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A B S T R A C T   

The results of numerical simulations of cardiac electromechanics are typically characterized by a long transient 
before reaching a periodic solution known as limit cycle. This yields a serious computational overhead, as the 
only clinically relevant output is associated with such limit cycle. To accelerate the convergence to the limit 
cycle, we propose a strategy based on a surrogate model, wherein the computationally demanding 3D compo-
nents are replaced by a 0D emulator, built through an automated data-driven algorithm on the basis of pressure- 
volume transients of as few as three heartbeats simulated with the 3D model. The 0D emulator, consisting of a 
time-dependent pressure-volume relationship, can provide the 3D model with an initial guess, such that in just 
two heartbeats a solution is reached that is as close to the limit cycle as the one obtained after more than 20 
heartbeats with the 3D model. The 0D emulator is also recommended in many-query settings (e.g. when per-
forming sensitivity analysis, parameter estimation and uncertainty quantification), that call for the repeated 
solution of the model for different values of the parameters. Indeed, the construction of the emulator does not 
have to be repeated when the parameters of the circulation model it is coupled with vary. Finally, should the 
parameters of the 3D electromechanical model vary as well, we propose a parametric emulator, obtained by 
interpolation of emulators constructed for given values of the parameters. This paper is accompanied by a Python 
library implementing the proposed algorithm, open to integration with existing cardiac solvers.   

1. Introduction 

Computational models of the cardiac function represent a promising 
tool to quantitatively analyze clinical data. Through numerical simula-
tions of cardiac electromechanics and hemodynamics, it is possible to 
reveal mechanistic links between the different components of this 
complex system, to elucidate the relatioships between microscopic 
variations and macroscopic biomarkers, to perform in silico in-
vestigations on the effects of drugs or therapies [1–11]. Despite their 
impressive developments in recent years, a major obstacles to the clin-
ical exploitation of computational models of cardiac electromechanics is 
their huge demand for computational resources. The numerical simu-
lation of a single heartbeat for a biophysically detailed and anatomically 
accurate cardiac model, indeed, may require several hours (if not days) 
in terms of computational times on supercomputer platforms. 

This huge computational cost is exacerbated by the fact that, to 
obtain meaningful results, simulating a single heartbeat might not even 
be sufficient. In fact, during the first heartbeats, the numerical model 

typically goes through a transient, and then it settles down to a periodic 
behavior. This periodic behavior represents the so–called limit cycle of 
the system of differential equations that makes up the mathematical 
model. In the literature, it is also referred to as steady solution or periodic 
orbit [12–14]. A key point is that the only clinically meaningful quan-
tities are those computed from such limit cycle, while the solution ob-
tained during the transient has no physical meaning and it is only 
instrumental in reaching the periodic solution. However, unless all 
variables in the mathematical model – including tissue displacement, 
electrophysiological, subcellular and hemodynamical variables – are 
already along the periodic orbit at time t = 0, going through this tran-
sient is unavoidable. This represents a serious computational burden. 

Additionally, cardiac electromechanics models need to be closed 
with suitable relationships linking the pressure inside the chambers with 
the blood flows through the valves. The two most widely used ap-
proaches in the literature involve, on the one hand, the use of preload- 
afterload models (e.g. Windkessel-type models) surrogating the bound-
ary conditions [15,16]; on the other hand, the coupling with closed-loop 
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0D (i.e. lumped-parameter) models of the external circulation [12–14, 
17,18]. The models belonging to the second class provide more mean-
ingful results from a physiological perspective, because they take into 
account the mutual interactions between the cardiac and external cir-
culation. However, reaching the limit cycle with closed-loop models is 
particularly critical. As a matter of fact, the variables of these 0D he-
modynamics models must be suitably initialized as well. Since, in 
closed-loop model, any change in the state variables affects the vascular 
network downstream, thus creating circular dependencies, finding a 
periodic solution (i.e. a limit cycle) is particularly delicate in this case. 
For this reason, in this paper we devote a special care to 3D electro-
mechanical models coupled with closed-loop circulation models. 

Several expedients have been devised to find an initial guess for some 
of the variables of cardiac electromechanical models, in such a way they 
are (hopefully) close to the limit cycle. For instance, the subcellular 
variables of the ionic and activation models are typically initialized by 
running a large number of heartbeats in a single-cell simulation [19]. 
The final state of this 0D model is then employed as initial state in each 
node of the 3D computational mesh. To initialize the tissue displace-
ment, instead, the cardiac chambers are usually inflated by applying at 
the endocardium the end-diastolic pressure. The displacement obtained 
by solving this stationary elastic problem is then employed as initial 
state for the electromechanical simulation [18]. However, the endo-
cardial pressure needed to solve the stationary problem is not typically 
known in advance, especially when the 3D electromechanical model is 
coupled with a 0D circulation model. 

In recent years, a number of approaches have been proposed to 
reduce the computational cost associated with simulating the heartbeats 
required by electromechanical models to reach a limit cycle, especially 
when coupled with circulations models [13,14,19]. Since high accuracy 
is not required during this transient phase, the simulation of these 
heartbeats can be conducted on a coarser computational mesh. Alter-
natively, in [14], 18 heartbeats are carried out without letting the 
Newton solver reach convergence for the mechanical subproblem (i.e. a 
single Newton iteration is performed for each time step), and then two 
heartbeats are simulated with a fully converging Newton solver. In [13], 
a purely mechanical simulation is done to find an initial condition for 
the circulation model that is close to the periodic orbit. However, 
reaching the limit cycle remains challenging, due to the large number of 
cycles that are typically required for convergence. As a matter of fact, 
depending on how far the initial guess is from the limit cycle, many 
heartbeats could be necessary to get close to a limit cycle. In practice, 
order of 20 beats are typically performed [14]. However, in [20] it is 
reported that order of 100 beats could be necessary in certain circum-
stances. This is particularly critical in many-query settings such as 
sensitivity analysis, parameter estimation and uncertainty quantifica-
tion. In these contexts, which already in themselves require to simulate a 
high number of heartbeats, very often one renounces to achieve the limit 
cycle and simulates a single heartbeat, at the risk of obtaining a physi-
ologically inaccurate solution. In [16,21], for instance, a single heart-
beat is simulated for each choice of the parameters, even if the authors 
recognize that the validity of the results could be compromised by this 
choice. 

The above reasons call for the development of techniques to achieve 
the limit cycle at a low computational cost, possibly without undergoing 
a full transient simulation with the 3D electromechanical model. In this 
paper we propose a strategy aimed at this purpose, based on a 0D 
emulator built on the basis of a few heartbeats obtained with the 3D 
model. Once the emulator has been built, it is used - at a very low 
computational cost - to obtain a limit cycle by means of a 0D simulation, 
which provides an initial guess for the 3D model. This approach can be 
interpreted as a 3D-0D-3D V-cycle, reminiscent of the multigrid method 
[22]. Having replaced the 3D multiscale model with a 0D surrogate 
during the simulation of a number of heartbeats, the computational cost 
is drastically reduced. As a matter of fact, our approach allows to 
simulate with the full-order 3D model only a small fraction of the 

heartbeats required to reach the limit cycle, surrogating the large part of 
the heartbeats by means of the 0D emulator, at a negligible computa-
tional cost. 

We propose an algorithm for the automated construction of such 0D 
emulator, starting from a pressure-volume transient generated with the 
full-order electromechanical model. A Python implementation is made 
publicly available in a GitHub repository1 accompanying this paper, 
thus enabling for the integration with existing software. 

This paper is structured as follows. In Sec. 2 we present the methods 
proposed in this paper. Then, in Sec. 3, we present a complete electro-
mechanical model, including the external circulation. In Sec. 4 we show 
the results of several test cases, carried out with the above mentioned 
models, to demonstrate the effectiveness of the proposed methods. 
Finally, we discuss the obtained results in Sec. 5 and we draw our 
conclusions and final remarks in Sec. 6. 

2. The 0D emulator 

A mathematical model of cardiac electromechanics consists of a set 
of differential equations, describing the evolution of a set of variables 
within a 3D computational domain. These variables are associated with 
different physical processes pertaining to the cardiac function, including 
electrophysiology, cellular contraction and tissue mechanics. In what 
follows, we will employ the symbol M 3D to refer to the 3D electrome-
chanical model. The M 3D model may include a single or multiple cardiac 
chambers. For simplicity, in this paper we will mainly focus on the 
single-chamber case, but generalization to the multiple-chamber case 
will be provided as well. In all the cases, the M 3D must be supplemented 
with suitable closure relationships to link the fluxes of blood flowing 
through the cardiac valves with the blood pressure inside the cardiac 
chamber (or chambers). We will use the symbol C to denote these 
closure relationships, whether they are in the form of afterlead-preload 
models, or closed-loop circulation models. Coupling the electrome-
chanical model M 3D with the circulation model C , we then obtain the 
model M 3D − C . 

2.1. Building the 0D emulator 

In this paper we propose a 0D emulator of the M 3D model – that we 
will denote as M 0D – derived from a few heartbeats simulated with the 
3D model itself. Our 0D emulator is based on the assumption that, at 
each time t, the pressure p and volume V of a given cardiac chamber are 
linked through a pressure-volume (PV) relationship in the form of p =

P (V, t). The main assumption under the 0D emulator is that the 
pressure-volume relationship can be factorized as follows 

P (V, t) = (1 − φact(t))P ED(V) + φact(t)P ES(V), (1)  

where P ES represents the end-systolic pressure-volume relationship 
(ESPVR) and P ED represents the end-diastolic pressure-volume rela-
tionship (EDPVR). The function φact is a time-dependent function 
encoding the activation kinetics. Ideally, φact = 0 at the end of diastole 
(the tissue is fully relaxed), while φact = 1 at the end of systole (the tissue 
is fully contracted). Clearly, φact is periodic in t with period THB, that is 
the duration of a heartbeat. Note that inertia and damping effects are 
neglected within the 0D emulator. 

We propose an algorithm to construct, in a reproducible manner, the 
functions defining the emulator (i.e. P ED, P ES and φact) from the output 
of a simulation obtained with the M 3D − C model. The results of this 
simulation are referred to as sample PV loops. We remark that the latter 
clearly do not need to be close to a limit cycle. On the contrary, the 
construction of the emulator is facilitated when the sample simulation 
starts far from the limit cycle, as the transient would cover a wider 

1 https://github.com/FrancescoRegazzoni/cardioemulator. 
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region of the pressure-volume plane. The algorithm to construct the 0D 
emulator is described in detail in App. 7. It envisages three steps, visu-
ally summarized in Fig. 1 and briefly described as follows.  

(a) First, we construct the EDPVR function P ED(V), following one of 
two alternative approaches (simulated EDPVR or fitted EDPVR). 
The simulated EDPVR approach consists in solving a sequence of 
elastostatic problems through the M 3D model, for increasing 
values of pressure, and then interpolating the resulting pressure- 
volume pairs. Conversely, the fitted EDPVR is based on best-fit of 
the Klotz curve [23] on the end-diastolic segments of the sample 
PV loops.  

(b) Then, we obtain the ESPVR function P ES(V) by fitting the points 
corresponding to the systolic peaks with a straight line.  

(c) Finally, we construct the activation kinetics function φact(t), 
inverting the relationship Eq. (1) with respect to φact(t) on the 
data corresponding to the last cycle, and periodically extending it 
outside the interval [0, THB). 

2.2. 3D-0D-3D V-cycle: reaching the limit cycle through the 0D emulator 

The M 0D model surrogates the pressure-volume relationship of the 
M 3D model. Hence, similarly to the M 3D model, also the M 0D model can 
be coupled with the closure relationships C , whether they are in the 
form of preload-afterload laws or in the form of a closed-loop circulation 
model. The resulting coupled model, that we denote by M 0D − C , thus 
represents a surrogate of the M 3D − C model. We remark that, in case 
the M 3D model includes more than one cardiac chamber, an indepen-
dent 0D emulator should be built for each chamber, according to the 
algorithm of Sec. 2.1. 

In fact, the M 0D − C model can be exploited to accelerate the search 
for a limit cycle of the M 3D − C model itself. Our proposed procedure, 
named 3D-0D-3D V-cycle, is made of three steps, summarized in Fig. 2.  

(S1) First, a few sample PV loops are simulated with the M 3D − C 

model.  
(S2) Following Sec. 2.1, a 0D emulator M 0D is built for each cardiac 

chamber included in the model, based on the sample PV loops. 
Then, a large number of heartbeats (say n0D

HB) are simulated by 
solving the M 0D − C model, at a negligible computational cost, 
until a limit cycle is reached.  

(S3) A second simulation is set up for the M 3D − C model, based on 
the limit cycle obtained at the previous step. Specifically, in case 
the C has some internal variables, these are set equal to their 
final state obtained in step 2. 

Moreover, also the M 3D model is initialized according to one of the 
following alternative strategies:  

• pressure control: the tissue displacement is initialized by applying 
at the endocardial surfaces the final pressures obtained with the 
M 0D − C model simulation of step 2.  

• volume control: the tissue displacement is initialized by finding the 
equilibrium configuration under the constraint that the volume of 
the chambers equal the final volumes obtained in the M 0D − C 

model simulation of step 2. In this case, the endocardial pressures are 
determined as Lagrange multipliers. 

Both in 1 and 3, the state variables associated with the electro-
physiology and active force generation models can be initialized by 
means of standard strategies, according to the models at hand. In Sec. 
3.2 we will provide an example, related to the models we used to pro-
duce the results presented in this paper. 

2.3. Using the emulator in many-query settings 

We remark that the M 0D emulator surrogates the M 3D model, inde-
pendently of the C model it is coupled with. This implies that, in case 
the parameters of the C model are changed, 1 does not need to be 
repeated. Therefore, the M 0D − C model can be employed as a surro-
gate of M 3D − C in many-query contexts that involve the repeated so-
lution of the M 3D − C model for different choices of the circulation 
parameters. It can be used, e.g. to accelerate sensitivity analysis or the 
calibration the parameters of the circulation model. 

In realistic scenarios, however, besides the hemodynamical param-
eters, also the ones of the electromechanical model M 3D may require 
calibration. In case the parameters of the C and of the M 3D models need 
to be simultaneously calibrated, we propose to build a parametric 
emulator of the M 3D model, by interpolating between emulators ob-
tained for fixed values of the parameters of the M 3D model. 

A typical case is when the active contractility (henceforth denoted by 
α) is to be determined. By the Young-Laplace law [24], the pressure 
within a cavity is proportional to the wall tension, which is given by the 
sum of a passive and an active part. Since the active part is in turn 
proportional to the contractility, we expect an affine dependence of the 
PV relationship on α. That is, we expect that the PV relationship for a 
generic contractility α is well approximated by 

P (V, t;α) = α − αA

αB − αA
P B(V, t) +

α − αB

αA − αB
P A(V, t), (2)  

where P A and P B represent the PV relationships for α = αA and α = αB, 
respectively. Hence, let us suppose to generate two sample simulations 
for two contractility values, namely αA and αB. Based on each sample 
simulation, we construct a different emulator, according to the algo-
rithm of Sec. 2.1. Denoting the two emulators by P A and P B, Eq. (2) 
defines a parametric emulator where the contractility α can assume 
arbitrary values. 

Fig. 1. The algorithm to construct the 0D emulator comprises three steps: (a) construction of the EDPVR (end-diastolic pressure-volume relationship) function 
P ED(V); (b) construction of the ESPVR (end-systolic pressure-volume relationship) function P ES(V); (c) construction of the activation kinetics function φact(t), 
accounting for the activation and relaxation times. The blue lines represent the sample PV loops used to contruct the emulator. 
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In case one needs to parameterize an emulator with respect to pa-
rameters whose dependency lacks a physical intuition analogous to the 
case discussed above, one can still phenomenologically apply formula 
(2). Alternatively, an interpolation formula with more than two points 
can be considered. Some use case scenarios enabled by our 0D emulator 
in many-query settings are illustrated in Sec. 5. 

2.4. Quantitative assessment of PV loop convergence 

To quantitatively assess how close a PV transient is to a limit cycle, 
we adopt as a metric the difference between two consecutive PV loops. 
Specifically, we denote the pressure and volume curves associated with 
the n-th cycle as 

pn
LV(t) = pLV(t + (n − 1)THB), t ∈ (0,T),

Vn
LV(t) = VLV(t + (n − 1)THB), t ∈ (0, T).

Then, we denote by en the overall normalized difference in volume 
and pressure between the n-th and the (n + 1)-th heartbeats: 

en =

⃦
⃦pn

LV − pn+1
LV ‖L2(0,T)⃦

⃦pn+1
LV ‖L2(0,T)

+

⃦
⃦Vn

LV − Vn+1
LV ‖L2(0,T)⃦

⃦Vn+1
LV ‖L2(0,T)

.

The quantity en provides a metric for how close the solution is to the 
limit cycle. In fact, as we approach the periodic solution, en progressively 
decreases. We remark that, should the solution be perfectly periodic, we 
would have en = 0. 

3. A cardiac electromechanical model including external 
circulation 

In this section we show how the methods presented in Sec. 2 translate 
to a concrete use case. Specifically, in Sec. 3.1 we consider the case 
where the closure relations C are represented by a closed-loop circu-
lation model. Then, in Section 3.2, we present the M 3D model used to 
produce the numerical results presented in this paper. 

3.1. Coupling the 0D emulator with closed-loop circulation models 

Let us denote by y(t) a vector collecting the state variables of the M 3D 
model. The state y may contain variables describing the electrophysio-
logical activity, the subcellular dynamics and the tissue displacement. 
The vector y(t) may contain from a dozen to some tens of variables, 
depending on the models at hand [12,16,18]. For the sake of generality, 
we introduce a (nonlinear) differential operator ℒ, that collectively 
encodes the mathematical models describing the different physical 
processes. These are typically written in the form of Partial Differential 
Equations (PDEs), with suitable boundary and initial conditions. 

We consider then a lumped-parameter circulation model (denoted by 
C ), whose state c(t) ∈ RN is composed of N variables, describing pres-
sures, volumes and blood fluxed in several compartments of the car-
diovascular network. Notice that the latter may possibly include also 
cardiac chambers that are not represented in the M 3D model. Examples 
are given in [17,18,25,26]. 

We first consider the case in which the model M 3D only includes the 
left ventricle (LV). In this case, the coupled electromechanics-circulation 
model M 3D − C reads as follows 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y(t)
∂t

= ℒ(y(t), pLV(t), t) for  t ∈ (0, T],

dc(t)
dt

= f(c(t), pLV(t), t) for  t ∈ (0, T],

VM
LV(y(t)) = VC

LV(c(t)) for  t ∈ (0, T],

y(0) = y0,

c(0) = c0.

(3) 

The electromechanical and the circulation models are coupled 
through the volumetric consistency constraint VC

LV(c) = VM
LV(y), where 

the left-hand and right-hand sides represent the LV volume predicted, 
respectively, by the 0D circulation model (C ) and by the 3D electro-
mechanical model (M 3D). This coupling is enforced via a Lagrange 
multiplier, namely pLV, which represents the blood pressure inside the 
LV. Note that the variable pLV appears at right-hand side of both the C 

Fig. 2. Graphical display of the 3D-0D-3D V-cycle, in the case of a left ventricle (LV) electromechanical model. On the left, the high-fidelity 3D electromechanical 
model is compared with its 0D surrogate. At the terminals of both models we have the chamber pressure (pLV) and the inflow and outflow blood flux (in the case of 
LV, the flows through the mitral and aortic valves, respectively denoted by QMV and QAV). In the right column we report, for illustrative purposes, the computational 
times required to simulate a heartbeat (HB) with the numerical models and on the computational platform used to produce the results of this paper (see Sec. 3.2). 
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model and the M 3D model (in the latter, e.g., it plays a role in the 
boundary conditions at the endocardium). The M 3D − C model is rep-
resented in Fig. 3 (top). 

In this setting, the 0D emulator M 0D can be coupled with the 0D 
circulation model C , leading to the following M 0D − C model 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dc(t)
dt

= f(c(t), pLV(t), t) for  t ∈ (0, T],

pLV(t) = P (VC
LV(c(t)), t) for  t ∈ (0, T],

c(0) = c0.

(4) 

This M 0D − C model represents a fully 0D surrogate of the M 3D − C 

model (see Fig. 3). In the former, the LV pressure pLV is not a Lagrange 
multiplier enforcing the volumetric consistency – as in the latter – 
rather, it can be directly obtained from the 0D emulator. We remark that 
in passing from M 3D − C to M 0D − C we only replaced the computa-
tionally intensive part (that is the 3D electromechanical model M 3D) by 
the 0D surrogate M 0D, while retaining the computationally lightweight 
part (that is the 0D circulation model C ) in its high-fidelity form. We 
will show that, in this way, the M 0D − C model achieves a very favor-
able trade-off between accuracy and computational cost. 

In case the M 3D model includes other chambers besides the LV, an 
independent 0D emulator should be built for each chamber. Then, 
considering for instance the biventricular case, the M 0D − C model 
reads 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dc(t)
dt

= f(c(t), pLV(t), pRV(t), t) for  t ∈ (0, T],

pLV(t) = P LV(VC
LV(c(t)), t) for  t ∈ (0, T],

pRV(t) = P RV(VC
RV(c(t)), t) for  t ∈ (0, T],

c(0) = c0,

(5)  

where P LV and P RV denote the 0D emulator of the left and right ven-
tricles, respectively. 

3.2. The electromechanical model 

Before presenting the results obtained with the methods proposed in 
this paper, we briefly introduce the electromechanics (M 3D) and closed- 
loop circulation (C ) models employed to produce these results. None-
theless, we emphasize that the above methods can be applied to different 
models too. 

We model cardiac electrophysiology through the Monodomain 
equation [27], coupled with the tenn Tusscher-Panfilov model [28]. 
Active force generation is described through the biophysically detailed 
RDQ20-MF model [29]. To model the passive behavior of the cardiac 
tissue, we employ the quasi-incompressible exponential Usyk constitu-
tive law [30]. At the pericardium we impose spring-damper boundary 
conditions in both normal and tangent direction, while at the ventricular 
base we impose energy-consistent boundary conditions [31]. The ge-
ometry is taken from the Zygote Solid 3D heart model [32], for which 
the stress-free reference configuration is recovered by the algorithm 
proposed in [18]. The distribution of cardiac fibers is generated by 
means of the rule based Bayer-Blake-Plank-Trayanova algorithm [33, 
34]. With the models at hand, the state vector y(t) comprises 42 vari-
ables (18 ionic variables, the transmembrane potential, 20 activation 
variables and 3 variables to describe the tissue displacement). For blood 
circulation (i.e. C ) we employ the closed-loop lumped-parameter model 
of [18], that describes the systemic and pulmonary systemic and venous 
networks by means of RLC (resistance, inductance, capacitance) circuits, 
cardiac chambers as time-varying elastance elements and cardiac valves 
as diodes. Concerning the numerical approximation, we use bilinear 
Finite Elements on a tetrahedral mesh for the space discretization, while 
for the time discretization we employ the staggered scheme presented in 

[35]. Additionally, we adopt the stabilized-staggered scheme of [36] to 
couple the active stress model with the passive mechanics one. 

In 1 and 3, for the initialization of the state variables we proceed as 
follows.  

• First, we run a single-cell simulation with the ionic model for 1000 
heartbeats, to reach a limit cycle. The ionic variables and the 
transmembrane potential obtained at the end of this 0D simulation 
are then employed to initialize the corresponding variables in each 
node of the computational mesh.  

• Then, we perform a single-cell simulation with the force generation 
model, considering a constant calcium input equal to the final cal-
cium concentration obtained in the 0D ionic simulation (end-dia-
stolic concentration) and a reference sarcomere length SL = 2.2 μm. 
Unlike the ionic model, the force generation model reaches the 
equilibrium at the end of each heartbeat. Therefore, in this case it is 
not necessary to find a limit cycle by running a high number of cy-
cles; rather, it is sufficient to run a simulation lasting a few seconds so 
that an equilibrium is reached. 

• Finally, we initialize the tissue displacement, with the volume con-
trol approach, as described in Sec. 2.2. In this step, we set a uniform 
active stress, corresponding to the end-diastolic steady-state ob-
tained at the previous step. 

To produce the numerical results of this paper, we employ a finite 
element approach featuring a computational mesh with 3.60 × 104 

vertices for the mechanical variables and a finer mesh (2.60 × 105 

vertices) for the electrophysiological variables. To advance the latter 
variables, we use a time step length of 0.1 ms, while for the former 
variables we use a five times larger timestep. Overall, the variables of the 
M 3D − C electromechanical model amount to 5.7 millions for each time 
step. The simulation are obtained with the high-performance C++ li-
brary lifex (https://lifex.gitlab.io/lifex), developed within the iHEART 
project.2 To run these large-scale numerical simulations we rely on the 
iHEART cluster (Lenovo SR950 192-Core Intel Xeon Platinum 8160, 
2100 MHz, 1.7 TB RAM) at MOX, Dipartimento di Matematica, Poli-
tecnico di Milano, using 32 cores. On this computer platform, numerical 
simulations take approximately 4 h per heartbeat. 

4. Results 

This section is devoted to present some numerical results obtained by 
means of the methods proposed in this paper. 

4.1. Construction of the 0D emulator 

By employing the M 3D − C model described in Sec. 3.2, we run a 
simulation of NPV = 3 heartbeats, thus obtaining the PV loops displayed 
in Fig. 4 (left, black line). Based on these sample PV loops, we build two 
emulators, employing the fitted EDPVR and the simulated EDPVR ap-
proaches, as described in App. 7.1. We show in Fig. 4 the functions 
P ED(V), P ES(V) and φact(t) obtained with the two different approaches. 
We remark that the two approaches provide the same function P ES(V), 
while the function φact(t), being defined based on P ED(V), is slightly 
different in the two cases. 

The triplet (P ED,P ES,φact) unambiguously identifies the emulator. 
However, a more effective representation is provided by Fig. 5, where 
we show how the emulated PV relationship evolves in the different 
phases of the heartbeat. The figure is divided into two parts. In the 
upper-right region, the PV curves corresponding to systole (i.e. the times 
t such that φact

′(t) > 0) are shown. The different shades of red represent 

2 iHEART - An Integrated Heart Model for the simulation of the cardiac 
function, European Research Council (ERC) grant agreement No 740132, P.I. 
Prof. A. Quarteroni. 

F. Regazzoni and A. Quarteroni                                                                                                                                                                                                             

https://lifex.gitlab.io/lifex


Computers in Biology and Medicine 135 (2021) 104641

6

different instants of the heartbeat. Similarly, the lower left region shows 
- with different shades of blue - the curves associated with diastole 
(when φact

′(t) < 0). These curves are denser in the lower part, where φact 
varies more slowly. An alternative representation is shown in Fig. 6, 
where P is displayed in the (t, V, p) plane. The same graph also shows 
the three sample PV loops used to build the emulator. 

The construction of the 0D emulator is based on the assumption that 
the time-dependent PV relationship can be factorized as in Eq. (1). If this 
assumption was exact, than superimposing the function 

φ̃act(t) =
P (V(t), t) − P ED(V(t))
P ES(V(t)) − P ED(V(t))

. (6)  

for different heartbeats, all the curves would coincide. That is to say, the 
function φ̃act would be periodic with period THB. In Fig. 7, we show the 
function φ̃act(t) obtained, with the two emulators, for the three sample 
heartbeats (used for the construction of the emulator themselves) and 
two additional heartbeats, for a total of five heartbeats. As shown in the 
figure, the overlap along the different beats is very good. This supports 
the validity of assumption (1), and thus that of the emulator itself in 
surrogating the behavior of the high-fidelity electromechanical model. 

To test the ability of the M 0D emulator to faithfully replicate the 
behavior of the M 3D model when coupled with the C model, we solve 
the M 0D − C model starting from the same initial conditions used for 

the M 3D − C model to produce the sample PV loops. In Fig. 8, we 
compare the PV loops obtained with the M 3D − C model and with its 
fully 0D surrogate, the M 0D − C model. In addition to the three 
heartbeats used in the construction of the emulators, we consider two 
further beats, in order to test the ability of the emulators to be predictive 
beyond the time horizon of the data that forms their basis. The figures 
show how the curves obtained with the emulator trace with excellent 
fidelity those of reference. In Table 1 we report the relative mean square 
errors in the pressure and volume transients obtained with the M 0D − C 

model instead of the M 3D − C model. Remarkably, the accuracy in-
creases for the last beats, when the model is approaching the limit cycle. 
This is a promising remark towards the use of the emulators in 3D-0D-3D 
V-cycles as described in Sec. 2.2. Concerning computational times, the 
construction of the 0D emulator takes less than 1 s on a standard laptop 
and the numerical simulations performed with the M 0D − C model take 
nearly 40 s for 100 heartbeats. This brings a great computational gain 
with respect to the full-order M 3D − C model, that requires nearly 4 h 
per heartbeat on a 32 cores cluster computing platform (see Sec. 3.2). 

4.2. 3D-0D-3D V-cycles 

In this section we consider the use of the emulators constructed in 
Sec. 4.1 to speed up the convergence to limit cycles in cardiac 

Fig. 3. Comparison of the M 3D − C (top) and the M 0D − C (bottom) models. In the former, a 3D electromechanical model (denoted by M 3D) of one or multiple 
cardiac chambers is coupled with a lumped-parameter model of blood circulation (denoted by C ). In the latter, instead, the M 3D is replaced by a 0D emulator, 
denoted by M 0D. The figure considers the case when only the LV is included in the M 3D model. 
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electromechanics simulations, as described in Sec. 2.2. We consider 
several test cases, in which we employ emulators alternatively built 
using the fitted EDPVR and simulated EDPVR approaches. The test cases 
are summarized in Table 2. 

First, we consider the case in which we look for the limit cycle 
associated with the same parameter setting used to produce the sample 
PV loops (Tests 1a, 1 b). The results are shown in Figs. 9 and 10Figs. 9 
and 10, respectively. In the figures, the n0D

HB = 100 heartbeats performed 
in a fully 0D manner (that is, through the M 0D − C model) are shown in 
black. The last cycle, corresponding to the limit cycle of the M 0D − C 

model, is highlighted in orange. The M 3D − C model is then initialized 
according to the above results, and a five-heartbeat simulation is per-
formed. The obtained PV loops are reported in green. The figures show 
that the pressure and volume values obtained in this way follow very 
closely those predicted by the emulators. As a matter of fact, the error is 
always below 2 mmHg for the pressure and 2 mL for the volume. More 
importantly, the M 3D − C model initialized in this way is very close to a 
periodic regime: indeed, no significant drift in the PV loops obtained 
with the M 3D − C model is visible. In Sec. 4.3 we will provide a 
quantitative analysis of this aspect. We observe that the emulator built 

Fig. 4. Representation of the 0D emulators obtained with the fitted EDPVR and with the simulated EDPVR approaches. Left: end-diastolic and end-systolic PV re-
lationships. The black curve represents the sample PV loops used to build the emulator. Rights: activation kinetics function φact(t), obtained with the two approaches. 

Fig. 5. Evolution of the PV relationships in the different phases of the heartbeat. See text for more details. The figure refers to the emulator obtained with the 
simulated EDPVR approach. 
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by the simulated EDPVR approach (Test 1 b) better predicts the end- 
diastolic part of the PV loops than that build by the fitted EDPVR 
approach (Test 1a). This is not surprising, as, while the former is built 
exploiting physical knowledge, the latter is only based on an extrapo-
lation of the sample PV loops. 

We then evaluate the ability of the M 0D emulator to effectively 
surrogate the M 3D model still in settings other than the one used to 
generate the PV loops samples. To this end, we increase the active 

elastances of the atria, increase the systemic resistances, and decrease 
the total amount of circulating blood. These changes are designed so that 
the regime PV loops significantly differ from the ones obtained in Tests 
1a and 1 b. By using this setting, we perform steps 2 and 3 of the 3D-0D- 
3D V-cycle, with both emulators (fitted and simulated EDPVR), leading 
to Tests 2a and 2 b, respectively. The results, shown in Figs. 11 and 12, 
reveal that the M 0D emulator can effectively detect the position of the 
limit cycle associated with a setting even different from the one used to 

Fig. 6. Function P represented in the (t, V, p) plane. The figure refers to the emulator obtained with the simulated EDPVR approach.  

Fig. 7. Function φ̃act, as defined in (6), obtained for 5 consecutive heartbeats with the emulators built with the fitted EDPVR (left) and the simulated EDPVR ap-
proaches (right). 
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build the emulator itself. 
Finally, we consider the case where even the parameters of the 

electromechanical model are varied between sample PV loop generation 
and limit cycle search. Specifically, we consider a parametric emulator, 

as described in Sec. 2.3, build with respect to the contractility α. In the 
electromechanical model at hand, contractility is tuned through a 
parameter – denoted as aXB in the original paper [29] – that collectively 

Fig. 8. Comparison of the PV loops obtained with the M 3D − C model and with the M 0D − C surrogates. The two rows refer to the emulator built with the fitted 
EDPVR (top) and the simulated EDPVR approaches (bottom). The black lines are obtained with the M 3D − C model (solid lines for the PV loops used to build the 
emulators, dashed lines for the two additional loops), while the coloured lines are obtained with the M 0D − C model. The enlargements show in greater detail the 
instants of valve opening and closing, in which the transitions between isovolumetric and filling/ejecting phases take place. 

Table 1 
Relative mean square errors in the pressure and volume transients obtained by 
replacing the M 3D − C model with M 0D − C surrogates, built with the fitted 
EDPVR and the simulated EDPVR approaches. The three columns refer to cycles 1 
to 3 (used to construct to emulators), cycles 4 to 5 (not “seen” by the emulator) 
and finally to all cycles.   

relative error on pressure relative error on volume 

EDPVR cycles # 
1–3 

cycles # 
4–5 

cycles # 
1–5 

cycles # 
1–3 

cycles # 
4–5 

cycles # 
1–5 

fitted 2.82 ×
10− 2 

6.86 ×
10− 3 

2.14 ×
10− 2 

8.41 ×
10− 3 

2.93 ×
10− 3 

6.65 ×
10− 3 

simulated 2.73 ×
10− 2 

7.28 ×
10− 3 

2.08 ×
10− 2 

8.40 ×
10− 3 

3.43 ×
10− 3 

6.74 ×
10− 3  

Table 2 
List of the test cases considered in this paper. The third column indicates 
whether the test case is performed with the same C model parameters used to 
produce the sample PV loops; similarly, the fourth column indicates whether the 
same M 3D model parameters (specifically, contractility) are used in the sample 
PV loops and in the test case.   

EDPVR Same parameters as sample PV loops  

Circulation model Contractility 

Test 1a fitted ✓ ✓ 
Test 1b simulated ✓ ✓ 
Test 2a fitted ✓ 
Test 2b simulated ✓ 
Test 3a fitted ✓ 
Test 4a fitted 
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Fig. 9. Test 1a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).  

Fig. 10. Test 1 b: results of the 3D-0D-3D V-cycle (simulated EDPVR approach).  

Fig. 11. Test 2a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).  
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accounts for the stiffness of crossbridges and for the surface density of 
myofilaments in the cardiac tissue. More precisely, we select two 
contractility values (namely αA = 160 MPa and αA = 240 MPa) and, by 
means of the M 3D − C model, we obtain three sample PV loops for each 
of the two settings (step 1). Then, following the algorithm of Sec. 2.1, we 
build two emulators (one for each contractility value), respectively 
denoted by P A and P B (for simplicity we only consider the fitted 
EDPVR case). In this manner, we build a parametric emulator, according 
to Eq. (2). To test the parametric emulator, we select an intermediate 
contractility value (namely α = 190 MPa), and we simulate n0D

HB = 100 
heartbeats through the M 0D − C model (step 2). Finally, we perform 
step 3 (by running simulations with the M 3D − C model, initialized 
according to the results of the M 0D − C model). We consider two set-
tings: first, we employ the same C model parameters as in the sample PV 
loops (Test 3a); then, we employ different C model parameters (Test 3 
b). The results show that the parametric emulator is effective in pre-
dicting the location of the limit cycle of the M 3D − C model even for a 
contractility value different than the ones used to build the parametric 
emulator (see Figs. 13 and 14). 

4.3. Quantitative assessment of PV loop convergence 

In the previous section, we showed numerical solutions obtained by 
applying the 3D-0D-3D V-cycle proposed in this paper. For a quantita-

tive assesment of the closeness of these solutions to a limit cycle, we 
employ the metric en defined in Sec. 2.4, that is the normalized differ-
ence between consecutive cycles. In Fig. 15 we show the trend of en in 
the three phases of the 3D-0D-3D V-cycle for Test 1a. During step 1, en 
rapidly decreases (orange line). During step 2 (blue line), en first de-
creases following the values of step 1 (as a further validation of the 0D 
surrogate), and then slows down the decrease, settling along an expo-
nential trend. In the final phase of the curve, en shows some oscillations 
(due to the rounding errors becoming predominant). On the other hand, 
in this phase, the very small values of en testify that the model is virtually 
moving along a periodic orbit. Finally, the green line shows the quantity 
en obtained during step 3. As shown in the figure, thanks to the inter-
mediate simulation performed through the M 0D − C model, the second 
of the two simulations obtained with the M 3D − C model (i.e. step 3) 
starts much closer to a limit cycle than the first one (step 1). Already the 
second of the five beats performed in step 3 has a value of en that in the 
simulation without educated guess would be obtained only after 23 
beats. To emphasize the fact that step 3 is obtained by virtue of three 
heartbeats simulated during step 1, the heartbeats in step 3 are repre-
sented in the figure starting with index four. 

For the sake of brevity, for the other test cases besides Test 1a we 
only report the values of en obtained in step 3. As shown in Fig. 16, the 
3D-0D-3D V-cycle based strategy is able to bring the model very close to 
a periodic solution in all the considered cases. In particular, using 

Fig. 12. Test 2 b: results of the 3D-0D-3D V-cycle (simulated EDPVR approach).  

Fig. 13. Test 3a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).  
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different parameters for the circulation model and/or for the electro-
mechanical model itself (thus using a parametric emulator) does not 
compromise the ability of the 3D-0D-3D V-cycle approach to accurately 
detect the limit-cycle. In all cases, in fact, the value of en obtained after 
only two heartbeats is as little as 2 ⋅ 10− 3 ÷ 3 ⋅ 10− 3. 

5. Discussion 

In this work, we propose a method to considerably reduce the 
computational cost required to converge to a limit cycle in cardiac 
electromechanics simulations. Our method is based on a data-driven 0D 
emulator, built in a data-driven way from a PV transient obtained with 
the 3D electromechanical model, by which it is possible to simulate the 

Fig. 14. Test 4a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).  

Fig. 15. Trend of the metric en in the three steps of the 3D-0D-3V V-cycle in Test 1a (semilogarithmic scale).  

Fig. 16. Trend of the metric en in step 3 of the 3D-0D-3V V-cycle in the different test cases (semilogarithmic scale).  
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full transient up to the limit cycle at a very low computational cost. This 
provides an initial condition for the 3D full-order model, which thus 
converges to the limit cycle in as few as two cycles. 

We remark that other 0D models describing the time-dependent PV 
relationship of a cardiac chamber have been previously proposed in the 
literature. This is the case of time-varying elastance models, which as-
sume a PV relationship of the type of P (V, t) = E(t)(V − V0), or varia-
tions of this, where E(t) is the time-dependent elastance (see e.g. [17,18, 
26]). The peculiarity of our model is that, while these time-varying 
elastance models are based on prescribed functions, our 0D emulator 
is obtained in a data-driven way, i.e. interpolating the outputs of a more 
complex 3D model. This makes it particularly accurate in replicating the 

results, thus achieving an excellent fidelity, as demonstrated by our 
numerical results. 

An alternative approach to the one proposed in this paper is 
replacing the high-fidelity 3D electromechanical model with a physics- 
based reduced model, built e.g. through projection methods [37–39]. 
Such a reduced model could allow to simulate the transient up to the 
limit cycle thus providing an initial condition to the 3D high-fidelity 
model, in a similar way as done in this paper. The 0D emulator pro-
posed in this paper has however several advantages. First, it is non 
intrusive in the 3D model, that is it does not require accessing the 
full-order state of the 3D model; conversely, it only requires pressure and 
volume recordings, thus allowing it to be easily employed with virtually 

Fig. 17. Summary of four use case scenarios of the proposed 0D emulator. For each use case, the pipeline enabled by the 0D emulator is compared with the 
traditional one. In the right column, we report the total number of heartbeats (HBs) that need to be simulated either with the M 3D − C model or with the M 0D − C 

one. The total computational times refer to the numerical discretization and the computer platform as described in Sec. 3.2. 
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any electromechanical model. Moreover, thanks to its lightweight 
formulation, both the construction of the 0D emulator and its use only 
require a few seconds of computational time on a standard laptop, 
whereas the construction of projection-based reduced models is typi-
cally more computationally demanding and the provided speedup is also 
typically lower [39,40]. Clearly, the higher computational cost of 
projection-based reduced models is repaid by a higher richness of the 
output produced (using reduced models, it is indeed possible to 
approximate the entire simulation output, including tissue displace-
ment). Still, for the purpose considered in this work (i.e. convergence to 
the limit cycle), our 0D emulator provides an optimal trade-off between 
computational resources and completeness of output. 

In recent times, some lightweight emulators of cardiac electrome-
chanical models have been proposed in the literature [41–44]. These are 
typically based on Machine Learning algorithms (such as Gaussian 
Process emulators and Artificial Neural Networks), used to approximate 
the map from a set of parameters to a set of scalar outputs (quantities of 
interest, QoIs), such as maximum and minimum pressures and volumes. 
These emulators are however static maps and thus they are not suitable 
to simulate the transient phase to a limit cycle. As a matter of fact, while 
these emulators are in fact functions fitting the parameters-to-QoI maps, 
the emulator we propose in this paper allows to actually simulate – albeit 
in a surrogate form if compared to the 3D electromechanical model – the 
cardiac cycles. 

We remark that our 0D emulator can have other applications besides 
the one for which it is proposed in this work. In fact, in contexts where 
the only outputs of interest in the simulation are pressures and volumes, 
the 0D emulator can entirely replace the 3D electromechanical model. 
Moreover, the 0D emulator could be built directly from clinical mea-
surements of pressure-volume transients, thus providing a patient- 
specific data-driven model of the electromechanical function. In these 
scenarios, thanks to its very low computational cost, the 0D emulator 
could be employed to simulate the transient phase following changes in 
the circulatory network (such as those induced by hypertensive or 
inotropic drugs, or by physical exercise), which would not be feasible 
with a computationally demanding large-scale 3D electromechanical 
model. Indeed the 0D emulator, as demonstrated by our numerical re-
sults, is able, besides to detect the limit cycle, also to faithfully simulate 
the transient phase. 

For illustrative purposes, we mention four use case scenarios of our 
0D emulator. These use cases are summarized in Fig. 17. For each use 
case we report the computational speedup enabled by the use of the 0D 
emulator. Clearly, computational times may depend on the M 3D − C 

model at hand, on its numerical discretization and on the computer 
platform used. The figures mentioned below are referred to the models 
used to produce the numerical results of this paper (see Sec. 3.2).  

• Use case #1 corresponds to the 3D-0D-3D V-cycle as presented in 
Sec. 2.2. The total computational cost amounts to 3 heartbeats per-
formed with the M 3D − C model, in order to construct the emulator, 
100 heartbeats with the M 0D − C model and finally two additional 
heartbeats with the M 3D − C model, for a total of 20 h of compu-
tational time. This amount of time should be compared with the 
computational time needed to reach the limit cycle with a full-order 
simulation performed with the M 3D − C model. Since 20 heartbeats 
are typically needed for this purpose [14], the total computational 
time, without 0D emulator, would be 80 h. Thus, in use case #1, the 
use of the 0D emulator provides a 4x speedup.  

• In use case #2, we assume that we are interested in simulating 
several clinical scenarios, corresponding to changes in the hemody-
namic conditions of the external circulatory network (e.g. induced by 
vasodilator drugs or hypertensive pathologies). In this case, since the 
variations involve only the C model, it is possible to build a unique 
emulator, valid for all settings. In case, e.g., 10 different settings need 
to be simulated, the use of the emulator allows to decrease the 
computational cost from 800 h to 92 h (9x speedup).  

• In use case #3 we consider a parameter calibration scenario for a LV 
electromechanical model. Specifically, let us assume that we need to 
calibrate the parameters of the C model and the active contractility 
of the M 3D model, in order to personalize the model from clinical 
measurements of a specific patient’s biomarkers. This task can be 
approached through an optimization problem, in which one itera-
tively solve the M 3D − C problem up to the limit cycle, evaluates the 
mismatch between the measured and predicted biomarkers, and 
finally updates the parameters according to a suitable algorithm. 
This cycle is repeated until a convergence criterion in satisfied. The 
0D emulator can significantly speedup this process. As a matter of 
fact, the computationally demanding iterative optimization loop can 
be performed by fully relying on the M 0D − C model. The M 3D − C 

model is only used to build the emulator (in this case two simulations 
of three heartbeats duration are required since we need a parametric 
emulator, according to Sec. 2.3) and to perform two heartbeats with 
the final parameters setting. This use case can be interpreted as a 3D- 
0D-3D V-cycle as well, where the parameter calibration iterative 
loop is performed at step 2, in a fully 0D manner. Assuming that the 
optimization algorithm requires 50 iterations for convergence, then 
using the 0D emulator as described above would provide a 125x 
speedup.  

• Finally, as use case #4, we consider a global sensitivity analysis on 
the influence of external circulation parameters on the LV function. 
Global sensitivity methods envisage sampling the parameter space 
with a large number of instances and extracting from the associated 
M 3D − C model solutions suitable quantities of interest (i.e. bio-
markers). Finally, how much each parameter contributes to a 
determined quantity of interest is assessed by computing suitable 
indices, such as Sobol indices [45], Borgonovo indices [46] or Morris 
elementary effects [47]. In case the quantities of interest only involve 
pressures and volumes, there is actually no need to perform step 3 of 
the 3D-0D-3D V-cycle, at the price of a little approximation. In other 
terms, the 0D emulator, once build, can fully replace the full-order 
3D model in this use case. Since global sensitivity analysis may 
require order of 1000 samples for statistical convergence [45,48], 
the 0D emulator would allow to carry out a global sensitivity anal-
ysis, even if approximate, that would have been otherwise unaf-
fordable. Indeed, on the computer platform considered, the 
computational time relying on the full order M 3D − C would be 
greater than 9 years, while our 0D emulator enables to carry out 
global sensitivity analysis (including the construction of the 
emulator) in just 15 h. In this setting, the speedup provided by the 0D 
emulator would be 5300x. 

6. Conclusions 

In this paper we proposed a 0D emulator of 3D cardiac electrome-
chanical models, built following a data-driven approach, i.e. based on 
some sample PV loops generated with the 3D model to be surrogated. We 
then proposed a strategy, based on a 3D-0D-3D V-cycle, that allows to 
significantly accelerate the convergence to a limit cycle in cardiac 
electromechanics simulations. Our approach consists in surrogating the 
computationally demanding part (i.e. the 3D electromechanical model 
M 3D), while keeping the 0D circulation model C , characterized by a 
much lower computational cost, in its high-fidelity form. Remarkably, 
the 0D emulator can also be used in conjunction with a circulation 
model calibrated differently from the one used to generate the sample 
PV loops. Furthermore, by interpolating between different emulators, it 
is possible to approximate the electromechanical model even for wide 
sets of values of its parameters. 

The results showed that our strategy allows to obtain an initial guess 
for the M 3D − C model that is very close to a periodic solution. In fact, 
in all the tests considered, by virtue of the simulation performed with the 
M 0D − C surrogate, after only two heartbeats the M 3D − C model 
presents a normalized increment between consecutive heartbeats lower 
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than 3 ⋅ 10− 3. We remark that, without such educated guess, the same 
degree of convergence to the limit cycle would be reached in the same 
setting after more than 20 cycles. Conversely, thanks to our approach, 
we only need to simulate with the full-order M 3D − C model a total of 5 
heartbeats (namely three to build the emulator and two starting from the 
educated guess). On the other hand, the cost associated with the 0D step 
of the 3D-0D-3D V-cycle is negligible (less than 1 s to build the emulator, 
less than 1 min to run 100 heartbeats with the M 0D − C model). 
Moreover, this phase can be fully automated, as testified by the Python 
scripts publicly available with this publication. 

We remark that the initialization strategy proposed in this paper is 
even more convenient in many-query settings, such as sensitivity anal-
ysis, parameter estimation or uncertainty quantification As a matter of 
fact, in these settings the emulator can be built offline, i.e. once for all, 
and in the online phase only the final two heartbeats need to be simu-
lated with the full-order M 3D − C model for each parameter setting to 
evaluate. Furthermore, if the quantities of interest involve only variables 
that can be derived from pressures and volumes, then the M 0D − C 

model can entirely replace the M 3D − C model in such many-query 
settings. Therefore, we propose our M 0D − C model as a surrogate for 
the full-order M 3D − C model in sensitivity analysis and parameter 
calibration scenarios. 
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Appendix A. Algorithm for the automated construction of the 0D emulator 

In this appendix we present the three-step algorithm for the construction of the 0D emulator. 

A.1 End-diastolic pressure-volume relationship 

To build the EDPVR function P ED we propose two alternative approaches (simulated EDPVR or fitted EDPVR), depending on the available data. 

Simulated EDPVR 
When possible, an accurate estimation of the EDPVR can be obtained by means of the 3D mechanical model, by numerically finding the equilibrium 

configurations when the chamber is loaded with a sequence of pressures (pED,i, for i = 1, …, NED), and recording the corresponding volumes (VED,i). The 
active stress can be neglected, or – in case the force generation model at hand features a residual active stress in end-diastolic conditions – it should be 
set equal to this end-diastolic active stress magnitude (obtained through a 0D simulation of the cardiomyocyte model) uniformly in the whole domain 
Ω0. We remark that the computational cost of this phase can be significantly reduced by adopting a continuation approach, that is initializing the 
Newton solver for a given pED,i with the solution obtained with the previous value pED,i− 1. In this manner, the numerical cost associated with this phase 
is, in our experience, negligible compared with that required to obtain the sample PV loops. 

We thus obtain a sequence of pressure and volume pairs (i.e. (pED,i, VED,i) for i = 1, …, NED). Finally, we define the function p = P ED(V) as a 
piecewise linear interpolation of these points. Outside the interval [VED,1,VED,NED ], we define P ED through a linear extrapolation of the first and last 
segments. 

Fitted EDPVR 
Alternatively, we propose to estimate EDPVR directly from the sample PV loops, by fitting the points associated with the final parts of diastole with 

the Klotz curve [23]. These points can be selected either manually or automatically, by monitoring some activation indicator. In this paper, we employ 
the points associated with the last 0.1 s of each sample PV loop. Alternatively, one could select the time instants in which the average active tension is, 
say, in the lowest 1% of the range spanned during the whole sample simulation. The associated PV pairs are denoted as (pED,i, VED,i) for i = 1, …, NED. 
These points are then fitted with the Klotz curve 

P ED(V) = An

(
V − VED

0

VED
30 − VED

0

)Bn

, (7)  

where, according to [23], we set the universal constants An = 28.2 mmHg and Bn = 2.79, while the patient-dependent constants VED
0 and VED

30 are 
obtained by a least-squares fitting of the points (pED,i, VED,i), via the Levenberg-Marquardt optimization method. 

A.2 End-systolic pressure-volume relationship 

For the ESPVR we assume the linear relationship 

P ES(V) = EES(V − VES
0 ), (8)  

where the end-systolic elastance EES and resting volume VES
0 are obtained via a least-squares fitting of a collection of points (denoted by (pES,i, VES,i) for 

i = 1, …, NES), corresponding to the systolic peaks of the sample PV loops. These points are selected as the top-left corners of the sample PV loops. 
To identify the pairs (pES,i, VES,i), we propose the following algorithm. Ideally, PV loops are located below the curve p = EES(V − VES

0 ), intersecting 
such curve at the systolic peak. The corresponding time instant can thus be identified as the time t that maximizes the quantity p(t) − EESV(t). As the 
end-systolic elastance EES is not known a priori, we select a sequence of 10 elastance values E1 < E1 < … < E10, uniformly sampling the interval [2,3] 
mmHg mL− 1. Then, we separately consider each sample heartbeat and we denote by In = [(n − 1)THB, n THB) the time interval corresponding to the 
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n-th cycle. For each heartbeat n, we select 10 points as 

tn
j = arg max

t∈In

{
p(t) − EjV(t)

}

Finally, the end-systolic pressure-volume pairs are obtained by collecting the values in the time instants obtained above: 

{(pES,i,VES,i) : 1≤ i≤NES} :=
{(

p(tn
j ),V(tn

j )) : 1 ≤ n ≤ nHB, 1 ≤ j ≤ 10
}

A.3 Activation kinetics function 

From Eq. (1) it follows 

φact(t) =
P (V, t) − P ED(V)
P ES(V) − P ED(V)

. (9) 

Therefore, denoting by (ti, Vi, pi), for i = 1, …, NPV, the times, volumes and pressures composing the sample PV loops dataset, we can define 

φ̃act(ti) =
pi − P ED(Vi)

P ES(Vi) − P ED(Vi)
, for  i = 1,…,NPV, (10)  

having defined the functions P ED and P ES as described above. For t in the intervals (ti, ti+1) we employ a linear interpolation between φ̃act(ti) and 
φ̃act(ti+1). Finally, we select the last heartbeat of the sample simulation – that is (nHB − 1)THB ≤ t < nHB THB, where nHB is the number of heartbeats in 
the sample simulation – and we periodically extend it outside this interval: 

φact(t) = φ̃act((nHB − 1)THB + mod (t, THB)) (11) 

This concludes our procedure to automatically build the 0D emulator M 0D. 
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