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a b s t r a c t 

Recurrent neural networks have recently proved the state-of-the-art approach in forecasting complex os- 

cillatory time series on a multi-step horizon. Researchers in the field investigated different machine learn- 

ing techniques and training approaches on dynamical systems with different degrees of complexity. Still, 

these analyses are usually limited to noise-free chaotic time series. This paper extends the analysis from 

a deterministic to a noisy environment, by considering both observation and structural noise. Observa- 

tion noise is evaluated by adding different levels of artificially-generated random values on deterministic 

processes obtained from the simulation of four archetypal chaotic systems. A case of structural noise is 

implemented through a time-varying version of the logistic map, which exhibits a slow structural change 

of the system’s dynamic that makes the system non-stationary. Finally, a time series of ozone concentra- 

tion in Northern Italy is considered to test the theoretical findings on a real-world case study in which 

both forms of noise play a significant role. Recurrent neural networks formed by LSTM cells are compared 

with two benchmark feed-forward architectures. LSTM trained without the standard teacher forcing ap- 

proach, i.e., with training that replicates the setting used in inference mode, proved to have the best 

performance in compensating the stochasticity generated by the observation noise and reproducing the 

structural non-stationarity of the process. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

u

s

t

d

t

t

i

t

o

c

f

i

e

o

t

n

[

[

h

n

h

r

o

a

t

s

o

t

p

c

f

a

l

h

0

. Introduction 

The concept of chaos, more precisely deterministic chaos, is 

sually linked to the concept of predictability, such as in the iconic 

entence by Edward Lorenz: “Chaos: When the present determines 

he future, but the approximate present does not approximately 

etermine the future”. Indeed, arbitrarily small system’s perturba- 

ions or measurement errors get amplified along a chaotic trajec- 

ory, even when produced by a deterministic yet nonlinear, dynam- 

cal system. The resulting time series are hardly predictable beyond 

he characteristic time of the local expansion and show complex 

scillatory patterns. 

Some early attempts to discover how far the evolution of 

haotic systems can be predicted have been performed starting 

rom the late 80s [1–9] . The topic became more and more debated 

n recent years, thanks to modern machine learning techniques and 

ver-increasing computational power [10] . 

Recurrent neural networks (RNNs, endowed with internal mem- 

ry) proved to be particularly effective in forecasting nonlinear 

ime series compared to traditional feed-forward (FF, memoryless) 
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etworks [11–14] , though their training is computationally heavier 

15] . In particular, two RNNs classes, namely reservoir computers 

16–23] and long short-term memory (LSTM) networks [24–27] , 

ave proved to perform extremely well in predicting chaotic dy- 

amics. Reservoir computers are composed of a single untrained 

idden layer—the reservoir—of many randomly connected recur- 

ent neurons, while training is only performed for the hidden-to- 

utput connections. In LSTM nets, instead, all recurrent neurons 

re trained using the backpropagation algorithm (backpropagation 

hrough time of the internal memory). Additionally, the LSTM cell 

tructure is specifically designed to prevent the converging issues 

f backpropagation in classical RNNs. An extensive comparison be- 

ween the two classes focused on chaotic time series forecasting is 

rovided in Hassanzadeh et al. [28] and Vlachas et al. [29] . 

Despite the high performances achieved on many different 

haotic systems on the prediction one step ahead [26,30,31] , the 

orecasting over a multi-step horizon is unequivocally recognized 

s an open issue and a challenging testing ground for machine 

earning techniques [32,33] . 

Depending on the length of the predictive horizon, we usually 

iscriminate between two distinct typologies of problems. The first 

onsiders the forecasting of the system’s dynamics on relatively 

hort-term horizons. The second aims at replicating the so-called 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. The time series prediction is framed as a supervised learning task. For illus- 

trative purposes, we represent N pairs of inputs ( m = 2 lags, in yellow) and outputs 

( h = 3 leads, in blue). Note that the number of input-output pairs, N, is equal to 

the number of points in the time series minus (m + h − 1) . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
climate” associated with the long-term behavior of the system. 

he focus is on the exact timing of the prediction in the first case, 

n the statistical properties of the original system in the second. 

The papers on both topics usually study noise-free stationary 

ime series, except a few recent exceptions [34–37] . For instance, 

atel et al. [36] show that machine learning techniques are ef- 

ective in reproducing the climate of chaotic attractors even in a 

oisy and non-stationary environment. In this paper, we extend 

n the same direction the results obtained by Sangiorgio and Der- 

ole [27] in the short-mid-term forecasting of deterministic and 

tationary chaotic dynamics. They demonstrated that purely data- 

riven machine learning approaches can reproduce the dynamics 

f chaotic systems with high accuracy up to about six times the 

o-called Lyapunov time (LT, the characteristic time of the local 

xpansion given by the inverse of the largest Lyapunov exponent, 

LE, of the system’s attractor). Since this limit has been found 

y different authors [17,20,29,38] in a wide range of continuous- 

nd discrete-time systems of different degree of complexity and 

haoticity, it can be considered as the predictability threshold 

owadays achievable. 

To extend these findings to a noisy environment, we ana- 

yze how the predictors’ forecasting skills are affected by differ- 

nt sources of noise: observation and structural noise. The ef- 

ect of observation noise is evaluated by adding different levels of 

rtificially-generated random values, representing the observation 

ncertainty always affecting real-world applications on the deter- 

inistic processes obtained from the simulation of four archety- 

al chaotic systems. The structural noise is implemented through 

 time-varying version of the logistic map obtained by introduc- 

ng a slow dynamic for the parameter defining the growth rate in 

he traditional formulation of such a map. This system has concur- 

ent slow and fast dynamics and exhibits, in turn, a stable, peri- 

dic, or chaotic behavior. The two experiments stand somehow be- 

ween the deterministic systems and real-world applications. They 

hus can be seen as an attempt to bridge the gap between theo- 

etical and practical aspects of chaotic time series forecasting. Fi- 

ally, we apply the proposed methodologies to a real-world time 

eries of ozone concentration that exhibits chaotic behavior. In- 

eed, real time series constitute an intrinsic mixing of determinis- 

ic and stochastic components and when we assume the possibility 

f separating the two components we are, in a way, already defin- 

ng a certain structure (e.g., an additive noise) of the signal and the 

rocess behind it. When this additive assumption is acceptable, the 

nalysis can be split into two distinct steps: A filtering phase that 

ims at isolating deterministic and stochastic processes and a pre- 

ictive phase that considers the deterministic signal [34,39] . 

Whenever it is not possible to separate the noisy component, 

he option is to directly consider the time series as it is (i.e., with-

ut preprocessing) in a single-step procedure, exploiting the neural 

etworks ability of being nonlinear filters. Due to their basic struc- 

ure, FF nets have a lower filtering ability than recurrent and con- 

olutional architectures (the first thanks to the internal states; the 

econd to convolutional filters). This ability can thus be boosted by 

ombining convolutional and recurrent neurons [40] or by training 

he neural predictor, so that the parametrization can best exploit 

ll the features of the input (including noise) as proposed in the 

aper by Chen et al. [35] . In practice, the effectiveness of all the

echniques mentioned above depends on the considered task and 

heir application could even negatively affect the forecasting ac- 

uracy. For instance, Romanuke [39] highlights that a preliminary 

moothing can worsen the performance in the case of a noisy pe- 

iodic dynamic, much easier to handle than a chaotic one. 

The remainder of the paper is structured as follows. 

ection 2 presents the learning problem set up and describes 

he features of the considered neural predictors. Section 3 de- 

cribes the experimental settings specifically thought to evaluate 
2 
bservation and structural noise, including a real-world case 

tudy. Finally, in Section 4 , we recap the effect of different noise 

ypologies and draw some concluding remarks. Appendix A pro- 

ides the technical details about the training process and the 

yper-parameter tuning. Appendix B reports the equations of the 

rchetypal chaotic systems considered in this study. 

. Neural forecasting methods 

In this section, we present the structure of the neural predic- 

ors and their identification procedure. To facilitate the comparison 

ith the noise-free scenario, we use the very same setting intro- 

uced by Sangiorgio and Dercole [27] . Although some overlapping 

s unavoidable, we here adopt a more tutorial style for the reader’s 

onvenience. 

.1. Learning problem set up 

Identifying a neural predictor for a time series y (t) requires set- 

ing a supervised learning problem. The predictor uses the most 

ecent m samples (lags), y (t − m + 1) , . . . , y (t − 1) , y (t) , to gener-

te the h predictions (leads), ˆ y (t + 1) , ˆ y (t + 2) , . . . , ˆ y (t + h ) , corre-

ponding to the targets y (t + 1) , y (t + 2) , . . . , y (t + h ) . In practice,

he time series is arranged into N input-output pairs as shown in 

ig. 1 . Given the matrix of inputs ( N rows and m columns), each 

redictor estimates the corresponding matrix of targets ( N rows 

nd h columns). 

The learning problem is feasible if m is sufficient to map the 

redictor’s input into the next target value y (t + 1) . The smallest 

 is the dataset embedding dimension and is generically given by 

he integer larger than twice the fractal dimension of the process’s 

ttractor [41] . It should be pointed out that both FF and RNN pre-

ictors can solve the predictive problem presented above. The dif- 

erence between them lies in the approach they use to handle the 

ask: the former adopts a static scheme, the latter a dynamical one. 
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Fig. 2. The four considered neural predictors: FF recursive and multi-output, and 

LSTM trained with and without teacher forcing (TF, no-TF). Their functioning in 

training and inference modes is illustrated for m = 2 and h = 2 (FF architectures 

with 2 hidden layers of 3 neurons, LSTMs with a single layer of 3 cells). Note that 

the weights of recurrent neurons at different time steps are the same (parameter 

sharing). Consequently, the number of parameters does not depend on m and h for 

LSTM predictors. 

2

m

n

i

Fig. 3. Schematic diagram of an LSTM cell. The input, forget, and output gates are 

represented in red. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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.2. Predictors’ structure 

We compare the neural architectures reported in Fig. 2 in the 

ulti-step prediction of chaotic time series: two FF and an LSTM 

et (trained with two different approaches) that will be presented 

n the following. The structure of these neural predictors is inten- 
3 
ionally maintained unchanged across time series of different com- 

lexity. This reduces the computational effort related to the hyper- 

arameter tuning (see Appendix A ), and allows to quantify how the 

redictive accuracy degrades with the complexity of the task. 

F-recursive predictor 

The multi-step ahead forecasting of a chaotic dynamic is usually 

erformed by identifying a single-step ahead predictor [42–46] . It 

s then used recursively, feeding each predicted value back as in- 

ut for the subsequent step (FF-recursive predictor in Fig. 2 ). De- 

pite the dynamic nature of the time series, the identification of 

uch a predictor is a purely static task that requires reproducing 

he mapping from m inputs to a single output. 

Once trained, the FF-recursive predictor can generate a se- 

uence of outputs of arbitrary length. This is its main advantage, 

ut, at the same time, its main weakness: the predictor is not ex- 

licitly optimized to deal with a multi-step forecasting, and thus 

ts performance is not guaranteed on a multi-step horizon. This is 

 critical issue, especially when forecasting chaotic dynamics, due 

o their high sensitivity to perturbations. 

F-multi-output predictor 

An alternative to the previous approach consists of training the 

eural net to predict the whole multiple-step horizon at once. A 

rst attempt can be made by adopting the same structure used 

or the FF-recursive predictor, with the only difference of increas- 

ng the number of output neurons from 1 to h (FF-multi-output in 

ig. 2 ). Each of these neurons computes the forecast of the variable 

t a specific time step neglecting the dynamic that links these val- 

es. Due to its static nature, this architecture acts as if the outputs 

ere different systems variables at the same time step instead of 

he same variable sampled at different steps [47] . 

STM predictor 

To overcome the critical aspects of FF-recursive and FF-multi- 

utput nets, one should adopt an architecture that is optimized on 

 multiple-step horizon and explicitly considers the temporal dy- 

amics. This can be done using recurrent neurons in the hidden 

ayers of the net because their internal state gives them the ability 

o efficiently tackle tasks with a sequential/temporal structure. 

In particular, we consider a specific type of recurrent neuron, 

he LSTM cell [15,48] . As depicted in Fig. 3 , each LSTM cell has

 two-dimensional state composed of the so-called hidden state, 

hich is also the LSTM’s output and corresponds to the state of 

 standard recurrent neuron and of the cell state, responsible for 

eeping track of the input’s long-term effects. 
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Three gates modulate the information flows: input, output, and 

orget gates. Each gate’s value is the output of a sigmoid in the 

ange from 0 (closed gate) to 1 (open gate). The forget gate en- 

bles the LSTM neuron to reset the cell state at appropriate times 

when the combination of input and hidden state into the sigmoid 

s low). Similarly, the input gate decides the extent to which the 

andidate cell state update (generated by a hyperbolic tangent) af- 

ects the cell state, protecting it from irrelevant contributions. The 

utput gate modulates the candidate hidden state (generated by 

he other hyperbolic tangent) and avoids the negative effect of 

urrently irrelevant memory contents. During training, this gated 

tructure prevents vanishing (or exploding) gradients that gener- 

lly affect convergence in traditional RNNs. 

In our implementation, the internal states are initialized to zero 

t the beginning of each sequence of Fig. 1 . This allows the paral-

elization of the training procedure and a fair comparison with the 

F predictors. 

The RNNs can be trained adopting two techniques: the so-called 

eacher forcing (TF), which represents the current standard, and 

he non-standard version without teacher forcing (no-TF). With the 

F algorithm [49] , the target data are fed as input at each time

tep in the future (LSTM-TF in Fig. 2 ). Thus, the net learns to fore-

ast only one step, as each further prediction is based on the target 

ata up to the previous step and the internal memory. In inference 

ode, however, each further prediction must be based on previous 

redictions so that the LSTM-TF predictor behaves differently with 

espect to the training mode (this discrepancy is known under the 

ame of “exposure bias” in the neural networks literature [50,51] ). 

onsequently, TF prevents the net from correcting its own errors, 

eading to a situation similar to that of the FF-recursive predictor. 

F indeed turned out to be critical in the prediction of the noise- 

ree chaotic dynamics [27] . 

Training the LSTM architecture without TF (LSTM-no-TF in 

ig. 2 ) means that the network’s behavior in training and infer- 

nce modes coincide. In principle, it solves the drawbacks of the 

F-recursive and multi-output predictors and of LSTM-TF. Indeed, 

STM-no-TF nets ranked first in all the noise-free experiments pre- 

ented in Sangiorgio and Dercole [27] . 

Note that all the high-level libraries for deep learning use TF 

y default to train RNNs [52] . Implementing a training without TF 

equires coding with lower-level libraries, such as TensorFlow or 

yTorch. This derives from the huge success of LSTMs in natural 

anguage processing, where TF proved to be necessary to limit the 

ccumulation of errors especially in the initial phase of training 

53] . 

.3. Training, validation, and test 

As a common practice in machine learning, we split the avail- 

ble data into training, validation, and test datasets, each organized 

s sequences of input-output pairs ( Fig. 1 ). The training dataset is 

sed to calibrate the network’s parameters (i.e., connection weights 

nd bias). The input-output pairs of the validation dataset are used 

o tune the network’s hyper-parameters, which specify the neural 

rchitecture’s configuration and the learning algorithm (details are 

ummarized in Appendix A ). Finally, the test dataset is held out 

nd used, in inference mode, to evaluate the forecasting accuracy 

f the identified predictor objectively. 

In the supervised learning framework, the training is per- 

ormed by minimizing a loss function that measures the dis- 

ance between the target values and the corresponding predic- 

ions. The metric traditionally adopted as the loss function is the 

ean squared error (MSE, hereafter). Consider N target samples 

 = 

[
y 1 , y 2 , . . . , y N 

]
, and the corresponding i -step ahead predictions

ˆ  
(i ) = 

[
ˆ y (i ) 

1 
, ̂  y (i ) 

2 
, . . . , ̂  y (i ) 

N 

]
. For each target sample y k there is a time
4 
tep t k in the dataset such that y k = y (t k + i ) , so that ˆ y (i ) 
k 

is the

 

th element of the output vector 
[
y (t k + 1) , y (t k + 2) ,..., y (t k + h ) 

]
omputed on the input 

[
y (t k − m + 1) ,..., y (t k − 1) , y (t k ) 

]
. 

The MSE specific for the i th step ahead is 

SE 

(
y , ̂  y 

(i ) 
)

= 

1 

N 

N ∑ 

k =1 

(
y k − ˆ y (i ) 

k 

)
2 , (1) 

hich is the loss function, for i = 1 , used to train the FF-recursive

redictor. To train the other multi-step predictors (FF-multi-output, 

STM-TF, and LSTM-no-TF), we use the average MSE over the entire 

redictive horizon as loss, i.e., 

 

MSE 〉 = 

1 

h 

h ∑ 

i =1 

MSE 

(
y , ̂  y 

(i ) 
)
. (2) 

he training is performed for each of the considered combina- 

ions of the hyper-parameters (see Appendix A ), selecting the one 

hat provides the best performance—lowest loss—on the validation 

ataset. 

Finally, we note that the MSE is not a suitable metric to test 

he obtained predictor, because the prediction quality correspond- 

ng to its values depends on the range of variability of the data. It 

s preferable to use a normalized metric, such as the R 2 score: 

 

2 
(
y , ̂  y 

(i ) 
)

= 1 −
MSE 

(
y , ̂  y 

(i ) 
)

var ( y ) 
, (3) 

R 

2 
〉
= 

1 

h 

h ∑ 

i =1 

R 

2 
(
y , ̂  y 

(i ) 
)
. (4) 

he R 2 score varies in the interval ( −∞ , 1 ] , 1 corresponding to per- 

ect forecasting. Two additional reference values are 0 and −1 . At 

, the predictor behaves as the trivial one, always forecasting the 

ata average ȳ (note that var ( y ) = MSE 
(
y , ̄y 

)
). At −1 , the target and

redicted values are two uncorrelated samples from the data gen- 

rator (so that the MSE is twice the variance), a situation that typ- 

cally occurs for large i if the predictor correctly captures the long- 

erm regime of the data [54] . 

. Numerical experiments 

.1. Sensitivity to observation noise 

To quantify the effect of the observation noise, we add a 

hite Gaussian disturbance to the deterministic signals used in the 

oise-free case [27] . The noise-free signals are produced by sim- 

lating four archetypal chaotic systems in discrete time (logistic, 

énon, and two generalized Hénon maps), whose equations and 

ain features are summarized in Appendix B . We examine three 

ifferent noise levels, with standard deviation set to 0.5%, 1%, and 

% of the standard deviation of the noise-free signal. 

We compare each noise-free case with the three correspond- 

ng noisy cases, using the same predictors’ structure (in particu- 

ar, same number of lags m ), over the same multi-step predictive 

orizon (same number of lead h ). The values of m and h for each

haotic system are reported in Table 1 , together with the system’s 

T. The length of the predictive horizon is set to the first step i for

hich the R 2 score ( Eq. 3 ) of the FF-recursive predictor becomes 

egative in the noise-free case. 

The noise-free datasets are composed of 50,0 0 0 data points, 

plit into training (70%), validation (15%), and test (15%). For each 

evel of noise, each predictor is retrained on the noisy dataset. The 

esults in testing are shown in the left column of Fig. 4 for the in-

ermediate noise level (1%). Each panel is specific for one of the 
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Fig. 4. R 2 
(
y , ̂ y 

(i ) 
)

score of the four predictors (solid colored lines) and the real system used as a predictor (grey dashed line). Each row considers a different archetypal 

system. The first column reports the performances on the test dataset with a 1% noise level, the second on the noise-free test dataset. 

5 
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Table 1 

Features of the four archetypal chaotic systems. 

System Lags ( m ) Leads ( h ) LT 

Logistic 1 20 2.83 

Hénon 2 17 2.33 

3D generalized Hénon 3 27 3.62 

10D generalized Hénon 10 109 15.87 
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Fig. 5. Dynamics of the parameter r(t) (a) and of the traditional logistic map vari- 

able y (t) (b) for 10,0 0 0 steps. 
haotic systems and shows the performances of the four consid- 

red predictors (solid colored lines) and the naive prediction ob- 

ained using the chaotic system itself as a predictor (real system, 

ashed grey line). The performances are presented in terms of the 

 

2 score for each step ahead of the predictive horizon, and the 

ime scale in LT units is reported on top. To facilitate the compari- 

on, we report the noise-free results in the right column. 

As expected, the performances in the noisy cases are consid- 

rably worse than those obtained in the noise-free environment. 

his is due to the chaotic behavior of the considered dynamics, 

hich results in predictions that unavoidably amplify the noise on 

he input data. The main result is that the performance ranking of 

he four predictors is robust to the observation noise. In particular, 

STM-no-TF ranks first, further confirming the importance of train- 

ng recurrent architectures without TF that already emerged in the 

oise-free environment. 

The FF-recursive predictor forecasts almost perfectly the evolu- 

ion of the systems’ dynamics over a horizon that is about halved 

ith respect to the noise-free case. After that, its accuracy rapidly 

ecays and the R 2 score becomes negative at about 4 LTs (with 

% noise). Note the peculiar step-wise behavior of the R 2 score in 

he 3D and 10D generalized Hénon maps. It is because the value 

 (t + 1) depends only on the two oldest inputs, i.e., y (t − m + 2)

nd y (t − m + 1) ( y (t − 8) and y (t − 9) in the 10D map). The first

 − 1 predictions are therefore computed using the actual data as 

redictor’s inputs. These m − 1 predictions (that already contain a 

ertain error) are then used to forecast of the time steps from m 

o 2 · (m − 1) . The same process occurs in the following blocks pro-

ucing a significant drop of the accuracy every m − 1 steps. 

The FF-multi-output remains the worst predictor, even though 

t is the least sensitive to the observation noise. The reason lies in 

ts static nature, which prevents the sequential expansion of the 

nput noise. This is, however, the same reason for its poor perfor- 

ance, especially when forecasting too far ahead. In this situation, 

he iterated maps to be reproduced become too complex, and the 

etwork only learns to forecast the average value of the data (null 

 

2 score) [10] . Moreover, training the network on a long multi-step 

orizon, negatively affects also the predictions at the beginning of 

he horizon, as the same number of hidden neurons has to learn 

oo many iterated maps independently. This is visible for the 10D 

eneralized Hénon map (both noise-free and noisy cases), where 

nly a few non-necessarily consecutive steps are forecasted with 

cceptable accuracy. 

The LSTM-TF predictor is the most sensitive to observation 

oise. Its performances are significantly better than those of FF- 

ecursive in the deterministic case, while they behave similarly in 

he presence of observation noise. The positive effect of the inter- 

al state propagation in the noise-free case seems to be lost in the 

oisy environment. The predictor essentially learns to predict one 

tep only, and it is, therefore, subject to the same error exponential 

xpansion characterizing the FF-recursive prediction. 

Training the LSTM architecture without TF not only provides 

obustness to the system complexity but also to the presence of 

oise. Note, however, that the performance gain with respect to 

he other architectures is significantly reduced, even by a relatively 

mall (1%) observation noise. The horizon of a precise forecast is 

ore than halved with respect to the deterministic environment. 
6 
eyond that limit, the LSTM-no-TF, however, grants the least se- 

ere performance degradation. 

The effect of training with or without TF is particularly marked 

n the 10D generalized Hénon map. With both the training ap- 

roaches, the R 2 score has the step-wise behavior (with blocks 

f length m − 1 ) discussed above. Within each block, the LSTM-TF 

hows a weird increasing trend. It suffers in the initial part of each 

lock when the predictor uses the values predicted with a lower 

ccuracy (this does not happen during training with TF since it al- 

ays provides the actual input). The hidden state’s internal dynam- 

cs then allow the predictor to recover (especially in the noise-free 

ase) until a new drop of the R 2 score occurs at the beginning of 

he following block. Training the LSTM without TF prevents this 

roblem, confirming that no-TF is necessary to teach the recurrent 

redictor to propagate the information with its internal dynamics 

orrectly. 

An interesting benchmark for the neural architectures is the 

erformance obtained with the real systems generating the data 

sed as predictors (dashed grey line in Fig. 4 ). In the noise-free 

ase, it always provides a perfect prediction ( R 2 score equal to one 

n the whole forecasting horizon). When considering noisy data, 

e are simulating the same dynamical system from two slightly 

ifferent initial conditions. The two trajectories diverge due to the 

ystem’s chaoticity. In other words, even when one can identify the 

eal system perfectly, it is still not possible to prevent the multi- 

tep error divergence. 

The comparison between the neural networks and the real 

odel of the system used as a predictor allows to evaluate the two 

omponents of the prediction error separately. The first is caused 

y the uncertainty in the identification process (identification er- 

or). The second is due to the propagation of the observation noise 

rom the input data to the output (observation error). The neural 

redictors are affected by both sources of error, while the identi- 

cation error is by definition null when considering the real sys- 

em used as a predictor. The fact that the FF-recursive and LSTM- 

F architectures show a predictive power similar to the real system 

sed as a predictor confirms that these two neural predictors es- 

entially solve a system identification task (they are optimized 1- 

tep-ahead), rather than searching for the best multiple-step fore- 

asting. Conversely, the LSTM-no-TF is specific for the considered 

orizon and, due to the way it is optimized, it provides better per- 

ormance than the other competitors. We can conclude that the 
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Fig. 6. R 2 
(
y , ̂ y 

(i ) 
)

score of the four predictors (colored lines) on the slow-fast logis- 

tic map for m = 1 (a), m = 2 (b), m = 3 (c), and m = 10 (d). Performances computed 

on the test dataset. 
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dentification error is almost negligible compared to the observa- 

ion error in forecasting tasks. This means that the knowledge of 

he actual system does not help to improve the predictive accu- 

acy when dealing with a chaotic dataset affected by observation 

oise. 

Table 2 reports the sensitivity analysis performed by testing 

he three levels of noise in terms of two metrics: the average R 2 

core 
〈
R 2 

〉
( Eq. 4 ) and the number of LTs for which the single-

tep R 2 score ( Eq. 3 ) remains above 0.5, a threshold traditionally 

eemed acceptable in complex forecasting applications [55] . The 

able shows that the performance of the FF-recursive and LSTM- 

F is similar to that of the real system used as a predictor also 

or 0.5% and 5% noise. For the two lower noise levels, the LSTM- 

o-TF predictor outperforms the FF-recursive and LSTM-TF com- 
7 
etitors, confirming the better accuracy of predictors specifically 

rained for the multi-step forecasting over those optimized on the 

ingle-step only. The situation is substantially different with the 

% noise level: all the predictors provide almost identical accuracy. 

his is because such observation noise is so high that its propaga- 

ion is predominant compared to the differences between the pre- 

ictors. 

An interesting finding of this study is the fairly uniform ac- 

uracy shown by each predictor (both with and without observa- 

ion noise, see Fig. 4 and Table 2 ) across the different chaotic sys- 

ems widely varying in complexity (their attractor fractal dimen- 

ion spans from 0.5 to 9.13). The FF-recursive and LSTM-TF behave 

s the real system used as a predictor in all cases, even though the 

tructural complexity of the latter is equivalent to the complexity 

f the task by definition. This is relevant because it proves that 

dopting the system’s LT as time unit (horizontal axis) and the R 2 

core as a metric (vertical axis) is an appropriate way to scale both 

he performances and the time horizon. 

.2. Effect of structural noise 

The structural noise is implemented by introducing a slow (pe- 

iodic) dynamic for the parameter r(t) in the traditional logistic 

ap. The resulting process is a slow-fast system. This kind of pro- 

esses characterizes many natural phenomena and attracted the at- 

ention of many researchers in the field of dynamical systems the- 

ry (see, for instance, Rossetto et al. [56] ). 

The following equations define the slow-fast version of the lo- 

istic map: 

 

y (t + 1) = r(t) · y (t) ·
(

1 − y (t) 
)

r(t) = 

r max + r min 

2 
+ 

r max −r min 

2 
· sin ( t·π

50 0 0 
) , 

(5) 

here r min = 2 . 9 and r max = 3 . 7 represent the lower and upper

ound of the growth rate. These values are specifically selected so 

hat the system exhibits, in turn, a stable, periodic or chaotic be- 

avior, as shown in Fig. 5 . 

Evaluating the neural predictors’ accuracy on this kind of sys- 

em is interesting because the forecasting task requires retaining 

nformation about both the slow-varying context (long-term mem- 

ry), and the fast dynamic of the logistic map. Correspondingly, 

he parabola which defines the mapping between y (t) and y (t + 1) 

lowly changes in time. This task has different degrees of com- 

lexity: it is fairly simple when the system has a stable or pe- 

iodic behavior and much more complex when the dynamic be- 

omes chaotic. 

The results obtained for different values of m (i.e., the number 

f lags fed as input to the predictor) are reported in Fig. 6 . 

When m is equal to one, the information is not sufficient to 

erive a mapping between the input and the output space (indeed, 

he embedding dimension is 2). Fig. 6 a confirms that none of the 

redictors can reach an R 2 score close to one even on the one-step- 

head prediction. For values of m greater than one ( Fig. 6 b-d), the

ccuracy of all the predictors sensibly increases. 

The results demonstrate that m = 2 is an appropriate embed- 

ing dimension for this system since the single-step forecast is al- 

ost perfect. In general, the recurrent structure of the LSTM nets 

rovides better predictive accuracy than a feed-forward one (FF- 

ecursive and FF-multi-output). This is because the LSTM architec- 

ures have a memory, i.e., their internal state is sequentially up- 

ated after processing each input. Such networks are thus better 

n reproducing the slow-varying dynamic of the parameter r(t) . 

raining without teacher forcing further improves the performance 

roving that LSTM-no-TF is the most powerful architecture among 

hose considered in this study. 
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Fig. 7. Hourly ozone concentration time series for the 10-year period from 2008 to 2017 (a) and for a few specific days (b). 

Fig. 8. Output of the false nearest neighbors algorithm (a) and estimation of the LLE = 0 . 057 (b) for the ozone concentration time series. 

Table 2 

Sensitivity analysis of the forecasting performance of the predictors and of the real system used as a predictor over the four chaotic systems. Three different 

levels of noise (0.5%, 1%, and 5%) are examined. 

System Predictor 

〈 R 2 〉 LT R 2 > 0 . 5 

noise free 0.5% noise 1% noise 5% noise noise free 0.5% noise 1% noise 5% noise 

Logistic FF-recursive 0 .85 0 .36 0 .18 - 0 .16 6 .37 4 .25 3 .54 2 .12 

FF-multi-output 0 .46 0 .43 0 .41 0 .33 3 .18 2 .83 2 .83 2 .12 

LSTM-TF > 0 .99 0 .41 0 .23 - 0 .19 > 7 .07 4 .25 3 .54 2 .12 

LSTM-no-TF > 0 .99 0 .66 0 .57 0 .35 > 7 .07 4 .60 3 .89 2 .12 

Real system 1 .00 0 .41 0 .24 - 0 .21 ∞ 4 .24 3 .53 2 .12 

Hénon FF-recursive 0 .83 0 .33 0 .15 - 0 .22 6 .43 3 .86 3 .43 2 .14 

FF-multi-output 0 .43 0 .42 0 .41 0 .33 3 .00 3 .00 2 .57 2 .14 

LSTM-TF 0 .96 0 .37 0 .22 - 0 .18 > 7 .28 3 .86 3 .43 2 .14 

LSTM-no-TF 0 .98 0 .63 0 .56 0 .36 > 7 .28 4 .29 3 .86 2 .57 

Real system 1 .00 0 .37 0 .18 - 0 .23 ∞ 3 .86 3 .43 2 .16 

FF-recursive 0 .82 0 .30 0 .12 - 0 .29 6 .07 3 .86 3 .31 2 .21 

3D generalized Hénon FF-multi-output 0 .35 0 .35 0 .35 0 .29 2 .76 2 .76 2 .48 2 .21 

LSTM-TF 0 .89 0 .34 0 .17 - 0 .23 6 .62 4 .42 3 .31 2 .21 

LSTM-no-TF 0 .94 0 .61 0 .53 0 .33 > 7 .45 4 .42 3 .86 2 .21 

Real system 1 .00 0 .35 0 .17 - 0 .25 ∞ 4 .42 3 .31 2 .21 

FF-recursive 0 .84 0 .35 0 .19 - 0 .21 6 .23 3 .97 3 .40 2 .27 

10D generalized Hénon FF-multi-output 0 .13 0 .12 0 .13 0 .12 0 .00 0 .01 0 .00 0 .01 

LSTM-TF 0 .90 0 .42 0 .23 - 0 .19 6 .23 3 .97 3 .40 2 .27 

LSTM-no-TF 0 .94 0 .63 0 .54 0 .32 6 .80 4 .54 3 .97 2 .27 

Real system 1 .00 0 .47 0 .28 - 0 .20 ∞ 4 .54 3 .40 2 .27 

8 
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.3. Ozone concentration time series 

A remarkable variety of natural phenomena are thought to be 

haotic, from meteorology (the origin of Lorenz’s studies) to the 

rbits of celestial bodies, to chemical reactions, to electronic cir- 

uits [57] . 

We evaluate the four neural predictors on a real-world dataset, 

onsidering an ozone ( O 3 ) concentration time series recorded in 

hiavenna, Italy, from 2008 to 2017 with an hourly time step. Such 

 dataset is maintained and made available by the regional envi- 

onmental agency (ARPA) of the Lombardy region ( https://www. 

rpalombardia.it ). 

Ground-level ozone formation is known to be a complex phe- 

omenon. O 3 is a secondary pollutant: there are no ozone emis- 

ions, but its presence is due to chemical reactions involving other 

ollutants (called “precursors”) and activated by ultraviolet radia- 

ion. This means ozone peaks are only during daylight, particularly 

here solar radiation is stronger, e.g., in the mountains. These pho- 
ig. 9. R 2 
(
y , ̂ y 

(i ) 
)

score of the four predictors on the ozone concentration time series. Pe

olumn), and h = 48 (second column). 

9 
ochemical reactions involve nitrogen oxides ( NO X ), mainly emitted 

y road transport and domestic heating, and volatile organic com- 

ounds (VOC), due to industrial plants, road transport and agricul- 

ure. The formation process takes few hours, and thus the ozone 

oncentration may reach high values at kilometers of distance from 

he precursors’ sources, depending on the meteorological condi- 

ions. 

The tropospheric ozone formation is known to be a nonlinear 

rocess [58] , and thus represents an interesting study case to test 

he neural predictors presented above. A detail of the time series 

ecorded in Chiavenna is shown in Fig. 7 . 

Like almost all the environmental processes, the ozone concen- 

ration has daily and annual periodic trends caused by the Earth’s 

otation on its axis and revolution around the Sun ( Fig. 7 ). 

To prove that ozone concentration can be considered the output 

f a chaotic system, it is necessary to check that the LLE is greater 

han 0. For the four archetypal systems presented above, we could 

ompute the Lyapunov exponents with the traditional algorithm 
rformances computed on the test dataset (Chiavenna, 2016–2017) for h = 12 (first 

https://www.arpalombardia.it
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Fig. 10. Target sequence and corresponding predictions for a specific 2-day horizon 

( h = 48 ) from the ozone concentration test set. 

b

O

i

c

e

n

n  

a

w

a

o

i

s

c

t

t

F

o

c

G

b

f

p

a

i

s

s

h

p  

i

m

i

t

t

f

(

T

L

f

w

t

s

i

t

c

h

t

o

p

r

i  

A

fi

i

i

s

t

n

4

n

t

t

c

n

o

t

i

p

n

t

ased on the Jacobian matrix since state equations are known. 

n the contrary, when the model of the system is unknown, 

t is necessary to make use of statistical methods for detecting 

haos [59] . 

A widely used approach requires, first, to evaluate a suitable 

mbedding dimension for the dataset, using the false nearest 

eighbors algorithm [60] . The fraction of false neighbors becomes 

egligible after m = 24 (see Fig. 8 a), meaning that such value is

ppropriate for reconstructing the system dynamics [41] . In other 

ords, the finite embedding allows us to describe the time series 

s produced by a deterministic nonlinear process with the addition 

f an observation noise. 

To check whether the process is chaotic, we estimate the LLE 

n the 24-dimensional space of delayed coordinates. Starting from 

imilar windows of 24 consecutive data, the algorithm numerically 

omputes the average exponential rate of divergence of the data 

hat follow the considered windows [61] . The rate is obtained as 
10 
he slope of the linear part of the log-divergence plot reported in 

ig. 8 (b). 

The resulting LLE value, equal to 0.057, assesses the chaoticity 

f the series. Other analyses of ozone time series in different lo- 

ations: Cincinnati, Ohio [62] , Arosa, Switzerland [63] , and Berlin, 

ermany [64] , confirm that the ozone concentration dynamics can 

e characterized as a chaotic system. 

As it is common habit in the field of environmental process 

orecasting, we compare the neural nets with the trivial persistent 

redictor: ˆ y (t + i ) = y (t) , i = 1 , 2 , . . . , h [47,65] . 

The comparison is performed using the data from 2008 to 2013 

s the training set, 2014-15 for the validation, and 2016-17 for test- 

ng. As expected, the neural predictors widely outperform the per- 

istent predictor that provides good performance only in the very 

hort term ( R 2 score: after one hour 0.90, two hours 0.78, three 

ours 0.63, six hours 0.26). The results obtained with the neural 

redictors for h = 12 and h = 48 are presented in Fig. 9 . Consider-

ng the 12-hour horizon, the four predictors provide similar perfor- 

ances. A relevant gap emerges in the second half of the forecast- 

ng horizon between the LSTM-no-TF and the FF-recursive predic- 

ors: the 12-step ahead R 2 score is 0.60 for the former, and 0.49 for 

he latter. FF-multi-output and LSTM-TF ensure intermediate per- 

ormances. 

Increasing the length of the forecasting horizon to 48 steps 

second column of Fig. 9 ), we spot the same ranking: LSTM-no- 

F ensures the best performances, followed by FF-multi-output, 

STM-TF, and FF-recursive. In particular, it emerges that for a long 

orecasting horizon, it is crucial to optimize the predictor on the 

hole horizon (LSTM-no-TF and FF-multi-output) rather than on 

he single-step (FF-recursive and LSTM-TF). In the first case, the R 2 

core tends to 0.4, while in the second to 0.2. Thus, the difference 

s remarkable even if, in all the cases, the R 2 scores are under the 

raditionally accepted lower bound of 0.5 [55] . 

From the qualitative point of view, all the predictors have a 

ommon trend. The performance is almost flat between 18 and 24 

ours ahead, and then decreases again, reaching another plateau at 

he end of the horizon. This behavior is most probably because the 

zone concentration dynamic in a given day is somewhat decou- 

led from the following day due to the absence of the ultraviolet 

adiation during nighttime. 

Fig. 10 shows the trajectories predicted by the four neural nets 

n a specific case (the 2-day target is the same in all the panels).

s expected, all the predictors have a better performance in the 

rst part of the horizon and have considerable difficulties predict- 

ng the final part, except perhaps LSTM-no-TF that limits the max- 

mum error to about 30% of the actual value at step 43. 

The comparison reported in Fig. 10 shows that the prediction 

equences are smoother than the observed data. This proves that 

he predictor is not modeling the high-frequency measurement 

oise that probably affects the dataset as in all real-world cases. 

. Discussion and conclusions 

We compared the multi-step forecasting performance of four 

eural predictors, based on feed-forward and recurrent architec- 

ures, on artificial noisy time series generated by chaotic oscilla- 

ors, and on a 10-year-long dataset of ozone concentration. We 

onsidered the same architectures used in a recent study of the 

oise-free case: two feed-forward (recursive and multi-output) and 

ne recurrent (LSTM) [27] . This allowed us to precisely quantify 

he effect of different noise sources on artificial data and general- 

ze these findings for real applications. 

Regarding the LSTM nets, we considered two training ap- 

roaches: the traditional teacher forcing, consisting of training the 

etwork using the target data from the previous time steps along 

he predictive horizon, and the case without teacher forcing, where 
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he network predictions are fed back as input for the following 

teps. Extending the analysis to artificial noisy systems and to a 

eal-world environment, we confirmed that teacher forcing is not 

ffective in the context of time series forecasting, as shown in San- 

iorgio and Dercole [27] on noise-free artificial data. 

In the context of artificial systems, we considered two different 

ources of noise. One is the traditional observation noise, which we 

odel with an additive disturbance on the noise-free time series 

roduced by four archetypal chaotic systems (logistic, Hénon and 

wo generalized Hénon maps with low and high dimension). The 

ther is a structural noise, i.e., a slow perturbation of the process 

enerating the data, which we introduced through a modified ver- 

ion of the logistic map with a periodic dynamic for the growth- 

ate parameter. 

The results obtained for different levels of observation noise 

onfirmed the noise-free ranking. The FF-multi-output predictor 

emains the worst predictor and particularly suffers long multi- 

tep horizons due to its fully static approach. The FF-recursive pre- 

ictor guarantees accurate forecasting for approximately 5 LTs in 

he deterministic case and 2.5 LTs with a 1% noise level. The LSTM- 

F is notably better than the FF-recursive in the noise-free cases, 

ut the two predictors have almost identical performances in a 

oisy environment. The LSTM-no-TF is always the most perform- 

ng predictor, proving its robustness to both the system complexity 

nd the presence of noise. However, its horizon of perfect forecast- 

ng is more than halved with a 1% noise level. The fact that the 

redictors rank the same despite the different com plexity of the 

onsidered systems proves the robustness of the results. 

The results also show that the difference between the predic- 

ors’ accuracy (except the FF-multi-output) rapidly reduces for in- 

reasing noise levels. For the considered systems, a noise level 

f 5% represents a sort of threshold beyond which there are no 

ubstantial differences between the predictors. A measurement 

ffected by a 5% uncertainty is precise or inaccurate depend- 

ng on the specific application (note that the noise level is un- 

nown in practice), but the take-home message that emerges is 

robably general: the distances between different predictors are 

ore prominent when high-quality datasets are available. Con- 

ersely, when we are aware that a given dataset is very inaccu- 

ate, it is reasonable to adopt a single easy and fast predictor in- 

tead of investing lots of resources in implementing many complex 

odels. 

The numerical experiments in a stochastic environment also al- 

owed to prove that the error due to the model identification pro- 

edure is negligible if compared to that caused by the observation 

oise, even when this latter is limited (for instance, when its dis- 

ersion is in the order of 0.5% of the process standard deviation). 

n other words, having available the actual model of the system is 

f little use for the prediction of chaotic time series affected by 

bservation noise. 

Regarding the second typology of noise, we considered the 

tructural non-stationarity of the system generating the data, 

hich is another aspect usually affecting real-world time series. In 

ur experiment, the slow dynamic is somewhat similar to the en- 

ironmental variables’ annual cycle. In contrast, the fast dynamic 

f the logistic may represent demographic oscillations in ecology 

r a rapid atmospheric process. The results showed that the gap 

etween LSTM and FF predictors is quite broad, proving that the 

ynamic nature of recurrent architectures is more suitable than the 

tatic ones to model time-varying processes. LSTM nets also proved 

ore robust with respect to the number of time lags included in 

he input. This feature represents a remarkable advantage given the 

ell-known problem of estimating the actual embedding dimen- 

ion of a real time series [66] . 

These results, on deterministic and noisy environments, have 

een obtained for convenience on discrete-time maps. How- 
11 
ver, we expect them to hold in a broader context, including 

ontinuous-time systems, as long as the issues related to the nu- 

erical integration are carefully handled, and real-world datasets 

e.g., signals related to meteorology, fluid dynamics, biometry, 

conometrics) [67,68] . 

To evaluate how the situation changes when going from artifi- 

ial to real-world systems, we considered a time series of ozone 

oncentration that we showed to oscillate chaotically. The predic- 

ions of this time series are better with the FF-multi-output and 

STM-no-TF than with FF-recursive and LSTM-TF. 

In this specific case, the training approach (optimized on the 

hole horizon, rather than on the single-step-ahead) is more im- 

ortant than the neural network structure (FF or LSTM). Therefore, 

ne of the merits of this study is to clarify that the common prac- 

ice of identifying a single-step model and then use it recursively 

s not the best choice under the perspective of forecasting. Expand- 

ng this idea to a broader context, we can conclude that prediction 

nd system identification are indeed related but different tasks. 

F-multi-output and LSTM-no-TF exhibit greater predictive power 

nd robustness on short-mid-term forecasting but do not generally 

eplicate the climate of the system’s attractor satisfactorily. To this 

im, it is preferable to use the FF-recursive, LSTM-TF or other mod- 

ls (such as the reservoir computers), which can mimic fairly well 

he long-term behavior of the chaotic systems [10,36] . 

Note that the three predictors that explicitly take into account a 

ulti-step horizon (FF-multi-output and the two LSTMs) have been 

rained using the average performance on the forecasting horizon 

s the objective function. A weighted average that gives more im- 

ortance to the errors in the first time steps could be used instead, 

.g., when using the predictor within modern receding horizon 

ontrol schemes that require implementing only the first control 

ction and then plan again for the next horizon. Different weight- 

ng can be easily implemented in our framework. However, the ac- 

ual costs and benefits of the distribution of the forecasting accu- 

acy over the forecasting horizon are highly application-specific. 

This paper represents the first attempt of systematically evalu- 

ting the effect of observation and structural noise on the short- 

id-term forecasting of chaotic dynamics. It complements recent 

orks [34,35] that investigate the effect of noise in Lorenz 96-like 

ystems in the case in which the full state vector—or a large part 

f it—is accessible. This is a critical issue because the system’s state 

s not accessible and even unknown in most applications. In such 

ituations, we believe that neural predictors directly derived from 

he single (or the few) time series of interest provide more robust 

esults to be transferred to real-world datasets. 
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ppendix A. Hyper-parameters tuning and training algorithm 

The structure of the neural architectures is the same for all the 

onsidered predictors and is formed by three hidden layers of 10 

eurons each. For the two LSTM predictors, we used two LSTM 

idden layers with one FF layer on top. However, this is not a criti- 

al issue because the same performances can be obtained adopting 

 different configuration with a single LSTM layer with two FF lay- 

rs on top. Working with a fixed structure limits the number of 

yper-parameters that have to be tuned, and allows to compare 

he performances obtained with different predictors. 

The remaining hyper-parameters, which basically control the 

earning process, have been tuned using a traditional exhaustive 

earch on a grid defined by the following values: 
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• batch size: 256, 512, and 1024; 
• learning rate: 0.1, 0.01, and 0.001; 
• learning rate decay factor: 0.001, and 0. 

In order to avoid unfortunate initializations of the parameters, 

e repeated the optimization twice with different random values 

or each node of the grid. 

The training has been performed using Adam (adaptive moment 

stimation) optimizer [69] , a state-of-the-art algorithm for deep 

earning derived from the standard stochastic gradient descent al- 

orithm. As suggested by its name, Adam adaptively estimates the 

rst- and second-order moments of the gradients using running 

verages with decay rates equal to β1 = 0 . 9 and β2 = 0 . 999 for

he first and second moments, respectively. The estimates of the 

wo moments are then used to evolve the learning rate during the 

raining procedure. 

We performed the training for 50 0 0 epochs, a value that guar- 

ntees the convergence of the optimization in all the considered 

ases. Both training and validation losses are monitored during the 

earning process, so that the parametrization selected for a specific 

ombination of the hyper-parameters is that having the best per- 

ormance on the validation dataset (instead of the one obtained in 

he last epoch). 

ppendix B. Archetypal chaotic systems 

We consider four synthetic disrete-time dynamical systems, 

niversally known for being chaotic, to test the predictive power 

f the various architectures: the logistic map, the Hénon map, and 

wo versions of the generalized Hénon maps. They were adopted 

y Sangiorgio and Dercole [27] to study the noise-free case. 

The logistic map is a simple quadratic map that describes the 

opulation growth of different species, and also a variety of pro- 

esses in many scientific fields (e.g., economy and policy). It has 

 single state variable—the density of the considered population—

hat usually coincides with the output variable y (t) , so that the 

ystems is defined by the following difference equation: 

 (t + 1) = r · y (t) ·
(

1 − y (t) 
)
. (B.1) 

he positive parameter r, usually greater than 1, represents the 

rowth rate of the population under ideal conditions (i.e., unlim- 

ted resources). Despite of its simplicity, the logistic map generates 

ery complicated (chaotic) dynamics for almost all the values of r

etween 3.6 and 4. In the numerical experiment performed in this 

aper, we set r = 3 . 7 . 

The Hénon map and its generalized version introduced by Baier 

nd Klein [70] can be defined in a generic n -dimensional case us- 

ng the following set of state equations: 
 

x 1 (t + 1) = 1 − a x n −1 (t) 2 + x n (t) 
x j (t + 1) = x j−1 (t) , j = 2 , . . . , n − 1 

x n (t + 1) = b x n −1 (t) . 
(B.2) 

This system goes back to the formulation of the traditional 

énon map for n = 2 , with parameters a and b equal to 1.4 and

.3 as in the classic paper by Hénon [71] . 

To extend the analysis to hyperchaotic attractors (i.e., attractors 

ith at least two positive Lyapunov exponents), we consider the 

eneralized Hénon map with parameters a = 1 . 9 and b = −0 . 03 .

his map is specifically thought to have n − 1 positive Lyapunov 

xponents [72] . A low-dimensional ( n = 3 ) and a high-dimensional 

 n = 10 ) version of the generalized Hénon map are studied. 

The system in Eq. (B.2) can be written as a nonlinear regression 

f order m = n ( m is thus the embedding dimension) taking the 

rst state variable as output, i.e., y (t) = x 1 (t) : 

2 

 (t + 1) = 1 − a · y (t − m + 2) + b · y (t − m + 1) . (B.3) 
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