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Abstract:  One of the pillars of the smart factory concept within the Industry 4.0 paradigm is the capability 

to monitor the health conditions of production systems and their critical components in a continuous and 

effective way. This could be enabled through the implementation of innovative diagnosis, prognosis and 

predictive maintenance actions. A wide literature has been devoted to methodologies to monitor the 

manufacturing process and the tool wear. A parallel research field is dedicated to isolate the health 

condition of the machine tool from the production process and external source of noise. This study presents 

a novel solution for machine health condition monitoring based on the so-called “fingerprint” cycle 

approach. A fingerprint cycle is a pre-defined test cycle in no-load conditions, where the axes and the 

spindle are activated in a sequential order. Several signals are extracted from the machine controller to 

characterize the current health state of the machine. The method is suitable to separate drifts, trends and 

shifts in CNC signals caused by a change in machine tool health condition from any variation related to the 

cutting process and external factors. A machine learning method that combines Principal Component 

Analysis and statistical process monitoring allows one to quickly detect degraded conditions affecting one 

or multiple critical components. A real case study is presented to highlight the potentials and benefits 

provided by the proposed approach. 
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1. INTRODUCTION 

In the Industry 4.0 paradigm, technological advances in 

different fields, from big data management to cloud computing 

and Internet of Things, can be combined to rethink the factory 

and achieve enhanced performances through innovative 

solutions. Machine tool centers require a higher level of 

connectivity, autonomy, and intelligence to guarantee high 

quality products, a stable and repeatable cutting process and a 

high equipment reliability. 

Liu and Xu, 2017 defined machine tool as the integration of 

three main ingredients. The first is the physical CNC machine 

tool, composed by all the components and subsystems. The 

second is the data acquisition devices, including different 

typologies of sensors (i.e., accelerometers, thermocouples, 

dynamometers, temperature sensors, acoustic emission 

sensors, etc.) able to collect real time data related to the critical 

components of the machine and/or to the production process. 

The third ingredient is the possibility for the operators to 

interact with the machining process, through Human-Machine 

Interfaces.  

In this framework, data gathered from embedded and external 

sensors installed in various locations of the machine tool can 

be used for different purposes. Signals acquired in real-time 

and during the cutting process can be used to monitor the 

stability of the process and detect anomalous states and events, 

like forced and self-excited vibrations, collisions and tool 

breakages, which have a direct effect on the final product 

quality and, in some cases, on the integrity of system 

components. This capability is referred to as manufacturing 

process monitoring and it has attracted a wide interest in the 

scientific and industrial literature so far (Tang, 2014, Yue et 

al., 2019,). Strictly linked to this there is another research 

stream denoted as tool condition monitoring, whose aim is the 

in-process tool wear estimation and real-time prediction of the 

remaining useful life (Ambhore et al., 2015, Cao et al., 2017, 

Mohanraj et al., 2020). Also in this case, signal data are 

gathered during the cutting process with the aim to isolate 

salient patterns related to the current tool wear condition in the 

time, frequency or time-frequency domain. 

Machine tool monitoring includes a third dimension, that 

represents the field of application of the present study. It 

consists of using sensor data to monitor the health condition of 

the machine tool components: spindle (spindle bearings, shaft, 

tool clamping devices, rotary unions, etc.), linear, rotary axes 

and transmission systems (motor, belt, screw, lead nut, etc.). 

The industrial practice consists of verifying the health 

condition of such components during periodic check-ups 

carried out by human operators. On the contrary, a continuous 

and automated monitoring approach allows anticipating the 

detection of degraded states of critical components and to 

move from breakdown maintenance methods to preventive 

and predictive ones (Coleman et al., 2017, Lee et al., 2019). 

Indeed, the continuous knowledge of machine tool health 
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enables the reduction of machine downtime and maintenance 

costs together with the improvement of plant productivity. 

Compared to the wide literature devoted to process monitoring 

and tool condition monitoring, this third research stream has 

attracted a much smaller number of studies (Vogl et al., 2015, 

Cao et al., 2017). The literature on machine tool health 

condition monitoring can be classified in terms of 1) monitored 

signals (including either data from sensors embedded in the 

machine tool and made available through the Programmable 

Logic Controller – PLC, or from externa sensors 

(accelerometers, acoustic emission sensors, temperature 

sensors, etc.), 2) monitored component (spindle unit, 

linear/rotary axes, etc.) and 3) health characterization 

methodologies. Regarding the latter aspect, two main streams 

of methods have been presented so far. The first consists of 

using real-time data acquired during the cutting process to 

extract and isolate features related to the degradation of 

individual components. The main field of application regards 

the detection of spindle unit damages and bearing faults (Niu 

et al., 2014, Dong and Zhang, 2014, Vogl and Donmez, 2015). 

The second stream of research regards the periodic execution 

of machine tool operations in no-load conditions (Ferreiro et 

al., 2016). This latter approach is also called fingerprint 

analysis, as it allows capturing the actual machine tool health 

state by isolating any effect induced by the cutting process 

dynamics and the interaction between tool and workpiece. The 

term fingerprint refers to the creation of a reference signature 

in no-load condition representing the signal patterns when then 

equipment is in healthy states (Ferreiro et al., 2016).  

The fingerprint research line devoted to spindle and its 

components consists in the implementation of idle rotations at 

fixed or variable speed. The most commonly monitored signals 

are vibrations (de Castelbajac et al., 2014, Moore et al., 2020) 

together with spindle current and power (Ferreiro et al., 2016, 

Moore et al., 2020). The fingerprint approach applied to linear, 

rotary axes and transmission systems consists in movement 

routines of one or more axes. Vibrations are widely adopted as 

sources of information (Qiao et al., 2018, Moore et al., 2020). 

Motor power and current signals are also related to the health 

conditions of the axes. Other sources of information include 

temperature sensors, acoustic emissions, etc. (Vogl et al., 

2015). 

The literature devoted to machine tool health condition 

monitoring through fingerprint analysis is characterized by 

two main limitations. On the one hand, there is a lack of 

automated statistical methods suitable to signal anomalous and 

degraded states by keeping under control the number of false 

alarms thanks to statistical process monitoring methodologies. 

On the other hand, most studies focus on individual machine 

tool components, lacking the capability of combining together 

several descriptors from multiple sub-assemblies in an 

effective and efficient way. 

In this study, we present a machine tool health condition 

monitoring approach that combines three key ideas. The first 

consists of using the so-called fingerprint approach 

performing periodic runs of a pre-defined test cycle in no-load 

conditions where all axes and the spindle are activated in a 

sequential order. In this way, isolation from the production 

process is ensured. The second involves the usage of signals 

from two sources: sensors that are already available from the 

PLC of the machine, through a novel interface called “Flight 

Recorder”, plus an additional accelerometer mounted on the 

spindle. Hence, the monitoring of both the feed axes and the 

spindle is allowed. The third consists of using a machine 

learning solution, based on Principal Component Analysis 

(PCA), to characterize the multi-signal fingerprint of machine 

tool health in a synthetic way. Then, the design of a control 

charting scheme on the Principal Components enables to 

detect degraded performances of the machine tool axes and 

spindle in a fully automated way.  

This approach is particularly suitable for flexible systems, 

which can be used to produce different kinds of parts during 

their lifecycle, with different loading and operative conditions. 

The use of a pre-defined fingerprint cycle indeed allows one to 

keep the evolution of machine health conditions over time 

under continuous control. 

Section 2 describes the proposed methodology. Section 3 

introduces the real case study used to test and validate the 

proposed approach. Section 4 briefly presents the major 

results. Section 5 concludes the paper.  

2. PROPOSED METHODOLOGY  

The major steps of the proposed approach are summarized 

with the following scheme depicted in Fig. 1. 

 

 
Figure 1. Scheme of the proposed method 

 

The main steps of the methodology are discussed and 

described here below. 

Signal acquisition and management 

The proposed methodology is based on the determination of 

the natural pattern of machine tool signals during a sufficient 

number of fingerprint cycle repetitions. The sequence of 

operations to be performed during the execution of the 

fingerprint cycles can be tailored to the specific machine tool 

and its application. Generally speaking, various movements 

under no-load conditions are performed by each axis and/or by 

multiple axes at a time. Spindle rotations at different speeds 

can be activated as well to check the rotary system conditions. 

A multitude of signals can be monitored through internal 

sensors, i.e., axes and spindle current and/or power, axes and 

spindle velocity, axes position and difference between actual 
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and target position. Signals from external sensors can be 

included too, e.g., vibration signals from accelerometers.  

Fig. 2 shows the architecture of the Flight Recorder system 

used to export, collect and pre-process signals from the 

Computerized Numerical Control (CNC) of the machine tool. 

The data acquisition process is structured in several hardware 

and software levels. At CNC level, an edge application reads 

data from sensors and generates a real-time data stream. At the 

upper level, the Flight Recorder PC transforms the real-time 

data stream in a set of fingerprint events, contextualized by 

additional information on the state of the machine and on the 

environment. At the plant level, fingerprints are collected from 

each machine and forwarded to a cloud system on which 

complex analysis are easier.  

 

Figure 2. Scheme of the fingerprint monitoring architecture 

integrated into the multi-level supervision system 

 

Temporal domain subdivision and synthetic descriptors 

The fingerprint cycle is divided into different phases (e.g., 
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are computed in every single phase of each fingerprint cycle. 

Signal synthesis occurs when the descriptors reflect partial 

information from the raw original signals. The choice of the 

descriptors should be based on the technological knowledge of 

salient signal features and their correlation with the actual 
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detect drifts and changes caused by faults and degraded 

conditions at component and sub-component level.  

In this study, we used the following descriptors to characterize 

the machine tool health: 
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rotary axes, an increase in the absorbed current to 

guarantee acceleration or, vice versa, a longer time to 

reach the feed speed in face of the same current absorbed 

by the axis (acceleration drop) is expected to reflect 

anomalies related to the motor-coupling with the machine 

axis. The torque absorbed during the rest phases is 

necessary to overcome internal friction and it is strictly 

connected to the efficiency of the axis. Therefore, its 

variation over time indicates a decay directly linked to the 

screw and/or its bearings. 

• Spindle: the average and standard deviation of spindle 

power during starting and stopping phases, the duration of 

start and stop phases and the root mean square of the 

spectrum divided into 5 different frequency intervals, 

associated to most relevant bearing’s frequency bands. 

The power is a good evaluation metric for the spindle state 

of health. Similar power consumptions are associated to 

similar circumstances. A degrade state or a failure could 

be mirrored by a deviation from the standard level. 

(Herranz et al, 2019). The root mean square of the 

spectrum allows to monitor the evolution of the vibration 

energy in different frequency bands, during spindle 

rotation. This energy level indicates the presence of 

degraded states of rolling elements and tool imbalances. 

Once the k-th cycle has been performed, a vector of 

aforementioned synthetic descriptors is available to represent 

the current machine tool health state. 

PCA and control charting scheme 

The machine learning approach involves the use of the PCA 

(Jolliffe and Cadima, 2016) technique to reduce the 

dimensionality of the problem passing from several synthetic 

descriptors computed in different cycle phases to a much 

smaller number of new descriptors that capture the actual 

information content. Based on these new descriptors, called 

Principal Components (PCs), a control charting scheme for 

degradation statistics can be designed during a training phase 

and used during the actual monitoring phase. 

Starting from a matrix X1:𝑀𝑀 (𝑀𝑀 × 𝑝𝑝), Principal Component 

Analysis consists in the eigen decomposition of its variance-

covariance matrix S1:𝑀𝑀. The aim is finding matrices L and U, 

that satisfy the following relation:  

 

                                 𝐔𝐔𝑻𝑻𝐒𝐒𝟏𝟏:𝑴𝑴𝐔𝐔 = 𝐋𝐋                         (1) 

Where 𝐋𝐋 is a diagonal matrix, whose diagonal elements are the 

eigenvalues of 𝐒𝐒1:M (λk; k = 1, … , p), and 𝐔𝐔 is an orthonormal 

matrix whose 𝑘𝑘𝑡𝑡ℎ column 𝒖𝒖𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ eigenvector of 𝑺𝑺1:𝑀𝑀. 

The projection of the 𝑖𝑖𝑡𝑡ℎ sample (corresponding to the 

𝑖𝑖𝑡𝑡ℎ monitored cycle) into the 𝑝𝑝-dimensional orthogonal space, 

defined by the PC, is defined as follows: 

       𝐳𝐳𝒊𝒊 = 𝐔𝐔𝑻𝑻(𝐱𝐱𝒊𝒊 − �̅�𝐱) = [𝒛𝒛𝒊𝒊,𝟏𝟏, … , 𝒛𝒛𝒊𝒊,𝒑𝒑]
𝑻𝑻
   (𝑖𝑖 = 1,2, …)         (2) 

 

Where 𝐱𝐱𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ row of the 𝐗𝐗1:𝑀𝑀 matrix and �̅�𝐱 =
(1/𝑀𝑀) ∑ 𝐱𝐱𝑖𝑖

𝑀𝑀
𝑖𝑖=1  is the mean vector among the 𝑀𝑀 indicator 

vectors used to estimate the PCA model. 𝑝𝑝 is the maximum 

number of PC that could be extracted.  
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The 𝑘𝑘𝑡𝑡ℎ eigenvector 𝐮𝐮𝑘𝑘 contains the loadings associate to the 

𝑘𝑘𝑡𝑡ℎ principal component. This reflects the contribution of each 

indicator to the corresponding linear combination. 

By selecting the first 𝑚𝑚 PC, each sample could be rewritten as: 

 

�̂�𝐱𝒊𝒊(𝑚𝑚) = �̅�𝐱 + ∑ 𝒛𝒛𝒊𝒊,𝒌𝒌𝐮𝐮𝒊𝒊
𝒎𝒎
𝒌𝒌=𝟏𝟏           (𝑖𝑖 = 1,2, …) (3) 

 

The process monitoring strategy requires the computation of 

two statistics (Colosimo and Pacella, 2007, Colosimo and 

Pacella, 2010). The first one is the Hotelling 𝑇𝑇2, used to 

recognize deviations along the 𝑚𝑚 PC directions. It is a measure 

of the variability within the PCA model. 

 

𝑻𝑻𝒊𝒊
𝟐𝟐(𝑚𝑚) = ∑

𝒛𝒛𝒊𝒊,𝒌𝒌
𝟐𝟐

𝝀𝝀𝒌𝒌

𝒎𝒎
𝒌𝒌=𝟏𝟏            (𝑖𝑖 = 1,2, …) (4) 

 

The second statistic is the 𝑄𝑄, sum of the mean square errors of 

the PCA model, used to recognize deviations in the directions 

orthogonal to those associated to the first 𝑚𝑚 PCs. It is a 

measure of the amount of variability not explained by the PCA 

model.  

 

𝑸𝑸𝒊𝒊(𝑚𝑚) = (�̂�𝐱𝒊𝒊(𝑚𝑚) − �̅�𝐱)𝑻𝑻(�̂�𝐱𝒊𝒊(𝑚𝑚) − �̅�𝐱)       (𝑖𝑖 = 1,2, …) (5) 

 

Since the original synthetic descriptors are strongly correlated 

to the machine tool health and their variation may reflect 

anomalous conditions at component level, 𝑇𝑇2 and 𝑄𝑄 statistics 

act as the degradation indexes of the system. Correct operating 

conditions are characterized by a stable behaviour in both the 

statistics. A deviation from the stable behaviour reflects a 

variation in state of health of the system. The two statistics 

allow to identify different phenomena, impacting on the first 

selected principal components or on the remaining principal 

components, respectively. An anomalous pattern in one of the 

two statistics is sufficient to detect a degrading condition of 

the system.   

 

The monitoring strategy includes a training phase (Phase I) and 

a monitoring phase (Phase II). During the training phase, 𝑀𝑀 

cycles - representing the correct working conditions - are 

acquired. The previous described procedure is applied to the 

𝑀𝑀 samples and two final control charts, for the 𝑇𝑇2 and  𝑄𝑄 

statistics, are designed. The control limits are estimated as 

percentiles (1 − 𝛼𝛼′)% from the knows distributions of the 

statistics 𝑇𝑇𝑖𝑖
2(𝑘𝑘) and 𝑄𝑄𝑖𝑖(𝑘𝑘), 𝑖𝑖 = 1, … , 𝑀𝑀, where 𝛼𝛼′ is the first 

type global error and 𝛼𝛼 = 1 − (1 − 𝛼𝛼′)(1/2) is the first type 

error associated to each single control chart, computed using 

the Sidak correction. Control limits could be found using the 

procedure described in Colosimo and Pacella, 2007, Colosimo 

and Pacella, 2010. During the monitoring phase, the value of 

𝑇𝑇𝑖𝑖
2(𝑘𝑘) and 𝑄𝑄𝑖𝑖(𝑘𝑘) are estimated for each new fingerprint cycle, 

using the estimates of the matrices 𝐋𝐋 and 𝐔𝐔, and the vector �̅�𝐱 

from Phase I. Depending on the nature of the control limits, 

the violation of at least one of the two causes an alarm or a 

warning. 

 
1 https://www.mcmspa.it/ 

More details about PCA analysis applied to process 

monitoring could be found in Colosimo and Pacella, 2007, 

Colosimo and Pacella, 2010, Jolliffe and Cadima, 2016. 

3. CASE STUDY 

The real case study for testing and validating the proposed 

approach was implemented on an MCM Clock 700 machine 

tool 1(Fig. 3). The machine was installed in the main plant of 

the Italian company Fabbrica d’Armi Pietro Beretta S.p.A2, 

specialized in firearms manufacturing. The fingerprint cycle 

part-program was subdivided in seven main phases: rapid 

movements in both directions and covering all the linear axis 

length along X, Y and Z; rapid rotations of the three rotary 

axes B, A and W; spindle rotations at different speeds. 

 

Figure 3. MCM Clock 700 machine tool 

Table 1 shows a recap of all the signals acquired during the 

fingerprint cycles. 

Table 1.  Fingerprint cycle signals 

 

CNC signals were acquired with a sampling interval of 48 ms 

and recorded on a database. A three-axial accelerometer is 

mounted on the spindle, with a bandwidth between 10 Hz and 

2.5 kHz. The accelerometer signal is sampled by the control 

unit at 16 kHz and the Fast Fourier Transform (FFT) along the 

2 https://www.beretta.com/ 
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X direction is computed by the embedded sensor electronics 

and provided as output for the fingerprint analysis.  

Fig. 4 (top panels) shows an example of X-axis current and 

position signals in one single cycle, whereas Fig. 4 (bottom 

panels) shows the spindle speed and spindle power during the 

same cycle. The red dotted lines separate the different 

temporal windows corresponding to rest and movement 

phases.  

 

 

Figure 4. Examples of some fingerprint cycles: top panels 

show X-axis position and current signals during one cycle; 

bottom panels show spindle power and spindle speed during 

the same cycle 

 

About 80 cycles were used for the training phase, and the 

remaining cycle were used for the monitoring phase. The 

selected real case study includes a real degradation affecting 

the Y-axis. In this case, a damage of the ball screw nut was 

observed by the operators and the nut was replaced in a 

maintenance intervention. Every week, before and after the nut 

replacements, the fingerprint cycles were executed on the 

machine. This case study allowed us to evaluate the capability 

of the proposed monitoring tool to signal the degraded state of 

the axis.  

4. RESULTS 

For each linear and rotating axes, 30 synthetic descriptor 

values were computed in each fingerprint cycle. The PCA was 

applied on these descriptors for each axis and the spindle 

separately, resulting in seven independent analysis. Authors 

set the explained variability at least 80% per each PCA, finding 

a number of principal components ranging from 3 to 6. Thus, 

the number of selected PCs used for the implementation of the 

proposed approach varies from axis to axis. In particular, for 

axes with larger natural variability of monitored signals (Y, B 

and W axis), 6 PCs where needed to capture the 80% of overall 

signal variability, whereas for more precise axes (X, Z, A axis 

and spindle), 3 PCs were sufficient. 

Fig. 5 shows the control charts used to monitor the health 

condition of the Y-axis during the training phase and during 

the following monitoring phase. The vertical dashed black line 

indicates the end of the training phase, while the vertical 

dashed red line indicates when the ball screw nut was replaced. 

In the control charts, the alarm threshold is indicated by a red 

line (corresponding to a designed family-wise Type I error 

equal to 0,27%), whereas the warning threshold is indicated by 

a red dashed line (corresponding to a designed family-wise 

Type I error equal to 5%).  

Fig. 5 shows that the 𝑇𝑇2 statistic signalled a warning in the 

cycles acquired during the week before the maintenance 

intervention. The 𝑄𝑄 statistics, instead, signalled an alarm in the 

same week. These signals were consistent with the observation 

of the operators who, in the next week, replaced the damaged 

nut. 

 

 

Figure 5. Control charts for Y-axis health monitoring; the 

vertical dashed red lines indicate the point in time when the 

ball screw nut was replaced 

 

The analysis of individual synthetic descriptors highlighted the 

presence of a small and constant trend during both the training 

phase and the monitoring phase up to two weeks before the 

maintenance intervention. This trend characterized especially 

the average current of the linear axes. Since the trend was 

present already during the training phase, the control charting 

scheme embedded such pattern as part of the natural system 

behaviour. However, a shift occurred the week before the 

maintenance intervention, and this was clearly captured by the 

synthetic descriptors computed for the Y-axis. Fig. 6 shows an 

example of the average current values from the Y-axis (two 

movements from left to right) along all the training and 

monitoring fingerprint cycles. Red arrows in Fig. 6 indicate the 

shift observed before the implementation of the maintenance 

intervention. A further shift occurred when the new nut was 

installed.  
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Figure 6. Examples of average current values from the Y-axis 

(two movements from left to right) along all the training and 

monitoring fingerprint cycles. Red arrows indicate the shift 

observed before the maintenance intervention was 

implemented and the vertical dashed red lines indicate the 

point in time when the ball screw nut was replaced 

5. CONCLUSIONS 

The various technological advances that have been combined 

and summarized within the Industry 4.0 paradigm enable novel 

opportunities for health condition monitoring of production 

systems, predictive maintenance and quality improvement of 

final products. In this framework, this study presented a novel 

patent-pending solution based on the fingerprint cycle 

approach. The method is suitable to separate drifts, trends and 

shifts in CNC signals caused by a change in machine tool 

health condition from any variation related to the cutting 

process and other external factors. 

In traditional industrial practices, machine tool conditions are 

evaluated during the corrective maintenance actions and the 

identification of faults happen only in high degraded states. 

Contrarily, the proposed fingerprint approach allows 

continuous monitoring of the health state of machine tool 

components and spindle making an effective and novel use of 

sensor signals that are already embedded into the system. An 

optimization of the Company’s maintenance strategy could be 

reached by promptly determining any degrading state or 

anomalies, exploiting the knowledge about the actual state of 

health of the machine, and by making predictions about when 

and where a maintenance intervention could be needed, 

predictive maintenance. Moreover, better performance in 

terms of the finished product could be achieved during the 

entire system lifecycle. The proposed monitoring instrument, 

thanks to its flexibility, could be installed on different 

typologies of machine tools. Even if the monitored signals and 

the sequence of operations included into the cycle can be 

tailored to the specific case study, the methodological steps 

could be replicated, from the identification of the synthetic 

indexes to the creation of multivariate control charts. 

Further analysis will be carried out to test and validate the 

proposed approach in the presence of different degraded states 

affecting various critical components. A correlation analysis 

between the machine health state and the final quality of the 

product represents an interesting future development as well. 
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