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Transport inhibition via Anderson localization is ubiquitous in disordered periodic lattices. However, in crystals
displaying only flat bands disorder can lift macroscopic band flattening, removing geometric localization and
enabling transport in certain conditions. Such a striking phenomenon, dubbed inverse Anderson transition and
predicted for three-dimensional flat band systems, has thus far not been directly observed. Here we suggest a
simple quasi one-dimensional photonic flat band system, namely an Aharonov-Bohm photonic cage, in which
correlated binary disorder induces an inverse Anderson transition and ballistic transport. c© 2021 Optical
Society of America

Introduction. Light propagation in optical waveguide
lattices with disorder has provided over the past two
decades unique capabilities to realize groundbreaking
theoretical concepts of disordered systems, such as
Anderson localization and associated phenomena (see
e.g. [1–15] and references therein). Anderson localization
predicts that static uncorrelated disorder added to a
regular lattice can lead to complete localization of wave
functions for non-interacting particles and thus the
absence of transport. Intriguing effects arise when some
of the dispersion bands of the clean lattice are flat and
the system supports compact localized eigenstates, that
are perfectly localized to several lattice sites [16–25].
Owing to the diverging effective mass in a flat band lat-
tice, the system becomes very sensitive to disorder and
the emerging phenomena can significantly deviate from
conventional Anderson localization [26–34]. When in the
clean lattice a flat band coexists with dispersive bands,
weak disorder hybridizes rather generally the compact
flatland states with Bloch waves of dispersive bands,
leading to exotic phenomena like localization with
unconventional critical exponents, multifractal behavior
and mobility edges with algebraic singularities [28–30].
Remarkably, when all the bands of the system are flat,
transport in the clean lattice is forbidden by geometric
localization and disorder can in principle induce a
localization-delocalization transition [27]. This striking
effect, dubbed the inverse Anderson transition, was
numerically predicted for a three-dimensional diamond
lattice with four-fold degenerated orbitals possessing
only flat bands [27], however it has thus far not been
observed. On the other hand, in low-dimensional sys-
tems with entire flat bands geometric localization seems
to be robust against uncorrelated static disorder [34],
preventing the observation of an inverse Anderson
transition.
In this Letter we suggest a rather simple quasi one-
dimensional (1D) photonic system displaying flat bands
in the clean limit, namely a photonic analogue of the
Aharonov-Bohm cage [18, 35–38], and show analyti-

cally that correlated binary disorder enables ballistic
transport and absolutely continuous spectrum with
dispersive bands, thus providing an experimentally sim-
ple and accessible system to observe inverse Anderson
localization in a low-dimensional system.

Aharonov-Bohm photonic cage with disorder. We
consider a photonic cage [18, 37, 38] consisting of a
quasi 1D rhombic lattice of evanescently-coupled optical
waveguides with three sublattices A, B and C, in which
a synthetic magnetic flux ϕ is applied in each closed
square loop via Peierls’ substitution of the coupling
constant between waveguides of sublattices A and B, as
shown in Fig.1(a). We assume static on-site potential
disorder Vn and Wn in the outer sublattices B and
C, which corresponds to disorder in the propagation
constant shift of waveguide modes in sublattices B
and C with respect to waveguides in sublattice A.
In the nearest-neighbor tight-binding approximation,
light propagation in the rhombic lattice is described
by the following coupled-mode equations for the modal
amplitudes an, bn and cn in the various guides

i
dan
dz

= κ (bn exp(iϕ) + bn−1 + cn + cn−1)

i
dbn
dz

= κ (an exp(−iϕ) + an+1) + Vnbn (1)

i
dcn
dz

= κ (an + an+1) +Wncn

where κ is the coupling constant between adjacent
waveguides, z is the propagation (axial) distance, and
ϕ is the synthetic magnetic flux. The clean lattice (Vn =
Wn = 0) sustains three bands with the dispersion rela-
tions given by

E0 = 0 , E± = ±2κ
√

1 + cos(ϕ/2) cos(q + ϕ/2) (2)

where −π ≤ q < π is the Bloch wave number. For ϕ = π,
the spectrum is made up of three flat bands, E0 = 0 and
E± = ±2κ. The minimally extended (compact) eigen-
states corresponding to the three flat bands are displayed
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in Fig.1(b). In this case a complete suppression of any
wave packet spreading in the lattice is thus realized, cor-
responding to the so-called Aharonov-Bhom cage. The
required ϕ = π synthetic magnetic flux can be experi-
mentally realized either by suitable bending engineering
of the lattice [18, 37] or by using an auxiliary lattice to
indirectly couple waveguides in sublattices A and B [38].
In the presence of on-site potential disorder in the
outer sublattices B and C, after setting (an, bn, cn)T =
(An, Bn, Cn)T exp(−iEz) in Eq.(1) and eliminating the
variables Bn and Cn in the equations so obtained, one
can write the following eigenvalue equation for the en-
ergy spectrum E

EAn = ∆n(E)An + Jn(E)An+1 + J∗n−1(E)An−1 (3)

where we have set

∆n(E) =
κ2

E −Wn
+

κ2

E −Wn−1
+

κ2

E − Vn
+

+
κ2

E − Vn−1
(4)

Jn(E) =
κ2

E −Wn
+
κ2 exp(iϕ)

E − Vn
. (5)

Equation (3) formally describes the spectral problem
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Fig. 1. (Color online) (a) Schematic of a quasi 1D photonic
cage made of of three sublattices A, B and C of optical waveg-
uides arranged in a rhombic geometry. A synthetic magnetic
flux ϕ is applied in each plaquette. At ϕ = π the lattice sus-
tains the three flat bands E0 = 0, E± = ±2κ, and Aharonov-
Bohm caging is realized: a photon initially localized on the
central guide (filled circle) oscillates to its nearest neighbors
(empty circles), but will not propagate through the lattice.
(b) Compact localized eigenstates of energies E0 = 0 and
E± = ±2κ for ϕ = π.

of a 1D tight-binding lattice with nearest-neighbor
hopping with an energy-dependent disorder in both
on-site potential ∆n(E) and hopping amplitudes Jn(E).
The impact of uncorrelated disorder with a continuous
probability density function in the uniform rhombic
lattice of Fig.1(a), with and without the synthetic
magnetic flux ϕ, was investigated in some previous
works [26, 31, 34]. For ϕ 6= π, i.e. when the system

sustains one flat band (E0 = 0) and two dispersive
bands (E±), static disorder rather generally removes the
flat band eigenvalue degeneracy and provides mixing
inside this band, as well as with states originating from
the other dispersive bands [30,31]. In this work we focus
our attention to the flat band case ϕ = π, since we wish
to establish whether static disorder can induce transport
in the lattice (inverse Anderson transition [27]). For
ϕ = π, a recent study [34] based on extended numerical
results indicates that static on-site uncorrelated disor-
der can not induce transport, and that two different
localization mechanisms, namely frustration (geometric)
and Anderson (exponential) localization, do compete:
For weak static on-site disorder (smaller than ∼ 2κ), the
eigenstates from each band are separated by gaps and
their localization lengths saturate and do not depend
on the disorder strength, indicating that geometric
localization prevails over Anderson localization. On
the other hand, for strong on-site disorder (larger than
∼ 2κ) the energy bands are mixed and the localization
length decreases as the disorder strength is increased
(like in ordinary Anderson localization).

Transport in the photonic cage with antisymmetric
correlated disorder. An open question is whether other
kinds of on-site static disorder can induce transport.
Inspired by the random dimer model [39], we assume
correlated disorder in sublattices B and C, by consid-
ering either symmetric (Wn = Vn) or antisymmetric
(Wn = −Vn) correlated disorder, where Vn are inde-
pendent stochastic variables with the same probability
density function f(V ) of zero mean. As shown in the
Supplemental document, in the former case the disor-
der lifts band degeneracy, however compact localized
states are robust and transport is thus prevented. A
more interesting scenario arises in the antisymmetric
correlated disorder Wn = −Vn. In this case, provided
that Vn 6= 0 from Eq.(4) it follows that ∆n(E) vanishes
at zero energy E = 0, i.e. ∆n(E = 0) = 0, and Eq.(3) at
E = 0 reads

1

Vn
An+1 +

1

Vn−1
An−1 = 0 (6)

from which the right/left Lyapunov exponents

µ±(E = 0) = lim
n→±∞

1

n
log

∣∣∣∣ An

A0,1

∣∣∣∣ (7)

can be readily computed, yielding µ±(E = 0) = 0.
This means that E = 0 belongs to the energy spec-
trum and the two corresponding linearly-independent
wave functions, recursively defined by Eq.(6) assuming
either A0 = 1 and A2n+1 = 0 or A1 = 1 and A2n = 0, are
extended states. We stress that such a result holds pro-
vided that Vn 6= 0, i.e. for any probability density func-
tion f(V ) vanishing at V = 0. The existence of extended
states at the zero energy indicates that disorder-induced
transport in the photonic cage system is possible. We
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checked this prediction by considering light transport in
the photonic cage structure with antisymmetric corre-
lated disorder described by the probability density func-
tion

f(V ) =

{
1

2∆ |V ± V| < ∆/2
0 otherwise

, (8)

with ∆ < 2V. Note that, in the limit ∆ → 2V, f(V )
is uniformly distributed in the range (−2V, 2V), and we
expect localization and the absence of transport in this
limit [34]. In the other limit ∆→ 0, f(V ) is the Bernoulli
distribution since Vn can take only the two values ±V
with the same probability. As an example, in Figs.2(a)
and (b) we show the numerically-computed light prop-
agation dynamics in the waveguide photonic cage sys-
tem with initial condition corresponding to the excita-
tion of the waveguide of sublattice A at site n = 0, i.e.
an(0) = δn,0 and bn(0) = cn(0) = 0. The spreading of
the discretized light beam, shown in Fig.2(b), is meas-
ured by the variance

σ2(z) =
∑
n

n2(|an|2 + |bn|2 + |cn|2),

with σ(z) ∼ z for ballistic transport. To characterize the
localization properties of the wave functions, we consider
the inverse participation ratio (IPR), which can distin-
guish localized and extended states. Assuming a finite
lattice with N unit cells, for a normalized wave function
the IPR is defined as

IPR =

N∑
n=1

(
|An|4 + |Bn|4 + |Cn|4

)
. (9)

The IPR of an extended state scales as ∼ 1/N , hence
vanishing in the large N limit, while it remains finite
for a localized state. Figure 2(c) shows the numerically-
computed energy spectrum and IPR in a lattice com-
prising N = 300 unit cells assuming periodic bound-
ary conditions. Clearly, disorder lifts the degeneracy of
the three energy levels (flat bands) E = 0,±2κ of the
clean system, with clusters of energies separated by two
main gaps and with small IPR of wave functions far from
the band edges, indicating that there are many extended
states (besides the ones at energy E = 0).
The spreading in the lattice is controlled by the ra-

tio ∆/V, as shown in Fig.3. The figure depicts the
numerically-computed evolution of the standard devi-
ation σ(z), averaged over 50 different realizations of dis-
order, for a few decreasing values of ∆/V. The right pan-
els in Fig.3 show typical light dynamics evolution in the
lattice. Localization is found at ∆ = 2V (uniform dis-
tribution), while the fastest spreading is observed when
∆ = 0 (Bernoulli distribution). The Bernoulli distribu-
tion (∆→ 0) is particularly interesting since it is exactly
solvable, proving in a rigorous way that inverse Anderson
localization with ballistic transport arises in the photonic
cage structure with correlated antisymmetric disorder.
In fact, for a Bernoulli distribution Vn can take only the
two values ±V with probabilities p and q = 1−p. In this

(c)

(b)

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0 20 40 60 80 100
0

10

20

30

energy E/κ

propagation distance κz

IP
R

 σ
(z
)

lattice site  n
0 100-100

0

100

20

40

60

80

p
ro

p
a

g
a

ti
o

n
 d

is
ta

n
ce

 κ
z

(a)

Fig. 2. (Color online) (a,b) Light propagation in a pho-
tonic cage lattice with correlated antisymmetric disorder
Wn = −Vn. The density probability function f(V ) of the
stochastic variable Vn is given by Eq.(8) with V = κ and
∆ = κ/2. The lattice is initially excited in the waveguide of
sublattice A at site n = 0. Panel (a) shows the numerically-
computed evolution of modal amplitudes |an(z)| versus nor-
malized propagation distance κz on a pseudo color map for
a given realization of disorder. The corresponding evolution
of the standard deviation σ(z) is depicted in panel (b). Panel
(c) shows the numerically-computed behavior of the IPR for
the eigenstates of Eq.(1) versus normalized energy E/κ in
a lattice with N = 300 unit cells under periodic boundary
conditions.

case, from Eq.(4) it follows that ∆n(E) = 4κ2E/(E2 −
V2) is independent of site index n, whereas form Eq.(5)
one has Jn = −2κ2V exp(iπδn)/(E2−V2), with δn = 0, 1
for Vn = ±V. After introduction of the gauge transfor-
mation

An = Ān exp

(
−iπ

n−1∑
l=0

δl

)
(10)

for the amplitudes An, in the new variables Ān the eigen-
value equation (3) takes the form

EĀn =
4κ2E

E2 − V2
Ān −

2κ2V
E2 − V 2

(
Ān+1 + Ān−1

)
(11)

with energy-dependent but site-independent hopping
amplitudes and on-site potential. The wave functions in
the amplitudes Ān are thus extended and of Bloch type,
Ān = Ā exp(iqn), with energy dispersion E(q) satisfying
the condition

E =
4κ2

E2 − V2
(E − V cos q) (12)

i.e. the cubic equation

E3 − (V2 + 4κ2)E + 4κ2V cos q = 0. (13)

Therefore, for correlated binary (Bernoulli) antisymmet-
ric disorder the energy spectrum remains absolutely con-
tinuous and composed by three dispersive Bloch bands,
with energy dispersion defined by the roots of Eq.(13).
The width of the spectrum ∆E, defined as the sums of
the widths of the three dispersive Bloch bands, vanishes
for V = 0, i.e. in the clean limit corresponding to the flat
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Fig. 3. (Color online) Numerically-computed evolution of
the standard deviation σ(z) for light propagation in a disor-
dered photonic cage lattice, averaged over 50 different real-
izations of disorder. The probability density function is given
by Eq.(8) with V = κ, while a few increasing values of ∆ are
considered. Curve 1: ∆ = 0 (Bernoulli distribution); curve
2: ∆ = V/2; curve 3: ∆ = V; curve 4: ∆ = 2V (uniform
distribution). The right panels show typical light dynamics
in the lattice on a pseudo color map (increasing values of ∆
from top to bottom).

bands, and in the strong disorder limit V � κ, as shown
in Fig.4(a). The largest bandwidth ∆E is attained at
V =

√
2κ, at which the two gaps separating the three

bands vanish. At this amplitude of disorder, the trans-
port is fastest, as shown in Fig.4(b). As a final comment,
we note that, if on-site potential disorder Yn were con-
sidered also in sublattice A, a term Yn should be added
to the effective on-site potential ∆n(E), leading to local-
ization and thus preventing transport.
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Fig. 4. (Color online) (a) Behavior of the bandwidth ∆E of
the dispersive bands versus disorder amplitude V for a binary
(Bernoulli) distribution of Vn. (b) Behavior of the standard
deviation σ(z) versus propagation distance z for a few in-
creasing values of V. Curve 1: V/κ = 0.5; curve 2: V/κ = 1;
curve 3: V/κ =

√
2; curve 4: V/κ = 4; curve 5: V/κ = 10.

The fastest wave spreading is found at V/κ =
√

2.

The inverse Anderson transition in a photonic cage
predicted in this work should be feasible for an experi-
mental observation using optical waveguide lattices real-
ized by the femtosecond laser writing technology in bulk
glasses [37, 38]. In the Supplemental document we pro-
vide results on wave spreading for realistic parameter

values.
Conclusions. Inverse Anderson transition arises

in certain lattices displaying fully flat bands, where
disorder removes geometric localization and restores
transport. In this work we suggested a quasi 1D pho-
tonic system where inverse Anderson transition could
be observed. Such a system is interesting because: (i)
Inverse Anderson transition can be demonstrated in
an exact (analytical) way; (ii) It highlghts the role of
correlated disorder; (iii) It is feasible for an experimental
demonstration using photonic waveguide lattices, paving
the way toward the first experimental observation of
the inverse Anderson transition. The present results
unravel new insights on the interplay between correlated
disorder and flat band systems, and could be of interest
beyond photonics.
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