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Abstract. The availability of gridded, screen-level air temperature data at an effective spatial 
and temporal resolution is important for many fields such as climatology, ecology, urban 
planning and design. This study aims at providing such data in a data-scarce, arid city within the 
greater Cairo region (Egypt), namely the Sixth of October, where, to our knowledge, no such 
data are available. By using (i) air temperature data, collected from mobile measurements, (ii) 
multiple spectral indices, (iii) spatial analysis techniques and (iv) random forest regression 
modelling, we produced air temperature maps (for both daytime and nighttime) at 30-m spatial 
resolution for the entire city. The proposed method is systematic and relies on low-cost 
instrumentation and freely-available satellite data and hence it can be replicated in similar data-
scarce, arid areas to allow for better spatial and temporal monitoring of air temperature.   

1.  Introduction 
With heatwaves becoming more severe and frequent across many parts of the world [1], the interest in 
better understanding the urban micro- and local climate phenomena has been growing both in research 
and practice of urban planning and design. Furthermore, air temperature, measured at screen-level height 
(∼ 1.5 m above ground), is an important variable for many fields such as climatology, ecology and 
hydrology [2,3]. However, monitoring air temperature in the urban canopy layer (beneath the roof level) 
has been always limited by the availability and spatial coverage of air temperature data from fixed 
weather stations [4,5]. Moreover, setting up a meteorological network of fixed weather stations can be 
expensive or not possible in some locations [6]. Alternatively, mobile measurements, using instruments 
mounted on vehicles (e.g. cars, bicycles) or carried by humans, can be used to complement observations 
from fixed weather stations or to observe places that are rarely explored or with spatial heterogeneity of 
air temperature [6] and have been used in many studies [e.g. 7–15].  

Nevertheless, air temperature data obtained either from fixed weather stations or using mobile 
measurements are collected as point samples and cannot continuously describe the spatial variability of 
air temperature. Hence, providing gridded air temperature data at high spatial resolution has become of 
great importance and different modelling approaches have been used for this purpose such as 
interpolation, regression and simulation [3].  

In particular, the random forest (RF) regression—a non-parametric machine learning model—is 
among the most recently investigated regression modelling techniques that have proven high predictive 
performance in many studies when using mobile measurements [8–11].  
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In this study, we explore the effectiveness of the RF regression in modelling air temperature in an 
arid area, using sample air temperature data, collected from low-cost mobile measurement campaigns 
(as dependent variable), and multiple spectral indices, derived from freely-available satellite imagery 
(as explanatory variables). The aim is to provide and make publicly available gridded air temperature 
data at high spatial resolution for a data-scarce area where, to our knowledge, no such data are available.  

The paper is structured as follows: firstly, the study area is introduced in Section 2; then, the data and 
methods utilized for modelling air temperature are presented in Section 3; Section 4 presents the results 
of the study; and finally, the main conclusions and the future research are presented in Section 5.  

2.  Study area 
The study area is a new desert city within the greater Cairo region (Egypt), namely the Sixth of October. 
The city is located approximately 32 km west of Cairo (29.9° N, 30.9° E) and covers an area of about 
220 km² with a population of nearly 348,870 inhabitants as of 2017. According to the Köppen–Geiger 
climate classification system [16], the city is located in the hot desert climate zone (BWh).    

3.  Data and methods 
Three main steps were required to map air temperature at high spatial resolution. Firstly, mobile air 
temperature data were collected and processed. Secondly, satellite data were acquired and multi-spectral, 
multi-scalar indices were derived. Finally, RF regression models were fitted and used to produce air 
temperature maps at high spatial resolution. Figure 1 shows an overview of the air temperature modelling 
procedure and Sections 3.1, 3.2 and 3.3 explain the aforementioned steps in more detail. 

 
Figure 1. Schematic overview of the air temperature modelling procedure. 

3.1.  Air temperature data collection and processing  
In this study, a total of four automobile-based measurement campaigns were carried out on September 
2nd, 29th and 30th, 2020 under suitable meteorological conditions of low nebulosity and low wind speed 
(below 9 m/s at 10-m height). The measurement campaigns were conducted using a relatively low-cost 
(∼ $400) portable, wireless weather station with Global Positioning System (GPS), manufactured by 
PASCO (PS-3209), to measure the ambient air temperature at a one-second interval along a predefined 
route that crosses different land uses/covers (LULCs) and morphologically different built-up areas. Each 
measurement campaign was completed between two and three hours to minimize any changes in the 
background climate conditions during the campaign time [12,14]. In particular, the temperature sensor 
has an accuracy of ± 0.2 °C and 0.1 °C resolution and it was mounted, at a screen-level height, on top 
of a car and shaded by a cardboard sheet. The car moved at an average speed of 20 to 30 km/h (minimum 
15 km/h and maximum 60 km/h) which was sufficient to (1) ensure adequate ventilation for the sensor 
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to rapidly adjust to local temperature changes [15,17]; (2) minimize any radiation-induced errors [15]; 
and (3) reduce the influence of vehicular anthropogenic heat [12,14]. 

Further, in order to remove any confounding effects in the collected temperature data, three 
processing steps were applied as recommended by Oke et al. [6]. This included, firstly, correcting for 
the local temperature changes that occurred during the time of the campaign. This was done by returning 
to the measurement starting point and calculating an average cooling/warming rate to adjust all the 
temperature records to the reference start time. Secondly, removing the effect of altitude changes by 
applying an average lapse rate of 0.64 K per 100 m [6]. Thirdly, excluding measurements recorded when 
the car speed was very low/high (below 15 km/h and above 60 km/h). Table 1 shows the summary of 
the air temperature data for each measurement campaign after applying all the aforementioned steps. 

Table 1. Summary of the processed air temperature data.  

Run no. Date 
Reference start time  

(HH:MM) 
Descriptive statistics (°C) 

Mean Std.Dev. Min. Max. 
1 2 September 2020 19:00 LT 31.36 0.45 30.35 32.60 
2 29 September 2020 14:30 LT 36.01 0.50 34.59 37.92 
3 30 September 2020 13:30 LT 35.34 0.62 32.88 37.68 
4 30 September 2020 19:30 LT 29.35 0.38 28.49 30.53 

Finally, all the processed air temperature data were exported to Geographical Information System 
(GIS), using the location information collected by the GPS sensor, and assigned a projection.   

3.2.  Calculating multi-spectral, multi-scalar indices  
Modelling air temperature employing regression approaches requires using one or more variables as 
predictors (explanatory variables). However, there are many factors that influence air temperature (e.g. 
LULC, land surface temperature (LST), anthropogenic heat, solar radiation, altitude) [2,3]. In this 
regard, remotely-sensed data (e.g. from satellites) can provide information on many of the surface 
properties that influence air temperature [2]. For instance, several studies have statistically modelled air 
temperature based on satellite-derived LST and other spectral indices that distinguish LULC types such 
as the Normalized Difference Vegetation Index (NDVI) [e.g. 2,18].  

Here, we used spectral indices, derived from Landsat 8 imagery, to model air temperature based on 
LULC characteristics. Landsat 8 carries two sensors, namely the Operational Land Imager (OLI) and 
the Thermal Infrared Sensor (TIR), which provide eight spectral bands at 30-m spatial resolution, one 
panchromatic band (15 m) and two thermal bands (collected at 100 m and resampled at 30 m) [19]. For 
this study, a Landsat 8 level-1 image of the study area, acquired on September 14, 2020, was freely 
downloaded from the United States Geological Survey (USGS) and atmospherically corrected.    

In particular, three spectral indices, that distinguish LULC types in arid areas (e.g. vegetation cover, 
impervious surfaces and sandy desert), were derived [20,21]. These are the Soil Adjusted Vegetation 
Index (SAVI) [22], the Normalized Difference Built-up Index (NDBI) [23], and the Normalized 
Difference Sand Index (NDSI) [20].  

More specifically, SAVI is a measure of vegetation density, and it is used in areas where vegetation 
cover is low (e.g. arid areas) to correct for the soil brightness. SAVI is defined as: 

 SAVI = (((B 5 −  B 4))/((B 5 +  B 4 +  L) )) × (1 +  L) (1) 

where B 5 is the near-infrared (NIR) band, B 4 is the visible red band and L is a soil brightness correction 
factor (L = 0.5). On the other hand, NDBI is used to characterize built-up areas and bare soil which 
reflect more shortwave infrared (SWIR) than NIR and is defined as: 

 NDBI = ((B 6 −  B 5)/(B 6 +  B 5)) (2) 

where B 6 is the SWIR 1 band (1.57-1.65 µm) and B 5 is the NIR band. Furthermore, to better distinguish 
between the sandy desert and the built-up areas or bare soil, Pan et al. [20] have proposed the NDSI 
based on Landsat 8 spectral bands 1 and 4. NDSI is defined as: 
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 NDSI = ((B 4 −   B 1 )/(B 4 +  B 1)) (3) 

where B 4 is the visible red band and B1 is the coastal aerosol band (0.43-0.45 µm). 
Nevertheless, air temperature can be influenced by LULC characteristics at multiple scales (varying 

radii) [9,11]. To account for this spatial dependence in the regression models, several studies have further 
applied focal operations (also called neighborhood operations) to the spectral indices using a moving 
window approach with different radii [e.g. 2,8–11]. This creates a new dataset of the spectral indices 
where the value of each pixel is a function of the values of all the neighboring pixels within a specific 
radius (e.g. mean, minimum, maximum, median). One approach to identify the most appropriate spatial 
scales (radii) is to calculate the correlation coefficient between each predictor (calculated at each 
potential spatial scale) and air temperature and select the scale with the highest correlation coefficient 
or lowest Akaike information criterion (AIC) [10,24]. Alternatively, one can use multi-spectral, multi-
scalar indices, where each spectral index is calculated at multiple meaningful scales [2,8,9]. 

In this study, we calculated each of the three derived spectral indices at multiple spatial scales using 
a moving average algorithm. More specifically, we used 15 potential radii that range from 50 to 1000 m 
as proposed by Voelkel and Shandas [8] and Shandas et al. [9], and hence a total of 45 predictors were 
used in modelling air temperature. 

3.3.  RF modelling of air temperature 
RF is a non-parametric machine learning algorithm that uses ensemble learning for both classification 
and regression tasks and has a nonlinear nature [25]. It operates by constructing ntree decision trees using 
ntree bootstrap samples of the dataset with replacement and mtry random subset of candidate variables 
(predictors) at each node. Each new data point can be predicted by running it down through each of the 
ntree decision trees and averaging all the predicted values from all trees (in case of regression) or taking 
the majority of votes (in case of classification).  

To fit RF regression models and predict air temperature, the processed air temperature data points 
from each measurement campaign (Section 3.1) were overlaid with the multi-spectral, multi-scalar 
indices (Section 3.2), and each point was assigned the value of the pixels that it overlays. The result is 
four tables, each with 46 columns (the measured air temperature and 45 predictors) and a number of 
rows equaling the number of observations made in each measurement campaign. The tables were used 
as input in the randomForest function [26] in R [27] to fit RF models using the default number of trees 
(ntree) and variables (mtry), i.e., 500 and 15 (the total number of variables divided by three), respectively. 
The RF models were then evaluated using the out-of-bag (OOB) dataset, i.e., the data that were not 
included in the bootstrap samples (around one third), and two measures for goodness of fit were 
calculated, namely the coefficient of determination (R2) and the Root Mean Square Error (RMSE). 
Finally, the obtained RF models were used to predict an air temperature value for each location that was 
not visited by the vehicle, based on the values of the multi-spectral, multi-scalar indices, and air 
temperature maps (at 30-m spatial resolution) were produced for the entire city. 

4.  Results  
All four models showed high performance with R2 more than 0.87 and RMSE below 0.18 °C (Table 2). 
More specifically, the nighttime models outperform the afternoon ones which is in agreement with 
previous studies that recommended including other predictors (e.g. building heights) for better modelling 
air temperature during the afternoon time [8,9].  

Table 2. Summary of the RF model results. 

Run no. Date 
Reference start time  

(HH:MM) 
Model goodness of fit 

R2 RMSE (°C) 
1 2 September 2020 19:00 LT 0.96 0.09 
2 29 September 2020 14:30 LT 0.87 0.18 
3 30 September 2020 13:30 LT 0.92 0.18 
4 30 September 2020 19:30 LT 0.93 0.10 
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Figure 2 shows the resulting maps at 30-m spatial resolution, where the impact of LULC and urban 
morphology is apparent on the spatial variability of air temperature. For instance, the industrial areas, 
located in the southwest of the city, exhibit higher daytime and nighttime air temperatures than the 
surrounding areas due to the extensive impervious cover, low-albedo construction materials and 
anthropogenic heat from industrial activity. In contrast, residential areas with abundance of vegetation 
cover (northeast of the city) are cooler than areas with sparse or without vegetation during both daytime 
and nighttime. During the daytime, central urban areas with relatively higher building density are cooler 
than the surrounding desert (urban cool island), but warmer at night which is typical for arid cities. This 
can be returned to the shadows cast by tall and compact buildings, which reduce the amount of absorbed 
solar radiation by surfaces.  

 
Figure 2. Spatial distribution of the modelled air temperature (30 m) with isotherm lines. The dotted 

white lines denote the routes of the measurement campaigns. 

5.  Conclusions and future research 
In this study, we explored the effectiveness of the RF regression modelling in providing gridded air 
temperature data at high spatial resolution in a data-scarce, arid area, using air temperature data, 
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collected from low-cost mobile measurements and multiple spectral indices, derived from freely-
available satellite imagery. The results showed a high predictive power of the RF models with R2 more 
than 0.87 and RMSE below 0.18 °C. The produced air temperature maps can be useful for various 
applications such as better informing urban planning and design about the possible impacts of LULC 
and urban morphology on urban climate.  

Nevertheless, this study has a number of limitations that may influence the accuracy of the produced 
maps and should be considered in future studies. Firstly, although the temperature sensor of the PASCO 
weather station is not directly exposed to sunlight and was further shaded by a cardboard sheet, some 
radiation-induced errors may remain, thus it is better placed in a solar radiation shield to ensure the 
highest data accuracy. Secondly, there is some uncertainty over using an average cooling/warming rate 
to correct for the local temperature changes that occurred during the campaign time, since different local 
areas may have different cooling/warming rates. One solution would be to calibrate the temperature data 
using observations from fixed weather stations along the route if they exist. Also, limiting the campaign 
time by using a shorter route or employing multiple vehicles can help to reduce this source of error. 
Lastly, although the RF approach has proven very effective in both classification and regression tasks, 
it is prone to overfitting. Hence, it is recommended to use an external dataset of air temperature for better 
evaluating the model performance rather than the OOB dataset. Cross-validation, using training and test 
subsets of the original dataset, can also be used for this purpose. Further measurement campaigns should 
be conducted over longer time periods and during different seasons for developing a dataset of air 
temperature at finer temporal resolution and thus allowing for better monitoring of air temperature.   
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