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Abstract

This paper presents a Markov Chain approximation to model stations in manufacturing lines with general distributed processing times. The
proposed Markov Chain approximation enables the use of continuous flow models for the performance evaluation of serial lines with finite
buffers and mixed manual — automated operations. Each station in the line can consist of a highly automated machine with deterministic
processing times, or of a human operator performing manual operations with general distributed processing times. Stations with random
processing times are modelled through a continuous time — discrete state Markov Chain characterized by an operational state with a deterministic
processing time, and by an auxiliary down state used to stochastically dilate the overall completion time of a part on the station. The Markov
Chain parameters are defined through moments fitting of the probability distribution of the processing time of the original station. The resulting
Markov Chain represents the behavior of the station in isolation and is then used as input in the decomposition techniques, based on continuous
flow models, for the performance evaluation of serial lines. The model has been applied in the analysis of the production performances of a real

assembly line.
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1. Introduction

Different methods and techniques have been developed by
researcher to evaluate the performances of asynchronous
manufacturing lines with finite buffers. Analytical methods are
one of the formulated solutions. Analytical methods have been
promoted to be faster and to provide greater insights to the
dynamics of the manufacturing systems than other evaluation
methods [1], such as simulation models. One of the possible
ways in which analytical models can be classified is according
to the discrete or continuous flow of material used to model the
original discrete flow of parts in the manufacturing system
under analysis. Discrete flow models allow to perfectly mimics
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the discrete nature of parts in the line. Moreover, they allow to
deal with asynchronous stations characterized by random
processing times. If processing times are exponentially
distributed, Markov Chain theory can be applied to model the
system or subsystems of the original line [2]. In [3] a
decomposition technique for flow lines with exponential
parallel machines is presented. Continuous and discrete phase-
type (PH) distributions have been used to fit processing times
and to extend the applicability of discrete flow models to
system with non-exponential processing times, such as in [4],
[5] and [6]. In [7] an analytical method is defined for
multiproduct systems with a single non-exponential machine
and M dedicated buffers. On the other hand, continuous flow
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models consider quite naturally deterministic processing times
and asynchronous behaviours which are typically of real
applications characterized by highly automated manufacturing
lines. Some of the works proposed to evaluate the performances
of systems with deterministic processing times are the
continuous flow models for a two-stage line in [8] and [9], and
the decomposition models of multi-stage lines in [10] and [11].
However, real manufacturing lines are often characterized by
some stations with deterministic processing times and other
stations with general distributed processing times. For these
types of system, the current literature does not provide
analytical methods for the performance evaluation.

In this work, a continuous time — discrete state Markov
Chain is proposed to model the behaviour of stations with
random processing times. The processing time of the modelled
station and the parameters of the related Markov Chain are
defined through the moments fitting of the probability
distribution of the random processing time of the original
station in the line. The proposed model of a single station can
be used as input for some of the continuous time — continuous
flow models presented in the literature for manufacturing lines
with deterministic processing times. The aim is to exploit these
analytical methods also for lines with mixed deterministic —
stochastic processing times and so to reduce the gap in the
literature about these real manufacturing lines. An example of
this type of systems can be found in many disassembly lines of
end-of-life products. In these lines, operations requiring high
flexibility because of the product condition variability are
performed by human operators. The human element and the
product condition variability bring to stochastic processing
times of these operations. On the other hand, more standardized
operations can be automatized and so performed by automated
machines, for which the processing times can be assumed
deterministic. In the following Section the methodology is
presented for both a perfectly reliable station and an unreliable
station. In Section 3 the proposed model has been used in a
decomposition model for serial lines and numerical results are
shown. In Section 4 a real industrial case with the performance
evaluation of an assembly line is presented. In Section 5
conclusions and future developments are provided.

2. Methodology

The proposed methodology decomposes the operational
state U of a station, characterized by a random processing time
CT, in two fictional modelled states: an operational state U*
with a deterministic processing time CTy+, and an auxiliary
down state D* that is used to stochastically dilate the overall
completion time of a part on the modelled station. Times to
transition between U* and D* are set exponentially distributed.
Therefore, the station is modelled as a continuous time —
discrete state Markov Chain, with a fictional failure rate p*
from U* to D* and a fictional repair rate r* from D* to U*. The
values of the transition rates p* and r*, and of the deterministic
processing rate p* (with pu* =1/CTy- ) of the fictional
operational state U* are defined through the moments fitting of
the original processing time CT. More precisely, the values of
the above parameters are obtained by equalling the first three
moments of the probability distribution of the completion time

of a single part on the modelled station, to those of the
processing time CT of the original one, such that:

E[CT*] = E[CT]
E[cT*?] = E[cT?] (1D
E[cT*®] = E[CT?]

with CT* the completion time of a single part on the
modelled station.

The values of E[CT], E[CT?] and E[CT?] are known since
they can be directly computed from the theoretical or
empirical distribution of CT. The modelled completion time
of one part CT" is a stochastic variable composed by the
deterministic processing time CTy+ and by the duration of
all the fictional failures F* occurring during the operational
time CTy+. Since the occurrence of a single fictional failure
corresponds to a transition from the state U to the state D*,
the number of fictional failures F* occurring during the
operational time CTy+ is a random variable with Poisson
distribution and expected value equal to p*/u*. The
duration of a single fictional failure is defined as TTRy since
it corresponds to the time to repair from D* to U*.
Consequently, TTR; follows the exponential distribution
with expected value 1/r*. Therefore, it is possible to define
the modelled completion time of one part as:

CT* = CTy + XF_ TTR; (2)

with TTR, the time to repair when no failures occur, that
is TTR, = 0. At this point, it is possible to compute the first
three moments E[CT*], E[CT*?] and E[CT*?] through the
three unknowns y*, p* and r*, such as:

E[CT"] = =+ 2. % 3)

B[er?] = S+ 2 (Z+2+-2) 4)

E[cT*] = +3- 2 <ﬂ1—2+#—r (2+5)+ 5+
w2 () ®)

The demonstrations of equations (3), (4) and (5) are
provided in Appendix A. By substituting (3), (4) and (5) in
(1) and solving the system of equations, the unknown
parameters u*, p* and r* result:

(w =22
!p* =25 ®)
[

with

A =2-E[CT)®-3-E[CT]-E[CT?] + E[CT?3] 7
B = E[CT]* + 2 - E[CT] - E[CT3] - 3 - E[CT?]? (8)
C = E[CT?] — E[CT]? (9)

Since pu* is a production rate and p* and r* are the
transition rates of a Markov Chain, the values in (6) must
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be positive. Therefore, by imposing the results in (6)
greater than zero, the following set of constraints about the
moments of the original processing time CT is obtained.

E[CT] >0
2 2
E[CT?] E[C?z"]2 > 04 (10)
E[CT?] > 3-E[cT?]"—E[CT]
2-E[CT]

The first constraint in (10) is verified for any probability
distributions, since CT is a processing time and so it cannot
be negative or null. Also the second constraint is verified for
any distribution. Indeed, it means that the variance of CT
must be greater than zero, that is CT cannot be
deterministic. If CT were deterministic, it could be directly
taken as input in one of the models proposed in [8] or [9]
without any further manipulation. On the other hand, the
last constraint in (10) limits the set of theoretical and
empirical distribution of CT to which the model in this
work can be applied. Therefore, before applying the
method, the third constraint in (10) must be verified.
However, this constraint is always verified for processing
times exponentially distributed.

2.1. Unreliable station

Considering a general unreliable station characterized by
multiple up states and multiple down states, with one or more
operational states having random processing times, a further
step must be added to the methodology presented above.

The unreliable station can be defined by the following
elements: a set of up states U = {Uy,...,U;,...,U;}, with each
state U; characterized by a deterministic or stochastic
processing time CT; and a processing rate y; = 1/CT;; a set of
down states D = {Dl,...,Dj,...,D]}; a set of transition rates
p ={p1,---,Dx,---, Pk} describing the operation dependent
transitions among states; a set of transition rates r =
{ri,...,7,...,7.} describing the time dependent transitions
among states.

Assuming times to transition between states exponentially
distributed, the station can be represented through a Markov
Chain, such as the example provided in Fig. 1. (a). If one or
more times to transition are not exponentially distributed,
continuous PH distributions can be used to approximate them,
and the resulting Markov Chain can be taken as input for the
following steps of the proposed method.

a

Fig. 1. Markov Chains of (a) the original unreliable station and (b) the
modelled station.

The first step for modelling an unreliable station
corresponds to the methodology described above: each state U;
with random processing time CT; is divided in two fictional
states U] and D}, and the related parameters y;, p; and r;" are
computed according to (6). It implies again that for each
random processing time CT; the set of constraints in (10) is not
violated. Fig. 1. (b) shows the resulting Markov Chain if the
processing times of states U; and U, of the original Markov
Chain in Fig. 1. (a) are stochastic.

The second step consists in redefining the values of each
transition rate p; exiting from each original state U; which has
been divided in U; and Dj. Indeed, p, represents the rate of an
operation dependent transition that can stochastically occur
each time the station is in the state U;. If U; is divided in U and
D;, the operation dependent transition can occur only when the
modelled station is in the state U7, since D] is not an
operational state. Therefore, a new value p;, must be defined
such that the original probability flow related to this transition
is conserved, that is:

;) - pr = MUY - py (1D

with TI(U}) and I1(U;) respectively the probability of the
modelled state U and the original state U;. Since U; has been
divided in U; and Dj, the probability II(U;) can be written as:

n(,) = 1dU;) + 1(d;) (12)

Moreover, since Dj is reachable only from U] with rate p;,
and the only reachable state from D; is U] with rate r;", the
probability [1(D}) is proportional to II(U;}), such as:

nw) " (13)
By substituting (12) and (13) in (11), it results:
v = (1+%) pi (14)

Therefore, the new value of the transition rate py,
depends only on the original rate p, and on the values of p;
and r; computed in the previous step.

3. Numerical results

The accuracy of the method has been tested by using this
model as input in the decomposition technique of [11] for the
evaluation of a set of three-machine two-buffer lines (3M-2B),
four-machine three-buffer lines (4M-3B) and five-machine
four-buffer lines (SM-4B). The decomposition technique of
[11] decomposes a serial line in smaller lines, called building
blocks, composed by two machines and one buffer and for
which an exact evaluation of the performances is provided by
[13]. The different building blocks are related one each other
through a set of equations which guarantee the convergence of
the results. In the building blocks, the behaviour of each
machine is modelled through the approach proposed in this
work. The aim is to demonstrate that through the proposed
Markov Chain model it is possible to apply a continuous flow
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model to the performance evaluation of serial lines with finite
buffers and mixed deterministic — exponentially distributed
processing times. The results are compared with those of a DES
model with discrete material flow, developed by using
Simulink, over 40 cases for each type of lines. For each test
case, five replicates of the simulation experiment are carried
out. Every replicate j is 1000000 time units long, with a warm-
up period of 200000 time units. Each machine of the line has
been randomly generated and it can have deterministic
processing time CT =1/pu with probability 0.5, or
exponential processing time with expected value E[CT] =1 /
u with probability 0.5. For each machine, the parameter u has
been randomly generated from the continuous uniform
distribution U(1, 5). Machines with deterministic processing
times are unreliable. Machines with exponential processing
times can be unreliable with probability 0.5, or perfectly
reliable with probability 0.5. Unreliable machines have a single
up state and a single down state, with time to failure and time
to repair exponentially distributed and failure rate and repair
rate randomly generated as p~U(0.001,0.02) and
r~U(0.01,0.2). The capacity N{i} of each buffer B{i} has
been randomly generated from the discrete uniform distribution
in the interval [1, 10]. For each original machine assumed
with exponential processing time, the parameters p*, p*, r* and
p’ of the corresponding modelled machine have been computed
through equations (6) and (14), starting from the original
parameters y and p, and they result:

u*
P

*

(1+%)-p=4-p (5

NINNI\O .h

‘U
,U. p’:
‘U

For each case, the steady state throughput th and the
total average inventories n have been evaluated through
both the simulation and the decomposition model, and the
percentage errors €(th) and e(n) have been computed as:

im_ .y De ) 5__tpSim
e(th) = P20 100, ehsim = HEITT (1)
_y _ [rSim—aPec| gim _ L=
e(n) = ST 100, n>™ = . an
Table 1. shows the mean and maximum values of the

percentage errors for the three set of test systems. Errors are
very low and quite similar to those of decomposition
techniques proposed in the literature for asynchronous lines
with deterministic processing times. Therefore, the Markov
Chain model presented in this work can be exploited to apply
continuous flow models to lines with mixed deterministic —
stochastic processing times, without reducing the accuracy of
the evaluation models.

Table 1. Results of the test systems.

Line mean €(th) max €(th) mean €(7) max €(7)
3M-2B | 0.2489 0.6431 0.8307 4.4766
4M-3B | 0.4243 1.0131 2.0072 7.6404
5M-4B | 0.6784 1.5650 2.6900 4.7070

4. Industrial case

The Markov Chain model of this paper has been used to
approximate the behaviour of manual operations in a real
assembly line and then to evaluate the performances of the
system through the continuous flow model of [11]. The aim of
this analysis is to quantify the blocking and starvation
phenomena in the line because of the asynchrony and the
stochastic processing times of the stations. The system is an
assembly line of a company producing industrial switches. The
line is composed by six stations performing the product
customization according to the customer orders. The
customization phase is mainly characterized by the wiring and
coil assembly and few other specific activities. The product
customization is required for all the types of industrial switches
produced by the company, which are pre-assembled in
dedicated lines. For this reason, the assembly line of interest is
almost never starved of parts from the dedicated lines. Finished
parts are then stocked in storage area, wating for the packaging
and the order preparation. The storage area is big enough to do
not block the assembly line. Parts in the assembly line are
handled between stations by a conveyor, through a fixed
routing from the first station to the last one. The conveyor
operates also as an intermediate buffer between stations, with
capacity always equal to two parts between consecutive
working stations. According to the definition in [12], the
blocking rule applied by the operators in the working stations
is classified as the blocking after service (BAS) rule. The
historical data collected in the plant over one year show that
stations can be assumed perfectly reliable and with stochastic
processing times. In order to evaluate the line performances,
each station i has been modelled as a single up — single down
machine M{i}, through the Markov Chain approximation of
this paper. Table 2. reports the empirical moments computed
from the historical processing times of each station (original
values have been transformed for confidentiality reasons) and
the estimated parameters of the related Markov Chain
according to set of equations (6). The constraints in (10) are
verified for the empirical moments of all the stations in the line.
The parameters of Table 2. have been used in the continuous
flow models of [11] and the results are shown in Table 3. The
performances of interest are the steady state throughput th of
the line expressed as parts/time units, and the average number
of parts n{i} in each buffer B{i} between stations M{i} and
M{i + 1} . Table 4. provides a detailed analysis on the
probabilities of each station (rows) to be blocked or starved by
any other station (columns). Elements above the diagonal are
blocking probabilities, elements below the diagonal are
starvation probabilities. It results that M{1} is the bottleneck of
the line since it is the main source of limitation for the other
stations. To increase the throughput of the line, the company
can reduce the impact of M{1} on the other stations by
increasing the capacity N{1} of the buffer B{1}. Another
alternative is to increase the availability of the bottleneck M{1}
by reducing its main cause of inefficiency, that is the blocking
caused by the station M{3}. In this case, an increase in the
buffer capacity N{1} would also reduce the propagation from
M{2} to M{1} of the blocking caused by M{3}. On the other
hand, an increase in the capacity N{2} of the buffer B{2} would
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directly reduce the blocking probability of M{2} caused by
M{3}, and consequently the blocking probability of the
bottleneck M{1}. Figure 2. shows the percentage variation of
the throughput of the line as a function of the buffer capacities
N{1} and N{2}. Because of space constraints in the plant, the
buffer capacities vary up to a maximum of 6 buffer slots. The
slope of the resulting surface shows that an increase in the
buffer capacity N{1} should be possibly preferred to an
increase in N{2}, since it would result in a bigger increase in
the line throughput.

Table 2. Empirical moments of original stations and parameters of modelled
stations.

Station | E[CT] | E[CT?] E[CT?] u p* r*
M{1} | 10.09 | 111-10%® | 723-10° | 0.13 | 0.00015| 0.0005
M{2} 494 3-10% 2-105 0.23 | 0.00050| 0.0042
M{3} 8.99 42-103 130-10° | 0.14 | 0.00028| 0.0010
M{4} 7.21 16 - 103 53-10° 0.15 | 0.00010| 0.0009
M{5} 5.66 14 - 103 48-10° | 0.20 | 0.00011| 0.0009
M{6} 5.18 11-103 35-105 | 0.21 | 0.00009| 0.0009

Table 3. As-is performances of the assembly line.

th n{1} n{2} n{3} n{4} n{5}

0.07 0.615 0.934 0.264 0.152 0.065

Table 4. Blocking and starvation probabilities between each couple of stations

Prob [%] M{1} M{2} M{3} M{4} M{5} M{6}

M{1} 3.53 13.64 4.65 3.99 2.84
M{2} 37.38 15.98 4.76 4.09 2.90
M{3} 19.80 5.09 0.14 4.16 2.96
M{4} 18.73 4.47 18.80 4.28 3.05
M{5} 18.46 4.23 15.83 18.55 3.14
M{6} 18.29 4.06 15.09 12.67 13.42

Ath %

° 6 2 N{2}

N{1}

Fig. 2. Percentage variation of the throughput of the line as a function of the
capacities of the first and second buffers.

5. Conclusion

This work has proposed a continuous time — discrete state
Markov Chain model that approximates the behaviour of
stations with general distributed processing times. This
approximation allows the employment of continuous flow
analytical model to evaluate the performance of asynchronous
manufacturing lines with mixed deterministic — stochastic
processing times. The numerical results have shown the
accuracy of the model, while the industrial case has shown the
usefulness of the model for the evaluation of blocking and
starvation propagations in a real assembly line. Future research
will focus on the study of different Markov Chain structures in
order to increase the set of probability distributions of
processing times that is possible to fit through this approach.

Appendix A.

In this appendix, the demonstrations of equations (3), (4)
and (5) are provided. The following demonstrations are based
of the definitions in Section 2, which are: the processing time
CTy in the modelled state U* is deterministic and equal to
1/u*; the number of fictional failures F* occurring during the
time period CTy+ follows the Poisson distribution with
expected value p*/u”; the time to repair TTRy of a fictional
failure is exponentially distributed with expected value 1/r*.

A.1. First moment demonstration

Starting from the definition of CT* provided in (2), the
expected value of CT™ in (3) is computed as follow:

E[CT*] = E[CTy- + X, TTR;] =
= E[CTy] + E[ZF_, TTR;] =

= E[CTy] +E[F"] - E[TTR/] = ~ + .

1

; (18)

-
A.2. Second moment demonstration

In order to demonstrate the result of equation (4), the explicit
definition of CT* in (2) is substituted in the quantity E[CT*?],
and then it is solved as follow:

E[cT*?] = E[(CTy + fLo TTR,) ] =
=E [(CTU*)Z +2- CTy - XF_o TTR; + (X5, TTRf)Z] =
= E[(CTy)?] + 2 - E[CTy] - E[Xf_o TTR;] +

+E[ (S50 TTR,)] (19)

The only term to be defined in (19) is E [(Z?:o TTRf)z]. By
solving the square of this sum, it is equal to:
E[(SfoTTR,)| = E[F*]- E[TTR:?] +

+2-E[(5),F* = 2] (E[TTR/] - E[TTRk])fik (20)

with E[TTRf] and E[TTR,,] the expected times to repair of
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two different fictional failures among the F* fictional failures
occurred in the time period CTy+, while E[(FZ*), F* > 2] s the
expected number of combinations of two different fictional
failures among F*, when F* is not lower than two. The two
quantities which have not been yet defined in (20) are

E[TTR,?] and E[(FZ*),F* > 2|, and they are computed as

follow:
E[TTR;?] = V[TTR;| + E[TTR/]* = - @21)
F* _(p*
* L) )
E[(Fz )’F* = 2] =X 2 (I]:* 2)! '(# ) F* -
il
_ o\
=7 2)

By substituting (21) and (22) in (20) and then in (19), the
demonstration of the second moment is:

E[cT*?] =
p_* 2
#*2+2 w? r1 z r32+2 <”2) -
1 p* 2 2 p*
==t (#— += M*,r*) (23)

A.3. Third moment demonstration

Similarly, for the third moment demonstration the quantity
in (2) is substituted in E[CT*3] of (5) and the cube of the
polynomial is solved as follow:

E[cT*] = E[(CTy + f2o TTR,)’| = EI(CTy)*] + 3 -
-E[(CTy-)?] - E[ZF_o TTRf] + 3 - E[CTy] -
‘E [(zﬁ;o TTRf)Z] +E [(2;’;0 TTRf)3] (24)

In order to solve (24), the cube of the polynomial in

E [(Z?;O TTRf)S] is computed, and its expected value results:

E[(ZFTTR,)’| = E[F*] - E[TTR*] +
+3-E[F*(F" —1),F* > 2] - (E[TTR?] - E[TTRk])f#( +
+6-E[().F 2 3]

- (E[TTRy| - E[TTR,] - E[TTR,]) (25)

f#k#h

with: E[F*(F*—1),F* = 2] the expected number of 2-
permutations of F*, when at least two fictional failures F*
occur; E[(';),F * > 3] the expected number of combinations
of three different fictional failures among F*, when F* is not
lower than three; E[TTRf] , E[TTR,] and E[TTR,] the
expected times to repair of three different fictional failures
among F*. To solve (25), the values ofE[TTRfS], E[F*(F* —

1),F* = 2] and E[(F;),F* > 3] are computed as follow:

E[TTR] = 5 .
E[F*- (F*—1),F* > 2*]: P

R ELC
B[(5),F* > 3] = D, ol (p_i)F;:—(%) _

- 28)

6

By substituting (26), (27) and (28) in (25) and then in (24),
the demonstration of the third moment is:

1 1 pt 1 1
E[cT*® +3-—= L. =+3.=
7] = L3 2 lyst
* x\ 2 * *\ 2 *\ 3
P 2 1 P 14 6 p
£S5+ (— )+—- +3 (— + —)
(V—* *2 *2 u* u* *3 u* *3 u
=3 (L (24 5) + 5 2
T u prrs \wt ot [z T
L1 ( ) (29)
V3 G
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