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Abstract

We prove global well-posedness for a class of dissipative semilinear stochastic
evolution equations with singular drift and multiplicative Wiener noise. In par-
ticular, the nonlinear term in the drift is the superposition operator associated to
a maximal monotone graph everywhere defined on the real line, on which neither
continuity nor growth assumptions are imposed. The hypotheses on the diffusion
coefficient are also very general, in the sense that the noise does not need to take
values in spaces of continuous, or bounded, functions in space and time. Our ap-
proach combines variational techniques with a priori estimates, both pathwise and
in expectation, on solutions to regularized equations.

AMS Subject Classification: 60H15; 47H06; 46N30.

Key words and phrases: stochastic evolution equations, singular drift, variational
approach, well-posedness, multiplicative noise, monotone operators.

1 Introduction

Our aim is to establish existence and uniqueness of solutions, and their continuous de-
pendence on the initial datum, to the following semilinear stochastic evolution equation
on L2(D), with D ⊂ R

n a bounded domain:

dX(t) +AX(t) dt+ β(X(t)) dt ∋ B(t,X(t)) dW (t), X(0) = X0, (1.1)

where A is a linear maximal monotone operator on L2(D) associated to a coercive
Markovian bilinear form, β is a maximal monotone graph in R×R defined everywhere,
W is a cylindrical Wiener process on a separable Hilbert space U , and B takes values in
the space of Hilbert-Schmidt operators from U to L2(D) and satisfies suitable Lipschitz
continuity assumptions. Precise assumptions on the data of the problem and on the
definition of solution are given in Section 2 below. Since any increasing function β0 :
R → R can be extended in a canonical way to a maximal monotone graph of R × R

by “filling the gaps” (i.e., setting β(x) := [β0(x
−), β0(x

+)] for all x ∈ R, where β(x−)
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and β(x+) denote the limit from the left and from the right of β0 at x, respectively),
Equation (1.1) can be interpreted as a formulation of the stochastic evolution equation

dX(t) +AX(t) dt + β0(X(t)) dt = B(t,X(t)) dW (t), X(0) = X0.

Semilinear equations with singular and rapidly growing drift appear, for instance, in
mathematical models of Euclidean quantum field theory (see, e.g., [1] for an equation
with exponentially growing drift), and, most importantly for us, cannot be directly
treated with the existing methods, hence are interesting from a purely mathematical
perspective as well. In particular, the variational approach (see [24, 33]) works only
assuming that β satisfies suitable polynomial growth conditions depending on the di-
mension n of the underlying Euclidean space (see also [28, pp. 137-ff.] for improved
sufficient conditions, still dependent on the dimension), whereas most available results
relying on the semigroup approach require just polynomial growth, although usually
compensated by rather stringent hypotheses on the noise (see, e.g., [15, 16]). Under
natural assumptions on the noise, well-posedness in Lp spaces is proven, with different
methods, in [25], under the further assumption that β is locally Lipschitz continuous,
and in [30]. A common basis for both works is the semigroup approach on UMD Banach
spaces. A special mention deserves the short note [6], where the author considers prob-
lem (1.1) with A = −∆ and B independent of X, and proves existence of a pathwise
solution1 assuming that the solution Z to the equation with β ≡ 0 (i.e., the stochastic
convolution) is jointly continuous in space and time. Furthermore, assuming that

E

∫ T

0

∫

D
j(Z) <∞,

where j is a primitive of β, he obtains that the pathwise solution may admit a version
that can be considered as a generalized mild solution to (1.1). This is the only result
we are aware of about existence of solutions to stochastic semilinear parabolic equations
without growth assumptions on the drift in any dimension. It is well known that a
well-posedness theory for stochastic evolution equations on a Hilbert space H of the
type

du+Audt ∋ B(u) dW, u(0) = u0,

with A an arbitrary (nonlinear) maximal monotone operator, is, in full generality, not yet
available, even if B does not depend on u and is a fixed non-random operator. However,
a satisfactory treatment in the finite-dimensional case has been given by Pardoux and
Răşcanu in [34, §4.2], where the authors consider stochastic differential equations in R

n

of the type
dXt +A(Xt) dt+ F (t,Xt) dt ∋ G(t,Xt) dBt,

where A is a (multivalued) maximal monotone operator whose domain has non-emtpy
interior, B is a k-dimensional Wiener process, G satisfies standard Lipschitz continuity
assumptions, and F (t, ·) is continuous and monotone (not necessarily Lipschitz contin-
uous). While the assumptions on A are not restrictive in finite dimensions, unbounded
linear operators generating contraction semigroups in infinite-dimensional spaces, as in
our case, have dense domain, whose interior is hence empty.

1To avoid misunderstandings, we should clarify once and for all that with this expression we do not

refer to a solution in the sense of rough paths, but simply “with ω fixed”.
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On the other hand, in the deterministic setting complete results have long been
known for equations of the type

du

dt
+Au ∋ f, u(0) = u0,

even in the much more general setting where A is a (multivalued) m-accretive operator
on a Banach space E and f ∈ L1(0, T ;E) (see, e.g., [5, 13]). Although a solution to
the general stochastic problem does not currently seem within reach, significant results
have been obtained in special cases: apart of the above-mentioned works on semilinear
equations, well-posedness for the stochastic porous media equation under fairly general
assumptions is known (see [7], where the same hypotheses on β imposed here are used and
the noise is assumed to satisfy suitable boundedness conditions, and [8] for an extension
to jump noise). Moreover, the variational theory by Pardoux, Krylov and Rozovskĭı is
essentially as complete as the corresponding deterministic theory. As mentioned above,
however, large classes of maximal monotone operators on H = L2(D) cannot be cast in
the variational framework.

The main contribution of this work is a well-posedness result for (1.1) under the
most general conditions known so far, to the best of our knowledge. These conditions
are quite sharp for A, but not for β. In particular, the conditions on A are close to
those needed to show that A+ β(·) is maximal monotone on L2(D), but the hypothesis
that β is finite on the whole real line is not needed in the deterministic theory. Finally,
the conditions on B are the natural ones to have function-valued noise, and are in this
sense as general as possible. Equations with white noise in space and time, that have
received much attention lately, are not within the scope of our approach (nor of others,
most likely, under such general conditions on β).

In forthcoming work we shall extend our well-posedness results to equations where
A is a nonlinear operator satisfying suitable Leray-Lions conditions (thus including the
p-Laplacian, for instance), as well as to equations driven by discontinuous noise.

Let us now briefly outline the structure of the paper and the main ideas of the proof.
Section 2 contains the statement of the main well-posedness result, and in Section 3 we
discuss the hypotheses on the drift and diffusion coefficients, providing corresponding
examples. After collecting useful preliminaries in Section 4, we consider in Section 5 a
version of equation (1.1) with additive noise satisfying a strong boundedness assumption.
Using the Yosida regularization of β, we obtain a family of approximating equations with
Lipschitz coefficients, which can be treated by the standard variational theory. The so-
lutions to such equations are shown to satisfy suitable uniform estimates, both pathwise
and in expectation. Such estimates allow us to obtain key regularity and integrability
properties for the solution to the equation with additive bounded noise. A crucial role is
played by Simon’s compactness criterion, which is applied pathwise, and by compactness
criteria in L1 spaces, applied both pathwise and in expectation. It is, in essence, pre-
cisely this interplay between pathwise and “averaged” arguments that permits to avoid
many restrictive hypotheses of the existing literature. An abstract version of Jensen’s
inequality for positive operators, combined with the lower semicontinuity of convex in-
tegrals, is also an essential tool. In Section 6 we prove well-posedness for equations with
additive noise removing the boundedness assumption of the previous section. This is
accomplished by a further regularization scheme, this time on the diffusion operator B,
and by a priori estimates for solutions to the regularized equations. A key role is played

3



again by a combination of estimates and passages to the limit both pathwise and in
expectation. We also prove continuity of the solution map with respect to the initial
datum and the diffusion coefficient, by means of Itô’s formula and regularizations, for
which smoothing properties of the resolvent of A are essential. Finally, in Section 7 we
obtain well-posedness in the general case by a fixed-point argument, using the Lipschitz
continuity of B only. Introducing weighted spaces of stochastic processes, we obtain
directly global well-posedness, thus avoiding a tedious construction by “patching” local
solutions.

Some tools and reasonings used in this work are obviously not new: weak compactness
arguments in L1, for instance, are extensively used in the literature on partial differential
equations (see, e.g., [10, 12] and references therein), as well as, to a lesser extent, in the
stochastic setting (cf. [6, 7, 31]). However, even where similarities are present, our
arguments are considerably streamlined and more general. The pathwise application of
Simon’s compactness criterion, made possible by a construction based on the variational
framework, seems to be new, at least in the context of stochastic evolution equations.
It is in fact somewhat surprising that the variational setting, which notoriously fails
when dealing with semilinear equations, is at a basis of an approach that leads to well-
posedness of those same equations, even with singular and rapidly increasing drift.

Acknowledgments. The authors are partially supported by a grant of The Royal
Society. The first-named author is very grateful to Prof. S. Albeverio for the warm
hospitality and the excellent working conditions at the Interdisziplinäres Zentrum für
Komplexe Systeme, University of Bonn, where parts of this work were written. Two
anonymous referees provided useful comments and suggestions that led to a better pre-
sentation of our results.

2 Main result

In this section, after fixing notation and conventions used throughout the paper, we state
our main result.

2.1 Notation

All functional spaces will be defined on a smooth bounded domain D ⊂ R
n. We shall

denote L2(D) by H and its inner product by 〈·, ·〉. The domain and the range of a
generic map G will be denoted by D(G) and R(G), respectively. If E and F are subsets
of a topological space, we shall write E →֒ F to mean that E is continuously embedded
in F , i.e. that E is a subset of F and that the injection i : E → F is continuous. Let E,
F be Banach spaces. The space of linear continuous operators from E to F is denoted
by L (E,F ) if endowed with the operator norm, and by Ls(E,F ) if endowed with the
strong operator topology, that is, Tn → T in Ls(E,F ) if Tnu → Tu in F for all u ∈ E.
If F = R, L (E,R) is the dual space E∗. If E and F are Hilbert spaces, we shall denote
the space of Hilbert-Schmidt operators from E to F by L 2(E,F ).

We shall occasionally use the symbols ⇀ and
∗−⇀ to denote convergence in the weak

and weak* topology of Banach spaces, respectively, while the symbol → is reserved for
convergence in the norm topology.
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All random quantities will be defined on a fixed probability space (Ω,F ,P) endowed
with a right-continuous and saturated filtration F := (Ft)t∈[0,T ], where T is a positive
number. All expressions involving random quantities are meant to hold P-almost surely,
unless otherwise stated. With W we shall denote a cylindrical Wiener process on a
separable Hilbert space U , that may coincide with H, but does not have to. We shall
use the standard notation of stochastic calculus, such as K ·W to mean the stochastic
integral of K with respect to W , and, for a process X taking values in a normed space
E, X∗

t := ess sups∈[0,t]‖X(s)‖E.
Let E be a separable Banach space. Given a measure space (Y,A , µ) and p ∈ [1,∞],

we shall denote the space of strongly measurable functions from φ : Y → E such that
‖φ‖E ∈ Lp(Y ) by Lp(Y ;E). Moreover, we shall write L2(Ω;L∞(0, T ;E)) to denote the
space of F ⊗ B([0, T ])-measurable processes φ : Ω× [0, T ] → E such that

∥

∥φ
∥

∥

L2(Ω;L∞(0,T ;E))
:=

(

E ess sup
t∈[0,T ]

‖φ(t)‖2E
)1/2

<∞.

Given an interval I ⊆ R, the space of continuous and of weakly continuous functions
from I to E will be denoted by C(I;E) and Cw(I;E), respectively.

We shall write a . b to mean that there exists a constant N such that a ≤ Nb. If such
a constant depends on certain parameters of interest, we shall put these in parentheses
or write them as subscripts.

2.2 Assumptions

The following assumptions on the data of the problem are assumed to be in force through-
out and will not always be recalled explicitly.

Assumption A. Let V be Hilbert space that is densely, continuously, and compactly
embedded in H. The linear operator A belongs to L (V, V ∗) and satisfies the following
properties:

(i) there exists C > 0 such that

〈Av, v〉 ≥ C‖v‖2V ∀v ∈ V ;

(ii) the part of A in H admits a unique m-accretive extension A1 in L1(D);

(iii) the resolvent
(

(I + λA1)
−1

)

λ>0
is sub-Markovian;

(iv) there exists m ∈ N such that

∥

∥(I +A1)
−m

∥

∥

L (L1(D),L∞(D))
<∞.

Here we have used 〈·, ·〉 also to denote the duality pairing of V and V ∗, which is com-
patible with the scalar product in H. In fact, identifying H with its dual, one has the
so-called Gel'fand triple

V →֒ H →֒ V ∗,

where both embeddings are dense (see, e.g., [27, §2.9]). Moreover, we recall that the
part of A in H is the operator A2 on H defined as D(A2) := {x ∈ V : Au ∈ H} and
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A2x := Ax for all x ∈ D(A2). If one identifies the operators with their graphs, this is
equivalent to setting A2 := A ∩ (V × H). We shall often refer to condition (i) as the
coercivity of A. The sub-Markovianity condition (iii) amounts to saying that, for all
functions f ∈ L1(D) such that 0 ≤ f ≤ 1, one has

0 ≤ (I +A1)
−1f ≤ 1.

In other words, (I +A1)
−1 is positivity preserving and contracting in L∞(D).

From Section 5 onwards, we shall often use the symbol A to denote also A1 and A2.
Let us observe that if A is the negative Laplacian with Dirichlet boundary conditions,

all hypotheses are met. Much wider classes of operators satisfying hypotheses (i)-(iv)
will be given below.

Assumption B. β is a maximal monotone graph of R×R such that D(β) = R, 0 ∈ β(0),
and its potential j is even.

We recall that the potential j of β is the convex, proper, lower semicontinuous function
j : R → R+, with j(0) = 0, such that ∂j = β, where ∂ stands for the subdifferential in
the sense of convex analysis.2

Assumption C. The diffusion coefficient

B : Ω× [0, T ] ×H → L 2(U,H)

is Lipschitz continuous and grows linearly in its third argument, uniformly over Ω×[0, T ],
i.e., there exist constants LB , NB such that

∥

∥B(ω, t, x)−B(ω, t, y)
∥

∥

L 2(U,H)
≤ LB‖x− y‖H ,

∥

∥B(ω, t, x)
∥

∥

L 2(U,H)
≤ NB

(

1 + ‖x‖H
)

for all ω ∈ Ω, t ∈ [0, T ], and x, y ∈ H. Moreover, B(·, ·, x) is progressively measurable
for all x ∈ H, i.e., for all t ∈ [0, T ], the map (ω, s) 7→ B(ω, s, x) from Ω× [0, t], endowed
with the σ-algebra Ft ⊗ B([0, t]), to L 2(U,H), endowed with its Borel σ-algebra, is
strongly measurable. We recall that, since U and H are separable, the space of Hilbert-
Schmidt operators L 2(U,H) is itself a separable Hilbert space, hence strong and weak
measurability coincide. Whenever we deal with maps with values in separable Banach
spaces, since strong and weak measurability coincide, we shall drop the qualifier “strong”.

2.3 The well-posedness result

Definition 2.1. Let X0 be an H-valued F0-measurable random variable. A strong
solution to the stochastic equation (1.1) is a pair (X, ξ) satisfying the following properties:

(i) X is a measurable adapted V -valued process such that AX ∈ L1(0, T ;V ∗) and
B(·,X) ∈ L2(0, T ;L 2(U,H));

(ii) ξ is a measurable adapted L1(D)-valued process such that ξ ∈ L1(0, T ;L1(D)) and
ξ ∈ β(X) almost everywhere in (0, T )×D;

2See §4.1 below for a summary of the notions of convex analysis and of the theory of nonlinear
monotone operators used throughout.
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(iii) one has, as an equality in L1(D) ∩ V ∗,

X(t) +

∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 +

∫ t

0
B(s,X(s)) dW (s)

for all t ∈ [0, T ].

Note that L1(D) ∩ V ∗ is not empty because D has finite Lebesgue measure, hence,
for instance, H is contained in both spaces.

Let us denote by J the set of pairs (φ, ζ), where φ and ζ are measurable adapted
processes with values in H and L1(D), respectively, such that

φ ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ζ ∈ L1(Ω× [0, T ] ×D),

j(φ) + j∗(ζ) ∈ L1(Ω× [0, T ] ×D).

We shall say that (1.1) is well posed in J if there exists a unique process in J which is
a strong solution and such that the solution map X0 7→ X is continuous from L2(Ω;H)
to L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )).

The central result of this work is the following.

Theorem 2.2. Let X0 ∈ L2(Ω,F0,P;H). Then (1.1) is well-posed in J . Moreover, the
solution map X0 7→ X is Lipschitz continuous and the paths of X are weakly continuous
with values in H.

Let us stress the fact that the more general problem of unconditional well-posedness
(i.e. without the extra condition that strong solutions belong to J ) remains open and
is beyond the scope of the techniques used in this work. In particular, we can only prove
uniqueness of solutions within J .

3 Examples and remarks

Some comments and examples on the assumptions on the data of the problem are in
order. In particular, the hypotheses on A deserve special attention. The coercivity
condition 〈Av, v〉 ≥ C‖v‖2V for all v ∈ V is equivalent to A ∈ L (V, V ∗) being determined
by a bounded V -elliptic3 bilinear form E : V × V → R, i.e. such that

|E (u, v)| . ‖u‖V ‖v‖V , E (v, v) ≥ C‖v‖2V ∀u, v ∈ V.

This is an immediate consequence of the Lax-Milgram theorem, which also implies that
A is an isomorphism between V and V ∗ (see, e.g., [4, §5.2] or [32, Lemma 1.3]).

The bilinear form E can also be seen as a closed unbounded form on H with domain
V . This defines a (unique) linearm-accretive operator A2 on H, that is nothing else than

3We prefer this terminology, taken from [27], over the currently more common “V -coercive”, to avoid
possible confusion with related terminology used in the theory of Dirichlet forms, where coercivity is
meant in a somewhat different sense (cf. [29, Definition 2.4, p. 16]).
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the part of A in H (see, e.g., [4, §5.3] or [32, p. 34]). Conversely, given a positive closed
bilinear form E on H with dense domain D(E ) satisfying the strong sector condition4

|E (u, v)| . E (u, u)1/2E (v, v)1/2 ∀u, v ∈ D(E ),

and such that E (u, u) > 0 for all u ∈ D(E ), u 6= 0, setting V := D(E ) with inner product
given by the symmetric part E s of E , that is

E s(u, v) :=
1

2

(

E (u, v) + E (v, u)
)

, u, v ∈ D(E ),

there is a unique linear operator A ∈ L (V, V ∗) such that E (u, v) = 〈Au, v〉 for all
u, v ∈ V . This amounts to trivial verifications, since, obviously, E (u, u) = E s(u, u) for
all u ∈ D(E ). As a particular case, let A′ be a linear positive self-adjoint (unbounded)
operator H such that 〈A′u, u〉 > 0 for all u ∈ D(A), u 6= 0. Then A′ admits a square
root

√
A′, which is in turn a linear positive self-adjoint operator on H. One can then

define the Hilbert space V := D(
√
A′), endowed with the inner product

〈u, v〉V :=
〈
√
A′u,

√
A′v

〉

,

and the symmetric bounded bilinear form E : V × V → R,

E (u, v) :=
〈
√
A′u,

√
A′v

〉

, u, v ∈ V,

which is obviously V -elliptic. By a theorem of Kato ([23, Theorem 2.23, p. 331]), there
is in fact a bijective correspondence between linear positive self-adjoint operators on H
and positive densely-defined closed symmetric bilinear forms. More generally, if A′ is a
linear (unbounded) m-accretive operator on H such that

∣

∣〈A′u, v〉
∣

∣ . 〈A′u, u〉1/2〈A′v, v〉1/2 ∀u, v ∈ D(A′),

and 〈A′u, u〉 > 0 for all u ∈ D(A′), u 6= 0, then there exists a (unique) closed V -
elliptic bilinear form E that determines an operator A ∈ L (V, V ∗), with V := D(E )
and 〈·, ·〉V := E s, such that A′ is the part on H of A. This follows, for instance, by [29,
p. 27].

Note, however, that in the previous examples V may not be continuously embedded
in H, unless E satisfies a Poincaré inequality, i.e. ‖u‖2H . E (u, u) for all u ∈ D(E ) (as
is the case, for instance, for the Dirichlet Laplacian). This limitation is resolved by the
following important observation: all our well-posedness result continues to hold if we
assume, in place of hypothesis (i), the following weaker one:

(i’) there exist constants C1 > 0, C2 ∈ R such that

〈Av, v〉 ≥ C1‖v‖2V − C2‖v‖2H ∀v ∈ V,

which is clearly equivalent to assuming that Ã := A + C2I is V -elliptic. Under this
assumption, equation (1.1) can equivalently be written as

dX(t) + ÃX(t) dt+ β(X(t)) dt = C2X(t) dt+B(t,X(t)) dW (t).

4Throughout this section we shall follow the terminology on Dirichlet forms of [29].
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The only added complication in the proofs to follow would be the appearance of func-
tional spaces with an exponential weight in time, very much as in the proof of Proposition
6.2 below. An analogous argument, in a slightly different context, is developed in detail
in [30]. This seemingly trivial observation allows to considerably extend the class of
operators A that can be treated. For instance, one has the following criterion.

Lemma 3.1. A coercive closed form E on H uniquely determines an operator A satis-
fying (i’).

Proof. The hypothesis of the Lemma means that E is a densely defined bilinear form
such that its symmetric part E s is closed and E satisfies the weak sector condition

∣

∣E1(u, v)
∣

∣ . E1(u, u)
1/2E1(v, v)

1/2 ∀u, v ∈ D(E ),

where E1 := E + I. In other words, E satisfies the weak sector condition if the shifted
form E + I satisfies the strong sector condition. Therefore, adapting in the obvious way
an argument used above, it is enough to take V := D(E ) with inner product 〈·, ·〉V :=
〈·, ·〉H + E s to obtain that the generator A2 of E can be (uniquely) extended to an
operator A ∈ L (V, V ∗) satisfying (i’) with C1 = C2 = 1.

Note that in all the above constructions one has V →֒ H densely and continuously
(under appropriate assumptions), but the embedding is not necessarily compact. The
latter condition has to be proved depending on the situation at hand. For a general
compactness criterion in terms of ultracontractivity properties, see Proposition 3.3 below.

As regards condition (ii), the simplest sufficient condition ensuring that A2 admits an
m-accretive extension A1 in L

1(D) is that −A2 is the generator of a symmetric Markovian
semigroup of contractions S2 on H, or, equivalently, that A2 is positive self-adjoint with
a Markovian resolvent. In fact, this implies that, for any p ∈ [1,∞[, there exists a
(unique) symmetric Markovian semigroup of contractions Sp on Lp(D) such that all Sp,
1 ≤ p < ∞, are consistent, hence the corresponding negative generators Ap coincide
on the intersections of their domains (see, e.g., [18, Theorem 1.4.1]). In the general
case, i.e. if A2 is not self-adjoint, the same conclusion remains true if the semigroup
S2 and its adjoint S∗

2 are both sub-Markovian, or, equivalently, if S2 is sub-Markovian
and L1-contracting (cf. [4, Lemma 10.13 and Theorem 10.15] or [32, Corollary 2.16]).
In particular, if A2 is the generator of a Dirichlet form on H, these conclusions hold.
Moreover, since the resolvent of A1 is sub-Markovian if and only if the resolvent of A2

is sub-Markovian, we obtain the following complement to the previous Lemma.

Lemma 3.2. A Dirichlet form E on H uniquely determines an operator A satisfying
(i’), (ii), and (iii).

Without assuming that S∗
2 is sub-Markovian (which is the case, for instance, if A

is determined by a semi-Dirichlet form on H, so that (i’) and (iii) only are satisfied),
we note that D(A2) is dense in L1(D), and the image of I + A2 is dense in L1(D):
the former assertion follows by D(A2) ⊂ L2(D) densely and L2(D) ⊂ L1(D) densely
and continuously. Moreover, since A2 generates a contraction semigroup in L2(D), the
Lumer-Phillips theorem (see, e.g., [19, p. 83]) implies that R(I + A2) = L2(D), hence
R(I + A2) is dense in L1(D). The Lumer-Phillips theorem again guarantees that the
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closure of A2 in L1(D) is m-accretive if A2 is accretive in L1(D). The latter property is
often not difficult to verify in concrete examples.

The most delicate condition is (iv), i.e. the ultracontractivity of suitable powers of
the resolvent of A1. If A2 is self-adjoint, a simple duality arguments shows that, for any
t ≥ 0,

∥

∥S2(t)
∥

∥

L (L1,L∞)
≤

∥

∥S2(t/2)
∥

∥

2

L (L2,L∞)
.

Sufficient conditions for S2(t) to be bounded from L2(D) to L∞(D) are known in terms,
for instance, of logarithmic Sobolev inequalities, Sobolev inequalities, and Nash inequal-
ities (see, e.g., [18, Chapter 2] and [32, Chapter 6]). The non-symmetric case is more
difficult, but ultracontractivity estimates are known in many special cases, such as in
the examples that we are going to discuss next. Ultracontractivity estimates for powers
of the resolvent can then be obtained from estimates for the semigroup, as explained be-
low. The following result (probably known, but for which we could not find a reference)
shows that hypothesis (iv) guarantees that the embedding D(E ) →֒ H is compact, thus
answering a question left open above.

Proposition 3.3. Let A2 be the generator of a closed coercive form E in H. If there
exists m ∈ N such that the m-th power of the resolvent of A2 is bounded from L2(D) to
L∞(D), then D(E ) is compactly embedded in H.

Proof. Let (uk)k be a bounded sequence in D(E ), i.e., there exists a constant N such
that

‖uk‖2H + E s(uk, uk) < N ∀k ∈ N.

In particular, there exists a subsequence of k, denoted by the same symbol, such that uk
converges weakly to u in H as k → ∞. The goal is to show that the convergence is in
fact strong. Since D(Am

2 ) ⊂ L∞(D) by assumption, it follows by a result of Arendt and
Bukhvalov, see [3, Theorem 4.16(b)], that the resolvent Jλ := (I + λA2)

−1 is a compact
operator on H for all λ > 0. The triangle inequality yields

‖uk − u‖ ≤ ‖uk − Jλuk‖+ ‖Jλuk − Jλu‖+ ‖Jλu− u‖,

where the second term on the right-hand side converges to zero as k → ∞ by compactness
of Jλ. Moreover, since Jλ → I in Ls(H,H) as λ→ 0, the third term on the right-hand
side can be made arbitrarily small. Therefore we only have to bound the first term on
the right-hand side: note that I − Jλ = λAλ, where Aλ, λ > 0, stands for the Yosida
approximation of A2, hence ‖uk − Jλuk‖ = λ‖Aλuk‖, and

〈Aλuk, uk〉 = 〈Aλuk, uk − Jλuk + Jλuk〉 = λ‖Aλuk‖2 + 〈Aλuk, Jλuk〉
≥ λ‖Aλuk‖2,

where we have used, in the last step, the identity Aλ = A2Jλ and the monotonicity of
A2. Since, by [29, Lemma 2.11(iii), p. 20], one has

∣

∣E
(λ)
1 (u, v)

∣

∣ . E1(u, u)
1/2E

(λ)
1 (v, v)1/2 ∀u ∈ D(E ), v ∈ H,

where E (λ)(u, v) := 〈Aλu, v〉, u, v ∈ H, and the implicit constant depends only on E , it
follows that

E
(λ)
1 (u, u) . E1(u, u) ∀u ∈ D(E ),
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hence

‖uk − Jλuk‖2 = λ2‖Aλuk‖2 ≤ λ〈Aλuk, uk〉 = λE
(λ)
1 (uk, uk) . λE1(uk, uk).

By the assumptions on the sequence (uk),

E1(uk, uk) = ‖uk‖2 + E (uk, uk) = ‖uk‖2 + E s(uk, uk)

is bounded uniformely over k, hence ‖uk −Jλuk‖2 can be made arbitrarily small as well,
thus proving the claim.

Let us now consider some concrete examples: we first consider the case of A being
a suitable “realization” of a second-order differential operator, and then of a nonlocal
operator.

Example 3.4 (Symmetric divergence-form operators). Consider the bilinear form E on
V := H1

0 (D) defined by

E (u, v) :=
〈

a∇u,∇v
〉

=

n
∑

j,k=1

ajk∂ju∂kv,

where a = (ajk) with ajk ∈ L∞(D) for all j, k, and ajk = akj. The (formal) differential
operator associated to E is

A0u := − div
(

a∇u
)

, u ∈ C∞
c (D),

where C∞
c (D) stands for the set of infinitely differentiable functions with compact

support contained in D. The form E is V -elliptic if there exists C > 0 such that
〈aξ, ξ〉 ≥ C|ξ|2 for all ξ ∈ R

n. Moreover, if there exists a positive function µ ∈ C(D)
such that 〈aξ, ξ〉 ≤ µ(ξ)|ξ|2 for all ξ ∈ D, then A2 has sub-Markovian resolvent (details
can be found, e.g., in [18, Chapter 1] and, in much more generality, in [29, Chapter II]).
Ultracontractivity estimates follow as a special case of the corresponding estimates for
non-symmetric forms treated next.

Example 3.5 (Non-symmetric divergence-form operators with lower-order terms). Con-
sider the differential operator on smooth functions

A0u := − div(a∇u) + b · ∇u− div(cu) + a0u

= −
n
∑

j,k=1

∂j(ajk∂ku) +

n
∑

j=1

(

bj∂ju− ∂j(cju)
)

+ a0u,

where ajk, bj , cj , a0 ∈ L∞(D), and the associated (non-symmetric) bilinear form E on
V := H1

0 (D) is defined as

E (u, v) = 〈a∇u,∇v〉+ 〈b · ∇u, v〉+ 〈u, c · ∇v〉+ 〈a0u, v〉

=

∫

D

(

∑

jk

ajk∂ju∂kv +
∑

j

(

bj∂ju v + cju∂jv
)

+ a0uv
)

.

11



The bilinear form E is continuous, as it easily follows from the boundedness of its
coefficients. If there exists a constant C > 0 such that 〈aξ, ξ〉 ≥ C|ξ|2, then E is not
V -elliptic, but satisfies the weaker estimate

E (u, u) ≥ C1‖u‖2V −C2‖u‖2H ∀u ∈ V,

where C1 > 0 and C2 ∈ R (see, e.g., [4, §11.2] or [32, p. 100]), i.e. the corresponding
operator A satisfies (i’), but not (i). Using the Poincaré inequality, it is not difficult
to show that E is V -elliptic if the diameter of D is small enough (see [17, pp. 385–
387]). If we furthermore assume that a0 − div c ≥ 0 (in the sense of distributions), then
the semigroup S2 is sub-Markovian, and so is also the resolvent of A2. Similarly, if
a0 − div b ≥ 0,5 then the semigroup S2 is L1-contracting (these results can be found, for
instance, in [4, Proposition 11.14], or deduced from [32, §4.3]). As already mentioned
above, this implies that S2 can be extended to a consistent family of semigroups Sp for
all p ∈ [1,∞[. Finally, let us discuss ultracontractivity: if E is V -elliptic, and S2 as well
as S∗

2 are sub-Markovian, then a reasoning based on the Nash inequality

∥

∥u
∥

∥

2+4/n

L2 ≤ N
∥

∥u
∥

∥

2

H1
0

∥

∥u
∥

∥

4/n

L1 ∀u ∈ H1
0 ,

implies the estimate
∥

∥S2(t)
∥

∥

L (L1,L∞)
≤ N1t

−n/2,

where N1 :=
(

Nn/(2α)
)n/2

. For a proof, see, e.g., [2, Theorem 12.3.2] or [32, p. 159].
The Laplace transform representation of the resolvent yields

(I + λA1)
−m =

λm

(m− 1)!

∫ ∞

0
tm−1e−λtS(t) dt

(see, e.g., [4, p. 17] or [35, p. 21]), hence

∥

∥(I + λA1)
−m

∥

∥

L (L1,L∞)
.

λm

(m− 1)!

∫ ∞

0
tm−1−n/2e−λt dt.

Thus it suffices to choose m large enough to infer the ultracontractivity of the m-th
power of the resolvent.

Example 3.6 (Fractional Laplacian). Let ∆ be the Dirichlet Laplacian on H. Since it
is a positive self-adjoint operator, it follows that, for any α ∈ ]0, 1[, (−∆)α is itself a
positive self-adjoint (densely defined) operator on H. Furthermore, the bilinear form

E (u, v) :=
〈

(−∆)αu, v
〉

=
〈

(−∆)α/2u, (−∆)α/2v
〉

, u, v ∈ D
(

(−∆)α/2
)

,

is a symmetric Dirichlet form on H, which, as already seen, uniquely determines an
operator A satisfying conditions (i’), (ii), and (iii): in particular, V = D

(

(−∆)α/2
)

,
equipped with the scalar product 〈·, ·〉V := 〈·, ·〉 + E , and A is just the extension of
(−∆)α, generator of E , to V . In order to prove (iv), we are going to use again an

5These two conditions involving a0 and the divergence of b, c, are not restrictive, as they are close
to necessary to ensure that the bilinear form E is positive. This can be seen by a simple computation
based on integration by parts, cf. [29, p. 48].
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argument based on the Nash inequality, which is however more involved as before. In
particular, since −∆ satisfies the Nash inequality

∥

∥u
∥

∥

2+4/n

L2 .
〈

−∆u, u
〉
∥

∥u
∥

∥

4/n

L1 ∀u ∈ H1
0 ,

a result by Bendikov and Maheux, see [9, Theorem 1.3], implies that the fractional power
(−∆)α satisfies the Nash inequality

∥

∥u
∥

∥

2+4α/n

L2 .
〈

(−∆)αu, u
〉
∥

∥u
∥

∥

4α/n

L1 ∀u ∈ D(E ).

It follows by a general criterion of Varopoulos, Saloff-Coste and Coulhon (attributed to
Ph. Bénilan), see [39, Theorem II.5.2], that the semigroup Sα on H generated by (−∆)α

satisfies the ultracontractivity estimate

∥

∥Sα(t)
∥

∥

L (L1,L∞)
. t−n/2α,

from which corresponding estimates for suitable powers of the resolvent can be deduced,
as in the previous example.

Related results on ultracontractivity and smoothing properties of semigroups gener-
ated by non-local operators, arising as generators of Markov processes, can be found,
e.g., in [20, 26].

We proceed with a brief discussion about the relation between our hypotheses on A
and those needed in the deterministic setting, where it is enough to prove that A + β
is maximal monotone in H to get well-posedness of the nonlinear equation, for any
right-hand side belonging to L1(0, T ;H). Probably the most widely used criterion for
the maximal monotonicity of the sum of two maximal monotone operators on H, at
least with applications to PDE in mind, is the following: let F be a maximal monotone
operator on H and ϕ a lower semi-continuous proper convex function on H. If

ϕ
(

(I + λF )−1u
)

≤ ϕ(u) + Cλ ∀λ > 0, ∀u ∈ D(ϕ), (3.1)

then F+∂ϕ is maximal monotone (see [12, Theorem 9, p. 108]). In the case of semilinear
perturbations of the Laplacian of the type −∆+ β, this result is used as follows: let ϕ
be such that −∆ = ∂ϕ, and

ψ : u 7→











∫

D
j(u) dx, if j(u) ∈ L1(D),

+∞, if j(u) 6∈ L1(D).

Then ψ : H → R ∪ {+∞} is proper convex lower semicontinuous, and F := ∂ψ is
maximal monotone, with F (u) = β(u) a.e. for all u ∈ H such that j(u) ∈ L1(D). Then
one has, recalling that (I + λβ)−1 is a contraction on R,

ϕ
(

(I + λF )−1u
)

=

∫

D

∣

∣∇(I + λβ)−1u
∣

∣

2
dx

≤
∫

D
|∇u|2 dx = ϕ(u),
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so that (3.1) is satisfied, and −∆+ β is maximal monotone. If one replaces −∆ with a
general positive self-adjoint operator A on H, it is not clear how to adapt such reasoning.
However, if we assume that A is the generator of a symmetric Dirichlet form E on H,
then (3.1) is satisfied, with C = 0 and ϕ = E . This follows from the fact that (I+λβ)−1

is a normal contraction on R and that, for any normal contraction T on R, u ∈ D(E )
implies Tu ∈ D(E ) and E (Tu, Tu) ≤ E (u, u), a proof of which can be found, e.g., in [29,
Theorem 4.12, p. 36].

On the other hand, if A is maximal monotone but not self-adjoint, we cannot express
it as the subdifferential of a convex function on H. Hence we are led to “dualize” the
previous argument, i.e. we can try to show that

ψ
(

(I + λA)−1u
)

≤ ψ(u) + Cλ ∀λ > 0, ∀u ∈ D(ϕ).

Knowing only that the resolvent is a contraction does not seem enough to proceed. How-
ever, if we assume that the resolvent is sub-Markovian, we can apply Jensen’s inequality
(see Lemma 4.2 below), so that

j
(

(I + λA)−1u
)

≤ (I + λA)−1j(u),

hence, integrating,

ψ
(

(I + λA)−1u
)

=

∫

D
j
(

(I + λA)−1u
)

dx ≤
∫

D
(I + λA)−1j(u) dx.

Assuming also that the resolvent is contracting in L1, we obtain ψ
(

(I+λA)−1u
)

≤ ψ(u),
hence that A+ β is maximal monotone in H. Recall that A is contracting in L1 if it is
the generator of a (nonsymmetric) Dirichlet form. It results from this discussion that
our conditions (ii) and (iii) on A are not restrictive and are probably close to optimal,
while the ultracontractivity condition (iv) is completely superfluous in the deterministic
setting. Moreover, while condition (i’) is always satisfied if A is self-adjoint, it is equally
superfluous in the deterministic case if A is non-symmetric.

Let us now comment on the Lipschitz continuity assumption on B. It is natural to
ask whether a well-posedness result analogous to Theorem 2.2 holds under the weaker as-
sumption that B is progressively measurable, linearly growing, and just locally Lipschitz
continuous, i.e. assuming that there exists a sequence (Ln

B)n of positive real numbers
such that

∥

∥B(ω, t, x)−B(ω, t, y)
∥

∥

L 2(U,H)
≤ Ln

B‖x− y‖H
for every (ω, t) ∈ Ω× [0, T ] and x, y ∈ H with ‖x‖H , ‖y‖H ≤ n, for every n ∈ N. In this
case, introducing the globally Lipschitz continuous truncated operators

Bn : Ω× [0, T ]×H → L 2(U,H), Bn(ω, t, x) := B(ω, t, nPx),

for all n ∈ N, where P : H → H is the projection on the closed unit ball in H, the
stochastic evolution equation

dXn +AXn dt+ β(Xn) dt ∋ Bn(t,Xn) dW, Xn(0) = X0,

is well-posed in J for all n ∈ N. One would now expect to be able to construct a global
solution by suitably “gluing” the solutions (Xn, ξn). In fact, this technique has been
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successfully applied in several situations (cf., e.g., [14, 25, 38]): the key argument is to
introduce the sequence of stopping times (τn)n defined as

τn := inf
{

t ∈ [0, T ] : ‖Xn(t)‖ ≥ n
}

∧ T,

and to show that, for any m > n, one has Xm = Xn on

[[0, τn]] :=
{

(ω, t) ∈ Ω× [0, T ] : 0 ≤ t ≤ τn(ω)
}

.

For this construction to work, it seems essential to assume that Xn has continuous
trajectories for all n ∈ N (as is the case in op. cit.). However, in our case, we only know
that the trajectories ofXn are weakly continuous inH, hence the above construction does
not seem to work. On the other hand, we conjecture that strong solutions in J to (1.1)
are indeed pathwise continuous under suitable polynomial boundedness assumption on β,
and that, in this case, equations with locally Lipschitz diffusion coefficient can be shown
to be well-posed. This will be treated in forthcoming work. We conclude remarking that
such a well-posedness result for semilinear equations with polynomially growing drift
does not follow from the classical variational approach (see, e.g., [28, Example 5.1.8]).

4 Preliminaries

We collect, for the reader’s convenience, several notions and results that we are going to
use in the following sections.

4.1 Convex analysis and monotone operators

We recall basic concepts of convex analysis and their connections with the theory of
maximal monotone operators. We limit ourselves to the case of functions (and operators)
defined on the real line, as we will not need the general setting of Banach spaces. For a
comprehensive treatment we refer, e.g., to [5, 13, 22].

A graph γ in R× R is called monotone if

(x1 − x2)(y1 − y2) ≥ 0

for all (x1, y1), (x2, y2) ∈ γ. If γ is maximal in the family of monotone subsets of R×R,
endowed with the partial order relation of set inclusion, then it is said to be maximal
monotone. In other words, γ is maximal monotone if it does not admit any proper
monotone extension. This maximality property is equivalent to the range condition

R(I + λγ) = R ∀λ > 0,

where I stands for the identity function. Monotonicity implies that the inverse (I +
λγ)−1, called the resolvent of γ, is single-valued (hence a function, not just a graph) and
contracting. Moreover, (I + λγ)−1 converges pointwise to the projection on the closed
convex set D(γ) as λ → 0. An essential tool is the Yosida regularization γλ : R → R,
defined as

γλ :=
1

λ

(

I − (I + λγ)−1
)

, λ > 0.

The following properties will be used extensively:
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(a) γλ is monotone and Lipschitz continuous, with Lipschitz constant bounded by 1/λ;

(b) γλ ∈ γ ◦ (I + λγ)−1.

Let ϕ : R → R ∪ {+∞} be a function not identically equal to +∞ (i.e., proper),
convex and lower-semicontinuous. Denoting the set of subsets of R by P(R), the map

∂ϕ : R −→ P(R)

x 7−→
{

z ∈ R : ϕ(y)− ϕ(x) ≥ z(y − x) ∀y ∈ R
}

is called the subdifferential of ϕ. The multivalued map γ := ∂ϕ, that can equivalently
be considered as a graph in R × R, is maximal monotone. Conversely, every maximal
monotone graph of R × R is the subdifferential of a convex proper function, which is,
roughly speaking, its indefinite integral.

The Moreau-Yosida regularization of ϕ is the convex differentiable function ϕλ : R →
R defined by

ϕλ(x) := inf
y∈R

(

ϕ(y) +
|x− y|2

2λ

)

, λ > 0.

It enjoys the following fundamental properties:

(c) ϕ′
λ = γλ, where γλ denotes the Yosida regularization of γ = ∂ϕ;

(d) ϕλ converges pointwise to ϕ from below as λ→ 0;

The (Fenchel-Legendre) conjugate of ϕ is the proper convex lower-semicontinuous func-
tion ϕ∗ : R → R ∪ {+∞} defined as

ϕ∗ : x 7→ sup
y∈R

(

xy − ϕ(y)
)

.

The Young inequality
xy ≤ ϕ(y) + ϕ∗(x) ∀x, y ∈ R

follows immediately from the definition. The following properties will be particularly
useful:

(e) equality holds in the Young inequality if and only if x ∈ ∂ϕ(y);

(f) if D(γ) = R, then ϕ∗ is superlinear at infinity, i.e.

lim
|r|→∞

ϕ∗(r)

|r| = +∞.

We shall also need a result about passing to the limit “within” maximal monotone
graphs due to Brézis, see [12, Theorem 18, p. 126].

Lemma 4.1. Let γ be a maximal monotone graph in R×R with D(γ) = R and 0 ∈ γ(0).
Assume that the sequences (yn)n∈N, (gn)n∈N of real-valued measurable functions on a
finite measure space (Y,A , µ) are such that yn → y µ-a.e. as n → ∞, gn ∈ γ(yn)
µ-a.e. for all n ∈ N, and (gnyn) is a bounded subset of L1(Y,A , µ). Then there exists
g ∈ L1(Y,A , µ) and a subsequence n′ such that gn′ → g weakly in L1(Y,A , µ) as n′ → ∞
and g ∈ γ(y) µ-almost everywhere.
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Finally, we recall a simplified version of an “abstract” Jensen’s inequality, due to
Haase (see [21, Theorem 3.4]), that will be used to prove a priori estimates for convex
functionals of stochastic processes.

Lemma 4.2. Let (Y,A , µ), (Z,B, ν) be measure spaces, E ⊂ L0(Y,A , µ) a Banach
function space, and

T : E −→ L0(Z,B, ν)

a linear continuous sub-Markovian operator. Moreover, let ϕ : R → [0,∞[ be a convex
lower semicontinuous function with ϕ(0) = 0. Then

ϕ(Tf) ≤ Tϕ(f)

for all f ∈ E such that ϕ(f) ∈ E.

4.2 Hilbert-Schmidt operators

Let us recall now some standard facts about linear maps. We recall that the space of
continuous linear operators from a Banach space E to another one F , equipped with
the strong operator topology, is denoted by Ls(E,F ). If E and F are Hilbert spaces,
the space of Hilbert-Schmidt operators L 2(E,F ) is an operator ideal, in particular it
is stable with respect to pre-composition as well as post-composition with continuous
linear operators: if E′ and F ′ are also Hilbert spaces, and

E′ R−−→ E
T−−→ F

L−−→ F ′,

with R and L continuous linear operators, then LTR ∈ L 2(E′, F ′),6 with

∥

∥LTR
∥

∥

L 2(E′,F ′)
≤

∥

∥L
∥

∥

L (F,F ′)

∥

∥T
∥

∥

L 2(E,F )

∥

∥R
∥

∥

L (E′,E)

(see, e.g., [11, p. V.52]). It follows from these properties that, for any T ∈ L 2(E,F ),
the mapping

ΦT : Ls(F,F
′) −→ L 2(E,F ′)

L 7−→ LT

is continuous: Ln → L in Ls(F,F
′) implies that LnT → LT in L 2(E,F ′). If E and F

are separable, then L 2(E,F ) is itself a separable Hilbert space.

Lemma 4.3. If G is a progressively measurable L 2(U,H)-valued process such that

E

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,H)
ds <∞

and F is a progressively measurable H-valued process such that E(F ∗
T )

2 < ∞, then, for
any ε > 0,

E
(

(FG) ·W
)∗

T
≤ εE

(

F ∗
T

)2
+N(ε)E

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,H)
ds.

6One may say, in a shorter but perhaps cryptic way, that L 2 is functorial, more precisely that
L 2(E, ·) and L 2(·, F ) are a covariant and a contravariant functor, respectively.
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Proof. By the ideal property of Hilbert-Schmidt operators, one has
∥

∥F (s)G(s)
∥

∥

L 2(U,R)
≤

∥

∥F (s)
∥

∥

H

∥

∥G(s)
∥

∥

L 2(U,H)

≤ (F ∗
T )

∥

∥G(s)
∥

∥

L 2(U,H)

for all s ∈ [0, T ], hence
∫ T

0

∥

∥F (s)G(s)
∥

∥

2

L 2(U,R)
ds ≤ (F ∗

T )
2

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,H)
ds,

where the right-hand side is finite P-a.s. thanks to the assumptions on F and G. Then
(FG) ·W is a local martingale, for which Davis’ inequality yields

E
(

(FG) ·W
)∗

T
. E

[

(FG) ·W, (FG) ·W
]1/2

T

= E

(
∫ T

0

∥

∥F (s)G(s)
∥

∥

2

L 2(U,R)
ds

)1/2

≤ E(F ∗
T )

(
∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,H)
ds

)1/2

.

The proof is finished invoking the elementary inequality

ab ≤ 1

2

(

εa2 +
1

ε
b2
)

∀a, b ∈ R.

4.3 Continuity and compactness in spaces of vector-valued functions

The following result by Strauss, see [37, Theorem 2.1], provides sufficient conditions
for a vector-valued function to be weakly continuous. It will be used to establish the
pathwise weak continuity of solutions to several stochastic equations. We recall that,
given a Banach space E and an interval I ⊆ R, the space of weakly continuous functions
from I to E is denoted by Cw(I;E).

Lemma 4.4. Let E and F be Banach spaces such that E is dense in F , E →֒ F , and
E is reflexive. Then

L∞(0, T ;E) ∩ Cw([0, T ];F ) = Cw([0, T ];E).

The next result is a classical integration-by-parts formula, whose proof can be found,
for instance, in [5, §1.3]. Let V and H be Hilbert spaces such that V →֒ H →֒ V∗,
and denote by W (a, b;V) the set of functions u ∈ L2(a, b;V) such that u′ ∈ L2(a, b;V∗),
where the derivative u′ is meant in the sense of V∗-valued distributions. The duality of
V and V∗ as well as the scalar product of H will be denoted by 〈·, ·〉.
Lemma 4.5. Let u ∈W (a, b;V). Then there exists ũ ∈ C([a, b];H) such that u(t) = ũ(t)
for almost all t ∈ [a, b]. Moreover, for any v ∈W (a, b;V), 〈u, v〉 is absolutely continuous
on [a, b] and

d

dt

〈

u(t), v(t)
〉

=
〈

u′(t), v(t)
〉

+
〈

u(t), v′(t)
〉

.

The following compactness criterion is due to Simon, see [36, Corollary 4, p. 85].

Lemma 4.6. Let E1, E2, E3 be Banach spaces such that E1 →֒ E2 and E2 →֒ E3

compactly. Assume that F is a bounded subset of Lp(0, T ;E1)∩W 1,1(0, T ;E3) for some
p ≥ 1. Then F is relatively compact in Lp(0, T ;E2).
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5 Well-posedness for a regularized equation

Let V0 be a separable Hilbert space such that V0 is a dense subset of V , V0 →֒ V ,
and V0 →֒ L∞(D). The goal of this section is to establish existence and uniqueness of
solutions to the stochastic evolution equation

dX(t) +AX(t) dt+ β(X(t)) dt ∋ B(t) dW (t), X(0) = X0, (5.1)

where B is an L 2(U, V0)-valued process. In particular, this stochastic equation can be
interpreted as a version of (1.1) with additive and more regular noise.

Proposition 5.1. Assume that X0 ∈ L2(Ω,F0,P;H) and that

B ∈ L2(Ω;L2(0, T ;L 2(U, V0)))

is measurable and adapted. Then equation (5.1) admits a unique strong solution (X, ξ)
such that

X ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

j(X) + j∗(ξ) ∈ L1((0, T ) ×D) P-almost surely.

Moreover, X(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ Ω.

The rest of this section is devoted to the proof of Proposition 5.1, which is structured
as a follows: we consider a regularized version of (5.1), where the nonlinear term β
is replaced by its Yosida approximation, and obtain suitable a priori estimates, both
pathwise and in expectation. Taking limits in appropriate topologies of the solutions to
these regularized equations, we construct solutions to (5.1), that are finally shown to be
unique.

Let

βλ :=
1

λ

(

I − (I + λβ)−1
)

, λ > 0,

be the Yosida approximation of β, and consider the regularized equation

dXλ(t) +AXλ(t) dt+ βλ(Xλ(t)) dt = B(t) dW (t), Xλ(0) = X0.

Since βλ is monotone and Lipschitz continuous, it is easy to check that the operator
A+βλ satisfies, for any λ > 0, the classical conditions of Pardoux, Krylov and Rozovskĭı
[24, 33]. For completeness, a proof is given next.

Lemma 5.2. Let λ > 0. The operator Aλ := A + βλ : V → V ∗ satisfies the following
conditions:

(i) Aλ is hemicontinuous, i.e. the map R ∋ η 7→ 〈Aλ(u+ ηv), x〉 is continuous for all
u, v, x ∈ V ;

(ii) Aλ is monotone, i.e. 〈Aλu−Aλv, u− v〉 ≥ 0 for all u, v ∈ V ;

(iii) Aλ is coercive, i.e. there exists a constant C1 > 0 such that 〈Aλv, v〉 ≥ C1‖v‖2V for
all v ∈ V ;
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(iv) Aλ is bounded, i.e. there exists a constant C2 > 0 such that ‖Aλv‖V ∗ ≤ C2‖v‖V
for all v ∈ V .

Proof. (i) For any u, v, x ∈ V , one has

〈Aλ(u+ ηv), x〉 = 〈Au, x〉+ η〈Av, x〉 +
∫

D
βλ(u+ ηv)x.

It clearly suffices to check that the last term depends continuously on η, which follows
immediately by the Lipschitz continuity of βλ. (ii) Since both A and βλ are monotone,
one has

〈Aλu−Aλv, u− v〉 = 〈Au−Av, u− v〉+
∫

D
(βλ(u)− βλ(v)(u − v) ≥ 0.

(iii) Similarly, since 0 ∈ β(0) implies βλ(0) = 0, coercivity of A and monotonicity of βλ
imply

〈Aλv, v〉 = 〈Av, v〉 +
∫

D
βλ(v)v ≥ 〈Av, v〉 ≥ C‖v‖2V

(in particular, C1 can be chosen equal to C, the coercivity constant of A itself). (iv)
Using again the fact that βλ(0) = 0, and recalling that βλ is Lipschitz continuous with
Lipschitz constant bounded by 1/λ, one has

〈Aλv, u〉 = 〈Av, u〉 +
∫

D
βλ(v)u ≤ ‖Av‖V ∗‖u‖V +

1

λ
‖v‖H‖u‖H

≤
(

‖A‖L (V,V ∗) + k/λ
)

‖v‖V ‖u‖V ,

where k is the norm of the continuous embedding ι : V → H.

Hence (5.2) admits a unique variational solution, that is, there exists a unique
adapted process

Xλ ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V ))

such that, in V ∗,

Xλ(t) +

∫ t

0
AXλ(s) ds +

∫ t

0
βλ(Xλ(s)) ds = X0 +

∫ t

0
B(s) dW (s) (5.2)

for all t ∈ [0, T ].
In the next lemmata we establish a priori estimates for Xλ and βλ(Xλ). We begin

with a pathwise estimate.

Lemma 5.3. There exists Ω′ ⊆ Ω with P(Ω′) = 1 and M : Ω′ → R such that

∥

∥Xλ(ω)
∥

∥

2

C([0,T ];H)∩L2(0,T ;V )
+

∥

∥jλ(Xλ(ω))
∥

∥

L1(0,T ;L1(D))
< M(ω)

for all ω ∈ Ω′.
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Proof. Setting Yλ := Xλ −B ·W , Itô’s formula7 yields

∥

∥Yλ(t)
∥

∥

2

H
+ 2

∫ t

0

〈

AXλ(s), Yλ(s)
〉

ds+ 2

∫ t

0

〈

βλ(Xλ), Yλ(s)
〉

ds =
∥

∥X0

∥

∥

2

H
,

where ‖Xλ‖H ≤ ‖Yλ‖H + ‖B ·W‖H by the triangle inequality, hence

‖Yλ(t)‖2H ≥ 1

2
‖Xλ(t)‖2H − ‖B ·W (t)‖2H .

Moreover, writing 〈AXλ, Yλ〉 = 〈AXλ,Xλ〉 − 〈AXλ, B ·W 〉, one has

〈AXλ,Xλ〉 ≥ C‖Xλ‖2V
by the coercivity of A, and

〈AXλ, B ·W 〉 ≤ ‖A‖L (V,V ∗)‖Xλ‖V ‖B ·W‖V
≤ 1

2
C‖Xλ‖2V +

1

2ε
‖B ·W‖2V ,

where we have used the elementary inequality ab ≤ 1
2(εa

2 + b2/ε) for all a, b ∈ R, with

ε := C‖A‖−2
L (V,V ∗). Then

〈AXλ, Yλ〉 ≥
1

2
C‖Xλ‖2V − 1

2ε
‖B ·W‖2V ,

so that

2

∫ t

0

〈

AXλ(s), Yλ(s)
〉

ds ≥ C

∫ t

0
‖Xλ(s)‖2V ds−

1

ε

∫ t

0
‖B ·W (s)‖2V ds

and

1

2
‖Xλ(t)‖2H +C

∫ t

0
‖Xλ(s)‖2V ds+ 2

∫ t

0

〈

βλ(Xλ(s)), Yλ(s)
〉

ds

≤ ‖X0‖2H + ‖B ·W (t)‖2H +
1

ε

∫ t

0
‖B ·W (s)‖2V ds.

(5.3)

Let jλ be the Moreau-Yosida regularization of j, that is

jλ(x) := inf
y∈R

(

j(y) +
|x− y|2

2λ

)

, λ > 0.

We recall that jλ is a convex, proper differentiable function, with j′λ = βλ, that converges
pointwise to j from below. In particular,

βλ(x)(x− y) ≥ jλ(x)− jλ(y) ≥ jλ(x)− j(y) ∀x, y ∈ R.

This implies
∫ t

0

〈

βλ(Xλ(s)), Yλ(s)
〉

ds =

∫ t

0

∫

D
βλ(Xλ(s, x))(Xλ(s, x)−B ·W (s, x)) dx ds

≥
∫ t

0

∫

D
jλ(Xλ(s, x)) dx ds −

∫ t

0

∫

D
j(B ·W (s, x)) dx ds,

7Whenever we refer to Itô’s formula, we shall always mean the version in [24].
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hence also

1

2
‖Xλ(t)‖2H + C

∫ t

0
‖Xλ(s)‖2V ds+ 2

∫ t

0

∫

D
jλ(Xλ(s, x)) dx ds

≤ ‖X0‖2H + ‖B ·W (t)‖2H +
1

ε

∫ t

0
‖B ·W (s)‖2V ds

+ 2

∫ t

0

∫

D
j(B ·W (s, x)) dx ds.

Taking the supremum with respect to t yields
∥

∥Xλ

∥

∥

2

C([0,T ];H)
+
∥

∥Xλ

∥

∥

2

L2(0,T ;V )
+

∥

∥jλ(Xλ)
∥

∥

L1(0,T ;L1(D))

.
∥

∥X0

∥

∥

2

H
+

∥

∥B ·W
∥

∥

2

C([0,T ];H)
+

∥

∥B ·W
∥

∥

2

L2(0,T ;V )
+

∥

∥j(B ·W )
∥

∥

L1(0,T ;L1(D))
,

where the implicit constant depends only on the operator norm of A. It follows by Itô’s
isometry and Doob’s inequality that

∥

∥B ·W
∥

∥

L2(Ω;C([0,T ];V0))
.

∥

∥B
∥

∥

L2(Ω;L2(0,T ;L 2(U,V0)))
,

where the right-hand side is finite by assumption, hence, recalling that V0 is continuously
embedded in V ,

∥

∥B ·W
∥

∥

C([0,T ];H)
+

∥

∥B ·W
∥

∥

L2(0,T ;V )
.T

∥

∥B ·W
∥

∥

C([0,T ];V0)
.

Analogously, denoting the norm of the continuous embedding ι : V0 → L∞(D) by k, one
has, recalling that j is symmetric and increasing on R+,

∥

∥j(B ·W (t)
∥

∥

L1(D)
.|D| j

(

‖B ·W (t)‖L∞(D)

)

≤ j
(

k‖B ·W (t)‖V0

)

,

for all t ∈ [0, T ], hence
∥

∥j(B ·W )
∥

∥

L1(0,T ;L1(D))
.|D|,T j

(

k‖B ·W‖C([0,T ];V0)

)

.

The proof is complete choosing Ω′ ⊂ Ω such that ‖X0(ω)‖H and ‖B ·W (ω)‖C([0,T ];V0)

are finite for all ω ∈ Ω′, and defining M : Ω′ → R as

M :=
∥

∥X0

∥

∥

2

H
+

∥

∥B ·W
∥

∥

2

C([0,T ];H)
+

∥

∥B ·W
∥

∥

2

L2(0,T ;V )
+

∥

∥j(B ·W )
∥

∥

L1(0,T ;L1(D))
.

Remark 5.4. The above estimates can be obtained by purely deterministic arguments,
without invoking Itô’s formula. In fact, note that equation (5.2) can equivalently be
written as

Yλ(t) +

∫ t

0

(

AXλ(s) + βλ(Xλ(s))
)

ds = 0.

One has Yλ ∈ L2(0, T ;V ), which follows at once by the properties of Xλ and by B ·W ∈
L2(Ω;C([0, T ];V0)). Similarly, since AXλ and βλ(Xλ) belong to L2(Ω;L2(0, T ;V ∗)), one
also has, by the previous identity, Y ′

λ ∈ L2(0, T ;V ∗). In particular, there exists Ω′ ⊂ Ω,
with P(Ω′) = 1, such that

Yλ(ω) ∈ L2(0, T ;V ), Y ′
λ(ω) ∈ L2(0, T ;V ∗) ∀ω ∈ Ω′.

Lemma 4.5 then yields

1

2

∥

∥Yλ(t)
∥

∥

2

H
+

∫ t

0

〈

AXλ(s), Yλ(s)
〉

ds+

∫ t

0

〈

βλ(Xλ), Yλ(s)
〉

ds =
1

2

∥

∥X0

∥

∥

2

H
.
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Lemma 5.5. There exists a constant N > 0 such that

∥

∥Xλ

∥

∥

2

L2(Ω;C([0,T ];H))
+

∥

∥Xλ

∥

∥

2

L2(Ω;L2(0,T ;V )
+

∥

∥βλ(Xλ)Xλ

∥

∥

L1(Ω;L1(0,T ;L1(D)))

< N
(

∥

∥X0

∥

∥

2

L2(Ω;H)
+

∥

∥B
∥

∥

2

L2(Ω;L2(0,T ;L 2(U,H)))

)

.

Proof. Itô’s formula yields

∥

∥Xλ(t)
∥

∥

2

H
+ 2

∫ t

0

〈

AXλ(s),Xλ(s)
〉

ds+ 2

∫ t

0

〈

βλ(Xλ(s)),Xλ(s)
〉

ds

=
∥

∥X0

∥

∥

2

H
+ 2

∫ t

0
Xλ(s)B(s) dW (s) +

1

2

∫ t

0

∥

∥B(s)
∥

∥

2

L 2(U,H)
ds,

where Xλ in the stochastic integral on the right-hand side has to be interpreted as taking
values in H∗ ≃ H. The coercivity of A and the monotonicity of βλ readily imply, after
taking supremum in time and expectation,

E
∥

∥Xλ

∥

∥

2

C([0,T ];H)
+ 2C E

∥

∥Xλ

∥

∥

2

L2(0,T ;V )
+ E

∫ T

0

〈

βλ(Xλ(s)),Xλ(s)
〉

ds

. E
∥

∥X0

∥

∥

2

H
+ E

∥

∥B
∥

∥

2

L2(0,T ;L 2(U,H))
+ E sup

t∈[0,T ]

∣

∣

∣

∣

∫ t

0
Xλ(s)B(s) dW (s)

∣

∣

∣

∣

,

where, by Lemma 4.3,

E sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
Xλ(s)B(s) dW (s)

∣

∣

∣

∣

≤ εE
∥

∥Xλ

∥

∥

2

C([0,T ];H)
+N(ε)E

∫ T

0

∥

∥B(s)
∥

∥

2

L 2(U,H)
ds

for any ε > 0, whence the result follows choosing ε small enough.

We now establish weak compactness properties for the sequence (βλ(Xλ)).

Lemma 5.6. The sequence (βλ(Xλ)) is relatively weakly compact in L1(Ω× (0, T )×D).
Moreover, there exists a set Ω′′ ⊂ Ω, with P(Ω′′) = 1, such that (βλ(Xλ(ω, ·)) is weakly
relatively compact in L1((0, T )×D) for all ω ∈ Ω′′.

Proof. Recalling that, for any y, r ∈ R, j(y)+ j∗(r) = ry if and only if r ∈ ∂j(y) = β(y),
one has

j
(

(I + λβ)−1x
)

+ j∗
(

βλ(x)
)

= βλ(x)(I + λβ)−1x ≤ βλ(x)x ∀x ∈ R. (5.4)

In fact, since βλ ∈ β ◦ (I + λβ)−1, it follows from β = ∂j that βλ(x) ∈ ∂j
(

(I + λβ)−1x
)

.
Moreover, β

(

(I + λβ)−1x
)

(I + λβ)−1x ≥ 0 by monotonicity of β, hence the inequality
in (5.4) follows since (I + λβ)−1 is a contraction. The previous lemma thus implies,
thanks to the symmetry of j∗, that there exists a constant N , independent of λ, such
that, setting

N̄(X0, B) := N
(

∥

∥X0

∥

∥

2

L2(Ω;H)
+

∥

∥B
∥

∥

2

L2(Ω;L2(0,T ;L 2(U,H)))

)

,

one has

E

∫ T

0

∫

D
j∗
(

|βλ(Xλ)|
)

≤ E

∫ T

0

∫

D
βλ(Xλ)Xλ < N̄(X0, B).
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Since j∗ is superlinear at infinity, the sequence (βλ(Xλ)) is uniformly integrable on
Ω× (0, T )×D by the de la Vallée-Poussin criterion, hence weakly relatively compact in
L1(Ω× (0, T )×D) by a well-known theorem of Dunford and Pettis. The first assertion
is thus proved.

By (5.3), since Yλ = Xλ −B ·W , it follows that

∫ t

0

〈

βλ(Xλ(s)),Xλ(s)
〉

ds . ‖X0‖2H + ‖B ·W (t)‖2H +

∫ t

0
‖B ·W (s)‖2V ds

+

∫ t

0

〈

βλ(Xλ(s)), B ·W (s)
〉

ds,

where, by Young’s inequality and convexity (recalling that j∗(0) = 0),

∫ t

0

〈

βλ(Xλ(s)), B ·W (s)
〉

ds ≤ 1

2

∫ t

0

∫

D
j∗
(

βλ(Xλ)
)

+

∫ t

0

∫

D
j(2B ·W ).

Rearranging terms and proceeding as in the (end of the) proof of Lemma 5.3, we infer
that there exists a set Ω′′ ⊂ Ω, with P(Ω′′) = 1, and a function M : Ω′′ → R such that

∫ T

0

〈

βλ(Xλ(ω, s)),Xλ(ω, s)
〉

ds < M(ω) ∀ω ∈ Ω′′. (5.5)

The symmetry of j∗ and (5.4) yield, as before, that, for any ω ∈ Ω′′, (βλ(Xλ(ω, ·))) is
weakly relatively compact in L1((0, T ) ×D).

In order to pass to the limit as λ → 0, we are going to use Simon’s compactness
criterion, i.e. Lemma 4.6, and Brézis’ Lemma 4.1.

Proposition 5.7. There exists Ω′ ⊆ Ω, with P(Ω′) = 1, such that, for any ω ∈ Ω′, there
exists a subsequence λ′ = λ′(ω) of λ such that, as λ′ → 0,

Xλ′(ω, ·) ∗−⇀ X(ω, ·) in L∞(0, T ;H),

Xλ′(ω, ·) −⇀ X(ω, ·) in L2(0, T ;V ),

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

βλ′(Xλ′(ω, ·)) −⇀ ξ(ω, ·) in L1((0, T ) ×D).

Proof. The first two convergence statements follow by Lemma 5.3, and the fourth one
follows by Lemma 5.6. Let us show that the third convergence statement holds. In the
following we omit the indication of ω, as no confusion can arise. Setting Yλ = Xλ−B ·W ,
(5.2) can equivalently be written as the deterministic equation (with random coefficients)
on V ∗

Y ′
λ +AXλ + βλ(Xλ) = 0,

where

∥

∥AXλ

∥

∥

L1(0,T ;V ∗

0 )
.

∥

∥AXλ

∥

∥

L1(0,T ;V ∗)
.

∥

∥Xλ

∥

∥

L1(0,T ;V )
,

∥

∥βλ(Xλ)
∥

∥

L1(0,T ;V ∗

0 )
.

∥

∥βλ(Xλ)
∥

∥

L1(0,T ;V ∗)
.

∥

∥βλ(Xλ)
∥

∥

L1(0,T ;L1(D))
,
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hence, again by Lemmata 5.3 and 5.6, ‖Y ′
λ‖L1(0,T ;V ∗

0 ) is bounded uniformly over λ. More-

over, since B ·W ∈ L2(Ω;C([0, T ];V0)) and

∥

∥Yλ
∥

∥

L2(0,T ;V )
≤

∥

∥Xλ

∥

∥

L2(0,T ;V )
+

∥

∥B ·W
∥

∥

L2(0,T ;V )
,

we conclude that (Yλ) is bounded in L2(0, T ;V ). Simon’s compactness criterion then
implies that Yλ, hence also Xλ, is relatively compact in L2(0, T ;H). Since Xλ′ ⇀ X in
L2(0, T ;V ), it follows that

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

thus completing the proof.

We are now going to show that the couple (X, ξ) just constructed is indeed the unique
solution to the equation with “smoothed” noise (5.1).

Proof of Proposition 5.1. In spite of the above preparations, the argument is quite long,
so we subdivide it into several steps.

Step 1. In the notation of Proposition 5.7, let ω ∈ Ω′ be arbitrary but fixed. Note that
Xλ′ → X in L2(0, T ;H) implies that, passing to a further subsequence of λ′, denoted
with the same symbol for simplicity, Xλ′(t) → X(t) in H for almost all t ∈ [0, T ].
Moreover, Xλ′ ⇀ X in L2(0, T ;V ) implies that

∫ t

0
AXλ(s) ds −⇀

∫ t

0
AX(s) ds in V ∗

for all t ∈ [0, T ]. In fact, taking φ0 ∈ V and φ := s 7→ 1[0,t](s)φ0 ∈ L2(0, t;V ), one
obviously has A∗φ ∈ L2(0, t;V ∗) and

∫ t

0
〈AXλ(s), φ0〉 ds =

∫ T

0
〈AXλ(s), φ(s)〉 ds =

∫ T

0
〈Xλ(s), A

∗φ(s)〉 ds

−→
∫ T

0
〈X(s), A∗φ(s)〉 ds =

∫ t

0
〈AX(s), φ0〉 ds.

Similarly, βλ′(Xλ′)⇀ ξ in L1((0, T ) ×D) implies

∫ t

0
βλ′(Xλ′(s)) ds −⇀

∫ t

0
ξ(s) ds in L1(D)

for all t ∈ [0, T ]. In particular, passing to the limit as λ′ → 0 in the regularized equation
(5.2) yields

X(t) +

∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 +B ·W (t) in V ∗

0 for a.a. t ∈ [0, T ].

Since AX ∈ L2(0, T ;V ∗) →֒ L1(0, T ;V ∗
0 ) and ξ ∈ L1(0, T ;L1(D)) →֒ L1(0, T ;V ∗

0 ),
recalling that B ·W ∈ C([0, T ];V0), we infer that X ∈ C([0, T ];V ∗

0 ), hence the previous
identity is true for all t ∈ [0, T ]. Moreover, it follows from X ∈ L∞(0, T ;H) that
X ∈ Cw([0, T ];H), thanks Lemma 4.4. Note also that all terms expect the second one
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on the left-hand side take values in L1(D), and all terms except the third one on the
left-hand side take values in V ∗, hence the above identity holds true also in L1(D)∩V ∗.

Let us now show that ξ ∈ β(X) a.e. in (0, T ) ×D: Xλ′ → X in L2(0, T ;H) implies
that, passing to a subsequence of λ′, still denoted by the same symbol, Xλ′ → X a.e. in
(0, T ) ×D, hence also (I + λ′β)−1Xλ′ → X a.e. in (0, T ) ×D. Since βλ′(Xλ′) ∈ β((I +
λ′β)−1Xλ′) a.e. in (0, T )×D and βλ′(Xλ′)(I + λ′β)−1Xλ′ is bounded in L1((0, T )×D)
by (5.5), Brézis’ Lemma 4.1 implies the claim. These relations and the weak convergence
βλ′(Xλ′) ⇀ ξ in L1((0, T ) ×D) also imply, by the weak lower semicontinuity of convex
integrals, that

∫ T

0

∫

D

(

j(X) + j∗(ξ)
)

≤ lim inf
λ′→0

∫ T

0

∫

D

(

j((I + λ′A)−1Xλ′) + j∗(βλ′(Xλ′))
)

= lim inf
λ′→0

∫ T

0

∫

D
βλ′(Xλ′)(I + λ′A)−1Xλ′ ≤ N,

where N is a constant that depends on ω.

Step 2. Still keeping ω fixed as in the previous step, we are going to show that the
limits X and ξ constructed above are unique. Suppose there exist (Xi, ξi), ξi ∈ β(Xi)
a.e. in (0, T )×D, i = 1, 2, such that

Xi(t) +

∫ t

0
AXi(s) ds +

∫ t

0
ξi(s) ds = X0 +B ·W (t)

in L1(D) ∩ V ∗ for all t ∈ [0, T ]. Setting X = X1 −X2 and ξ = ξ1 − ξ2, it is enough to
show that

X(t) +

∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = 0 (5.6)

in L1(D)∩ V ∗ for all t ∈ [0, T ] implies X = 0 and ξ = 0. By the hypotheses on A, there
exists m ∈ N such that (I + δA)−m maps L1(D) in L∞(D). Therefore, setting

Xδ := (I + δA)−mX, ξδ := (I + δA)−mξ,

one has

Xδ(t) +

∫ t

0
AXδ(s) ds+

∫ t

0
ξδ(s) ds = 0

for all t ∈ [0, T ], for which Itô’s formula and monotonicity of A yield

1

2

∥

∥Xδ(t)
∥

∥

2

H
+

∫ t

0

∫

D
ξδ(s, x)Xδ(s, x) dx ds ≤ 0.

We can now take the limit as δ → 0. Since (I+ δA)−m converges, in the strong operator
topology, to the identity in L (H), one has ‖Xδ(t)‖H → ‖X(t)‖H for all t ∈ [0, T ].
Passing to a subsequence of δ, still denoted by the same symbol, we also have Xδ → X
and ξδ → ξ a.e. in (0, T ) ×D, hence Xδξδ → Xξ a.e. in (0, T ) ×D. Let us show that
(Xδξδ) is uniformly integrable: by the symmetry of j and j∗, and the abstract Jensen
inequality of Lemma 4.2, we have

|Xδξδ| ≤ j(Xδ) + j∗(ξδ) ≤ (I + δA)−m
(

j(X) + j∗(ξ)
)

,
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where the term on the right-hand side converges to j(X) + j∗(ξ) in L1((0, T ) × D) as
δ → 0, hence (Xδξδ) is indeed uniformly integrable on (0, T )×D. It follows by Vitali’s
convergence theorem that, for any t ∈ [0, T ],

∫ t

0

∫

D
Xδξδ →

∫ t

0

∫

D
Xξ,

hence also
1

2

∥

∥X(t)
∥

∥

2

H
+

∫ t

0

∫

D
X(s, x)ξ(s, x) dx ds ≤ 0.

The monotonicity of β immediately implies that X(t) = 0 for all t ∈ [0, T ]. Substituing
in (5.6), we are left with

∫ t
0 ξ(s) ds = 0 in L1(D) for all t ∈ [0, T ], so that also ξ = 0, and

uniqueness is proved.

Step 3. The solution (X, ξ) does not have, a priori, any measurability in ω, because
of the way it has been constructed. We are going to show that in fact X and ξ are
predictable processes. The reasoning for X is simple: with ω fixed, we have proved that
from any subsequence of λ one can extract a further subsequence λ′, depending on ω, such
that the convergences of Proposition 5.7 take place, and the limit (X, ξ) is unique. This
implies, by a well-known criterion of classical analysis, that the same convergences hold
along the original sequence λ, which does not depend on ω. The convergence of Xλ(ω, ·)
to X(ω, ·) in L2(0, T ;H) implies that X : Ω → L2(0, T ;H) is measurable and Xλ(ω, t)
converges to X(ω, t) in H in P⊗ dt-measure, hence Xλ̄(ω, t) → X(ω, t) in H P⊗ dt-a.e.
along a subsequence λ̄ of λ. Since Xλ is predictable, being adapted with continuous
trajectories in H, we infer that X is predictable. Unfortunately a similar reasoning does
not work for ξ, because ξλ(ω) := βλ(Xλ(ω)) converges only weakly in L1((0, T ) × D)
for P-a.a. ω ∈ Ω.8 We shall prove instead that a subsequence of ξλ := βλ(Xλ) converges
weakly to ξ in L1(Ω× (0, T )×D). In fact, let g ∈ L∞((0, T )×D) be arbitrary but fixed.
Then, setting

Fλ(ω) :=

∫ T

0

∫

D
ξλ(ω, s, x)g(s, x) dx ds, F (ω) :=

∫ T

0

∫

D
ξ(ω, s, x)g(s, x) dx ds,

we have Fλ → F in probability, and we claim that Fλ → F weakly in L1(Ω). Let
h ∈ L∞(Ω) be arbitrary but fixed, and introduce the even convex function

j0 := j∗(·/M), M :=
1

(

‖g‖L∞((0,T )×D) ∨ 1
)(

‖h‖L∞(Ω) ∨ 1
) .

Then, by Jensen’s inequality,

E j0(Fλh) = E j0

(
∫ T

0

∫

D
ξλ(ω, s, x)g(s, x)h(ω) dx ds

)

.T,|D| E

∫ T

0

∫

D
j0
(

ξλ(ω, s, x)g(s, x)h(ω)
)

dx ds

≤ E

∫ T

0

∫

D
j∗
(

ξλ(ω, s, x)
)

dx ds,

8One may indeed deduce, using Mazur’s lemma, that there exists, for each ω in a set of probability
one, a sequence (ξ̃µ(ω)(ω))µ(ω) in the convex envelope of (ξλ(ω))λ that converges to ξ(ω). However, the

map ω 7→ ξ̃µ(ω)(ω) needs not be measurable, hence we cannot infer measurability of its limit ξ.
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where the last term is bounded by a constant independent of λ, as proved in Lemma
5.6. Since j0 inherits the superlinearity at infinity of j∗, the criterion of de la Vallée
Poussin implies that Fλh is uniformly integrable, hence, since Fλh→ Fh in probability,
that Fλh → Fh strongly in L1(Ω) by Vitali’s theorem. As h was arbitrary, this implies
that Fλ → F weakly in L1(Ω), thus also that ξλ → ξ weakly in L1(Ω × (0, T ) ×D) by
arbitrariness of g. By the canonical identification of L1(Ω × (0, T ) × D) with L1(Ω ×
(0, T );L1(D)) and Mazur’s lemma (see, e.g., [11, 7), p. 360]), there exists a sequence
(ζn)n∈N of convex combinations of (ξλ) that converges strongly to ξ in L1(D) in P⊗ dt-
measure, hence P ⊗ dt-a.e. passing to a subsequence of n. Since ξλ, hence ζn, are
predictable for all λ and n, respectively, it follows that ξ is a predictable L1(D)-valued
process and ξ : Ω → L1((0, T ) ×D)) is measurable. Moreover, since Xλ(ω, ·) → X(ω, ·)
in L2(0, T ;H) for P-a.a. ω and (Xλ)λ is bounded in L2(Ω;L2(0, T ;V )), it follows that
Xλ ⇀ X in L2(Ω;L2(0, T ;V )). Therefore, an entirely analogous argument based on
Mazur’s lemma yields that X : Ω → L2(0, T ;V ) is measurable.

Step 4. As last step, we are going to show that X and ξ satisfy also estimates in
expectation. In particular, the weak and weak* lower semicontinuity of the norm ensures
that, for P-almost all ω ∈ Ω,

∥

∥X(ω, ·)
∥

∥

L2(0,T ;V )
≤ lim inf

λ→0

∥

∥Xλ(ω, ·)
∥

∥

L2(0,T ;V )
,

∥

∥X(ω, ·)
∥

∥

L∞(0,T ;H)
≤ lim inf

λ→0

∥

∥Xλ(ω, ·)
∥

∥

L∞(0,T ;H)
,

∥

∥ξ(ω, ·)
∥

∥

L1(Q)
≤ lim inf

λ→0

∥

∥βλ(Xλ(ω, ·))
∥

∥

L1(Q)
.

Taking expectations and recalling Lemmata 5.5 and 5.6, it follows by Fatou’s lemma
that, for a constant N ,

E
∥

∥X
∥

∥

2

L2(0,T ;V )
≤ E

(

lim inf
λ→0

∥

∥Xλ

∥

∥

2

L2(0,T ;V )

)

≤ lim inf
λ→0

E
∥

∥Xλ

∥

∥

2

L2(0,T ;V )
< N,

E
∥

∥X
∥

∥

2

L∞(0,T ;H)
≤ E

(

lim inf
λ→0

∥

∥Xλ

∥

∥

2

L∞(0,T ;H)

)

≤ lim inf
λ→0

E
∥

∥Xλ

∥

∥

2

L∞(0,T ;H)
< N,

E
∥

∥ξ
∥

∥

L1(0,T ;L1(D))
≤ E

(

lim inf
λ→0

∥

∥ξλ
∥

∥

L1(0,T ;L1(D))

)

≤ lim inf
λ→0

E
∥

∥ξλ
∥

∥

L1(0,T ;L1(D))
< N,

i.e.

X ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ξ ∈ L1(Ω × (0, T )×D).

The proof is thus complete.

We conclude this section with a corollary that will be used in the following.

Corollary 5.8. There exists a constant N such that

E

∫ T

0

∫

D

(

j(X) + j∗(ξ)
)

< N
(

∥

∥X0

∥

∥

2

L2(Ω;H)
+

∥

∥B
∥

∥

2

L2(Ω;L2(0,T ;L 2(U,H)))

)

.

Proof. Thanks to Step 3 in the previous proof, there exists a sequence λ, independent
of ω, such that Xλ → X a.e. in (0, T ) ×D and βλ(Xλ) → ξ weakly in L1((0, T ) ×D).
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Proceeding as in the first part of the proof of Lemma 5.6, Lemma 5.5 implies that there
exists a constant N such that

E

∫ T

0

∫

D

(

j(I + λβ)−1Xλ) + j∗(βλ(Xλ))
)

dx ds < N̄(X0, B),

where N̄(X0, B) := N
(

‖X0‖2L2(Ω;H)+‖B‖2L2(Ω;L2(0,T ;L 2(U,H)))

)

. Therefore, in analogy to
Step 4 of the previous proof, two applications of Fatou’s lemma yield

E

∫ T

0

∫

D
j(X) ≤ lim inf

λ→0
E

∫ T

0

∫

D
j((I + λβ)−1Xλ) < N̄(X0, B),

as well as, by the weak lower semicontinuity of convex integrals and Fatou’s lemma
again,

E

∫ T

0

∫

D
j∗(ξ) ≤ lim inf

λ→0
E

∫ T

0

∫

D
j∗(βλ(Xλ)) < N̄(X0, B).

6 Well-posedness with additive noise

In this section we prove well-posedness for the equation

dX(t) +AX(t) dt+ β(X(t)) dt ∋ B(t) dW (t), X(0) = X0, (6.1)

where B is an L 2(U,H)-valued process. Note that this is just equation (1.1) with
additive noise.

Proposition 6.1. Assume that X0 ∈ L2(Ω,F0,P;H) and that

B ∈ L2(Ω;L2(0, T ;L 2(U,H)))

is measurable and adapted. Then equation (5.1) is well posed in J . Moreover, X(ω, ·) ∈
Cw([0, T ];H) for P-almost all ω ∈ Ω.

Proof. We shall proceed in several steps: first we approximate the coefficient B in such
a way that the corresponding equation can be uniquely solved by the methods of the
previous section. Then we pass to the limit in an appropriate way, obtaining a solution
to (6.1), which is then shown to be unique.

Step 1. By Assumption A(iv), there exists m ∈ N such that (I +A)−m maps continu-
ously L1 to L∞. The space V0 := D(Am), endowed with inner product

〈u, v〉V0
:= 〈u, v〉H + 〈Amu,Amv〉H , u, v ∈ D(Am),

is a Hilbert space densely and continuously embedded in V . Moreover, the diagram

D(Am)
(I+A)m−−−−−−→ L1(D)

(I+A)−m

−−−−−−−→ L∞(D)

immediately shows that V0 is also continuously embedded in L∞(D). In particular, all
hypotheses on V0 of the previous section are met. Moreover, by the ideal property of
Hilbert-Schmidt operators, setting, for any ε > 0,

Bε := (I + εA)−mB,
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we have Bε ∈ L2(Ω;L2(0, T ;L 2(U, V0))). Then it follows by Proposition 5.1 that, for
any ε > 0, there exist predictable processes

Xε ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ξε ∈ L1(Ω× (0, T ) ×D),

with Xε(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ Ω, such that

Xε(t) +

∫ t

0
AXε(s) ds +

∫ t

0
ξε(s) ds = X0 +

∫ t

0
Bε(s) dW (s) (6.2)

in V ∗ ∩ L1(D) for all t ∈ [0, T ]. Moreover, ξε ∈ β(Xε) a.e. in (0, T ) ×D and j(Xε) +
j∗(ξε) ∈ L1((0, T ) ×D) P-almost surely.

Step 2. For any ε > 0, the equation in V ∗

Xε
λ(t) +

∫ t

0
AXε

λ(s) ds +

∫

0
βλ(X

ε
λ(s)) ds = X0 +

∫ t

0
Bε(s) dW (s)

admits a unique (variational) strong solution Xε
λ. Taking into account the coercivity of

A and the monotonicity of βλ, Itô’s formula yields, for any δ > 0,

∥

∥Xε
λ(t)−Xδ

λ(t)
∥

∥

2

H
+

∫ t

0

∥

∥Xε
λ(s)−Xδ

λ(s)
∥

∥

2

V
ds

.

∫ t

0

(

Xε
λ(s)−Xδ

λ(s)
)(

Bε(s)−Bδ(s)
)

dW (s) +

∫ t

0

∥

∥Bε(s)−Bδ(s)
∥

∥

2

L 2(U,H)
ds.

Taking supremum in time and expectation, it easily follows from Lemma 4.3 that
∥

∥Xε
λ −Xδ

λ

∥

∥

L2(Ω;L∞(0,T ;H))
+

∥

∥Xε
λ −Xδ

λ

∥

∥

L2(Ω;L2(0,T ;V ))

.
∥

∥Bε −Bδ
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))
.

On the other hand, the proof of Proposition 5.1 shows that there exists a sequence λ,
independent of ε, such that, for P-almost all ω ∈ Ω,

Xε
λ(ω, ·)

∗−⇀ Xε(ω, ·) in L∞(0, T ;H),

Xε
λ(ω, ·) −⇀ Xε(ω, ·) in L2(0, T ;V ),

βλ(X
ε
λ(ω, ·)) −⇀ ξε(ω, ·) in L1((0, T ) ×D)

as λ → 0. Since the weak* limit in L∞(0, T ;H) as λ → 0 of Xε
λ −Xδ

λ is Xε −Xδ , the
weak* lower semicontinuity of the norm implies

∥

∥Xε −Xδ
∥

∥

L∞(0,T ;H)
≤ lim inf

λ→0

∥

∥Xε
λ −Xδ

λ

∥

∥

L∞(0,T ;H)
,

thus also, by Fatou’s lemma,

E
∥

∥Xε −Xδ
∥

∥

2

L∞(0,T ;H)
≤ E lim inf

λ→0

∥

∥Xε
λ −Xδ

λ

∥

∥

2

L∞(0,T ;H)
. E

∥

∥Bε −Bδ
∥

∥

2

L2(0,T ;L 2(U,H))
.

An entirely similar argument yields

E
∥

∥Xε −Xδ
∥

∥

2

L2(0,T ;V )
. E

∥

∥Bε −Bδ
∥

∥

2

L2(0,T ;L 2(U,H))
,
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so that

∥

∥Xε −Xδ
∥

∥

L2(Ω;L∞(0,T ;H))
+

∥

∥Xε −Xδ
∥

∥

L2(Ω;L2(0,T ;V ))

.
∥

∥Bε −Bδ
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))
.

Taking into account that
∥

∥Bε − B
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))
→ 0 as ε → 0, it follows that

(Xε) is a Cauchy sequence in E := L2(Ω;L∞(0, T ;H))∩L2(Ω;L2(0, T ;V )), hence there
exists X ∈ E such that Xε converges (strongly) to X in E as ε → 0. In particular, the
limit process X is predictable. Moreover, by Corollary 5.8, there exists a constant N
such that

E

∫ T

0

∫

D

(

j(Xε) + j∗(ξε)
)

dx ds < N
(

∥

∥X0

∥

∥

2

L2(Ω;H)
+
∥

∥Bε
∥

∥

2

L2(Ω;L2(0,T ;L 2(U,H)))

)

≤ N
(

∥

∥X0

∥

∥

2

L2(Ω;H)
+
∥

∥B
∥

∥

2

L2(Ω;L2(0,T ;L 2(U,H)))

)

,

(6.3)

as it follows by the ideal property of Hilbert-Schmidt operators and the contractivity of
(I + εA)−1. The criterion by de la Vallée Poussin then implies that (ξε) is uniformly
integrable on Ω × (0, T ) × D, hence, by the Dunford-Pettis theorem, (ξε) is weakly
relatively compact in L1(Ω × (0, T ) × D). Therefore, passing to a subsequence of ε,
denoted by the same symbol, there exists ξ belonging to the latter space such that
ξε → ξ therein in the weak topology. In particular, by an argument based on Mazur’s
lemma, entirely analogous to that used in Step 3 of the proof of Proposition 5.1, one
infers that ξ is a predictable process.

Step 3. We can now pass to the limit as ε → 0 in Equation (6.2), by a reasoning
analogous to the one use in Step 1 of the proof of Proposition 5.1. As proved in the
previous step, Xε converges strongly to X in L2(Ω;L∞(0, T ;H)), hence

ess sup
t∈[0,T ]

∥

∥Xε(t)−X(t)
∥

∥

H
→ 0

in probability as ε→ 0. Let φ0 ∈ V0 be arbitrary. Since V0 →֒ L∞(D), one has

〈

Xε(t), φ0
〉

→
〈

X(t), φ0
〉

in probability for almost all t ∈ [0, T ]. Let us set, for an arbitrary but fixed t ∈ [0, T ],
φ : s 7→ 1[0,t](s)φ0 ∈ L2(0, T ;V ), so that Aφ ∈ L2(0, T ;V ∗). Recalling that Xε → X
(strongly, hence also weakly) in L2(Ω;L2(0, T ;V )), it follows immediately that Xε ⇀ X
in L2(0, T ;V ) in measure, hence

∫ t

0
〈AXε, φ0〉 ds =

∫ T

0
〈AXε(s), φ(s)〉 ds =

∫ T

0
〈Xε(s), Aφ(s)〉 ds

→
∫ T

0
〈X(s), Aφ(s)〉 ds =

∫ t

0
〈AX(s), φ0〉 ds

in probability as ε→ 0. A completely analogous reasoning shows that

∫ t

0
〈ξε(s), φ0〉 ds→

∫ t

0
〈ξ(s), φ0〉 ds
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in probability as ε→ 0. Doob’s maximal inequality and the convergence
∥

∥Bε −B
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))

ε→0−−−→ 0

readily yield also that Bε ·W (t) → B ·W (t) in H in probability for all t ∈ [0, T ]. In
particular, since φ0 ∈ V0 and t ∈ [0, T ] are arbitrary, we infer that

X(t) +

∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 +

∫ t

0
B(s) dW (s)

holds in V ∗
0 for almost all t. Recalling that ξ ∈ L1(0, T ;L1(D)) →֒ L1(0, T ;V ∗

0 ), so
that all terms except the first on the left-hand side have trajectories in C([0, T ];V ∗

0 ),
we conclude that the identity holds for all t ∈ [0, T ]. Moreover, thanks to Lemma 4.4,
X ∈ C([0, T ];V ∗

0 ) and X ∈ L∞(0, T ;H) imply X ∈ Cw([0, T ];H). Note also that all
terms bar the second [third] one on the left-hand side are L1(D)-valued [V ∗-valued],
hence the identity holds in L1(D) ∩ V ∗ for all t ∈ [0, T ].

Step 4. Convergence of Xε → X in L2(Ω;L∞(0, T ;H)) implies convergence in measure
in Ω× (0, T )×D, hence, by Fatou’s lemma, (6.3) yields

E

∫ T

0

∫

D
j(X) < N̄(X0, B),

where N̄(X0, B) is the constant appearing in the last term of (6.3). Similarly, since
ξε → ξ weakly in L1(Ω× (0, T )×D), (6.3) and the weak lower semicontinuity of convex
integrals yield

E

∫ T

0

∫

D
j∗(ξ) < N̄(X0, B).

To complete the proof of existence, we only need to show that ξ ∈ β(X) a.e. in Ω ×
(0, T )×D. Note that, passing to a subsequence of ε, still denoted by the same symbol,
we have Xε → X a.e. in Ω×(0, T )×D. Recalling that ξε ∈ β(Xε) a.e. in Ω×(0, T )×D,
(6.3) again implies

E

∫ T

0

∫

D
Xεξε = E

∫ T

0

∫

D

(

j(Xε) + j∗(ξε)
)

< N̄(X0, B).

It follows by monotonicity that Xεξε ≥ 0, hence Xεξε ∈ L1(Ω × (0, T ) × D). Brézis’
Lemma 4.1 then yields ξ ∈ β(X) a.e. in Ω× (0, T ) ×D.

Uniqueness and continuous dependence of the solution on the initial datum is an
immediate consequence of the next result.

We first need to introduce weighted (in time) versions of some spaces of processes. For
any p ∈ [1,∞] and α ≥ 0, we shall denote by Lp

α(0, T ) the space Lp(0, T ) endowed with
the norm ‖f‖Lp

α(0,T ) := ‖t 7→ e−αtf(t)‖Lp(0,T ). It is clear that L
p(0, T ) and Lp

α(0, T ), for
different values of α, are all isomorphic (their norms are equivalent). Completely similar
notation will be used for vector-valued Lp and Lp

α spaces. For typographical economy,
restricted only to the formulation of the following proposition, let us define the Banach
space

Fα := L2(Ω;L∞
α (0, T ;H)) ∩ L2(Ω;L2

α(0, T ;V )),

endowed with the norm

‖·‖Fα
:= ‖·‖L2(Ω;L∞

α (0,T ;H))∩L2(Ω;L2
α(0,T ;V )) +

√
α‖·‖L2(Ω;L2

α(0,T ;H))
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Proposition 6.2. Let (X1, ξ1), (X2, ξ2) ∈ J be solutions to (6.1) with initial values
X01, X02 ∈ L2(Ω,F0;H) and progressively measurable diffusion coefficients B1, B2 ∈
L2(Ω;L2(0, T ;L 2(U,H))), respectively. Then, for any α ≥ 0,

‖X1 −X2‖Fα
. ‖X01 −X02‖L2(Ω;H) + ‖B1 −B2‖L2(Ω;L2

α(0,T ;L 2(U,H))).

In particular, there is a unique solution (X, ξ) ∈ J to (6.1).

Proof. Setting

Y := X1 −X2, Y0 := X01 −X02, G := B1 −B2,

one has

Y (t) +

∫ t

0
AY (s) ds+

∫ t

0
ζ(s) ds = Y0 +

∫ t

0
G(s) dW (s)

in V ∗ ∩ L1(D), where ζ := ξ1 − ξ2, and ξ1, ξ2 are defined in the obvious way. By the
hypotheses on A, there exists m ∈ N such that, using the notation hδ := (I + δA)−mh
for any h for which it makes sense,

AY δ, ζδ ∈ L1(Ω;L1(0, T ;H)),

while Y δ
0 and Gδ have the same integrability properties of Y , Y0 and G, respectively. In

particular, we have

Y δ(t) +

∫ t

0
AY δ(s) ds+

∫ t

0
ζδ(s) ds = Y δ

0 +

∫ t

0
Gδ(s) dW (s)

in V ∗. Let α > 0 be arbitrary but fixed, and add a superscript α to any process that is
multiplied pointwise by the function t 7→ e−αt. The integration by parts formula yields

Y δ,α(t) +

∫ t

0
(A+ αI)Y δ,α(s) ds +

∫ t

0
ζδ,α(s) ds = Y δ

0 +

∫ t

0
Gδ,α(s) dW (s),

to which we can apply Itô’s formula for the square of the norm in H, obtaining, using
the coercivity of A,

∥

∥Y δ,α(t)
∥

∥

2

H
+ 2α

∫ t

0

∥

∥Y δ,α(s)
∥

∥

2

H
ds+ 2C

∫ t

0

∥

∥Y δ,α(s)
∥

∥

2

V
ds

+ 2

∫ t

0

〈

Y δ,α(s), ζδ,α(s)
〉

ds

≤
∥

∥Y δ
0

∥

∥

2

H
+

∫ t

0
Y δ,α(s)Gδ,α(s) dW (s) +

∫ t

0

∥

∥Gδ,α(s)
∥

∥

2

L 2(U,H)
ds.

We are now going to pass to the limit as δ → 0: the first term on the left-hand side
and on the right-hand side clearly converge to ‖Y α(t)‖2H and ‖Y0‖2H , respectively. Since
(I+δA)−1 converges to the identity in H as well as in V in the strong operator topology,
the dominated convergence theorem yields

∫ t

0

∥

∥Y δ,α(s)
∥

∥

2

V
ds −→

∫ t

0

∥

∥Y α(s)
∥

∥

2

V
ds,

∫ t

0

∥

∥Gδ,α(s)
∥

∥

2

L 2(U,H)
ds −→

∫ t

0

∥

∥Gα(s)
∥

∥

2

L 2(U,H)
ds
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as δ → 0 for all t ∈ [0, T ]. Defining the real local martingales

M δ,α := (Y δ,αGδ,α) ·W, Mα := (Y αGα) ·W,

in order to establish convergence in probability (uniformly on compact sets) of the se-
quence M δ,α to Mα as δ → 0, it is sufficient to show that [M δ,α −Mα,M δ,α −Mα]T
converges to zero in probability. To this purpose, note that

[M δ,α −Mα,M δ,α −Mα]
1/2
T =

∥

∥Y δ,αGδ,α − Y αGα
∥

∥

L2(0,T ;L 2(U,R))

≤
∥

∥Y δ,αGδ,α − Y δ,αGα
∥

∥

L2(0,T ;L 2(U,R))

+
∥

∥Y δ,αGα − Y αGα
∥

∥

L2(0,T ;L 2(U,R))
,

where
∥

∥Y δ,α(t)Gδ,α(t)− Y δ,α(t)Gα(t)
∥

∥

L 2(U,R))
≤

∥

∥Y α(t)
∥

∥

H

∥

∥Gδ,α(t)−Gα(t)
∥

∥

L 2(U,H))

for all t ∈ [0, T ]. Since the right-hand side converges to 0 as δ → 0 and it is bounded
by 2‖Y α‖L∞(0,T ;H)‖Gα(t)‖L 2(U,H), and Gα ∈ L2(0, T ;L 2(U,H)), the dominated con-
vergence theorem yields

∥

∥Y δ,αGδ,α − Y δ,αGα
∥

∥

L2(0,T ;L 2(U,R))
→ 0

as δ → 0. A completely analogous argument shows that
∥

∥Y δ,αGα−Y αGα
∥

∥

L2(0,T ;L 2(U,R))

tends to 0 as δ → 0 as well.
We are now going to show that Y δ,αζδ,α → Y αζα in L1(Ω×(0, T )×D), which clearly

implies that
∫ t

0

∫

D
Y δ,αζδ,α →

∫ t

0

∫

D
Y αζα

in probability for all t ∈ [0, T ]. Since Y δ,α → Y α and ζδ,α → ζα in measure in Ω ×
(0, T ) ×D, Vitali’s theorem implies strong convergence in L1 if the sequence (Y δ,αζδ,α)
is uniformly integrable in Ω×(0, T )×D. In turn, the latter is certainly true if

(

|Y δ,αζδ,α|
)

is dominated by a sequence that converges strongly in L1. In order to prove this property,
note that j and j∗ are increasing on R+, hence

1

4

∣

∣Y δ,α(ω, t, x)ζδ,α(ω, t, x)
∣

∣ ≤ j
(

e−αt|Y δ(ω, t, x)|/2
)

+ j∗
(

e−αt|ζδ(ω, t, x)|/2
)

≤ j
(

|Y δ(ω, t, x)|/2
)

+ j∗
(

|ζδ(ω, t, x)|/2
)

,

so that, by the symmetry of j and j∗, and by the Jensen inequality of Lemma 4.2,

1

4

∣

∣Y δ,αζδ,α
∣

∣ ≤ j(Y δ/2) + j∗(ζδ/2) ≤ (I + δA)−m
(

j(Y/2) + j∗(ζ/2)
)

,

where, by convexity and symmetry,

j(Y/2) = j
(1

2
X1 +

1

2
(−X2)

)

≤ 1

2

(

j(X1) + j(X2)
)

∈ L1(Ω × (0, T ) ×D),

and, completely analogously,

j∗(ζ/2) ≤ 1

2

(

j∗(ξ1) + j∗(ξ2)
)

∈ L1(Ω× (0, T ) ×D),
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hence
∣

∣Y δ,αζδ,α
∣

∣ . (I + δA)−m
(

j(X1) + j(X2) + j∗(ξ1) + j∗(ξ2)
)

.

Since the right-hand side of this expression converges strongly in L1(Ω× (0, T )×D) as
δ → 0, it is, a fortiori, uniformly integrable, and so is the left-hand side.

We have thus obtained

∥

∥Y α(t)
∥

∥

2

H
+ 2α

∫ t

0

∥

∥Y α(s)
∥

∥

2

H
ds+ 2

∫ t

0
E
(

Y α(s), Y α(s)
)

ds

+ 2

∫ t

0

∫

D
Y α(s, x)ζα(s, x) dx ds

≤
∥

∥Y0
∥

∥

2

H
+

∫ t

0
Y α(s)Gα(s) dW (s) +

∫ t

0

∥

∥Gα(s)
∥

∥

2

L 2(U,H)
ds,

where, by monotonicity, Y αζα = e−2α·(X1−X2)(ξ2−ξ2) ≥ 0, hence, taking the L∞(0, T )
norm and expectation on both sides,

∥

∥Y α
∥

∥

L2(Ω;L∞(0,T ;H))
+

√
α
∥

∥Y α
∥

∥

L2(Ω;L2(0,T ;H))
+

∥

∥Y α
∥

∥

L2(Ω;L2(0,T ;V ))

.
∥

∥Y0
∥

∥

L2(Ω;H)
+

(

E sup
t≤T

∣

∣

∣

∣

∫ t

0
Y α(s)Gα(s) dW (s)

∣

∣

∣

∣

)1/2

+
∥

∥Gα
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))
.

By Lemma 4.3, one has

(

E sup
t≤T

∣

∣

∣

∣

∫ t

0
Y α(s)Gα(s) dW (s)

∣

∣

∣

∣

)1/2

≤ ε
∥

∥Y α
∥

∥

L2(Ω;L∞(0,T ;H))

+N(ε)
∥

∥Gα
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))
,

with ε > 0 arbitrary. Choosing ε sufficiently small and rearranging terms, one obtains

‖X1 −X2‖Fα
. ‖X01 −X02‖L2(Ω;H) + ‖B1 −B2‖L2(Ω;L2

α(0,T ;L 2(U,H)))

as claimed.
Choosing α = 0, X01 = X02, and B1 = B2, one gets immediately X1 = X2, hence

also, by substitution,

∫ t

0
(ξ1(s)− ξ2(s)) ds = 0 ∀t ∈ [0, T ],

which implies uniqueness of ξ.

7 Proof of the main result

Let Y ∈ L2(Ω;L2(0, T ;H)) be a progressively measurable process, X0 ∈ L2(Ω,F0,P;H),
and consider the equation

dX(t) +AX(t) dt + β(X(t)) dt ∋ B(t, Y (t)) dW (t), X(0) = X0. (7.1)
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Since B(·, Y ) is U -measurable, adapted, and belongs to L2(Ω;L2(0, T ;L 2(U,H))), the
above equation is well-posed in J by Proposition 6.1, hence one can define a map

Γ : L2(Ω;H)× L2(Ω;L2(0, T ;H)) −→ L2(Ω;L2(0, T ;H)) × L1(Ω× (0, T ) ×D)

(X0, Y ) 7−→ (X, ξ),

where (X, ξ) is the unique process in J solving (7.1). Denoting the L2(Ω;L2(0, T ;H))-
valued component of Γ by Γ1 and the L1(Ω × (0, T ) ×D)-valued component by Γ2, we
are going to show that Y 7→ Γ1(X0, Y ) is a (strict) contraction of L2(Ω;L2(0, T ;H)), if
endowed with a suitably chosen equivalent norm. Let Xi = Γ1(X0i, Yi), i = 1, 2, with
obvious meaning of the symbols. For any α ≥ 0, Proposition 6.2 yields

∥

∥X1 −X2

∥

∥

L2(Ω;L∞
α (0,T ;H))∩L2(Ω;L2

α(0,T ;V ))
+

√
α
∥

∥X1 −X2

∥

∥

L2(Ω;L2
α(0,T ;H))

.
∥

∥X01 −X02

∥

∥

L2(Ω;H)
+

∥

∥B(·, Y1)−B(·, Y2)
∥

∥

L2(Ω;L2
α(0,T ;L 2(U,H)))

,
(7.2)

in particular, by the Lipschitz continuity of B,

∥

∥X1 −X2

∥

∥

L2(Ω;L2
α(0,T ;H))

.
1√
α

∥

∥X01 −X02

∥

∥

L2(Ω;H)

+
1√
α

∥

∥B(·, Y1)−B(·, Y2)
∥

∥

L2(Ω;L2
α(0,T ;L 2(U,H)))

.
1√
α

(

∥

∥X01 −X02

∥

∥

L2(Ω;H)
+

∥

∥Y1 − Y2
∥

∥

L2(Ω;L2
α(0,T ;H))

)

,

(7.3)

where the implicit constant does not depend on α. In particular, if X01 = X02, choosing
α large enough, one has that, for any X0 ∈ L2(Ω,H), Y 7→ Γ1(X0, Y ) is a contraction
of L2(Ω;L2

α(0, T ;H)). It follows by the Banach fixed-point theorem that Γ1(X0, ·) has a
unique fixed point X therein, hence also in L2(Ω;L2(0, T ;H)) by equivalence of norms.
Setting ξ := Γ2(X0,X), by definition of the map Γ, (X, ξ) is a solution to (1.1) and it
belongs to J .

Let X01, X02 ∈ L2(Ω,F0;H) and X1, X2 be the unique fixed points of the maps
Γ1(X0i, ·), i = 1, 2, respectively, and ξi := Γ2(X0i,Xi), i = 1, 2. Replacing Yi with
Xi = Γ1(X0i,Xi), i = 1, 2, in (7.3) yields

∥

∥X1 −X2

∥

∥

L2(Ω;L2
α(0,T ;H))

≤ C1

∥

∥X01 −X02

∥

∥

L2(Ω;H)
+ C2

∥

∥X1 −X2

∥

∥

L2(Ω;L2
α(0,T ;H))

,

with C1 > 0, C2 ∈ ]0, 1[, hence, by equivalence of norms,

∥

∥X1 −X2

∥

∥

L2(Ω;L2(0,T ;H))
.

∥

∥X01 −X02

∥

∥

L2(Ω;H)
.

This implies, substituting Yi with Xi = Γ(X0i,Xi), i = 1, 2, in (7.2), with α = 0,

∥

∥X1 −X2

∥

∥

L2(Ω;L∞(0,T ;H))∩L2(Ω;L2(0,T ;V ))

.
∥

∥X01 −X02

∥

∥

L2(Ω;H)
+

∥

∥B(·,X1)−B(·,X2)
∥

∥

L2(Ω;L2(0,T ;L 2(U,H)))

.
∥

∥X01 −X02

∥

∥

L2(Ω;H)
+

∥

∥X1 −X2

∥

∥

L2(Ω;L2(0,T ;H))

.
∥

∥X01 −X02

∥

∥

L2(Ω;H)
.

36



Choosing α = 0 and X01 = X02, one gets immediately X1 = X2, hence also, by substi-
tution,

∫ t

0
(ξ1(s)− ξ2(s)) ds = 0 ∀t ∈ [0, T ],

which implies uniqueness of ξ.
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