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Abstract: The concept of measurement uncertainty was introduced in the 1990s by the “Guide to
the expression of uncertainty in measurement”, known as GUM. The word uncertainty has a lexical
meaning and reflects the lack of exact knowledge or lack of complete knowledge about the value of
the measurand. Thanks to the suggestions in the GUM and following the mathematical probabilistic
approaches therein proposed, an uncertainty value can be found and be associated to the measured
value. In the last decades, however, other methods have been proposed in the literature, which try to
encompass the definitions of the GUM, thus overcoming its limitations. Some of these methods are
based on the possibility theory, such as the one known as the RFV method. The aim of this paper is
to briefly recall the RFV method, starting from the very beginning and the initial motivations, and
summarize in a unique paper the most relevant obtained results.

Keywords: measurement uncertainty; random contribution; systematic contribution; probability
density functions; possibility distributions; random-fuzzy variables; t-norms

1. Background: The Concept of Measurement Uncertainty

In the 1990s, the “Guide to the expression of uncertainty in measurements”, known as
GUM, introduced the concept of measurement uncertainty and provided some guidelines
for its representation and propagation through the measurement function. In particular,
the measurement uncertainty is defined as “a parameter, associated with the result of a mea-
surement, that characterizes the dispersion of the values that could reasonably be attributed to the
measurand” [1], as also recalled in [2].

This definition refers to a “dispersion of the values” because, as is widely known, when
a quantity (the measurand) is measured more times, the measurement result generally
varies, due to different contributions affecting the measurement procedure. This means
that, because of the “dispersion of the values”, from a strict metrological point of view, the
“true value” of the measurand cannot be known.

The uncertainty associated with a measured value has, therefore, the aim to provide
information about how large this “dispersion of the values” is [1,2].

Therefore, from a strictly semantic point of view, it can be stated that the uncertainty
value reflects the lack of exact knowledge or lack of complete knowledge about the value
of the measurand. Hence, when one speaks about a measurement result, one always
speaks about an incomplete information; this incomplete information must be somehow
represented to provide validity of the measured value.

How can this representation be done? According to the GUM, the aim of the uncer-
tainty evaluation is “to provide an interval about the measurement result that may be expected to
encompass a large fraction of the distribution of values that could reasonably be attributed to the
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quantity subject to measurement” [1]. Furthermore, it clearly states that “the ideal method for
evaluating and expressing measurement uncertainty should be capable of readily providing such an
interval, in particular, one with a coverage probability or level of confidence that corresponds in a
realistic way to that required” [1].

As stated above, the “dispersion of the values” is due to different contributions affecting
the measurement procedure. In particular, in the “International vocabulary of metrology”,
known as VIM [3], two contributions are defined: the random and the systematic contribu-
tions to uncertainty. (There is sometimes the mistake that the words random and systematic
are substituted by the words “type A” and “type B”, defined in the GUM, respectively. How-
ever, “type A” and “type B” refer to methods of evaluation of the uncertainty contribution
and not explicitly to the nature of the uncertainty contribution itself.)

The random contribution is defined as the “component of measurement error that in
replicate measurements varies in an unpredictable manner” [3], while the systematic one is
defined as the “Component of measurement error that in replicate measurements remains
constant or varies in a predictable manner” [3]. Therefore, due to the random contributions
to uncertainty, the dispersion of the measured values may define an interval around the
mean (of the measured values), and this interval might be indeed the “interval about the
measurement result that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to measurement”
required by the GUM [1]. In Figure 1, the blue dot represents the measurand value, while
the pink asterisk is the mean of the measured values, and the purple line represents the
interval that includes all the measured values. It can be easily seen that the purple interval
also encompasses the measurand value, as generally happens if a proper coverage factor is
applied. However, if a systematic contribution also affects the measurement result, then
the interval that includes all the measured values is shifted on the right/left with respect
to the previous interval. The direction of right or left depends on whether the systematic
effect is positive or negative, as shown with the blue and orange intervals in Figure 1.
It can be easily seen that these last intervals no longer represent the “interval about the
measurement result that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to measurement” since
the measurand value is completely outside these intervals.
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Figure 1. The effects of random and systematic contributions to uncertainty. Blue dot: unknown
value of the measurand. Purple line: dispersion of the values and obtained interval when only
random contributions affect the measured values. Blue and orange lines: obtained interval when a
positive or negative systematic error affect the measured values. Red line: obtained interval when
the effects of both random and unknown uncompensated systematic contributions are considered.

In the case that one wants to provide the interval, taking into account both the random
and the systematic contributions to uncertainty, he/she should consider also the possible
variability of the effect of the systematic contributions and, hence, should widen the
uncertainty interval, as shown by the red line in Figure 1. Therefore, the purple interval is
the uncertainty interval when only random contributions affect the measurement result,
while the red interval is the uncertainty interval when systematic contributions also affect
the measurement result.
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The GUM states that “It is assumed that the result of a measurement has been corrected for
all recognized significant systematic effects and that every effort has been made to identify such
effects” [1]; in other words, the GUM requires that all efforts be made to identify, measure
and correct for all the significant systematic effects. Under this assumption, only the
random effects are present, and the uncertainty interval is reduced as shown in Figure 1.

2. The Authors’ Point of View

In the previous section, it is summarized the concept of measurement uncertainty, and it
is recalled that the requirement of the GUM is that all the significant systematic effects are
identified and compensated for. Satisfying this leads to the following important conclusions:

• The reduction in the overall uncertainty and hence, the reduction in the uncertainty
interval.

• Only random contributions affect the measurement procedure, and therefore, the
uncertainty contributions can be mathematically considered to be random variables
and represented with probability density functions (pdf).

There are also some mathematical ways to also treat the systematic contributions to
uncertainty in the mathematical framework of the probability theory, such as, for instance,
a proper use of the correlation coefficients, but, in any case, the probability theory is born to
handle the random phenomena and can correctly handle only random phenomena because
of the way that pdfs combine with each other.

Furthermore, the GUM requires the compensation of the “significant systematic
effects” [1] where the word “significant” is very important, bringing a crucial question:
when is an effect (on the final measured result) significant?

Obviously, an effect can be significant in one topic and not significant in another.
From the metrological point of view, the “significance” can be exploited by considering the
“target uncertainty”, which is defined by the VIM as the “measurement uncertainty specified as
an upper limit and decided on the basis of the intended use of measurement results” [3]. The target
uncertainty is, therefore, a value that depends on the topic: it is a number that is generally
as small as possible in primary metrology or in the industrial world in the limited case
in which very precious objects are measured (such as diamonds, for instance). However,
in most practical industrial situations, the target uncertainty is a trade-off between the
cost of the uncertainty evaluation and the waste production; therefore, there is no need to
set the target uncertainty to be as small as possible. In these situations, the correction for
the “significant systematic effects” is generally not necessary for not exceeding the target
uncertainty. Therefore, the industrial world is generally not interested in reducing the
overall uncertainty by identifying and compensating for systematic effects.

In any case, compensation or not, to state whether a systematic effect is significant or
not, it must be considered in the uncertainty evaluation. It becomes, therefore, an important
issue to be able to mathematically determine the overall uncertainty in the best possible
way.

Methods that employ a mathematical theory different from the probabilistic theory
encompassed by the GUM have been proposed in the literature [4–8]. These methods are
based on the possibility theory, as well as the RFV method recalled in this paper, which
tries to encompass the definitions of the GUM, thereby overcoming its limitations.

The RFV method recalled in this paper can handle both random and systematic
contributions to uncertainty in closed form. This is possible because, in this mathematical
framework, many operators between the variables naturally defined in it are available.
Therefore, different operators can be chosen, which can simulate the combination of the
variables in a random or a nonrandom way. To introduce this method, the theory of
evidence is shortly recalled in the next section, with the aim to provide a cornerstone to
the method, rather than giving the mathematical details, for which the readers are referred
to [9–11].
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3. Shafer’s Theory of Evidence

The mathematical theory of evidence was defined by Glen Shafer in the 1970s to
generalize the probability theory [9]. In particular, if probability functions are considered,
they obey the additivity rule, so that the following holds:

Pro(U) + Pro
(
U
)
= 1 (1)

where U and U are complementary sets.
However, in Shafer’s (and also the authors’) opinion, the additivity rule is not able

to handle correctly all possible situations of knowledge/unknowledge. Therefore, he
generalizes this rule, and to do this, he defines the belief functions Bel, for which the
superadditivity rule applies:

Bel(U) + Bel
(
U
)
≤ 1 (2)

Given a certain statement A, the degree of belief Bel(A) is a judgment. This means
that, given A, different individuals with different levels of expertise regarding A might
provide different judgments. In his book, Shafer writes explicitly:

“Whenever I write of the ‘degree of belief’ that an individual accords to the proposition,
I picture in my mind an act of judgment. I do not pretend that there exists an objec-
tive relation between given evidence and a given proposition that determines a precise
numerical degree of support. Rather, I merely suppose that an individual can make a
judgment . . . he can announce a number that represents the degree to which he judges
that evidence supports a given proposition and, hence, the degree of belief he wishes to
accord the proposition” [9]

In his book, Shafer also provides two examples to show that belief functions are more
suitable to handle knowledge/unknowledge with respect to probability functions: the
example of the Ming vase and the example of Sirius star are here briefly recalled.

3.1. The Ming Vase

A person is shown a Chinese vase and is asked whether the vase is a real vase of the
Ming dynasty or a counterfeit. Sets A and B are assigned to the two possibilities, as shown
in Table 1.

Table 1. The Chinese vase and the two considered sets.

Case Event
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ity and the belief functions. 

A The vase is a real Ming vase.

B The vase is a counterfeit.

Of course, looking at the vase, there could be different situations that also depend on
the interviewed person, i.e., whether the person is an expert or not:

1. The evidence suggests the authenticity of the vase.
2. The evidence suggests that the vase is a counterfeit.
3. Some evidence suggests the authenticity, while other evidence, the counterfeit:

a. Substantial evidence on both sides.
b. Little evidence on both sides.

4. The observer is not an expert and has no evidence to say whether the vase is true or
false.

Let us now consider how these different situations can be handled with the probability
and the belief functions.
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In the first two cases, the same numerical values are given to both the probability
and the belief functions (as shown in the first two cases of Table 2) since probably the
interviewed person is an expert, and hence can recognize whether the vase is true or false.

Table 2. Assignments given to probability and belief functions in the considered cases.

Case Pro Bel

1 Pro (A) = 1 Pro (B) = 0 Bel (A) = 1 Bel (B) = 0

2 Pro (A) = 0 Pro (B) = 1 Bel (A) = 0 Bel (B) = 1

3A

Pro (A) = 0.5 Pro (B) =
0.5
or

Pro (A) = 0.6 Pro (B) = 0.4

Bel (A) = 0.5 Bel (B) = 0.5
or

Bel (A) = 0.34 Bel (B) = 0.4

3B

Pro (A) = 0.5 Pro (B) =
0.5
or

Pro (A) = 0.6 Pro (B) = 0.4

Bel (A) = 0.1 Bel (B) = 0.2

4 Pro (A) = 0.5 Pro (B) =
0.5 Bel (A) = 0 Bel (B) = 0

On the other hand, the other two situations are treated in a different way by the
probability and the belief functions since probability functions must obey the additivity
rule, while belief functions need not.

Therefore, when cases 3A and 3B are considered, probability functions can take
the values, for instance, given in Table 2, but no lower values can be assigned, even if
little evidence is present on both A and B. On the other hand, when belief functions are
considered, the person can indicate two numbers, which more precisely represent his/her
idea about A and B.

In case 3A, it may happen that the same numbers are assigned to probability and
belief functions (according to the degree of belief about A and B), but it may also happen
that different numbers are assigned since, for belief functions, it is not necessary to satisfy
the additivity rule (see Table 2). Furthermore, in case 3B, where there is little evidence on
both sides, it is not possible to assign a small number to both A and B with probability
functions, while this can be done with belief functions (see Table 2).

The different behavior of the probability and the belief functions is even more empha-
sized when Case 4 is considered, where the person is not an expert and therefore declares
his/her ignorance about the vase. This is the classical situation, called, by Shafer, total
ignorance, in which a zero value is assigned to all possible sets (and a unitary value is
assigned only to the entire universal set, which include all possibilities). Therefore, as
shown in Table 2, Bel(A) = 0 and Bel(B) = 0 in the case of total ignorance (Case 4). The
probability functions, on the other side, must always obey the additivity rule, and therefore,
even in the case of total ignorance (as in the case of equal evidence on both A and B)
Pro(A) = 0.5 and Pro(B) = 0.5 are assigned, not to give preference to either A or B.

Total ignorance is, therefore, treated in a completely different way by the probability
and the belief functions; an interesting question is determining which method is the better
one. It seems that the belief functions are more suitable to represent total ignorance at least
for two reasons. First, with probability functions, it is not possible to distinguish the two
different cases where there is an equal degree of belief on both cases A and B, and there is
no evidence about either A or B. In fact, in both these cases, Pro(A) = 0.5 and Pro(B) = 0.5
must be assigned. Second, probability functions may lead to incongruent results when
more than two sets are considered, as in the following example of the Sirius star [9].
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3.2. The Sirius Star

Are there or are there not living beings on the planet in orbit around star Sirius?
Let us only consider the case where the interviewed person is not an expert at all, so the
case of Shafer’s total ignorance, and let us consider the two different situations given in
Tables 3 and 4. In the first case, total ignorance is admitted on only two sets, while in the
second case, total ignorance is professed on three sets, and the two ways of forming the
sets are independent.

Table 3. The Sirius star and the two considered sets.

Case Event
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C There is life.

D There are planets but not life.

E There are not even planets.

Table 5 shows the values assigned to the belief function for the sets defined in Table 3
(first column) and for the sets defined in Table 4 (second column). It is, however, possible
to compare the two cases since, by considering the sets defined in Tables 3 and 4, it can be
stated that A = C and B = D ∪ E. The last column is the comparison of the two previous
columns and shows that the assigned values in the two cases are coherent with each other.

Table 5. The Sirius star and total ignorance represented with the belief functions.

Case of Table 3 Case of Table 4 Comparison

A Bel (A) = 0 C Bel (C) = 0 Bel (A) = Bel (C)

B Bel (B) = 0
D Bel (D) = 0

Bel (D ∪ E) = Bel (B)
E Bel (E) = 0

On the other hand, Table 6 shows the results for the probability functions and, when
the two cases of Tables 3 and 4 are compared, it follows that there is no consistency at all.
In fact, set A defined in the case of Table 3 is exactly set C defined in the case of Table 4, but
as shown in Table 6, Pro (A) 6= Pro (C). Furthermore, set B defined in the case of Table 3
is exactly set D ∪ E defined in the case of Table 4, but Pro (D ∪ E) 6= Pro (B) since the
following holds:

Pro (D ∪ E) = Pro(D) + Pro(E)− Pro(D ∩ E) =
1
3
+

1
3
− 0 =

2
3
6= Pro (B) =

1
2
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Table 6. The Sirius star and total ignorance represented with the probability functions.

Case of Table 3 Case of Table 4 Comparison

A Pro (A) = 1
2 C Pro (C) = 1

3 Pro (A) 6= Pro (C)

B Pro (B) = 1
2

D Pro (D) = 1
3 Pro (D ∪ E) 6= Pro (B)

E Pro (E) = 1
3

Then, it can be concluded that belief functions are more suitable than probability
functions to handle total ignorance, that is, all situations where an individual has no
evidence/no knowledge about the considered topic and about the considered given sets.

This great interest in total ignorance is due to the fact that total ignorance is mostly present
in the field of measurements, as shown in the simple practical example in the next section.

4. Total Ignorance in Measurements

Let us here consider a simple example to show how, in measurement procedures, the
situation called total ignorance by Shafer is very often present.

A calibrator provides a reference voltage of 24 V, and some multimeters of the same
typology (4 1

2 Leader 856) are employed to measure this voltage. The instrument data sheet
provides the measuring accuracy as ± % of reading ± number of digits, and the value of
each digit is given by the resolution in the considered range. According to the data sheet,
Table 7 provides the resolution and the measuring accuracy in the different ranges. For
the measurand Vx = 24 V, which is the reference voltage in the proposed example, the
range is 30 V and therefore, according to the specifications, the measurement accuracy is
±(0.05% Vx + 2 mV) = ±0.014 V.

Table 7. The multimeter data sheet.

Multimeter 4 1
2 LEADER 856

Range Full Scale Resolution Measuring Accuracy

300 mV 29,999 mV 0.01 mV ±(0.03% Vx + 0.02 mV)
3 V 29,999 V 0.1 mV ±(0.05% Vx + 0.2 mV)

30 V 29,999 V 1 mV ±(0.05% Vx + 2 mV)
300 V 29,999 V 10 mV ±(0.05% Vx + 20 mV)

1000 V 10,000 V 0.1 V ±(0.05% Vx + 0.2 V)

Two different measurement procedures are considered:

1. All multimeters are employed to measure the reference voltage.
2. Only one multimeter is employed to measure the reference voltage.

Figure 2 shows, with the orange line the reference voltage and with the pink crosses the
value measured by 10 different multimeters. Since different instruments are employed, it is
likely to happen that the measured values fall around the reference value. In this situation,
it could be possible to apply a probabilistic approach by considering the following: the
mean of the measured values; an uncertainty interval around the evaluated mean, and a
pdf over this interval (but only if a high number of different instruments are employed).
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This situation represents very well the calibration procedure that is performed by the
instruments’ manufacturer to provide the accuracy interval, which reflects the behavior
of all instruments of the same typology. However, this situation is very seldom met in
practice, because generally only one instrument is available and employed. Under this
more common situation, when only one multimeter is employed, the value measured by
the multimeter will be shifted with respect to the reference value. Moreover, if different
measurements were taken, this would not help to better estimate the reference value since
all measured values would be shifted more or less the same amount with respect to the
reference value, as shown by the green circles in Figure 2. In fact, all measured values
are taken, in this case, by the same instrument and, therefore, are affected by the same
systematic error, even if a small variation can be observed, due to the presence of also
random phenomena.

In this last case, even if the mean of the measured values is taken, no better estimate
of the measurand can be obtained. Additionally, even if an interval is built, according to
the dispersion of the measured values, this interval would not contain the value of the
measurand. Therefore, to provide a good uncertainty interval, it is necessary to refer to
the accuracy interval provided by the data sheet. The data sheet does not provide any pdf
associated with this interval, and therefore, no pdf can be assigned to the obtained interval.

When we have a pdf over a given support, it is possible to assign a confidence interval
(or degree of belief) to any subintervals of the support. However, when no pdf is assigned
and no knowledge is available to assign a specific pdf, it is not possible to associate any
confidence interval (or degree of belief) to any subintervals of the support. We are, therefore,
perfectly in the case of Shafer’s total ignorance, where a degree of belief can be assigned to
the support (or universal set), but no degree of belief can be assigned to the subintervals
(to the subsets of the universal set).

It clearly follows that total ignorance is present in the measurement field. Since belief
functions better represent total ignorance, it is worth exploring these functions and the
theory of evidence to find an alternative, more general way to handle measurement uncer-
tainty and measurement results. It is not the aim of this paper to provide all definitions and
mathematical details, for which the readers are referred to the published literature [10–14].
The next section will, therefore, give only some introduction to come to the possibility
distributions (PD) and the random-fuzzy variables (RFV).

5. The Random-Fuzzy Variables

In the previous sections, belief functions are introduced and it is shown how they
can suitably represent the available knowledge, including total ignorance. It is interesting
to observe that belief functions are a generalization of the probability functions and the
necessity functions. In this respect, it is first necessary to know what a focal element is.
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Let us first define the basic probability assignment function:

m : P(X)→ [0, 1]
m(∅) = 0

∑
A∈P(X)

m(A) = 1
(3)

where X is the universal set, P(X) is the power set of X and ∅ is the empty set. According
to (3), m(A) represents the degree of belief that an element x belongs to set A (only to set A
and not to its subsets).

Set A for which m(A) > 0 is called the focal elements of X. When the focal elements
are singletons, then it can be proved [9–12] that belief functions are probability functions,
and the theory of evidence enters in the particular case of the probability theory. This
shows that the belief functions are, as wanted by Shafer, a generalization of the probability
functions. However, it is also interesting to consider another particular case of belief
functions, which are called necessity functions and are obtained when the focal elements
are all nested, as shown in Figure 3.
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Figure 3. Example of nested focal elements, for sets and for intervals.

The upper plot in Figure 3 clearly shows that, when sets are considered, all sets can
be ordered in such a way that A1 ⊂ A2 ⊂ . . . ⊂ An ≡ X. When, instead of sets, intervals
are considered, the lower plot can be drawn, which still satisfies A1 ⊂ A2 ⊂ . . . ⊂ An ≡ X.
This case is very interesting from the metrological point of view because there could be
an analogy between these nested intervals and the confidence intervals of a given pdf at
different, increasing levels of confidence.

The necessity function is defined as follows:

Nec
(

Aj
)
=

j

∑
k=1

m(Ak)

and represents the degree of belief that an element x belongs to set A and to all its subsets.
When the belief functions are necessity functions, then the theory of evidence enters the
particular case of the possibility theory.

In the same way that probability density functions are defined in probability, possibil-
ity distribution functions (PD) are defined in possibility as follows:

r : X → [0, 1]
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where:
max(r(x)) = 1

when x ∈ X.
It can be proved [10,11] that the nested intervals of Figure 3, together with their

corresponding necessity functions Nec
(

Aj
)
, represent confidence intervals at specific levels

of confidence, coverage probability, or degree of belief Nec
(

Aj
)
. Therefore, remembering

the GUM words that “the ideal method for evaluating and expressing measurement uncertainty
should be capable of readily providing such an interval, in particular, one with a coverage probability
or level of confidence that corresponds in a realistic way to that required” [1], it can be stated that
the possibility theory, which provides all confidence intervals at all confidence levels, is
perfectly GUM compliant.

If the intervals of Figure 3 are not overlapped with each other but are positioned at
different vertical levels α, such as αj = 1− Nec

(
Aj

)
, then a fuzzy variable is obtained, as

in the example in Figure 4.
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Figure 4. Example of possibility distributions and confidence intervals.

The fuzzy variable is commonly defined by its membership function which is, from
the strict mathematical point of view, a PD.

Since a fuzzy variable (a PD) represents confidence intervals at all levels of confidence,
a fuzzy variable can be used to represent in a very immediate way the result of a measure-
ment [10–12]. Moreover, since different kinds of uncertainty contributions may affect the
measurement procedure, the best way to represent the result of a measurement is the use
of a fuzzy variable of type 2 and, in particular, a random-fuzzy variable (RFV). An RFV
provides two PDs and can, hence, represent separately the effects on the measurement
result of the different contributions to uncertainty. An example of RFV is given in Figure 5,
with the red and violet lines. In an RFV, the uncompensated systematic contributions are
represented by the internal PD rint(x) (violet line), while the random contributions are
represented by the random PD rran(x) (green line). The external PD rext(x) (red line) is
obtained by the combination of the two PDs rint(x) and rran(x) [10–13].
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Extending the considerations made for the fuzzy variables, it can be stated that the
cuts Xα at levels α of the RFV are the confidence intervals associated to the measurement
result at the confidence levels Nec(Xα) = 1− α (as shown in Figure 6). In particular, the
internal interval of each confidence interval is due to the effect on the measured value of
the systematic contributions to uncertainty, while the external intervals are due to the effect
of the random contributions.
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If RFVs can suitably represent measurement results, then it is important to understand
how an RFV can be built and how two RFVs can be combined with each other, as will be
briefly explained below; we refer the readers to the literature for more details [10–14].

5.1. RFV Construction

To build an RFV, it is necessary to define the shape of the PDs rint(x) and rran(x),
whose construction is different [10–14] since they represent different kinds of contributions.

As far as rint(x) is concerned, this PD represents the uncompensated systematic
contributions to uncertainty. As shown in the example of the multimeter in the previous
Section 4, generally, the only available knowledge is, in this case, the accuracy interval
given by the manufacturer of the employed instrument in the data sheet. Therefore, the
available knowledge can be represented by Shafer’s total ignorance. As is also shown in
Section 3, total ignorance is mathematically represented by the belief function [9–11]:

Bel(X) = 1

Bel(A) = 0 ∀A ⊂ X

and by the rectangular PD, such as the one in violet line in Figure 5. It follows that rint(x)
is rectangular in most situations, even if situations may exist that could lead to different
shapes [10–14].

On the other hand, rran(x) must represent the random contributions to uncertainty and
therefore, in most cases, a pdf is known or can be supposed. In this case, the corresponding
PD can be easily obtained by applying the suitable probability–possibility transformation
(different probability–possibility transformations are available in the literature to transform
pdfs into PDs. The suitable transformation when PDs are used to represent measurement
results is the maximally specific probability–possibility transformation, which preserves all
confidence intervals and corresponding confidence levels) [10,15].

As an example, when the pdf is uniform, then the corresponding PD is triangular;
when the pdf is triangular, then the corresponding PD is the orange one in Figure 7; when
the pdf is Gaussian, then the corresponding PD is the blue one in Figure 7.
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PD from a triangular pdf.

5.2. RFV Combination

When the measurement results are represented by RFVs and they must be combined,
it is possible to take into account all the available metrological information about the
nature of the contributions to be combined and the way these contributions combine in
the specific measurement procedure. According to that, since PDs can be combined using
many different mathematical operators, the most proper one can be chosen.

Without entering the details, for which the readers are referred to [10,16,17], it can be
stated that the random contributions to uncertainty always compensate with each other
during the combination, and therefore, an operator that simulates this typical probabilistic
compensation should be chosen. On the other hand, the systematic contributions to
uncertainty could compensate or not with each other during the combination, according to
the specific contributions and the specific measurement procedure. Therefore, there should
be the possibility to choose between a mathematical operator that simulates compensation
and another one which does not compensate.

Let us first consider the evaluation of the joint PD, starting from two PDs. As an
example, Figure 8 shows the results obtained by combining the same two PDs with the
use of two different t-norms (for the definition of the mathematical t-norms, the readers
are addressed to [15]): the min t-norm (on the left) and the Frank t-norm (on the right). In
the upper plots, the two-dimensional joint PDs are shown, while in the lower plots, the
corresponding α-cuts are shown. It can be easily seen how compensation applies when
the Frank t-norm is employed, while no compensation applies when the min t-norm is
employed.
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Figure 8 refers to the combination of uncorrelated contribution. Without entering the
details, the correlation can also be considered, as shown, as an example, in Figures 9 and 10.
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From Figures 9 and 10, it can be easily seen how correlation modifies the joint PDs
and the corresponding α-cuts.

Once the joint PDs rran(x, y) and rint(x, y) are obtained, it is possible to evaluate
the joint PD rext(x, y) and the final RFV (this is obtained by applying the famous Zadeh
extension principle. The readers are referred to [9,10] for the details) [9,10,16,17].

6. Example

To show the potentiality of the RFV approach, a simple example is here reported,
where the RFV approach is compared with the GUM approach [1] and the Monte Carlo
approach, as suggested by [18].

The GUM approach consists of the application of the law of propagation of the
uncertainty [1], while random and systematic contributions to uncertainty are combined
applying the quadratic law. The results given by the GUM approach are provided in terms
of two specific confidence intervals: the ones at coverage probabilities 95.45% and 68.27%.
These intervals are compared with the corresponding α-cuts at the same level of confidence
of the RFVs obtained with the RFV approach.

The Monte Carlo approach consists of taking extractions from the given pdfs (in a way
to agree with the available information) and combining the extractions to obtain a final
histogram. Then, the histogram is converted in a pdf, and the pdf is converted to a PD
(through the probability–possibility transformation mentioned above) for an immediate
comparison with the RFVs given by the RFV approach.

Let us come to the example. A teacher measures the length and width of her desk
with a wooden ruler and evaluates the area of the desk. She/he also asks her/his pupils
to take the same measurements (and the area evaluation) with measuring tapes that they
have built with some white cloth and a pencil to mark the cloth every half centimeter.
The measurements are taken under different assumptions about both the measurement
procedure and the uncertainty contributions, as shown in Table 8.
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Table 8. The considered case studies.

Case Procedure Random Systematic

A Known measuring
tape uniform pdf ±0.25 cm Compensated

B 1 unknown
measuring tape uniform pdf ±0.25 cm uniform pdf ±0.5 cm

C 2 unknown
measuring tapes uniform pdf ±0.25 cm uniform pdf ±0.5 cm

D 1 unknown
measuring tape uniform pdf ±0.25 cm Interval ± 0.5 cm

E 2 unknown
measuring tapes uniform pdf ±0.25 cm Interval ± 0.5 cm

As far as the procedures are concerned, “Known measuring tape” means that the
measuring tapes are somehow characterized, and therefore, the systematic error introduced
by each of them is known; since the pupil uses their own tape, the systematic error is known
and can be compensated. “1 unknown measuring tape” means that both length and width
are measured with the same tape taken randomly among the tapes; the systematic error
introduced by the tape is not known and it cannot be compensated but, since the same tape
is used for the two measurements, the two measurements are correlated with each other.
“2 unknown measuring tapes” means that length and width are measured with two
different tapes taken randomly among the tapes; the systematic errors introduced by the
tapes are not known and they cannot be compensated and since two different tapes are
used for the two measurements, and therefore, the two measurements are uncorrelated
with each other.

As far as the uncertainty contributions are concerned, the random contributions
are supposed to be uniformly distributed; the systematic contributions are compensated
(case A), uniformly distributed (case B and C) or without any other knowledge rather than
the given interval (case D and E), as in Shafer’s total ignorance situation.

The uncertainty contributions reported in Table 8 are related to the pupils’ measuring
tapes, while no uncertainty is assumed to affect the teacher’s measurements, realized with
the wooden ruler, so that the teacher’s measured values are considered to be the reference
values lre f = 90 cm for the length and wre f = 60 cm for the width, while Are f = 5400 cm2

is the reference area.
This means that, when the Monte Carlo approach is followed, extractions from the

given pdfs in Table 8 are considered; when the RFV method is applied, the given pdfs in
Table 8 are transformed into the corresponding PDs by applying the probability–possibility
transformation; when the GUM approach is followed, the standard uncertainties are
derived from the given pdfs in Table 8, that is, since the pdfs are uniform, the stan-
dard uncertainties are equal to the semi-width of the support of the pdfs divided by a
factor

√
3 [1,2].

Without entering the details, for which the readers are referred to [10], the obtained
results are shown in the following Figures 11–13. When only random contributions to un-
certainty are present because the systematic ones are compensated for, the three approaches
provide exactly the same results, showing the validity of the RFV method in simulating the
presence of the random contributions. When both random and systematic contributions
are present and their associated pdfs are known, the GUM approach underestimates the
final measuring uncertainty, while the RFV and the Monte Carlo approaches provide very
similar results. In this case, the RFV approach has the advantages of being faster and
distinguishing, in the final measurement result, the effects due to the two different kinds of
contributions. Finally, in the case of total ignorance, neither the GUM or the Monte Carlo
approach can represent it in a different way with respect to cases B and C; therefore, they
provide incorrect results.
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7. Conclusions

This paper represents a review paper of the RFV approach, proposed in the literature
in the last decades.

It has been shown the potentiality of this approach, which is able to represent and
propagate measurement results in closed form, by simulating the way the uncertainty
contributions propagate through the measurement procedure.

Other more specific applications are present in the more recent literature, like for
instance the generalization of Bayes’ theorem in the possibility domain [19,20] or the
realization of a possibilistic Kalman filter [21,22], thus showing the versatility of the RFV
approach.
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