈ B2. Note that studies focused on the analysis of distributional data in Bayes spaces
often employ an alternative notation for the operations defined in (1) (i.e., the symbols (⊕,�),
that are also used in compositional data analysis, Pawlowsky-Glahn et al. (2015)). In this work
we rest on the simplified notation (+, ·) to favor ease of reading. For clarity, all symbols · are
explicitly stated, even when the standard notation would have dropped them.

Given f and g in B2, their inner product is defined as

〈f, g〉 = 1

2|T |

∫
T

∫
T
ln
f(t)

f(s)
ln
g(t)

g(s)
dtds. (2)

The space (B2,+, ·, 〈·, ·〉) is a separable Hilbert space (Egozcue et al., 2006). The advantage of
relying on a Bayes space approach with respect to unconstrained L2 methods is well-documented
(see, e.g., Delicado (2011); Hron et al. (2016); Menafoglio et al. (2014, 2016b,a, 2018b)). Embed-
ding PDF data within B2 enables one to take advantage of the geometry of this space to account
for the properties of PDFs (in terms of positivity and constraints) while performing the statistical
analysis. Benefits of employing the Bayes space context in spatial data analysis are also illus-
trated in environmental applications, e.g., by Menafoglio et al. (2014, 2016b,a); Álvarez Vázquez
et al. (2020); Talská et al. (2020). The approach has also been used to model cointegrated linear
processes of densities (Seo and Beare, 2019). Note that the choice of the space within which
the analysis is embedded (also termed as the feature space) is critical in Object Oriented Spatial
Statistics (O2S2) – and, more generally, in Object Oriented Data Analysis – because it has a key
impact on the results and on their interpretation. We also note that the Bayes space approach
we consider shares some similarities with the approach advocated by Petersen and Müller (2016);
Han et al. (2019), who propose a strategy for the analysis of distributional datasets consisting of
(a) mapping the data in L2 through an isometric isomorphism, (b) performing an unconstrained
analysis in L2, and (c) mapping back the results to the space of densities.

We model observations Xs1 , ...Xsn upon considering the mathematical framework of O2S2
and assuming they are a partial observation of a random field {Xs, s ∈ D} valued in B2, whose
elements are random NBL densities. In the following, we always assume that the field {Xs, s ∈ D}
is globally second order stationary in B2 in the sense of Menafoglio et al. (2013), i.e.,

E[Xs] = mX , for all s ∈ D,
Cov(Xsi ,Xsj ) = E[〈Xsi −mX ,Xsj −mX 〉] = CX (si − sj), for all si, sj ∈ D. (3)

Quantity mX in (3) denotes the expected value of X , which is defined in the Fréchet sense
(Fréchet, 1948), and is an element of B2, whereas CX is a real valued, positive-definite function
named trace-covariogram, which plays the role of the (global) covariance function of the field
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(see, Menafoglio et al. (2013)). The stationarity assumption (3) implies that the (marginal)
second moment of Xs, E[‖Xs‖2] is constant across the entire domain D, ‖ · ‖ denoting for the
norm in B2 induced by the inner product (2).

3.2. Spatial depth measures for density data in Bayes spaces
We now introduce the statistical methods we here propose to define patterns of centrality

within a set of PDF data. Building a measure of centrality for NBL densities enables one to (a)
determine a median NBL distribution, similar to the usual practice in the analysis of scalar data,
(b) identify possible outlying observations which might deserve further attention, and (c) build
prediction bands, thus enhancing the breadth of the assessment of the uncertainty associated
with predictions of NBL densities at unsampled locations.

When data dimensionality exceeds one, these aspects cannot be addressed by simply relying
on the natural ordering of real numbers. Rather, they can be faced through an appropriate
depth measure (e.g., Liu, 1990; Liu and Singh, 1993; Liu et al., 1999; Mosler, 2013; Zuo and
Serfling, 2000) to allow ordering any point z in the feature space (here set to B2) according to
its centrality (i.e., depth) with respect to a given distribution (e.g., to the empirical distribution
of the observations).

Depth measures have been widely used in multivariate statistics (see Cascos, 2009; Serfling,
2006, for a review). While a variety of depth measures for functional data have been defined
and successfully used (e.g., Claeskens et al., 2014; López-Pintado and Romo, 2009; Ieva and
Paganoni, 2013; Nagy et al., 2017), not all of these are well-suited to be applied in the presence
of density data. For instance, Sun and Genton (2009) propose to build functional boxplots based
on the modified band depth, an approach which does not lead to readily interpretable results in
the presence of density data. Here, we propose to rely on the theory of spatial depth measures
for Hilbert data proposed by Chakraborty and Chaudhuri (2014). These authors investigate
the properties of the so-called spatial distributions in infinite dimensional Hilbert and Banach
spaces, with emphasis on the properties of the spatial depth and of the spatial median and
quantiles, the latter providing finite or infinite dimensional counterparts of univariate median
and other quantiles. One should note that the term spatial does not refer to the geographical
region of the study, but rather to the feature space set for the data. Although Chakraborty and
Chaudhuri (2014) provide definitions and results under general conditions, we introduce here the
key definitions for the feature space B2.

The spatial depth measure of a point z in B2 w.r.t. the distribution of a random element X
of B2 is defined as

SpD(z|X ) = 1−
∥∥∥∥E [ z −X

‖z −X‖

]∥∥∥∥ . (4)

When fixing z ∈ B2, the quantity u(z) = E
[
z−X
‖z−X‖

]
represents the expected value of the unit

vector rooted in X and pointing toward z. Thus, element u(z) conveys information on the degree
of outlyingness of z with respect to the distribution of X (through the norm ‖u(z)‖) and the
direction along which outlyingness is displayed (through u(z)/‖u(z)‖). The former quantity is
precisely captured by SpD(z|X ): the point z at which SpD(z|X ) is maximum is the most central
one, and is termed as spatial median. Note that the norm of u is non-negative, and lower or
equal to one by Jensen’s inequality; hence, SpD(z|X ) is valued in the closed interval [0, 1].
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Given n observations X1, ...,Xn, distributed as X , the sample version of (4) can be defined
as

ŜpD(z|X1, ...,Xn) = 1−

∥∥∥∥∥ 1n ·
n∑
i=1

[
z −Xi
‖z −Xi‖

]∥∥∥∥∥ . (5)

Here, z−y
‖z−y‖ = 0+ if z = y, 0+ denoting the neutral element of the sum in B2, i.e., the uniform

density. The estimator (5) was proved to be consistent and asymptotically normal in the presence
of independent observations (Chakraborty and Chaudhuri, 2014).

In the setting of our study, we use the centrality measure induced by definition (5) for the
purpose of (i) estimating the degree of centrality of the observed NBL densities, (ii) quantifying
the centrality of an unobserved NBL density, and (iii) enhancing the strength of uncertainty
quantification upon building prediction bands based on Monte Carlo (MC) conditional simu-
lations. Details about these issues are offered in Section 4. With reference to (i), we rely on
definition (4) and assume that the marginal distribution of the elements Xs does not depend
on s. This implies that SpD(z|Xs1) = SpD(z|Xs2) for all z in B2 and s1, s2 in D. The above
mentioned requirement is stronger than the assumption of global second-order stationarity in
(3), and it is otherwise weaker than the assumption of strong second-order stationarity consid-
ered, e.g., in Gromenko et al. (2012); Menafoglio and Petris (2016). In practice, given the NBL
density data xs1 , ..., xsn , the depth of the j-th data point xsj , j = 1, ..., n is obtained as

ŜpD(xsj |xs1 , ..., xsn) = 1−

∥∥∥∥∥∥ 1n ·
∑

i=1,...,n;i 6=j

[
xsj − xsi
‖xsj − xsi‖

]∥∥∥∥∥∥ . (6)

4. Spatial prediction and uncertainty quantification for NBL levels

Here, we illustrate the methods used to make inference (i.e., prediction and uncertainty
assessment) at unsampled locations in the geographical domain D (Subsection 4.1), and show
how the spatial depth measure can support such inference (Subsection 4.2).

4.1. Object Oriented Kriging and Stochastic Simulation
The spatial prediction of an NBL density at a target location s0 is performed upon relying on

the object-oriented kriging method of Menafoglio et al. (2014). The kriging predictor is evaluated
by minimizing the variance of prediction error under unbiasedness, i.e., by solving

argmin
λ1,...,λn∈R

E

∥∥∥∥∥Xs0 −
n∑
i=1

λi · Xsi

∥∥∥∥∥
2
 subject to E

[
Xs0 −

n∑
i=1

λi · Xsi

]
= 0+. (7)

The solution (λ∗1, ..., λ
∗
n) to problem (7) can be obtained by solving a linear system (see Menafoglio

et al., 2014) {∑n
j=1 λj CX (si − sj) + ξ = CX (si − s0), i = 1, ..., n∑n
i=1 λi = 1,

(8)
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where ξ represents the Lagrange multiplier associated with the unbiasedness constraint.
Solving system (8) yields the kriging predictor X ∗s0 =

∑n
i=1 λ

∗
i · Xsi . Further insights on the

prediction can be obtained through the spatial depth measure (5). The latter enables one to
quantify how central the NBL density is predicted to be with respect to the estimated distri-
bution of the element Xs of the field. Prediction X ∗s0 can also be used to provide exhaustive
summaries of the NBL distribution at the target locations. Summaries of interest in our study
include the mean, standard deviation, and quantiles or probabilities of exceedance of thresh-
olds set, e.g., by regulators. We remark that analyzing NBL densities as entire objects (along
the perspective of O2S2) allows obtaining summaries which are mutually consistent and do not
violate possible ordering relations (e.g., for quantiles). This would not be necessarily true for
multivariate geostatistical methods applied directly on the PDF summaries.

Assessment of uncertainty associated with predictions is here performed along the lines of
the conditional geostatistical simulation approach of Menafoglio et al. (2016a). Conditional
simulation is widely used in classical geostatistics (Chilès and Delfiner, 1999). As opposed to
kriging estimates of a random field, where a single and smooth representation of the system is
obtained, simulation allows generating a collection of scenarios, each honoring available data and
contributing to reproduce the spatial patterns of the simulated quantity. Alternative approaches
for uncertainty assessment have been proposed in the literature. These are mainly based on
resampling methods, including e.g., bootstrap (see,e.g., Franco-Villoria and Ignaccolo, 2017;
Pigoli et al., 2016), and are typically unconditional, i.e., they do not reproduce observations at
data locations.

The method we consider relies on obtaining random realizations by sampling from the approx-
imate conditional distribution of Xs0 |{Xs1 , ...,Xsn}, for s0 ∈ D, hereafter denoted as Xs0 |X for
simplicity. The approximation is based on the truncated empirical Karhunen-Loève expansion
of the data Xs1 , ...,Xsn ,

X̃s = X +

K∑
k=0

xk,s·φk, s ∈ D,

where xk,s denotes the projection coefficient of the i-th centered observation (Xs −X ) along φk
in B2, xk,s = 〈Xs − X , φk〉, with X = 1

n ·
∑n
i=1 Xsi . The set {φk, k = 1, ...,K} represents the

eigenfunctions associated with the K largest eigenvalues of the sample covariance operator of
the data C, acting on x ∈ B2 as

Cx =
1

n
·
n∑
i=1

〈Xsi −X , x〉·(Xsi −X ). (9)

For simplicity, we denote by X both the estimator and the estimate, the meaning of the notation
being clear from the context.

A realization of Xs0 |X at a location s0 in D is then obtained by simulating the coefficients
{xk,s0 , k = 1, ...,K} of the truncated expansion (9), where K is set to allow capturing a given
amount of variability (e.g., 99%). Simulation of {xk,s0 , k = 1, ...,K} can be performed by relying
on multivariate geostatistical methods, such as sequential Gaussian co-simulation (e.g., Chilès
and Delfiner, 1999; Abrahamsen and Benth, 2001). Note that this simulation procedure is clearly
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affected by the curse of dimensionality, as the computational resources (in terms of memory and
simulation time) are directly dependent on the dimension K of the Karhunen-Loève expansion.
However, the latter representation is optimal, in the sense that, for any given K, it minimizes
the reconstruction error in the mean square sense (i.e., the quantity ‖Xs−X̃s‖2, Menafoglio et al.
(2016a)).

We remark that, when using Gaussian co-simulation, the assumption of Gaussianity involves
the NBL densities and not the actual NBL log-concentrations, as was typically done in previous
studies (e.g., Molinari et al. (2012) and references therein). In this context, we note that the
framework proposed in this work is non-parametric in terms of the NBL density.

Spatial prediction and conditional simulations of the field {Xs, s ∈ D} lead to prediction and
simulation of a number of quantities of interest for NBL studies, including, e.g., (i) mean and
variance, (ii) quantiles of any given order, and (iii) probability of exceeding thresholds and target
environmental performance metrics established by regulators and water management companies.
Furthermore, the depth-based method described in Section 3 enables us to identify patterns of
centrality in the prediction results (see Subsection 5.2) as well as to identify prediction bands
from conditional simulations (see Subsection 5.3).

4.2. Prediction bands through α-central regions based on conditional simulation
Conditional stochastic simulation at an unobserved location s0 in D yields a collection (i.e.,

an ensemble) of NBL densities,

X ∗ms0 = X +

K∑
k=0

x∗mk,s0 ·φk, s ∈ D, m = 1, ...,M (10)

from the (approximate) distribution of Xs0 |X , x∗mk,s0 denoting the conditional realization at s0 of
the k−th score for the m-th simulation of the field, m = 1, ...,M, k = 1, ...,K; in the following,
we denote x∗ms0 = (x∗mk,s0 , ..., x

∗m
k,s0

). If the feature space were a one-dimensional Euclidean space,
the Monte Carlo (MC) collection of realizations {X ∗ms0 ,m = 1, ...,M} could be used to build an
approximate prediction region for Xs0 , based on the sample quantiles of the collection. Consid-
ering the feature space B2, we ground the construction of the prediction region on the spatial
depth measure induced by the distribution of Xs0 |X , i.e.,

SpD(z|{Xs0 |X}) = 1−
∥∥∥∥E [ z −Xs0

‖z −Xs0‖

∣∣∣∣X]∥∥∥∥ . (11)

The latter metric can be estimated from the MC ensemble as

ŜpD(z|{Xs0 |X}) = 1−

∥∥∥∥∥ 1

M
·
M∑
m=1

[
z −X ∗ms0
‖z −X ∗ms0 ‖

]∥∥∥∥∥ . (12)

Estimator (12) is consistent for (11) (see (Chakraborty and Chaudhuri, 2014)).
An MC prediction region can be built as the α-central region induced by (11), which in turn

is defined as (see, e.g., Sun and Genton (2009))

Cα = {z ∈ B2 : ŜpD(z|{Xs0 |X}) ≥ α}, (13)
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i.e., as the subset of points in B2 whose depth is higher than α. Note that the α-central region
is not generally associated with a coverage probability α. However, by setting α to the quantile
of order 1− α̃ of the sample spatial depths of the realizations {X ∗ms0 ,m = 1, ...,M} one obtains
an empirical coverage probability α̃, i.e., to α = q1−α̃{ŜpD(X ∗ms0 |{Xs0 |X}),m = 1, ...,M}.

We shall now focus on the identification and graphical representation of the α-central region
Cα (13) at the target location s0, based on the MC ensemble {X ∗ms0 ,m = 1, ...,M}. For this
purpose, we rely on the following three steps:

(i) construction of a grid Gs0 ⊂ B2 of points in the feature space, exploring the portion of
feature space around the ensemble of MC simulations {X ∗ms0 ,m = 1, ...,M} at s0;

(ii) estimation of the spatial depth of each grid point in Gs0 using (12);

(iii) identification of Cα as the set of points in the grid Gs0 whose depth is higher than α.

Step (i) is aimed to characterize the portion of the feature space B2 which is explored by the
MC ensemble, whereas steps (ii) and (iii) allow to identify, within the latter portion, the region
Cα. Clearly, the finer the grid Gs0 , the better the identification of Cα. We remark that, in the
presence of non-standard data, such as the NBL densities we study here, visualization of the
region explored by the ensemble carries a remarkable information content, as we further elucidate
in Section 5.

In practice, to build the grid Gs0 and identify Cα, one can rely on the Karhunen-Loève
expansion in (10). Indeed, let G̃s0 ⊂ RK be a rectangular grid of points around the simulated
score vectors x∗ms0 , m = 1, ...,M . The grid G̃s0 clearly induces a grid Gs0 , whose points are
z = X +

∑K
k=1 zk·φk for z = (z1, ..., zK)′ ∈ G̃s0 . Moreover, due to the orthonormality of the

FPCs, (12) can then be reformulated as

ŜpD(z|{Xs0 |X}) = 1−

∥∥∥∥∥ 1

M

M∑
m=1

[
z− x∗ms0
‖z− x∗ms0 ‖2

]∥∥∥∥∥
2

, (14)

by virtue of the Parseval identity. This implies that the α-central region can be equivalently
identified by selecting either the points z in Gs0 ⊂ B2 deeper than α according to (12), or the
points z in G̃s0 ⊂ RK deeper than α according to (14). We remark that evaluation of the
depth measure in (6) does not strictly require a dimensionality reduction. The Karhunen-Loève
expansion is here used to provide a representation of the α-central region Cα, a task which would
be otherwise impossible because of the infinite-dimensionality of the ambient space B2.

The application of the procedure outlined above is exemplified through the depiction offered
in Figure 3, which is related to a simple scenario of a two-dimensional Karhunen-Loève expansion
(10). The example is generated by setting X to the null element of the sum operation defined in
(1) (i.e., the uniform distribution, see van den Boogaart et al. (2014)), the two basis functions
φk, k = 1, 2 to

φk(t) =B2 exp

{
− (t− µk)2

σ2
k

}
I[−5,5](t),
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(b) α−central region in B2
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Figure 3: Exemplary illustration of the procedure to identify the α-central region in the presence of a dataset in
B2 expressed over a two-dimensional basis. (a) identification of the α-central region in the space of the scores,
R2; (b) identification of the α-central region in the feature space of the densities B2. In both panels: dark
grey points/curves represent the ensemble of Monte Carlo simulations; light grey points/curves represent the
rectangular region (G̃s0 ,Gs0 ) of the feature space explored by the MC ensemble; colored points/curves represent
the α-central region (the colors being given according to their deepness).

with µ1 = 0, µ2 = 4, σ2
1 = 1, σ2

2 = 9, and by considering for the target location s0 the following
conditional distribution of the scores

x∗ms0 ∼ N2

((
5
2

)
,

(
2 1
1 1

))
.

The MC ensemble of scores is generated by simulating M = 100 samples (depicted as dark grey
symbols in Figure 3a) according to the scores’ distribution, and by building the corresponding
densities in B2 as in (10) (represented as dark grey curves in Figure 3b). In this setting, the
grid G̃s0 ⊂ RK is represented by the light grey symbols in Figure 3a, whereas the associated grid
Gs0 ⊂ B2 by light grey curves in Figure 3b. The estimated α-central region in R2, with empirical
coverage α̃ = 0.5, is depicted with colored symbols in Figure 3a, and the equivalent α-central
region in B2 is represented with colored curves in Figure 3b. These regions can be interpreted
in a way similar to the box between the first and third quartiles in a classic boxplot; their use
to support the uncertainty assessment at s0 is further illustrated in Section 5.

We finally note that the identification of the α-central region through the construction above
is clearly affected by the curse of dimensionality, because the size of the Gs0 grows exponentially
with the number K of retained principal components {φk, k = 1, ...,K} (e.g., its grow rate is
O(τK) for an equally spaced grid of τ points along each of the K dimensions). Reliance on the
Karhunen-Loève expansion guarantees that, for given computational resources (i.e., for any given
K), the dimensionality reduction performed prior to the conditional simulation step is uniformly
optimal in the spatial domain D in a mean square sense (for further details see, Menafoglio et al.,
2016a).

The following section is devoted to the illustration of the application of the proposed method-
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ological framework to the NBL density data described in Section 2.

5. Results on NBL density data

5.1. Centrality patterns in NBL density data
The method proposed in Section 3 is applied to the smoothed data pictured in Figure 2.

Results are displayed in Figure 4, the deepest and outermost data being represented with warm
and cold colors, respectively. The spatial median (marked with a dashed line in Fig. 4a) is
observed at borehole RE63-00 and represents a symmetric unimodal NBL distribution, with
a mean of 0.526 [ln(mg/l)] and a standard deviation of 0.527 [ln(mg/l)]. The most outlying
observations are generally characterized by lower mean values and higher variances and in some
cases display a bimodal behavior. The outermost observation is characterized by a mean of
-4.19 [ln(mg/l)] and standard deviation 0.40 [ln(mg/l)] and is observed at well PC56-10. Visual
inspection of Figure 4 suggests that the deepest observations (i.e., observations which are closest
to the mean) are indeed associated with the central part of the domain, whereas the outermost
ones tend to be associated with the western part of the domain. This result is consistent with the
observation that the central portion of the groundwater body is associated with depths which
are generally higher than those related to the western region and are representative of more
confined hydrogeological conditions, thus contributing to enhancing differences between resident
concentration values detected in these two areas.

For completeness, Figure 4 also depicts the sample mean of the observations (solid line). The
latter is markedly different from the spatial median, being bimodal and characterized by a much
higher spread (mean of -0.34 [ln(mg/l)] and standard deviation 1.67 [ln(mg/l)]). The spatial
median is clearly less influenced by the outermost observations, which tend to be concentrated
at lower values of concentrations. In fact, the spatial median is a robust indicator of centrality,
in the sense that it is only partially influenced by outlying observations, unlike, e.g., the sample
mean (Chaudhuri, 1996; Ding et al., 2007). It also appears to be better representative of the
shape of the data in terms, e.g., of the associated dispersion. As such, if one would be interested
in providing a unique NBL density as representative of the entire aquifer body, the median NBL
distribution, i.e., the one observed at well RE63-00, could be considered as a candidate to this
end.

5.2. Spatial prediction of NBL density data
The analyses illustrated in this section are based on the Euclidean distance within the domain

of the aquifer body. Although the shape of the domain in its right part (corresponding to the
North-East sector of the region) may support the use of a non-Euclidean metric to analyze data
dependence, kriging results based on a Random Domain Decomposition approach (Menafoglio
et al., 2018a) did not show relevant differences with respect to those presented in the following,
and are thus omitted.

The global stationarity assumption appears to be supported by the sample trace-variogram.
The latter is reported in Figure 5 and is characterized by a clear asymptote for increasing spatial
distances. An exponential model with nugget was used to interpret the empirical variogram,
estimated values of its parameters being listed in Figure 5.
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Figure 4: Spatial Depth measure of the data. (a) NBL densities colored according to their estimated depth, (b) ge-
ographical locations of the NBL densities, colors being associated the estimated spatial depth of the corresponding
data.
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Figure 5: Stationary trace-variogram estimated from the smoothed data
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(a) Predicted NBL PDFs
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(b) Depth of predicted PDFs
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(c) Mean of predicted PDFs
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(d) Standard deviation of predicted PDFs
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Figure 6: Kriging prediction of NBL densities: (a) Predicted densities, (b) estimated depth of the predicted
densities, (c) mean value of NBL concentration estimated from the predicted densities, (d) standard deviation of
NBL concentration estimated from the predicted densities.

Kriging prediction is then performed as detailed in Section 4.1 and based on a regular grid G
of 4664 cells according to which we discretize the domain of the aquifer body. Figure 6a displays
the predicted PDFs of NBL (log)concentrations. A graphical representation of the estimated
depth of the predictions with respect to the sample is shown in Figure 6b, whereas Figure 6c
and Figure 6d report the mean and the standard deviation of the predicted NBL densities,
respectively.

Analysis of Figure 6 reveals clear spatial patterns in the field of NBL densities. The deepest
NBL distributions are mostly located in the central part of the domain (Figure 6b). These areas
are associated with moderate values of mean NBL concentrations and of their standard deviation
(Figure 6c and d). The outermost predictions are instead clearly associated with the most western
and most eastern regions of the domain. These two areas are however associated with differing
characteristics, the western region denoting very low mean values and high variability, the eastern
region being characterized by high mean values and reduced variability. As such, the analysis
of these results enables one to clearly identify segments of the target aquifer body within which
the chemical signature of interest differs from the average system behavior. This, in turn, leads
to establishing spatially variable NBLs which can be integrated within sustainable groundwater
and land management policies.
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(b) Probability of exceedance 
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Figure 7: Predicted (a) quantile of order 90% and (b) probability of exceedance of a concentration threshold of
5.2 mg/l

Figure 7a depicts the predicted quantile of order 90% of the NBL concentration, whereas
Figure 7b shows the probability of exceeding the reference NBL value of 5.2 mg/l, which has
been evaluated by Molinari et al. (2012) as representative of the global chemical status of the
system (see also Section 2).

Cross-validation results are included in the supplementary material and support the satisfac-
tory performance of the prediction method. With reference to this point, note that prediction
errors associated with cross-validation are assessed through leave-one-out cross-validation (LOO-
CV), which is broadly used in the functional kriging context (see, e.g., Giraldo et al. (2010);
Caballero et al. (2013)). LOO-CV errors are quantified via the sum of squared error, defined
as SSE =

∑n
i=1 ‖Xsi − X

∗(−i)
si ‖2, X ∗(−i)si being the prediction of the i-th observation when this

is left out of the training set. The average SSE is 32.2, which is fully compatible with the
estimated variance – the estimated sill of the trace-variogram being 69.12. Our results are also
substantially in agreement with those obtained by Molinari et al. (2019), who focused solely on
analysing the 90% quantile of the NBL distribution, and estimated the probability of exceeding
such a reference value based on a log-normal model. Note that, although the results of Molinari
et al. (2019) appear to be overall consistent with those of our study, the assumption upon which
our O2S2 method is based are much less restrictive that those of Molinari et al. (2019), being
fully non-parametric on the distribution of NBL concentrations.

Our results suggest that values of the 90th percentile can display marked variability within
the region. Thus, setting environmental goals related to the quality of the groundwater resource
can require differing approaches depending on local context. As an example, it is noted that the
Eastern sector of the aquifer is characterized by a high probability of exceeding the NBL value
of 5.2 mg/l evaluated on the basis of standard PS procedure and typically considered as uniform
across the system (see Figure 7). It is then clear that concentrations exceeding such a threshold
value within this region are not necessarily ascribed to anthropogenic actions, thus potentially
hampering the effectiveness of measures aiming at restoring groundwater quality on the basis of
this goal.
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Figure 8: Dimensionality reduction of the density data: (a) scree plot; (b) boxplot of the scores xk,si , i = 1, ..., n
along the first 10 PCs. The vertical line denotes the threshold value K = 8 selected for the dimensionality
reduction.

5.3. Conditional stochastic simulation of NBL density data
The approach illustrated in Section 4.1 is here applied to the smoothed density data. The

latter are projected on the basis generated by the first K = 8 principal components (PCs),
that altogether explain 98.3% of the total data variability. Indeed, a graphical inspection of
the scree plot (Figure 8a) suggests that the residual variability after the 8th PC would lead
to incorporating noise within the analysis, besides being associated with a very small portion
of the variability of the sample (e.g., the 9th PC is representative of 0.01% of variability). A
similar conclusion is inferred from the boxplot of the corresponding scores xk,si , i = 1, ..., n,
k = 1, 2, ..., 10, depicted in Figure 8b.

The scores xk1,s1 xk2,s2 are modeled as uncorrelated for k1 6= k2 and s1 6= s2 in D, as
supported by visual inspection of cross-variograms (not shown). An exponential model is cali-
brated to the empirical variogram for each field of scores. Conditional Gaussian simulations are
performed to yield a collection of B = 100 realizations. We do so by using sequential Gaus-
sian simulation of Abrahamsen and Benth (2001), implemented within the R package gstat
(Pebesma, 2004), and setting a local neighborhood of 60km, to lower the computational time.
The sample of NBL distributions is then built from the MC ensemble of scores as in (10), i.e.,

X ?,ms0 = X +

K∑
k=0

x?,mk,s0φk, s0 ∈ G,m = 1, ...,M

where x?,mk,s0 denotes the m-th conditional simulation of the k-th score at location s0.
As an example of the type of results one can obtain, Figure 9 depicts a realization of the

field of NBL densities (Figure 9a), of the corresponding quantiles of order 90% (Figure 9b)
and of the corresponding probability of exceeding the threshold value of 5.2 mg/l (Figure 9c).
Further results are presented in the supplementary material, in the context of a leave-one-out
cross-validation analysis. These types of results embed a high added value in terms of opera-
tional environmental implications. In this context, providing spatial estimates of NBL densities
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(b) Realization of quantile of order 
 p=0.9

−3

−2

−1

0

1

2

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
●

●
● ●●

●●

●
●

●

●

●

● ●●
●

●

● ●
●

●

●

●

●●

● ●●

●

●
●

●

●
●

●
●

●
●●

●●

550000 600000 650000 700000 75000092
00

00
96

00
00

10
00

00
0

10
40

00
0

(c) Realization of probability of exceedance 
 5.2 mg/l

0.0

0.2

0.4

0.6

0.8

1.0

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●
●

● ●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●
●

●

●
●

●●

Figure 9: A sample realization resulting from the conditional stochastic simulation of NBL distributions. (a)
Simulated NBL densities; (b) Simulated quantiles of order 90%, for the same realization displayed in panel (a);
(c) Simulated probability of exceeding the threshold value of 5.2 mg/l, for the same realization displayed in panel
(a).

and the ensuing uncertainty is critical to assist (i) the identification of local and diffuse sources
of potential anthropogenic contamination, thus enabling to quantify the current environmental
status and set achievable clean-up goals for remediation actions, as well as (ii) the proper engi-
neering and management of monitoring networks to optimize the value of information associated
with areas characterized by marked uncertainty or probability of exceeding given environmental
limits/standards. Our approach can then provide water and environmental agencies enhanced
information which can then be used to design and engineer decision-making protocols grounded
on an appropriate and reliable quantification of the associated uncertainty.

5.4. Prediction band for NBL densities
We describe here the results associated with the construction of a prediction band based on

the conditional simulation in Subsection 5.3. For illustrative purposes, we consider two target
locations s0,1, s0,2, close to the wells RE63-00 and PC56-10, i.e., the locations associated with
the median NBL density and the outermost NBL density, respectively.

Figure 10 depicts the MC ensembles obtained at s0,1, s0,2, with colors assigned according to
the depth of the simulated densities with respect to the corresponding (approximated) conditional
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Figure 10: Representation of the Monte Carlo ensemble at two target locations s0,1, s0,2. Monte Carlo ensemble
at (a) s0,1 and (b) s0,2. Colors are given according to the depth of the PDF with respect to the corresponding
(approximated) conditional distribution Xs0,i |X , i = 1, 2.

distribution Xs0,i |X , i = 1, 2.
The prediction band is obtained upon building the α-central region with empirical coverage

of α̃ = 0.5. Similar to the illustrative example presented in Section 4, for the target location s0,i,
i = 1, 2, we build a uniform grid Gs0,i in R8, covering the region spanned by the MC ensemble of
scores at s0,i. The PDFs associated with the grid points in Gs0,1 and Gs0,2 are depicted as light
grey curves in Figures 11a and 11b, respectively. These curves allow visualizing the rectangular
envelope of the region explored by the conditional distributions Xs0,i |{Xs0,i |X}, i = 1, 2 in the
feature space. To display the prediction band at the target locations, we select the grid points
in Gs0,i , i = 1, 2, whose associated PDFs are characterized by a spatial depth higher than the
median spatial depth.

The α-central regions Cα(s0,i) at locations s0,1, s0,2 are depicted in Figure 11, colors being
assigned according to the depth of the PDFs. This representation provides insights about the
variability of the kriging predictors at these target locations, represented as dashed black curves
in Figure 11. For instance, NBL densities near location PC56-10 are predicted to be unimodal and
to display their peak around a value of log-concentration of -4 [log(mg/l)]. The α-central regions
Cα(s0,1) reveals that the position of the peak is affected by a certain degree of uncertainty.
This is also reflected at the right tail of the NBL distribution, where local (albeit of modest
height) peaks may appear when considering the collection of MC realizations and the associated
Cα(s0,1). Visual inspection of Figure 11b suggests that the kriging prediction at s0,2 is associated
with highest uncertainty in the position of the main peak as well as in the height of additional
peaks appearing at the left tail of the NBL density. These interpretations are consistent with
those provided in Figure 10, and strengthen our ability to characterize possible behaviors of NBL
densities at locations of environmental concern in the domain.

6. Conclusions

We illustrate a novel approach to the characterization of Natural Background Levels (NBL)
concentrations of target chemical species in large-scale groundwater bodies. We leverage on the
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Figure 11: Prediction band for NBL densities based on the evaluation of the α-central region. Prediction band
at target locations (a) s0,1 and (b) s0,2. Colored curves form the approximated α-central region, colors being
associated with the corresponding depth; light grey colors represent curves associated with the rectangular region
of the feature space explored by the distribution of Xs0,i |{X}, i = 1, 2. The dashed black curves represent the
kriging predictions at locations s0,1, s0,2.

theory of Object Oriented Spatial Statistics (O2S2) and consider the entire distribution of NBL
concentrations rather than focusing on selected moments or percentiles. Such distributions are
represented through their (estimated) densities and are modeled by embedding them in a Bayes
Hilbert space. Our approach represents an innovative way to view NBL concentrations and
enables one to (i) obtain a complete characterization of the spatial arrangement of NBL PDFs
in terms of point prediction and uncertainty quantification (UQ), and (ii) provide consistent
predictions and UQ of any summary statistic (e.g., moments, quantiles) derived from the NBL
distribution, with significant advantages with respect to traditional approaches employed in
engineering and environmental applications. In this framework, our work leads to the following
major conclusions.

1. We provide theoretical and operational tools for generating and exploring ensembles of
NBL PDFs based on the key concept of spatial depth measures. These are employed here
to (i) identify central and outlying observations in the distributional dataset and (ii) build
prediction regions and distributional boxplots for NBL distributions, leading to enhanced
assessment of the uncertainty associated with predictions. The proposed strategy is fully
nonparametric and allows overcoming limitations of the statistical methods so far used for
the characterizations of NBL distributions.

2. Our approach enables one to ground the assessment of NBLs of a given groundwater body
on the entire information content embedded in the complete series of concentration values
which are routinely monitored by environmental agencies and water companies across a
network of observation boreholes covering the system. While our showcase application
is focused on sampled values of a given chemical species, i.e., ammonium, the proposed
methodology and workflow are portable and can be applied to analyze other chemical
species whose temporal sampling is satisfactorily dense.

3. The approach leads to the identification of sectors of a given groundwater body which can
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be characterized by differing behaviors of the considered chemical species and to the as-
sessment of the uncertainty associated with their spatial patterns. From an environmental
standpoint, this element is key in large scale groundwater bodies of the kind we analyze,
where critical conditions associated with unsampled regions can be identified. As new
samples become available over time, the methodology also enables one to detect temporal
dynamics or shifts of spatial distributions of NBLs, thus leading to possible refinement or
updating of selected management practices.
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