
Hardware Acceleration of Complex Machine Learning Models
through Modern High-Level Synthesis

Serena Curzel∗
serena.curzel@polimi.it
Politecnico di Milano

Milano, Italy

Antonino Tumeo
antonino.tumeo@pnnl.gov
Pacific Northwest National

Laboratory
Richland, Wa, USA

Fabrizio Ferrandi
fabrizio.ferrandi@polimi.it

Politecnico di Milano
Milano, Italy

INTRODUCTION
Modern scientific experiments employ instruments (e.g., electron
microscopes, detectors in particle accelerators, environmental sen-
sors) that generate exponentially growing volumes of raw data.
Machine learning (ML) and deep learning algorithms are well suited
to process and analyze large amounts of data, as it has been repeat-
edly proven in applications such as image classification, natural
language processing, or recommendation systems. Both ML train-
ing and inference are compute- and memory-intensive, leading to
widespread adoption of heterogeneous systems containing special-
ized accelerators. While graphic processing units (GPUs) are the
established platform of choice to accelerate training, they are often
too power-hungry to run inference tasks, or cannot meet the strict
latency requirements of scientific experiments. A variety of custom
solutions implemented as field programmable gate arrays (FPGAs)
or application-specific circuit (ASICs) have been proposed in their
place, ranging from generic "neural processors" to accelerators that
focus on a narrow set of models with great efficiency.

While FPGAs and ASICs promise to provide the necessary hard-
ware specialization, experimental workflows and the related ma-
chine learning methods evolve quickly. Even if FPGAs can be con-
figured after deployment, allowing to update the accelerators and
support new models [4], they still require significant expertise in
hardware design and hardware description languages (HDLs) to be
effectively used.

On the other hand, domain scientists are used to leverage python-
based high-level frameworks (e.g., TensorFlow, Pytorch) to quickly
develop and explore ML algorithms, and typically do not have any
hardware design expertise. To bridge the two worlds, some works
propose to exploit High-Level Synthesis [1] [3], a well established
technique that reduces the effort required to design hardware ac-
celerators by automatically translating a behavioral description
(traditionally C or C++) into Verilog/VHDL.

Most of the HLS-based frameworks for Machine Learning use
C/C++ as an intermediate representation of the input model, aug-
menting it with tool-specific directives that drive the synthesis to
obtain an efficient design. Our proposal, instead, is a compiler-based,
open source framework that exploits Multi-Level Intermediate Rep-
resentation (MLIR [5]) to lower the input model, apply optimization
passes at the correct level of abstraction, and exploit knowledge
about the HLS process to guide them.

A limitation of the existing frameworks is that they usually focus
on a narrow set of models, specifically Multi-Layer Perceptrons and
Convolutional Neural Networks. While it is true that these cover
a significant part of ML applications (especially in the computer
∗Also with Pacific Northwest National Laboratory.

vision field), there is room for exploring other types of models, for
example to accelerate scientific applications that work on graphs
or sparse data structures. A narrow focus limits the possibility of
quickly adapting to newer algorithmic approaches, a factor which
needs to be taken into higher consideration.

Finally, as the MLIR project continues to grow, our tools are
going to be available to other classes of algorithms, not exclusively
Machine Learning models: in fact, any domain-specific framework
with a lowering to basic MLIR dialects will be able to exploit our
optimizations and translate algorithms into an efficient hardware
accelerator. In the context of a scientific experiment, this will allow
to accelerate also other stages in the data acquisition pipeline, such
as pre-processing, analysis, and simulation.

"CLASSIC" AND "MODERN" HLS FLOWS
Current frameworks that help automating the design of Machine
Learning accelerators (e.g., hls4ml [3], FINN [1]) use existing High-
Level Synthesis tools (e.g. Vitis/Vivado HLS) as back-end: they
parse a model exported from popular ML frameworks and replace
operators with C/C++ functions taken from a library of templates,
adding tool-specific directives to guide optimizations (Figure 2a).
The HLS tool processes this intermediate C/C++ representation
and produces a corresponding accelerator design without further
manual intervention.

Our compiler-based flow SODA [6] has two fundamental differ-
ences with respect to such a "classic" approach (Figure 2b). First,

Figure 1: Two different ways of generating hardware accel-
erators through HLS.

(a) "Classic" HLS flow with intermediate C/C++.

(b) "Modern" compiler-based HLS flow.



Serena Curzel, Antonino Tumeo, and Fabrizio Ferrandi

instead of translating one high-level description into another high-
level language such as C/C++, we embrace the MLIR multi-level
approach to work with progressive lowerings. Increased modularity
makes it is possible to apply and explore both high-level algorithmic
optimizations and low-level hardware-oriented ones. Second, we
integrate the open-source HLS tool Bambu [2] in the loop, to have
more control on the underlying High-Level Synthesis process.

A significant drawback of the "classic" flow is that the library of
templates is necessarily tied to a single, specific HLS tool: each tool
expects coding patterns, annotations, and optimization directives
that are not portable to other tools; incompatible directives would
be ignored, resulting in a very inefficient design. As typically there is
one commercial HLS tool for each FPGA vendor, the choice of target
boards is limited to the ones supported by the chosen HLS tool. This
is not the case for our design flow, since Bambu is a multi-platform
tool supporting multiple FPGA (Xilinx, Intel, Lattice, NanoXplore)
and ASIC targets without any modification in the input code: such
flexibility enables a smooth transition from high-level design, to
FPGA prototyping, to ASIC manifacturing and deployment.

MODEL DIVERSITY CHALLENGES
Machine Learning is an umbrella term that covers a broad spectrum
of algorithms; research works about FPGA acceleration and HLS-
based design flows are mostly focused on a subset of ML models,
i.e., Multi-Layer Perceptrons and Convolutional Neural Networks.
Sometimes their field of action can be even smaller: for example, the
original implementation of hls4ml was optimized for small, fully-
connected models under tight latency constraints, reflecting the
needs of a high-energy physics experiment at CERN. Appropriate
implementation choices for such a specific case may not be benefi-
cial to a generic model: hls4ml proposed to store network weights
inside on-chip logic and unroll all loops to increase parallelism,
which quickly depletes FPGA resources when considering a neural
network with more layers and weights.

A second challenge after supporting models with different sizes
is their degree of sparsity: large models can be compressed to re-
duce their computation and memory requirements, for example
by employing low precision data types (quantization) or by re-
moving operations with zero values. Quantization is well suited
to hardware acceleration, since custom precision operators can be
implemented quickly and efficiently (also through dedicated HLS
libraries). Sparse tensors, on the other hand, imply irregular compu-
tation, communication, and memory access patterns, which result
in poor efficiency when mapped on accelerators designed for dense
models.

Another class of models that could benefit from hardware acceler-
ation and requires unique design choices is Graph Neural Networks.
Graph structures provide great expressive power to represent and
analyze data in a variety of applications, from chemistry to language,
social networks, recommendation systems etc. Machine Learning
models that work on graphs include both sparse (aggregation) and
dense (feature extraction) computation patterns, which are also
affected by the input graph size; such characteristics could benefit
from a task-based parallelism paradigm. Existing HLS-based design
flows are good at extracting data- and instruction-level parallelism

Table 1: Preliminary results on CNN and GCN models.

FPGA target
Clock Registers LUTs Latency
(MHz) (s)

LeNet 146.75 44171 44 325 0.689
ResNet-50 217.82 20861 20 522 284.640
GCN 1 (dense input) 204.80 14812 8965 1302.990
GCN 2 (sparse input) 210.00 14639 8685 6.414

ASIC target
Clock Size Cells Latency
(MHz) (mm2) (s)

LeNet 200 0.262 187 415 0.362
ResNet-50 200 0.305 220 156 212.190
GCN 1 (dense input) 200 0.062 44 864 572.738
GCN 2 (sparse input) 200 0.062 45 028 4.138

(e.g. by unrolling loops), but they are not equipped to deal with the
irregular task-based patterns required by graph processing.

Table 1 presents some results obtained synthesizing two CNNs
and a simple Graph Convolutional Network with SODA. LeNet is a
relatively small network, which was synthsized as a single Verilog
module; for ResNet-50 instead each single layer was outlined and
implemented as a single accelerator. The GCN was implemented
in two slightly different versions, one for dense inputs and one
for sparse inputs. We also experimented with two different targets
among those offered by Bambu, a Xilinx Zynq-7000 FPGA and a
45nm ASIC. These preliminary results do not include any optimiza-
tion, but they show that the SODA design flow has the potential to
tackle a diverse set of models; more research will allow to tune the
compilation passes according to the specific needs of different ML
algorithms.

CONCLUSION
The SODA framework provides a novel approach to the design of
accelerators for Machine Learning, bridging the gap between algo-
rithmic frameworks and hardware design through MLIR and High-
Level Synthesis. Its multi-level strategy allows to exploit knowledge
about the internal mechanism of the selected HLS tool, Bambu, and
to operate analysis and transformations as compiler passes on dif-
ferent intermediate representations, retrieving relevant information
that might otherwise be lost in the translation to C/C++. Future
developments will focus on extending the framework to support
different classes of ML models, for example tailoring the compila-
tion to the needs of sparse and graph-based applications (benefiting
also non-ML algorithms).

REFERENCES
[1] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth

O’brien, Yaman Umuroglu, et al. 2018. FINN-R: An end-to-end deep-learning
framework for fast exploration of quantized neural networks. ACM Transactions
on Reconfigurable Technology and Systems (TRETS) 11, 3 (2018), 1–23.

[2] Politecnico di Milano. [n.d.]. Bambu: A Free Framework for the High-Level Synthesis
of Complex Applications. Retrieved Aug. 11, 2021 from https://panda.dei.polimi.it/
?page_id=31

[3] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin
Kreis, et al. 2018. Fast inference of deep neural networks in FPGAs for particle

https://panda.dei.polimi.it/?page_id=31
https://panda.dei.polimi.it/?page_id=31


Hardware Acceleration of Complex Machine Learning Models through Modern High-Level Synthesis

physics. Journal of Instrumentation 13, 07 (2018), P07027.
[4] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming

Liu, Daniel Lo, et al. 2018. A Configurable Cloud-Scale DNN Processor for Real-
Time AI. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 1–14.

[5] MLIR project. [n.d.]. Multi-Level IR Compiler Framework. Retrieved Aug. 11, 2021
from https://mlir.llvm.org/

[6] Jeff Zhang, Nicholas Bohm Agostini, Shihao Song, Cheng Tan, Ankur Limaye,
Vinay Amatya, et al. 2021. Towards Automatic and Agile AI/MLAccelerator Design
with End-to-End Synthesis. In IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE.

https://mlir.llvm.org/

	References

