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AN EXTENDED VARIATIONAL THEORY FOR

NONLINEAR EVOLUTION EQUATIONS VIA MODULAR SPACES

ALEXANDER MENOVSCHIKOV, ANASTASIA MOLCHANOVA, AND LUCA SCARPA

Abstract. We propose an extension of the classical variational theory of evolution equations that
accounts for dynamics also in possibly non-reflexive and non-separable spaces. The pivoting point
is to establish a novel variational structure, based on abstract modular spaces associated to a given
convex function. Firstly, we show that the new variational triple is suited for framing the evolu-
tion, in the sense that a novel duality paring can be introduced and a generalised computational
chain rule holds. Secondly, we prove well-posedness in an extended variational sense for evolu-
tion equations, without relying on any reflexivity assumption and any polynomial requirement on
the nonlinearity. Finally, we discuss several important applications that can be addressed in this
framework: these cover, but are not limited to, equations in Musielak–Orlicz–Sobolev spaces, such
as variable exponent, Orlicz, weighted Lebesgue, and double-phase spaces.

1. Introduction

In this paper we deal with evolution equations on a Hilbert space H in the form

∂tu+A(u) ∋ f , u(0) = u0 , (1.1)

where A := ∂ϕ is the subdifferential of a proper, convex, and lower semicontinuous function
ϕ : H → (−∞,+∞]. Moreover, f : (0, T ) → H is a prescribed forcing term, with T > 0 being the
final reference time, and the initial datum u0 is given in H.

From the mathematical perspective, nonlinear evolution equations in Hilbert or Banach spaces
have been extensively investigated in the last decades. Starting from the pioneering literature of
the 70s, for which we refer the reader to Barbu [6, Ch. 4], their study represents nowadays one
of the most flourishing fields of modern mathematical analysis, with applications ranging from
partial differential equations to functional analysis. In this regard, we point out the contributions
[20,21,26,68,69] on doubly nonlinear evolution equations, and [3,4,57] on variational principles, as
well as the references therein. Well-posedness for equations in the form (1.1) has been tackled in
several frameworks, and various concepts of solutions have been proposed. The specific regularity of
the solutions strongly depends on the assumptions on the initial datum u0 and the forcing term f .

The most classical (and the strongest) assumption on the initial datum is that u0 ∈ D(A), where
D(A) stands for the effective domain of the maximal monotone operator A onH. In this framework,
existence of strong solutions for (1.1) has been thoroughly studied in the Hilbert case in relation
to the nonlinear extension of the celebrated Hille–Yosida theory: this was first accomplished by
Kōmura [43] and then the result was well reviewed in the monograph by Brezis [13], not necessarily
requiring A to be cyclically monotone. More in detail, the corresponding homogeneous equation
(i.e. with f = 0) admits a unique strong solution u, in the sense that u ∈ W 1,∞(0, T ;H) and
the differential inclusion (1.1) is satisfied almost everywhere on (0, T ). In the nonhomogeneous
case, existence of strong solutions in W 1,∞(0, T ;H) is ensured if the forcing term satisfies at least
f ∈ BV (0, T ;H). In the special case of subdifferential operators A = ∂ϕ, existence of strong
solutions in W 1,p(0, T ;H), for p ∈ [2,+∞), is ensured if f ∈ Lp(0, T ;H). Here, the proof can be
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based on a regularisation and passage-to-the-limit procedure based on a Yosida-type approximation
of the operator A.

However, in several situations the assumption that the initial datum belongs to the domain of
A is too restrictive. In this direction, weaker concepts of solution have been proposed in order
to give appropriate meaning to equation (1.1) in more general frameworks. In this direction, the
initial datum can be required to satisfy only u0 ∈ D(A), the closure in H of the domain of A, and
the forcing term is only taken as f ∈ L1(0, T ;H). Under these condition, in Brezis [13] existence
and uniqueness of a weak solution u ∈ C0([0, T ];H) is proved, in the sense that there exist some
sequences of data (u0,n, fn)n ⊂ D(A) × L1(0, T ;H) and a sequence of respective strong solutions
(un)n ∈W 1,1(0, T ;H), satisfying (1.1) for every n ∈ N, and such that, as n→ ∞, u0,n → u0 in H,
fn → f in L1(0, T ;H), and un → u in C0([0, T ];H). This concept of weak solution is certainly
satisfactory, as it allows to give sense to the equation in more general settings, and it generalises
the notion of strong solution. Furthermore, whenever A is cyclically monotone with A = ∂ϕ, every
weak solution is also a strong solution as soon as u0 ∈ D(∂ϕ) and f ∈ L2(0, T ;H), for example.

Alternative concepts of weak solutions have been proposed and studied, also for evolutions in
Banach spaces, especially relying on the notion of mild and integral solutions. In this direction, the
reader can refer to the classical pioneering works by Bénilan [10], Bénilan & Brezis [11], Crandall
& Evans [22], Crandall & Liggett [23], Crandall & Pazy [24,25], Kato [40,41], and Komura [44,45].

One of the main drawbacks of the above-mentioned notion of weak solution is that the differential
inclusion f − ∂tu ∈ A(u) is not explicitly specified. More precisely, for weak solutions u the
meaning of the differential inclusion is somehow passed by: although u is obtained as limit of
suitable approximations (strong solutions, time discretisation, etc.), each one solving the differential
inclusion almost everywhere, it is not granted that u itself satisfies (1.1) in some sense on (0, T ).
This issue has been successfully overcome by proposing a further concept of weak solution for the
problem, for which the differential inclusion could be made explicit in some appropriate sense:
it is the case of the well-celebrated variational theory introduced by Lions [51]. The main idea
behind this is to introduce, apart from the given Hilbert space H, a further Banach space V ,
which is assumed to be separable, reflexive, and continuously and densely embedded in H. If one
identifies H with its dual H∗, then it is possible to work on the variational triplet V →֒ H →֒ V ∗.
The maximal monotone operator A is then considered as an operator A : V → 2V

∗

satisfying some
natural coercivity and boundedness conditions in the form

〈y, ϕ〉V ∗,V ≥ c ‖ϕ‖p , ‖y‖
p

p−1

V ∗ ≤ C
(

1 + ‖ϕ‖pV
)

∀ϕ ∈ V , ∀ y ∈ A(ϕ) , (1.2)

where p > 1 is a given constant. In this framework, for every initial datum u0 ∈ H and forcing term
f ∈ L1(0, T ;H) there exists a unique variational solution u, in the sense that u ∈W

1, p

p−1 (0, T ;V ∗)∩
Lp(0, T ;V ) satisfies the differential inclusion (1.1) as an equality in V ∗, almost everywhere on (0, T ).
Let us stress that variational solutions are effective in rendering the differential inclusion explicitly
for u, and not only as limit of suitable approximations: indeed, one is actually able to prove that
the inclusion f − ∂tu ∈ A(u) holds in V ∗, almost everywhere on (0, T ).

The main downside of the classical variational theory is that the operator A needs to possess
relatively nice polynomial behaviour. While on the one hand this is certainly enough to cover
several classes of evolution equations, such as reaction-diffusion and p-Laplace equations, on the
other hand numerous important applications are left out. This happens in particular when the
operator A fails to satisfy the coercivity-boundedness polynomial conditions (1.2) for a certain
exponent p. Quite common A is actually needed to be coercive and bounded in some spaces, but
the respective exponents are different: this is very classical, for example, for p(x)-Laplace and
double-phase equations, as well as equations in weighted Sobolev spaces. Alternatively, it may
happen that A is coercive and bounded as required, but the natural space V associated to it is not
reflexive or not separable: this is the case, among many others, of reaction-diffusion equations with
singular (i.e. superpolynomial) potentials. In all these pathological scenarios, if the initial datum
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only satisfies u0 ∈ H an appropriate concept of variational solution is not known so far: one is only
able to obtain strong solutions to (1.1) by forcing the initial datum to belong to D(A).

These issues naturally call for an extension of the classical variational theory, in order to establish,
in some appropriate variational sense, weak well-posedness of evolution equations in the form (1.1)
with general initial datum u0 ∈ H, also when assumption (1.2) is not satisfied. This is the main
focus of the present paper.

The idea is to abandon the introduction of the Banach space V , and to work instead in the
modular spaces naturally associated to ϕ. Indeed, one can define the small and large modular
spaces as, respectively,

Lϕ := {v ∈ H : ∃α > 0 : ϕ(αv) < +∞} ,
Eϕ := {v ∈ H : ∀α > 0 : ϕ(αv) < +∞} .

As Eϕ is generally dense in H (details are given in Section 3 below), by identifying H with its dual
one has the natural variational structure

Eϕ →֒ Lϕ →֒ H →֒ E∗
ϕ .

In the classical variational theory, one is implicitly assuming that Eϕ = Lϕ = V is separable and
reflexive: this is satisfied only in very specific situations, for example when ϕ satisfy some suitable
∆2 and ∇2 conditions (details are given in Section 6 below). In general, however, the spaces Eϕ

and Lϕ are different and not necessarily reflexive. The pivoting idea of the entire work is to work
in the variational triplet

Lϕ →֒ H →֒ E∗
ϕ .

Beyond the reflexivity issue, a further problem is that E∗
ϕ is not the dual of Lϕ, hence no duality

pairing is in principle defined between E∗
ϕ and Lϕ. The preliminary step is then to show that,

nonetheless, it is possible to define a new duality [·, ·] between E∗
ϕ and Lϕ generalising the scalar

product of H. This guarantees indeed that the triple (Lϕ,H,E
∗
ϕ), despite being unconventional

in this sense, is suited for framing the evolution problem in a variational way: the solution u is
expected to be Lϕ-valued, and the differential inclusion (1.1) will be intended in E∗

ϕ.

The first main result of the paper is a fundamental computational tool collected in Theorem 3.6
below, establishing that the novel variational triplet (Lϕ,H,E

∗
ϕ) endowed with the novel duality

pairing [·, ·] satisfies the well-known “chain rule” formula for the square of the H-norm. This is
highly nontrivial, since the spaces Lϕ and E∗

ϕ are not reflexive and separable in general, hence
the classical results do not apply. In particular, the non-separability of the spaces in play forces
to introduce a different notion of measurability for vector-valued functions, as the classical strong
measurability in the Bochner sense is too restrictive in this framework. The chain rule is proved
using an elliptic-in-time regularisation by convolution and passage to the limit, where a key role is
played by an abstract version of the Jensen inequality proved by Haase [34].

The second main result of the paper is contained in Theorems 3.7–3.8 and establishes the vari-
ational well-posedness of equation (1.1) is the new variational setting (Lϕ,H,E

∗
ϕ). The structure

of the prof is based on a Yosida-type approximation on ∂ϕ and passage to the limit. Let us stress
that due to the lack of reflexivity several compactness issues arise, especially in the direction of
identifying the nonlinearity ∂ϕ at the limit.

The main novelty of this paper is to provide an extended variational structure that allows to frame
also singular evolution equations in possibly non-reflexive spaces. This is fundamental as it provides
a unifying variational framework for a wide variety of problems, such as equations in Musielak–
Sobolev–Orlicz spaces, that so far have been studied independently by hand. In this regard,
Musielak–Orlicz spaces and their special cases are receiving much attention at the present time.
A survey of nonlinear PDEs in Musielak–Orlicz spaces is presented in Chlebicka [17], especially
in the cases of variable exponent, Orlicz, weighted Lebesgue, and double-phase spaces. Further
contributions on Musielak–Orlicz–Sobolev spaces are also given in the recent articles [15, 19, 31]
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and [36, 62, 70]. Such spaces were introduced in the late 50s in the works of Musielak and Orlicz
[59, 60]. The theory has then been viewed as a special case of a more general approach, based on
modular spaces: the main idea is to consider a convex functional (a so-called modular) on a vector
space instead of the usual integrals of convex functions involved in Musielak–Orlicz spaces. This
approach is widely employed already in several fields, such as approximation and interpolation
theory (e.g. [1, 39, 46, 71]) and in operator theory (e.g. [8, 42, 63, 65]). Also, metric space theory on
such spaces is developed (see Chistyakov [16]). Recent results concerning existence of solutions to
parabolic equations in Orlicz spaces have been obtained in [9, 18, 19, 29, 30, 33, 72]. For a highly
detailed presentation of the existing literature we refer specifically to [17, § 3].

The importance of the extended variational approach introduced in this work is extremely evi-
dent in all those scenarios where existence of strong solutions is out of reach, due to some specific
pathological structure of the problems themselves. In this regard, a special mention goes to non-
linear evolution equations with random forcing. Indeed, in the stochastic setting existence of
analytically strong solutions may be severely problematic if the nonlinearity A is too singular,
due to the presence of extra second order contributions in the energy balance (see for example
Gess [32] for the case of sub-homogenous potential). Consequently, forcing the initial datum to
belong to D(A) does not help in this case, and it is fundamental to have at hand a valid well-
posedness theory in a variational sense, in order to give appropriate meaning to possibly singular
evolution equations with general u0 ∈ H. For these reasons, we believe that the current work
represents also a preliminary step in the direction of building a generalised variational theory for
stochastic evolution equations. The variational theory for SPDEs was originally introduced by Par-
doux [64] and Krylov & Rozovskĭı [47] (see also [52] and the references therein) under the classical
reflexivity–separability conditions on the space V and under the polynomial requirements (1.2)
on the nonlinearity. Some first contributions in the spirit of Orlicz spaces have been given so far
only in very special cases, namely in Barbu & Da Prato & Röckner [7, Ch. 4] for the stochastic
porous media equation, in [5,55,56,61] for semilinear stochastic equations, in [53,54] for stochastic
divergence-form equations, and in [66,67] for the stochastic Cahn–Hilliard equation. Nonetheless, a
general extended variational theory for stochastic evolution equations taking into account possibly
non-reflexive spaces and non-polynomial nonlinearities is missing: in this direction, the present
work represents a valuable candidate for obtaining an extension to the stochastic case, which is
itself currently in preparation.

Finally, let us briefly present the structure of the paper. In Section 2 we collect some preliminary
general results on modular spaces, while in Section 3 we introduced the novel variational setting
and state our main results. Section 4 contains then the proof of the generalised chain rule, and
Section 5 is focused on the proof of well-posedness. Eventually, in Section 6 we collect several
important applications that can be treated in this framework.

2. Preliminaries on modular spaces

In this section, we recall the main definitions and properties concerning the theory of modular
spaces, and we prove some preliminary abstract results that will be useful in the sequel. For the
details on the theory of modular spaces, we refer the reader to Musielak [58].

Let X be a real Banach space with dual X∗. The norm in X and the duality between X∗ and
X will be denoted by the symbols ‖·‖X and 〈·, ·〉X∗,X , respectively.

Definition 2.1. A convex semi-modular on X is a convex functional ϕ : X → [0,∞] satisfying the
following conditions:

• ϕ(0) = 0,
• if ϕ(αx) = 0 for all α > 0, then x = 0;
• ϕ(−x) = ϕ(x) for all x ∈ X.
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If also ϕ(x) = 0 iff x = 0, then ϕ is called convex modular.

In this section, ϕ is a lower semicontinuous convex semi-modular on X. It is possible to naturally
associate to ϕ the modular spaces

Lϕ := {x ∈ X : ∃α > 0 : ϕ(αx) < +∞} , (2.1)

Eϕ := {x ∈ X : ∀α > 0 : ϕ(αx) < +∞} . (2.2)

It is not difficult to check that Eϕ and Lϕ are real linear spaces, with

Eϕ ⊂ Lϕ ⊂ X .

Furthermore, we set

‖x‖ϕ := inf{λ > 0 : ϕ(x/λ) ≤ 1} , x ∈ Lϕ . (2.3)

It is well-known (see for example [58, Chapter I]) that ‖·‖ϕ defines a norm on Eϕ and Lϕ, called the
Luxemburg norm, so that (Eϕ, ‖·‖ϕ) and (Lϕ, ‖·‖ϕ) are linear normed spaces. From the definition
of ‖·‖ϕ, the properties collected in the following Lemma are well-known: we refer for example to
Musielak [58, Thms. 1.5–1.6, Lem. 2.4].

Lemma 2.2. The following properties hold:

(1) for every x1, x2 ∈ Lϕ, if ϕ(αx1) ≤ ϕ(αx2) for all α > 0, then ‖x1‖ϕ ≤ ‖x2‖ϕ;

(2) for every x ∈ Lϕ with ‖x‖ϕ < 1, it holds ϕ(x) ≤ ‖x‖ϕ;

(3) for every x ∈ Lϕ with ‖x‖ϕ > 1, it holds ϕ(x) ≥ ‖x‖ϕ;

(4) for every sequence (xn)n ⊂ Lϕ and x ∈ Lϕ, it holds

lim
n→∞

‖xn − x‖ϕ = 0 iff lim
n→∞

ϕ(α(xn − x)) = 0 ∀α > 0 ;

(5) for every sequence (xn)n ⊂ Lϕ, it holds

lim
n,k→∞

‖xn − xk‖ϕ = 0 iff lim
n,k→∞

ϕ(α(xn − xk)) = 0 ∀α > 0 .

Since we are interested in applications to evolutionary PDEs in modular spaces, we look now for
sufficient conditions on ϕ ensuring that (Eϕ, ‖·‖ϕ) and (Lϕ, ‖·‖ϕ) are actually Banach spaces. In
the direction, we have the following result.

Proposition 2.3. Suppose that there exists a strictly increasing function ρ : [0,+∞) → [0,+∞)
with ρ(0) = 0 such that

ϕ(x) ≥ ρ(‖x‖X) ∀x ∈ X . (2.4)
Then, (Eϕ, ‖·‖ϕ) and (Lϕ, ‖·‖ϕ) are Banach spaces, and the following inclusions are continuous:

Eϕ →֒ Lϕ →֒ X .

Proof. Step 1. Firstly, we prove that (Eϕ, ‖·‖ϕ) is a Banach space. Let (xn)n ⊂ Eϕ be a Cauchy
sequence: then, there exists an index m̄ ∈ N such that, for every n, k ≥ m̄ we have ‖xn − xk‖ϕ < 1.
Consequently, by Lemma 2.2 (2) and the assumption (2.4) we have

ρ(‖xn − xk‖X) ≤ ϕ(xn − xk) ≤ ‖xn − xk‖ϕ ∀n, k ≥ m̄ .

In particular, it follows that (xn)n is a Cauchy sequence in X. By completeness of X, there exists
x ∈ X such that xn → x in X, hence also αxn → αx in X for all α > 0. Let now α > 0 be
arbitrary: since (xn)n is Cauchy in Eϕ ⊂ Lϕ, by Lemma 2.2 (5) we have that

lim
n,k→∞

ϕ(α(xn − xk)) = 0 ,

so that there exists m̄α ∈ N such that

ϕ(α(xn − xk)) ≤ 1 ∀n, k ≥ m̄α .
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By lower semicontinuity and convexity of ϕ in X, since xm̄α ∈ Eϕ we deduce that

ϕ
(α

2
x
)

≤ lim inf
n→∞

ϕ
(α

2
xn

)

= lim inf
n→∞

ϕ

(

1

2
α(xn − xm̄α) +

1

2
αxm̄α

)

≤ 1

2
lim inf
n→∞

ϕ(α(xn − xm̄α)) +
1

2
ϕ(αxm̄α)

≤ 1 +
1

2
ϕ(αxm̄α) < +∞ .

Hence, ϕ(α2 x) < +∞ for all α > 0, from which x ∈ Eϕ. Moreover, again by lower semicontinuity
of ϕ, for every α > 0 we have

ϕ(α(xn − x)) ≤ lim inf
k→∞

ϕ(α(xn − xk)) , ∀n ∈ N ,

which yields
lim sup
n→∞

ϕ(α(xn − x)) ≤ lim sup
n,k→∞

ϕ(α(xn − xk)) = 0 .

Hence xn → x in Eϕ by Lemma 2.2 (4). This shows that (Eϕ, ‖·‖ϕ) is a Banach space.

Step 2. We prove now that also (Lϕ, ‖·‖ϕ) is a Banach space. Let (xn)n ⊂ Lϕ be a Cauchy
sequence. Arguing exactly as in Step 1 we deduce that there exists x ∈ X such that xn → x in X:
we have to show that x ∈ Lϕ and xn → x in Lϕ. To this end, note that since (xn)n is Cauchy
in Lϕ, by the triangular inequality the real sequence (‖xn‖ϕ)n is Cauchy in R, so that there exists
λ ≥ 0 such that λn := ‖xn‖ϕ → λ as n → ∞. Now, if λ = 0, then x = 0 ∈ Lϕ and xn → 0 in Lϕ,
so the conclusion is trivial. Let us suppose that λ > 0: then λn > λ/2 for every n sufficiently large.
It follows that

lim sup
n→∞

∥

∥

∥

∥

xn
λn

− x

λ

∥

∥

∥

∥

X

≤ 2

λ
lim sup
n→∞

‖xn − x‖X + ‖x‖X lim sup
n→∞

∣

∣

∣

∣

1

λn
− 1

λ

∣

∣

∣

∣

= 0 ,

hence xn/λn → x/λ in X. By lower semicontinuity of ϕ and definition of λn we have then

ϕ(x/λ) ≤ lim inf
n→∞

ϕ(xn/λn) ≤ 1 ,

which implies that x ∈ Lϕ and ‖x‖ϕ ≤ λ. Finally, let α > 0 be arbitrary: then, again by lower
semicontinuity of ϕ we have

ϕ(α(xn − x)) ≤ lim inf
k→∞

ϕ(α(xn − xk)) , ∀n ∈ N ,

which yields
lim sup
n→∞

ϕ(α(xn − x)) ≤ lim sup
n,k→∞

ϕ(α(xn − xk)) = 0 .

Since α > 0 is arbitrary, we have xn → x in Lϕ by Lemma 2.2 (4). This shows that (Lϕ, ‖·‖ϕ) is a
Banach space.
Step 3. We prove here the continuous inclusions Eϕ →֒ Lϕ →֒ X. We already know that
Eϕ ⊂ Lϕ ⊂ X as inclusions of sets. Moreover, the continuous inclusion Eϕ →֒ Lϕ is trivial since

‖x‖Eϕ
= ‖x‖Lϕ

= ‖x‖ϕ ∀x ∈ Eϕ .

Let now x ∈ Lϕ and λ > 0 such that ϕ(x/λ) ≤ 1. Then by assumption on ϕ we have

ρ(‖x/λ‖X) ≤ ϕ(x/λ) ≤ 1 ,

from which ‖x‖X ≤ ρ−1(1)λ, where ρ−1 denotes the generalised inverse of ρ. By arbitrariness of λ
and definition of ‖·‖ϕ, we have then

‖x‖X ≤ ρ−1(1) ‖x‖ϕ ∀x ∈ Lϕ ,

as required. �
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Proposition 2.3 ensures then that for a lower semicontinuous convex semi-modular ϕ satisfying
condition (2.4), the respective modular spaces (Eϕ, ‖·‖ϕ) and (Lϕ, ‖·‖ϕ) are actually Banach spaces.
The next main issue in studying the variational structure of Eϕ and Lϕ concerns density properties.
In this direction, although the inclusion Eϕ →֒ X and Lϕ →֒ X may be dense in the majority of
applications, let us stress that the inclusion Eϕ →֒ Lϕ is not necessarily dense in general: see
Section 6 for details. This calls for the introduction of a weaker concept of convergence in Lϕ,
namely the so-called modular convergence: see Musielak [58].

Definition 2.4 (Modular convergence). A sequence (xn)n ⊂ Lϕ is called modular convergent to
x ∈ Lϕ if there exist an α > 0 such that ϕ(α(xn − x)) → 0 as n→ ∞.

Thanks to Lemma 2.2, it is clear that modular convergence is weaker than the norm convergence.
Actually, the former is strictly weaker than the latter, and they are equivalent if and only if
ϕ(xn) → 0 implies ϕ(2xn) → 0, for every sequence (xn)n ⊂ Lϕ.

We conclude the preliminary section with an overview on the duality properties of Eϕ and Lϕ.
These are indeed crucial in order to build a suitable variational framework for PDEs in modular
spaces.

Definition 2.5. The convex conjugate ϕ∗ : X∗ → [0,∞] of ϕ : X → [0,∞] is defined as

ϕ∗(y) := sup
x∈X

{〈y, x〉X∗,X − ϕ(x)} , y ∈ X .

Lemma 2.6. If ϕ is a lower semicontinuous convex semi-modular on X and Lϕ →֒ X densely,
then ϕ∗ : X∗ → [0,+∞] is a lower semicontinuous convex semi-modular on X∗.

Proof. We know that ϕ∗ is lower semicontinuous, proper, and convex. It is also immediate to check
using the definition that ϕ∗(0) = 0 and ϕ∗(−y) = ϕ∗(y) for all y ∈ X∗. Moreover, let y ∈ X∗ be
such that ϕ∗(αy) = 0 for every α > 0. Take now an arbitrary x ∈ Lϕ and choose η > 0 such that
ϕ(ηx) < +∞. Then, by the Young inequality and the symmetry of ϕ, for all α > 0 we have

±ηα 〈y, x〉X∗,X ≤ ϕ(±ηx) + ϕ∗(αy) = ϕ(ηx) ,

yielding

| 〈y, x〉X∗,X | ≤ ϕ(ηx)

ηα
∀α > 0 .

Since ϕ(ηx) < +∞, letting α→ +∞ we have

〈y, x〉X∗,X = 0 ∀x ∈ Lϕ ,

from which y = 0 in X∗ be density of Lϕ in X. Hence, ϕ∗ is a semi-modular on X∗. �

This lemma ensures that ϕ∗ is always a (lower semicontinuous convex) semi-modular whenever so
is ϕ and Lϕ is dense in X. However, note that even if we additionally require that ϕ is a modular,
it is not necessarily true that ϕ∗ is a modular as well. Without additional assumptions on ϕ, this
is actually false (as it happens for example for ϕ(x) = ‖x‖X , x ∈ X).

The last results that we present here concern the duality properties of the restriction of ϕ to Eϕ.
These will be fundamental in the paper.

Lemma 2.7. Let ϕ be a lower semicontinuous convex semi-modular on X satisfying condition (2.4).
Then, the restriction

ϕ̄ : Eϕ → [0,+∞) , ϕ̄ := ϕ|Eϕ
,

is a lower semicontinuous convex semi-modular on Eϕ, and its convex conjugate

ϕ̄∗ : E∗
ϕ → [0,+∞] , ϕ̄∗(y) := sup

x∈Eϕ

{〈y, x〉E∗

ϕ,Eϕ
− ϕ(x)} , y ∈ E∗

ϕ ,

is a lower semicontinuous convex semi-modular on E∗
ϕ.
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Proof. It is clear that ϕ̄ is proper, convex and lower semicontinuous, since Eϕ →֒ X continuously
by Proposition 2.3 and ϕ is lower semicontinuous on X. It is also trivial that ϕ̄(0) = 0 and that
ϕ̄(−x) = ϕ̄(x) for all x ∈ Eϕ. Moreover, if x ∈ Eϕ satisfies ϕ̄(αx) = 0 for all α > 0, then clearly
ϕ(αx) = 0 for all α > 0, hence x = 0 since ϕ is a semi-modular. This shows that ϕ̄ is a lower
semicontinuous convex semi-modular on Eϕ. Consequently, since Eϕ̄ = Lϕ̄ = Eϕ (so in particular
Lϕ̄ is trivially dense in Eϕ), by Lemma 2.6 with the choice X = Eϕ we have that ϕ̄∗ is a lower
semicontinuous convex semi-modular on E∗

ϕ. �

Lemma 2.7 ensures then that the modular spaces

Lϕ̄∗ := {y ∈ E∗
ϕ : ∃α > 0 : ϕ̄∗(αy) < +∞} ,

Eϕ̄∗ := {y ∈ E∗
ϕ : ∀α > 0 : ϕ̄∗(αy) < +∞} ,

endowed with the norm

‖y‖ϕ̄∗ := inf {λ > 0 : ϕ̄∗(y/λ) ≤ 1} , y ∈ Lϕ̄∗ ,

are well-defined normed spaces and satisfy Eϕ̄∗ ⊂ Lϕ̄∗ ⊂ E∗
ϕ. The following result gives a further

characterization in terms of completeness.

Proposition 2.8. Let ϕ be a lower semicontinuous convex semi-modular on X satisfying condi-
tion (2.4). Then, it holds that

‖y‖ϕ̄∗ ≤ ‖y‖E∗
ϕ
≤ 2 ‖y‖ϕ̄∗ ∀ y ∈ Lϕ̄∗ . (2.5)

In particular, the modular spaces (Lϕ̄∗ , ‖·‖ϕ̄∗) and (Eϕ̄∗ , ‖·‖ϕ̄∗) are Banach spaces, and it holds

Eϕ̄∗ →֒ Lϕ̄∗ = E∗
ϕ .

Moreover, if s > 1 in (2.4) and Eϕ →֒ X densely, then also X∗ →֒ Eϕ̄∗ continuously.

Proof. Step 1. Let y ∈ Lϕ̄∗ : by definition of dual norm and by the Young inequality we have

‖y‖E∗
ϕ
= sup

{

〈y, x〉 : x ∈ Eϕ , ‖x‖ϕ ≤ 1
}

≤ ϕ̄∗(y) + sup
{

ϕ(x) : x ∈ Eϕ , ‖x‖ϕ ≤ 1
}

.

Now, let x ∈ Eϕ be such that ‖x‖ϕ ≤ 1. If (δk)k ⊂ (0, 1) is such that δk ր 1 as k → ∞, then we
have that ‖δkx‖ϕ < 1 for every k, hence also, by Lemma 2.2 (2),

ϕ(δkx) ≤ ‖δkx‖ϕ = δk ‖x‖ϕ ≤ δk .

Since δkx→ x in X, letting k → ∞ we get, by lower semicontinuity of ϕ,

ϕ(x) ≤ lim inf
k→∞

ϕ(δkx) ≤ 1 ∀x ∈ Eϕ : ‖x‖ϕ ≤ 1 .

Putting this information together, we deduce that

‖y‖E∗
ϕ
≤ 1 + ϕ̄∗(y) ∀ y ∈ Lϕ̄∗ .

Now, let λ > 0 be such that ϕ̄∗(y/λ) ≤ 1. The inequality just proved implies, by arbitrariness of
y ∈ Lϕ̄∗ , that

1

λ
‖y‖E∗

ϕ
= ‖y/λ‖E∗

ϕ
≤ 1 + ϕ̄∗(y/λ) ≤ 2 ,

from which ‖y‖E∗
ϕ
≤ 2λ. By arbitrariness of λ the right-inequality in (2.5) follows. As for the

left-inequality, for y ∈ E∗
ϕ \ {0} we have

ϕ̄∗

(

y

‖y‖E∗
ϕ

)

= sup
x∈Eϕ

{〈y, x〉E∗

ϕ,Eϕ

‖y‖E∗
ϕ

− ϕ(x)

}

≤ sup
x∈Eϕ

{

‖x‖ϕ − ϕ(x)
}

.
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Now, if x ∈ Eϕ and ‖x‖ϕ > 1, from Lemma 2.2 (3) we know that ϕ(x) ≥ ‖x‖ϕ, hence also
‖x‖ϕ − ϕ(x) ≤ 0. It follows then that

ϕ̄∗

(

y

‖y‖E∗

ϕ

)

≤ sup
x∈Eϕ

{

‖x‖ϕ − ϕ(x)
}

≤ sup
‖x‖ϕ≤1

{

‖x‖ϕ − ϕ(x)
}

≤ 1 .

This yields that y ∈ Lϕ̄∗ and ‖y‖ϕ̄∗ ≤ ‖y‖E∗

ϕ
, as desired. Hence, the inequality (2.5) is proved. As

a byproduct, this implies also that Lϕ̄∗ = E∗
ϕ, and that the dual norm on E∗

ϕ is equivalent to the
‖·‖ϕ̄∗-norm.
Let us show now that Eϕ̄∗ and Lϕ̄∗ are Banach spaces. To this end, let (yn)n ⊂ Eϕ̄∗ be a Cauchy
sequence: then, by (2.5) it follows that it is also Cauchy in E∗

ϕ. By completeness of E∗
ϕ, there is

y ∈ E∗
ϕ such that yn → y in E∗

ϕ. Proceeding now as in the proof of Proposition 2.3, by the lower
semicontinuity of ϕ̄∗ on E∗

ϕ we deduce that y ∈ Eϕ̄∗ , hence again by (2.5) that yn → y in Eϕ̄∗ . The
case of Lϕ̄∗ is entirely analogous.
Step 2. Let us suppose that s > 1 and Eϕ →֒ X densely, and show that X∗ →֒ Eϕ̄∗ . First of all,
note that we can identify X∗ with a closed subspace of E∗

ϕ: indeed, denoting by i : Eϕ → X the
inclusion, it is easily seen that since Eϕ →֒ X densely the adjoint operator i∗ : X∗ → E∗

ϕ is linear,
continuous, and injective. Hence, we can identify X∗ ∼= i∗(X∗) →֒ E∗

ϕ, getting

Eϕ →֒ Lϕ →֒ X , X∗ →֒ E∗
ϕ .

Secondly, let us show that (ϕ̄∗)|X∗ ≤ ϕ∗. Indeed, for every y ∈ X∗ we have

ϕ̄∗(y) = sup
x∈Eϕ

{〈y, x〉E∗
ϕ,Eϕ

− ϕ(x)}

= sup
x∈Eϕ

{〈y, x〉X∗,X − ϕ(x)}

≤ sup
x∈X

{〈y, x〉X∗,X − ϕ(x)}

= ϕ∗(y) .

Finally, we are now ready to conclude. Indeed, recalling that s > 1, taking conjugates in (2.4)
yields, after a standard computation,

ϕ∗(y) ≤ s− 1

s
(cs)−

1

s−1 ‖y‖
s

s−1

X∗ ∀ y ∈ X∗ ,

which implies that actually ϕ∗ : X∗ → [0,+∞) is everywhere defined onX∗, and also that ϕ∗(αy) <
+∞ for every y ∈ X∗ and α > 0. Since (ϕ̄∗)|X∗ ≤ ϕ∗, this shows that X∗ ⊂ Eϕ̄∗ . Moreover, for
every arbitrary y ∈ X∗ and for any λ = λ(y) > 0 such that

λ ≥
(

s− 1

s
(cs)−

1

s−1

)
s−1

s

‖y‖X∗ ,

it clearly holds that

ϕ̄∗(y/λ) ≤ ϕ∗(y/λ) ≤ s− 1

s
(cs)−

1

s−1 ‖y‖
s

s−1

X∗ λ−
s

s−1 ≤ 1 .

Hence, by definition of ‖·‖ϕ̄∗ we have then that

‖y‖ϕ̄∗ ≤
(

s− 1

s
(cs)−

1

s−1

)
s−1

s

‖y‖X∗ ∀ y ∈ X∗ ,

so that the inclusion X∗ →֒ Eϕ̄∗ is continuous, as required. �

3. Extended variational setting and main result

In this section, we fix the assumptions and introduce the extended variational setting that will
be used in the paper. After this, we present the main well posedness result.
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3.1. Assumptions. Throughout the paper, we will work in the following framework.

H0: H is a real separable Hilbert space, ϕ : H → [0,∞] is a lower semicontinuous convex
semi-modular on H, and there exist constants c > 0 and s > 1 such that

ϕ(x) ≥ c ‖x‖sH ∀x ∈ H .

By Proposition 2.3 applied with ρ(z) = czs, z ≥ 0, this implies that the modular spaces (Eϕ, ‖·‖ϕ)
and (Lϕ, ‖·‖ϕ) are well-defined Banach spaces with continuous inclusions Eϕ →֒ Lϕ →֒ H. From
now on, H is identified to its dual space H∗ by the Riesz isomorphism, and norm and scalar product
in H are denoted by ‖·‖H and (·, ·), respectively. The convex conjugate of ϕ is defined as

ϕ∗ : H → [0,+∞] , ϕ∗(y) := sup
x∈H

{(y, x) − ϕ(x)} , x ∈ H .

H1: Eϕ is dense in H, and there exists a separable reflexive Banach space V0 →֒ Eϕ contin-
uously and densely, such that ϕ is bounded on bounded subsets of V0.

The existence of such V0 is an assumption of technical nature, and can be seen a separability-type
requirement for Eϕ. This is satisfied in the majority of applications (see Section 6). The density
of Eϕ ensures first that we can identify H with a closed subspace of E∗

ϕ. More specifically, denoting
by i : Eϕ → H the (continuous) inclusion and recalling that H ∼= H∗, we have that the adjoint
operator i∗ : H → E∗

ϕ is linear, continuous, and injective: indeed, linearity and continuity follow
trivially by the continuous inclusion Eϕ →֒ H, while the injectivity is an immediate consequence
of the density. Hence, one can identify H with the closed subspace i∗(H) ⊂ E∗

ϕ. We have then the
following continuous inclusions

Eϕ →֒ Lϕ →֒ H →֒ E∗
ϕ .

We introduce the restricted semi-modular

ϕ̄ : Eϕ → [0,+∞) , ϕ̄ := ϕ|Eϕ

and its convex conjugate

ϕ̄∗ : E∗
ϕ → [0,∞] , ϕ̄∗(y) := sup

x∈Eϕ

{〈y, x〉E∗

ϕ,Eϕ
− ϕ(x)} , x ∈ Eϕ .

By Lemma 2.7 and Proposition 2.8, we know that ϕ̄∗ is a lower semicontinuous convex semi-
modular on E∗

ϕ, with (ϕ̄∗)|H = ϕ∗, and that the modular spaces (Eϕ̄∗ , ‖·‖ϕ̄∗) and (Lϕ̄∗ , ‖·‖ϕ̄∗) are
well-defined Banach spaces, with continuous inclusions

H →֒ Eϕ̄∗ →֒ Lϕ̄∗ = E∗
ϕ .

H2: either one of the following conditions holds:
H2i: Eϕ →֒ Lϕ densely, or
H2ii: H →֒ Lϕ̄∗ densely.

The main consequence of this assumption is that it allows to properly define an extended concept of
duality between the spaces Lϕ and Lϕ̄∗ . Specifically, by H0–H1 we have the continuous inclusions

V0 →֒ Eϕ →֒ Lϕ →֒ H →֒ Eϕ̄∗ →֒ Lϕ̄∗ = E∗
ϕ →֒ V ∗

0 .

However, a priori it is not true that there exists a duality pairing between Lϕ and Lϕ̄∗ generalizing
the scalar product of H. This is because Lϕ may be strictly bigger than Eϕ, and Lϕ̄∗ may be
strictly bigger than H (see Secction 6). Assumption H2 is fundamental as it allows to extend the
scalar product of H to a duality between Lϕ and Lϕ̄∗ . Due to the importance of this result, we
collect it in the following lemma.

Lemma 3.1. Assume H0–H2. Then, there exists a unique continuous bilinear form

[·, ·] : Lϕ̄∗ × Lϕ → R ,
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extending the scalar product of H, in the sense that [y, ·] : Lϕ → R and [·, x] : Lϕ̄∗ → R are linear
and continuous for every y ∈ Lϕ̄∗ and x ∈ Lϕ, respectively, and such that

[y, x] = (y, x) ∀x ∈ Lϕ , ∀ y ∈ H ,

[y, x] = 〈y, x〉E∗

ϕ,Eϕ
∀x ∈ Eϕ , ∀ y ∈ Lϕ̄∗ .

Furthermore, the following generalized Hölder inequality holds:

[y, x] ≤ 2 ‖y‖ϕ̄∗ ‖x‖ϕ ∀ (x, y) ∈ Lϕ × Lϕ̄∗ . (3.1)

Proof. Case 1. We prove here the lemma in the case of H2i, i.e. if Eϕ →֒ Lϕ densely. Let x ∈ Lϕ

and y ∈ Lϕ̄∗ = E∗
ϕ. If either x = 0 or y = 0, then we set [y, x] := 0. Let us suppose that x 6= 0 and

y 6= 0. Take a sequence (xn)n∈N ⊂ Eϕ such that xn → x in Lϕ, and define

[y, xn] := 〈y, xn〉E∗

ϕ,Eϕ
, n ∈ N .

Now, for every n, k ∈ N, by the Young inequality we have
∣

∣

∣

∣

∣

〈

y

‖y‖ϕ̄∗

,
xn − xk

‖xn − xk‖ϕ

〉

E∗

ϕ,Eϕ

∣

∣

∣

∣

∣

≤ ϕ̄∗

(

y

‖y‖ϕ̄∗

)

+ ϕ̄

(

xn − xk
‖xn − xk‖ϕ

)

= ϕ̄∗

(

y

‖y‖ϕ̄∗

)

+ ϕ

(

xn − xk
‖xn − xk‖ϕ

)

≤ 2 ,

yielding
|[y, xn − xk]| ≤ 2‖y‖ϕ̄∗‖xn − xk‖ϕ → 0 .

Hence, ([y, xn]ϕ)n is a Cauchy sequence in R, and we can define

[y, x] := lim
n→∞

[y, xn] .

A similar argument shows that this definition is independent of the choice of the approximating
sequence (xn)n∈N. Moreover, it is straightforward to check that [·, ·] is a continuous bilinear form
extending the scalar product of H. It is also the only continuous bilinear form on Lϕ̄∗ × Lϕ doing
so: indeed, if [·, ·]1 and [·, ·]2 are continuous bilinear forms extending the scalar product of H, they
would coincide on Lϕ̄∗ ×Eϕ, hence they coincide on the whole Lϕ̄∗ × Lϕ by density of Eϕ in Lϕ.

Case 2. In the case of H2ii, i.e. when H →֒ Lϕ̄∗ densely, the argument is very similar, so we
omit the details. Let x ∈ Lϕ ⊂ H and y ∈ Lϕ̄∗, with x 6= 0 and y 6= 0 (otherwise the definition is
trivial). Take a sequence (yn)n∈N ⊂ H such that yn → y in Lϕ̄∗ , and define

[yn, x] := (yn, x) .

As before, for every n, k ∈ N, by the Young inequality we have
∣

∣

∣

∣

(

yn − yk
‖yn − yk‖ϕ̄∗

,
x

‖x‖ϕ

)
∣

∣

∣

∣

≤ ϕ∗

(

yn − yk
‖yn − yk‖ϕ̄∗

)

+ ϕ

(

x

‖x‖ϕ

)

= ϕ̄∗

(

yn − yk
‖yn − yk‖ϕ̄∗

)

+ ϕ

(

x

‖x‖ϕ

)

≤ 2 ,

yielding |[yn − ym, x]| ≤ 2‖yn − yk‖ϕ̄∗‖x‖ϕ → 0. Therefore, we can define

[y, x] := lim
n→∞

[yn, x]ϕ .

As before, this definition is independent of the choice of the approximating sequence (yn)n, and
[·, ·] is the unique continuous bilinear form on Lϕ̄∗ × Lϕ extending the scalar product of H. �
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Remark 3.2 (Assumption H0). Assumption H0 is very natural in applications to nonlinear evo-
lution problems: for example, for a wide class of evolutionary PDEs of parabolic type a natural
choice for the space H is L2(Ω), with Ω being a sufficiently smooth domain in R

d, while ϕ is the
convex part of the energy driving the evolution. Several examples are given in Section 6.

Remark 3.3 (Assumption H1). As far as assumption H1 is concerned, one can easily check
that this is verified by a huge class of potentials ϕ, not necessarily of polynomial growth. More
importantly, H1 includes several interesting examples in which Eϕ is not reflexive, hence cannot be
framed in classical variational structures: again, a spectrum of applications is given in Section 6. It
excludes, however, some singular Orlicz–Sobolev spaces associated, for instance, to convex functions
defined of bounded intervals and blowing up at the extreme points. In these extreme cases, the space
Eϕ often reduces to the trivial space {0}.

Remark 3.4 (Assumption H2). Let us spend a few words on the idea behind H2. This hypothesis
requires the density either of Eϕ in Lϕ, or of H in Lϕ̄∗. In the former case, we are supposing that
the modular spaces Eϕ in Lϕ are “not too different”: this is verified when the potential ϕ satisfies
a so-called ∆2-type condition (see Section 6), and in such a case it actually holds that Eϕ = Lϕ.
In the latter case, by contrast, what we are supposing is that the modular space Lϕ̄∗ is not “too
much bigger” than H itself. Again, this happens when the conjugate function ϕ∗ satisfies a ∆2-type
condition. The main advantage of assumption H2 is that in the majority of applications either ϕ
or ϕ∗ always satisfy a ∆2-condition: the rough idea is that whenever ϕ is not ∆2 (for example if it
grows super-polynomially at infinity) then by contrast its conjugate ϕ∗ behaves in a ∆2-fashion (it
grows sub-polynomially), and viceversa. This allows to include in assumption H2 a wide variety of
very singular problems, where Eϕ and Lϕ are not necessarily reflexive.

3.2. The extended variational setting. The main idea is to work on the triplet

Lϕ →֒ H →֒ Lϕ̄∗ ,

where both inclusions are continuous, the first one is also dense, and the second one is dense if
H2ii holds. Let us point out that such variational setting is non-standard for the following main
reasons. First, the space Lϕ is allowed to be non-reflexive, thus including several applications to
singular PDEs of evolutionary type. Secondly, the space Lϕ̄∗ is not the dual of Lϕ, and the duality
pairing between them is not given by the classical duality, but by the generalized bilinear form [·, ·].
Finally, the space Lϕ and Lϕ̄∗ are not necessarily separable.

The lack of separability and reflexivity in evolution problems is a crucial issue that creates several
difficulties. As for separability, the main issue concerns measurability for vector-valued functions:
indeed, by the Pettis measurability theorem, a necessary condition for a Banach-space-valued
function to be Bochner-measurable is that it is essentially separably-valued (see, for example, [27,
Sect. II, Thm. 2]). This forces us to work on spaces of weakly-measurable functions instead. As
for reflexivity, the main drawback that we need to face is the following. If X is a reflexive Banach
space, then it is well-known that Sobolev–Bochner spaces in the formW 1,p(a, b;X), where p ≥ 1 and
[a, b] ⊂ R is a bounded interval, can be characterized as spaces of absolutely continuous functions
in Lp(a, b;X) with almost everywhere derivative in Lp(a, b;X). In particular, the reflexivity of X
implies that any absolutely continuous function [a, b] → X is almost everywhere differentiable: see
for example [6, Thm. 1.16]. Nevertheless, if X is not reflexive, these results are actually false, and
such characterization of W 1,p(a, b;X) spaces is no longer valid. In this case, one has to additionally
require the almost everywhere differentiability, as this is not granted by the absolute continuity
itself (see [14] and [50, Thm. 8.57]). In particular, if X is not reflexive, there exist absolutely
continuous functions [a, b] → X that are nowhere differentiable (e.g. [50, Ex. 8.30 and 8.32]).

Let us introduce some notation for the spaces of vector-valued integrable functions that we will
use. We refer the reader to [27, Sect. II] for the general theory of integration. From now on, T > 0
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is a fixed final time. We set

L1
w(0, T ;Lϕ) :=

{

v : [0, T ] → Lϕ : [y, v] ∈ L1(0, T ) ∀ y ∈ Lϕ̄∗

}

,

L1
w(0, T ;Lϕ̄∗) :=

{

v : [0, T ] → Lϕ̄∗ : [v, x] ∈ L1(0, T ) ∀x ∈ Lϕ

}

,

L1(0, T ;Lϕ) :=
{

v : [0, T ] → Lϕ strongly measurable : ‖v‖ϕ ∈ L1(0, T )
}

,

L1(0, T ;Lϕ̄∗) :=
{

v : [0, T ] → Lϕ̄∗ strongly measurable : ‖v‖ϕ̄∗ ∈ L1(0, T )
}

.

Let us point out that under assumption H2i we have that Lϕ is separable, since so is Eϕ by H1,
hence elements in L1

w(0, T ;Lϕ) are also strongly measurable in this case. Under assumption H2ii,
we have instead that Lϕ̄∗ is separable, since so is H, and in this case elements of L1

w(0, T ;Lϕ̄∗) are
strongly measurable.

The following result holds also for non-reflexive spaces, hence are fundamental in our setting:
the reader can refer to [6, Thm. 1.17]

Proposition 3.5. Let X be a Banach space and u ∈ Lp(a, b;X), with 1 ≤ p ≤ ∞ and [a, b] ⊂ R.
Then u ∈W 1,p(a, b;X) if and only if there exists an absolutely continuous function u0 : [a, b] → X,

i.e. u0 ∈ AC([0, T ];X), which is almost everywhere differentiable on [a, b] with du0

dt ∈ Lp(0, T ;X),

such that u(t) = u0(t) for almost every t ∈ (a, b). In such case, du0

dt coincides with the weak
derivative ∂tu of u.

Inspired by Proposition 3.5, it is natural to define

W 1,1
w (0, T ;Lϕ̄∗) :=

{

v : [0, T ] → Lϕ̄∗ : ∃ v′ ∈ L1
w(0, T ;Lϕ̄∗) :

[v(t), x] = [v(0), x] +

∫ t

0
[v′(s), x] ds ∀x ∈ Lϕ

}

.

Note that W 1,1
w (0, T ;Lϕ̄∗) only implies weak* continuity in E∗

ϕ = Lϕ̄∗ , and not absolute continuity
as in the classical case.

3.3. Main results. We are ready to present here the main results of the paper. From now on,
T > 0 is a a fixed final time.

The first result that we present is a fundamental computational tool in order to handle evolution
equations in singular modular spaces. It ensures that under assumptions H0–H2 the novel varia-
tional setting (Lϕ,H,Lϕ̄∗) with duality given by [·, ·] is actually suited for dealing with evolution
problems, even without the classical reflexivity/separabilty assumptions. This is an interesting
generalization to the non-reflexive and non-separable case of a well-know “chain-rule” property for
vector-valued functions.

Theorem 3.6 (Generalized chain rule). Assume H0–H2, and let

u ∈W 1,1
w (0, T ;Lϕ̄∗) ∩ L1

w(0, T ;Lϕ) ,

be such that

∂tu = u′1 + u′2 , with u′1 ∈ L1
w(0, T ;Lϕ̄∗) , u′2 ∈ L1(0, T ;H) .

If there exists α > 0 such that

ϕ(αu), ϕ∗(αu′1) ∈ L1(0, T ) ,

then u ∈ C0([0, T ];H), the function t 7→ ‖u(t)‖2H , t ∈ [0, T ], is absolutely continuous, and it holds
that

[∂tu, u] =
d

dt

1

2
‖u‖2H a.e. in (0, T ) . (3.2)



14 ALEXANDER MENOVSCHIKOV, ANASTASIA MOLCHANOVA, AND LUCA SCARPA

The second result concerns existence of variational solutions for evolution equations in modular
spaces.

Theorem 3.7 (Existence of solutions). Assume H0–H2 and let

u0 ∈ H , f ∈ L1(0, T ;H) . (3.3)

Then, there exists a unique pair (u, ξ), with

u ∈W 1,1
w (0, T ;Lϕ̄∗) ∩C0([0, T ];H) ∩ L1

w(0, T ;Lϕ) , (3.4)

ξ ∈ L1
w(0, T ;Lϕ̄∗) , (3.5)

ϕ(u), ϕ̄∗(ξ) ∈ L1(0, T ) , (3.6)

such that

∂tu+ ξ = f in Lϕ̄∗ a.e. in (0, T ) , u(0) = u0 , (3.7)

and

ϕ(u) + [ξ, x− u] ≤ ϕ(x) ∀x ∈ Eϕ , a.e. in (0, T ) . (3.8)

Moreover, the following energy equality holds:

1

2
‖u(t)‖2H +

∫ t

0
[ξ(s), u(s)] ds =

1

2
‖u0‖2H +

∫ t

0
(f(s), u(s)) ds ∀ t ∈ [0, T ] . (3.9)

In particular, under H2i it holds that u ∈ L1(0, T ;Lϕ), while under H2ii it holds that u ∈
W 1,1(0, T ;Lϕ̄∗) and ξ ∈ L1(0, T ;Lϕ̄∗).

Condition (3.8) is the natural generalization of the classical subdifferential inclusion

ξ ∈ ∂ϕ(u) a.e. in (0, T ) . (3.10)

In our setting, ξ is less regular than H, as ξ only belongs to Lϕ̄∗ , hence the classical differential
inclusion (3.10) makes no sense here. Similarly, the classical relaxation of the inclusion (3.10) given
by

ξ ∈ ∂ϕ̄(u) a.e. in (0, T ) , (3.11)

is useless as well, as u is not necessarily Eϕ-valued. For these reasons, the introduction of the
novel duality [·, ·] is crucial, as it allows to give sense to the subdifferential inclusion in the spaces
Lϕ–Lϕ̄∗ as done in (3.8). Clearly, this is a very natural extension of both (3.10) and (3.11): indeed,
whenever ξ is H-valued (or u is Eϕ-valued, respectively) then (3.8) is equivalent to (3.10) (or (3.11),
respectively). An equivalent formulation of the relaxed condition (3.8) is given by

[ξ, u] = ϕ(u) + ϕ̄∗(ξ) a.e. in (0, T ) . (3.12)

Finally, the last result that we present is a continuous dependence result, with ensures that the
evolution problem is actually well-posed.

Theorem 3.8 (Continuous dependence on the data). Assume H0–H2, and let (u10, f1) and (u20, f2)
satisfy (3.3). Then, for any respective solutions (u1, ξ1) and (u2, ξ2) to (3.4)–(3.8), it holds that

‖u1 − u2‖2C0([0,T ];H) + ‖[ξ1 − ξ2, u1 − u2]‖L1(0,T ) ≤ 2
(

∥

∥u10 − u20
∥

∥

2

H
+ ‖f1 − f2‖2L1(0,T ;H)

)

.

4. Proof of the generalized “chain rule”

This section is devoted to the proof of Theorem 3.6. Let us work then in the notation and setting
of Theorem 3.6. The proof is organized in several steps.
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4.1. Time-regularization. First of all, the idea is to regularize u in time using convolutions. For
every n ∈ N, we introduce the convolution operator

Tn : L
1(0, T ) → L1(0, T ) ,

(Tnv)(t) := n

∫ T

0
v(s)̺((t− s)n) ds , t ∈ [0, T ] , v ∈ L1(0, T ) ,

where ̺ ∈ C∞
c (R) is nonnegative with

∫

R
̺(s) ds = 1, ̺(t) = ̺(−t), and supp̺ ⊂ [−1, 1]. It is well-

known that Tn is linear, continuous, and sub-Markovian, in the sense that, for every v ∈ L1(0, T ),

0 ≤ v ≤ 1 a.e. in (0, T ) ⇒ 0 ≤ Tnv ≤ 1 a.e. in (0, T ) .

Also, it holds that
‖Tnv‖L1(0,T ) ≤ ‖v‖L1(0,T ) ∀ v ∈ L1(0, T ) .

Furthermore, for any Banach space X, it is clear that Tn can be extended to the vector-valued
operator

TX
n : L1(0, T ;X) → L1(0, T ;X) ,

and it is well-known that for every v ∈ L1(0, T ;X) it holds that TX
n v → v in L1(0, T ;X) as n→ ∞,

see for instance [50, Thm 8.20–8.21].

4.2. Proof under assumption H2ii. Let us prove the result under assumption H2ii first. As
we pointed out above, this implies that Lϕ̄∗ is separable, so that actually

u ∈W 1,1(0, T ;Lϕ̄∗) . (4.1)

In particular, u : [0, T ] → Lϕ̄∗ is Bochner-measurable, hence also Borel-measurable, and ‖u‖ϕ̄∗ is a
measurable function. We show now that actually also ‖u‖ϕ and ‖u‖H are measurable functions.
To this end, we use the following lemma.

Lemma 4.1. Set

Ψ∗ : Lϕ̄∗ → [0,+∞] , Ψ∗(y) :=

{

‖y‖H if y ∈ H ,

+∞ otherwise ,

and

ΨH : H → [0,+∞] , ΨH(y) :=

{

‖y‖ϕ if y ∈ Lϕ ,

+∞ otherwise .

Then, Ψ∗ and ΨH are convex, proper, and lower semicontinuous. In particular, H is a Borel subset
of Lϕ̄∗ and that Lϕ is a Borel subset of H.

Proof. It is clear that Ψ∗ and ΨH are convex and proper. Moreover, the lower semicontinuity of
Ψ∗ it follows directly from the reflexivity of H. As for ΨH , given (yn)n ⊂ Lϕ and y ∈ H such that
yn → y in H and ‖yn‖ϕ ≤ C for some arbitrary constant C > 0, we need to check that y ∈ Lϕ and
‖y‖ϕ ≤ C. To this end, we note that the real sequence (‖yn‖ϕ)n is bounded, so that there exists
λ ≥ 0 and a subsequence (ynk

)k such that λk := ‖ynk
‖ϕ → λ as k → ∞. If λ = 0, then trivially

y = 0 ∈ Lϕ. Otherwise, if λ > 0 then λk > λ/2 for k sufficiently large, so that

lim sup
k→∞

∥

∥

∥

∥

ynk

λk
− y

λ

∥

∥

∥

∥

H

≤ 2

λ
lim sup
k→∞

‖ynk
− y‖H + ‖y‖H lim sup

k→∞

∣

∣

∣

∣

1

λk
− 1

λ

∣

∣

∣

∣

= 0 .

Hence ynk
/λk → y/λ in H, and by lower semicontinuity of ϕ and definition of λk we have

ϕ(y/λ) ≤ lim inf
k→∞

ϕ(ynk
/λk) ≤ 1 ,

which implies that y ∈ Lϕ and ‖y‖ϕ ≤ λ ≤ C. Hence, also ΨH is lower semicontinuous.
Eventually, the choice of Ψ∗ and ΨH implies, by lower semicontinuity, that the sets {y ∈ Lϕ̄∗ :
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Ψ∗(y) ≤ K} and {x ∈ H : ΨH(x) ≤ K} are closed in Lϕ̄∗ and H, respectively, for all K > 0.
Hence, since

H =
⋃

k∈N

{

y ∈ Lϕ̄∗ : Ψ∗(y) ≤
1

k

}

, Lϕ =
⋃

k∈N

{

x ∈ H : ΨH(x) ≤ 1

k

}

,

we deduce that H is a Borel subset of Lϕ̄∗ and that Lϕ is a Borel subset of H. �

Consequently, by Lemma 4.1, the facts that u is essentially Lϕ-valued and Lϕ̄∗-Borel measurable
implies that u : [0, T ] → Lϕ and u : [0, T ] → H are Borel measurable as well. In particular, this
implies that ‖u‖ϕ, ‖u‖H : [0, T ] → R are measurable.

Thanks to H0 and the separability of H, the condition ϕ(αu) ∈ L1(0, T ) implies that

u ∈ Ls(0, T ;H) .

Moreover, noting that from Lemma 2.2 (2)–(3) we have α ‖u‖ϕ ≤ 1 + ϕ(αu), we infer that

‖u‖ϕ ∈ L1(0, T ) .

Now, for every n ∈ N we set un := TH
n u and note that

un ∈ Ck([0, T ];H) ∀ k ∈ N ,

where, as n→ ∞, we have

un → u in Ls(0, T ;H) , (4.2)

∂tun → ∂tu in L1(0, T ;Lϕ̄∗) , (4.3)

TH
n u

′
2 → u′2 in L1(0, T ;H) . (4.4)

Furthermore, note that un is essentially Lϕ-valued: indeed, thanks to the abstract Jensen inequality
for sub-Markovian operators (see Haase [34, Thm. 3.4]), for almost every t ∈ (0, T ) we have that

ϕ(αun(t)) = ϕ(TH
n (αu)(t)) ≤ Tn [ϕ(αu)] (t) .

Since ϕ(αu) ∈ L1(0, T ), by definition of Tn one has also that Tn(ϕ(αu)) ∈ L1(0, T ) for all n ∈ N,
which yields in turn by comparison that ϕ(αun) ∈ L1(0, T ) for all n ∈ N. This clearly implies that
un is essentially Lϕ-valued and, after integration in time and by contraction of Tn in L1(0, T ), that

un : (0, T ) → Lϕ , ‖ϕ(αun)‖L1(0,T ) ≤ ‖ϕ(αu)‖L1(0,T ) .

Furthermore, for every y ∈ H and almost every t ∈ (0, T ), by definition of Tn and TH
n we have that

(y, un(t)) = (y, TH
n u(t)) = Tn(y, u(t)) ∀ y ∈ H .

As H is dense in Lϕ̄∗ by H2ii, this implies that

[y, un(t)] = Tn[y, u(t)] ∀ y ∈ Lϕ̄∗ , for a.e. t ∈ (0, T ) .

Since [y, u] ∈ L1(0, T ) for every y ∈ Lϕ̄∗ , letting n→ ∞ we deduce that

[y, un] → [y, u] in L1(0, T ) , ∀ y ∈ Lϕ̄∗ . (4.5)

Now, since in particular un ∈ C1([0, T ];H), it is well-known (see [6, Thm. 1.9]) that

d

dt

1

2
‖un‖2H = (∂tun, un) = [∂tun, un] in [0, T ] ,

yielding, after integration in time

1

2
‖un(t)‖2H − 1

2
‖un(s)‖2H =

∫ t

s
[∂tun(r), un(r)] dr , ∀ s, t ∈ [0, T ] . (4.6)
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By the abstract Jensen inequality, since T
Lϕ̄∗

n coincides with TH
n on L1(0, T ;H),

∫ t

s
[∂tun(r), un(r)] dr ≤

∫ T

0
|[∂tun(r), un(r)]| dr

≤ 1

α2

∫ T

0
ϕ(αun) +

1

α2

∫ T

0
ϕ̄∗(αT

Lϕ̄∗

n u′1) +

∫ T

0

∥

∥TH
n u

′
2(s)

∥

∥

H
‖un(s)‖H ds

≤ 1

α2

∫ T

0
ϕ(αu) +

1

α2

∫ T

0
ϕ̄∗(αu′1) +

∫ T

0

∥

∥u′2(s)
∥

∥

H
‖un(s)‖H ds .

Moreover, using the Hölder inequality and the weighted Young inequality on the last term of the
right-hand side in the form

ab ≤ 1

4
a2 + b2 ∀ a, b ≥ 0 ,

we deduce that
∫ t

s
[∂tun(r), un(r)] dr ≤

1

α2

∫ T

0
ϕ(αu) +

1

α2

∫ T

0
ϕ̄∗(αu′1) + ‖un‖L∞(0,T ;H)

∥

∥u′2
∥

∥

L1(0,T ;H)

≤ 1

α2

∫ T

0
ϕ(αu) +

1

α2

∫ T

0
ϕ̄∗(αu′1) +

1

4
‖un‖2L∞(0,T ;H) +

∥

∥u′2
∥

∥

2

L1(0,T ;H)
.

Taking supremum in t ∈ [0, T ] in (4.6) and rearranging the terms, we obtain then

1

4
‖un‖2L∞(0,T ;H) ≤

1

2
‖un(s)‖2H + C ∀ s ∈ [0, T ]

where

C :=
1

α2

∫ T

0
ϕ(αu) +

1

α2

∫ T

0
ϕ̄∗(αu′1) +

∥

∥u′2
∥

∥

2

L1(0,T ;H)

is independent of n ∈ N. Taking square roots at both sides, and integrating with respect to s on
(0, T ) we get

T

2
‖un‖L∞(0,T ;H) ≤

1√
2
‖un‖L1(0,T ;H) +

√
CT ≤ 1√

2
‖u‖L1(0,T ;H) +

√
CT ,

from which we infer that
‖un‖L∞(0,T ;H) ≤ C ,

so that u ∈ L∞(0, T ;H) and

un
∗
⇀ u in L∞(0, T ;H) . (4.7)

Now, we have

[∂tun, un] = [T
Lϕ̄∗

n u′1, un] + (TH
n u

′
2, un) ,

where thanks to (4.7) and (4.4) it holds
∫ t

s
(TH

n u
′
2(r), un(r)) dr →

∫ t

s
(u′2(r), u(r)) dr ∀ s, t ∈ [0, T ] .

Moreover, thanks to the convergences (4.3) and (4.5) of (un)n, we have that, possibly extracting a
non-relabelled subsequence,

[y, un] → [y, u] ∀ y ∈ Lϕ̄∗ a.e. in (0, T ) , T
Lϕ̄∗

n u′1 → u′1 in Lϕ̄∗ a.e. in (0, T ) ,

and similarly, since ‖u‖ϕ ∈ L1(0, T ), that

Tn ‖u‖ϕ → ‖u‖ϕ a.e. in (0, T ) .
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By the the Hölder inequality (3.1), using again the abstract Jensen inequality applied to the convex
function ‖·‖ϕ, we also have then almost everywhere on (0, T )

∣

∣

∣
[T

Lϕ̄∗

n u′1, un]− [u′1, u]
∣

∣

∣
≤
∣

∣

∣
[T

Lϕ̄∗

n u′1 − u′1, un]
∣

∣

∣
+
∣

∣[u′1, u− un]
∣

∣

≤ 2‖TLϕ̄∗

n u′1 − u′1‖ϕ̄∗‖TH
n u‖ϕ +

∣

∣[u′1, u− un]
∣

∣

≤ 2‖TLϕ̄∗

n u′1 − u′1‖ϕ̄∗Tn‖u‖ϕ +
∣

∣[u′1, u− un]
∣

∣→ 0 ,

yielding

[T
Lϕ̄∗

n u′1, un] → [u′1, u] a.e. in (0, T ) .

Moreover, thanks to the Young inequality and the abstract Jensen inequality for sub-markovian
operators (see again [34, Thm. 3.4]),

±α2[T
Lϕ̄∗

n u′1, un] ≤ ϕ(±αun) + ϕ̄∗(αT
Lϕ̄∗

n u′1) = ϕ(αTH
n u) + ϕ̄∗(αT

Lϕ̄∗

n u′1)

≤ Tnϕ(αu) + Tnϕ̄
∗(αu′1) .

This implies that

|[TLϕ̄∗

n u′1, un]| ≤
1

α2
Tn
(

ϕ(αu) + ϕ̄∗(αu′1)
)

a.e. in (0, T ) , ∀n ∈ N .

Since by assumption ϕ(αu) + ϕ̄∗(αu′1) ∈ L1(0, T ), the right-hand side of such inequality converges
in L1(0, T ), hence in particular is uniformly integrable on (0, T ). By comparison, we infer that
the sequence ([T

Lϕ̄∗

n u′1, un])n in uniformly integrable on (0, T ) as well. By Vitali’s dominated
convergence theorem we obtain

[T
Lϕ̄∗

n u′1, un] → [u′1, u] in L1(0, T ) .

taking these remarks into account and letting now n→ ∞ in (4.6), we obtain that

1

2
‖u(t)‖2H − 1

2
‖u(s)‖2H =

∫ t

s
[∂tu(r), u(r)] dr for a.e. s, t ∈ (0, T ) .

Clearly, this implies that t 7→ ‖u(t)‖2H is absolutely continuous on [0, T ]. In particular, the equality
holds for every s, t ∈ [0, T ]. Moreover, since u ∈ C0([0, T ];E∗

ϕ) by (4.1), we have that the function
t 7→ (u(t), x) is continuous for every x ∈ Eϕ. Now, for any t̄ ∈ [0, T ] and (tk)k ⊂ [0, T ] such that
tk → t̄ as k → ∞, since u ∈ L∞(0, T ;H) on a non-relabelled subsequence we have u(tk) ⇀ y in
H for a certain y ∈ H. Moreover, for any x ∈ Eϕ it holds that (u(tk), x) → (u(t̄), x), from which
(y, x) = (u(t̄), x). As Eϕ is dense in H, we deduce that y = u(t̄). This shows that u : [0, T ] → H
is weakly continuous. As we have already proved that t 7→ ‖u(t)‖H is continuous, we infer that
u ∈ C0([0, T ];H).

4.3. Proof under assumption H2i. Let us consider now the case of assumption H2i. The
proof is very similar to the case H2ii, the main difference being that the roles of Lϕ and Lϕ̄∗ are
exchanged. Indeed, under H2i we have that Lϕ is separable, hence u ∈ L1(0, T ;Lϕ) and we can
set for any n ∈ N un := T

Lϕ
n u, getting in particular

un → u in L1(0, T ;Lϕ) .

Proceeding as before one can also show that u ∈ L∞(0, T ;H) and

un
∗
⇀ u in L∞(0, T ;H) .

Moreover, ∂tun = T
Lϕ̄∗

n u′1 + TH
n u

′
2, where

TH
n u

′
2 → u′2 in L1(0, T ;H)
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and

[T
Lϕ̄∗

n u′1, x] → [u′1, x] in L1(0, T ) , ∀x ∈ Lϕ ,
∥

∥

∥
T
Lϕ̄∗

n u′1

∥

∥

∥

ϕ̄∗

≤ Tn
∥

∥u′1
∥

∥

ϕ̄∗
a.e. in (0, T ) .

On a not relabelled subsequence, by the Hölder inequality we have the almost everywhere conver-
gence

∣

∣

∣
[T

Lϕ̄∗

n u′1, un]− [u′1, u]
∣

∣

∣
≤
∣

∣

∣
[T

Lϕ̄∗

n u′1, un − u]
∣

∣

∣
+
∣

∣

∣
[T

Lϕ̄∗

n u′1 − u′1, u]
∣

∣

∣

≤ 2‖TLϕ̄∗

n u′1‖ϕ̄∗‖un − u‖ϕ + |[TLϕ̄∗

n u′1 − u′1, u]| → 0 ,

Hence, writing [∂tun, un] = [T
Lϕ̄∗

n u′1, un] + (TH
n u

′
2, un), on the one hand we have again

∫ t

s
(TH

n u
′
2(r), un(r)) dr →

∫ t

s
(u′2(r), u(r)) dr ∀ s, t ∈ [0, T ] ,

and on the other hand, proceeding as before using the abstract Jensen inequality and the Vitali
convergence theorem, we infer that

[T
Lϕ̄∗

n u′1, un] → [u′1, u] in L1(0, T ) .

This allows to pass to the limit as n→ ∞ as in the Case H2ii and obtain

1

2
‖u(t)‖2H − 1

2
‖u(s)‖2H =

∫ t

s
[∂tu(r), u(r)] dr for a.e. s, t ∈ (0, T ) .

Hence, t 7→ ‖u(t)‖2H is absolutely continuous on [0, T ], and u ∈ L∞(0, T ;H). In particular, the
equality holds for every s, t ∈ [0, T ]. Moreover, since now u ∈ W 1,1

w (0, T ;Lϕ̄∗), we only have that
u is weakly continuous in E∗

ϕ. Still, this ensures that the function t 7→ (u(t), x) is continuous
for every x ∈ Eϕ. As u ∈ L∞(0, T ;H) and Eϕ is dense in H, this implies that u : [0, T ] → H
is weakly continuous. As we have already proved that t 7→ ‖u(t)‖H is continuous, we infer that
u ∈ C0([0, T ];H). This concludes the proof of Theorem 3.6.

5. Proof of well-posedness

This section is devoted to the proof of well-posedness contained in Theorems 3.7–3.8.

5.1. The approximation. Let us denote by A := ∂ϕ : H → 2H the subdifferential of ϕ. We recall
the Young inequality

(y, x) ≤ ϕ(x) + ϕ∗(y) ∀x, y ∈ H,

and point out that the equality holds if and only if y ∈ A(x).

For every λ > 0, let ϕλ : H → [0,+∞) be the Moreau–Yosida regularization of ϕ, defined as

ϕλ(x) := inf
y∈H

{

ϕ(y) +
1

2λ
‖x− y‖2H

}

, x ∈ H.

From classical results of convex and monotone analysis (see [6, Ch. 2]), we have that ϕλ ∈ C1(H),
with Dϕλ = Aλ, where Aλ : H → H is the Yosida approximation of A. Let us recall that Aλ is
defined as

Aλ(x) :=
x− Jλ(x)

λ
, x ∈ H,

where we have denoted by Jλ : H → H the resolvent of A, namely

Jλ(x) := (I + λA)−1(x) , x ∈ H.
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It is well known that Aλ is 1
λ -Lipschitz continuous, Jλ is 1-Lipschitz continuous, and that Aλ(x) ∈

A(Jλ(x)) for every x ∈ H. Moreover, ϕλ satisfies

ϕ(Jλ(x)) ≤ ϕλ(x) ≤ ϕ(x) ∀x ∈ H,

lim
λց0

ϕλ(x) = ϕ(x) ∀x ∈ H.

We study the approximated problem
{

∂tuλ +Aλ(uλ) = f,

uλ(0) = u0.

Since Aλ is Lipschitz-continuous, from the classical theory of nonlinear evolution equations (see
again [6] or [13, Prop. 3.4]) such approximated problem admits a unique solution

uλ ∈W 1,1(0, T,H) .

5.2. Uniform estimates. Let us prove some uniform estimates on (uλ)λ, independent of λ. To
this end, testing the approximated equation by uλ and integrating in time yields, for every t ∈ [0, T ],

1

2
‖uλ(t)‖2H +

∫ t

0
(Aλ(uλ(s)), uλ(s)) ds =

1

2
‖u0‖2H +

∫ t

0
(f(s), uλ(s)) ds.

Now, on the left-hand side, since Aλ(uλ) ∈ A(Jλ(uλ)), by the Young inequality we have

(Aλ(uλ), uλ) = (Aλ(uλ), Jλ(uλ)) + λ ‖Aλ(uλ)‖2H
= ϕ(Jλ(uλ)) + ϕ∗(Aλ(uλ)) + λ ‖Aλ(uλ)‖2H .

Consequently, we have

1

2
‖uλ(t)‖2H +

∫ t

0
ϕ(Jλ(uλ(s))) ds +

∫ t

0
ϕ∗(Aλ(uλ(s))) ds + λ

∫ t

0
‖Aλ(uλ(s))‖2H ds

=
1

2
‖u0‖2H +

∫ t

0
(f(s), uλ(s)) ds

≤ 1

2
‖u0‖2H +

∫ t

0
‖f(s)‖H ‖uλ(s)‖H ds .

The Gronwall lemma implies then that there exists M > 0, independent of λ, such that

‖uλ‖2C0([0,T ];H) ≤M, (5.1)

‖ϕ(Jλ(uλ))‖L1(0,T ) + ‖ϕ∗(Aλ(uλ))‖L1(0,T ) + λ ‖Aλ(uλ)‖2L2(0,T ;H) ≤M. (5.2)

Recalling also assumption H0, this implies that

‖Jλ(uλ)‖sLs(0,T ;H) ≤M . (5.3)

Now, by the estimates (5.1) and (5.3) there exist u ∈ L∞(0, T ;H) and ũ ∈ Ls(0, T ;H) such
that, as λց 0,

uλ
∗
⇀ u in L∞(0, T ;H), (5.4)

Jλ(uλ)⇀ ũ in Ls(0, T ;H). (5.5)

Moreover, note that by (5.2) and the definition of Aλ we have

‖Jλ(uλ)− uλ‖L2(0,T ;H) = λ ‖Aλ(uλ)‖L2(0,T ;H) ≤Mλ1/2 → 0 ,

which implies that ũ = u and
Jλ(uλ)⇀ u in Ls(0, T ;H) . (5.6)
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By the weak lower semicontinuity of convex integrands, convergence (5.6), and estimate (5.2), we
deduce then that

∫ T

0
ϕ(u(s)) ds ≤ lim inf

λց0

∫ T

0
ϕ(Jλ(uλ(s))) ds ≤M .

It follows that ϕ(u) ∈ L1(0, T ), so that u is essentially Lϕ-valued. Since by Lemma 4.1 Lϕ is a
Borel subset of H and u is strongly measurable in H, we infer that u is Borel-measurable in Lϕ:
hence, by definition of Borel-measurability we have that ‖u‖ϕ is measurable. Furthermore, as a
consequence of Lemma 2.2 we have that

‖u‖ϕ ≤ 1 + ϕ(u) a.e. in (0, T ) ,

so that by comparison ‖u‖ϕ ∈ L1(0, T ). In order to prove that u ∈ L1
w(0, T ;Lϕ), we need to show

that [y, u] ∈ L1(0, T ) for every y ∈ Lϕ̄∗ . To this end, since u : (0, T ) → Lϕ is Borel-measurable,
by definition of weak topology on Lϕ it follows that u : (0, T ) → Lϕ is weakly measurable in the
classical sense, i.e. 〈y, u〉L∗

ϕ,Lϕ is measurable for every y ∈ L∗
ϕ. Now, under assumption H2i we

have that Lϕ is separable (because so is Eϕ), hence by the Pettis theorem [27, Thm. 2, Ch. II] we
obtain that u : (0, T ) → Lϕ is strongly measurable: it follows that in this case we have actually
that u ∈ L1(0, T ;Lϕ). In particular, since [y, ·] : Lϕ → R is linear continuous by Lemma 3.1,
by composition we infer that also [y, u] : (0, T ) → R is measurable, hence u ∈ L1

w(0, T ;Lϕ).
Alternatively, under assumption H2ii we observe that [y, u] ∈ L1(0, T ) for every y ∈ H since
u ∈ L1(0, T ;H): hence, the density of H in Lϕ̄∗ readily implies that [y, u] ∈ L1(0, T ) also for every
y ∈ Lϕ̄∗ , and this shows indeed that u ∈ L1

w(0, T ;Lϕ).

In order to deduce some compactness for (Aλ(uλ))λ, we need the following lemma.

Lemma 5.1. For any reflexive Banach space V0 such that V0 →֒ Eϕ continuously and densely,
it holds that E∗

ϕ →֒ V ∗
0 continuously and densely. Furthermore, the convex conjugate of ϕ0 :=

ϕ|V0
: V0 → [0,+∞) is given by

ϕ∗
0 : V

∗
0 → [0,+∞] , ϕ∗

0(y) =

{

ϕ̄∗(y) if y ∈ E∗
ϕ ,

+∞ if y ∈ V ∗
0 \E∗

ϕ .

If also ϕ is bounded on bounded sets of V0, then

lim
‖y‖V ∗

0

→+∞

ϕ∗
0(y)

‖y‖V ∗

0

= +∞ . (5.7)

Proof. The fact that E∗
ϕ →֒ V ∗

0 continuously is an immediate consequence of the density of V0 in
Eϕ, while the fact that E∗

ϕ →֒ V ∗
0 densely follows from the reflexivity of V0 by a classical argument.

Let us compute the convex conjugate of ϕ0. If V0 = Eϕ, then the conclusion is trivial, so let us
suppose then that V0 ⊂ Eϕ strictly. First of all, we show ϕ∗

0 = +∞ on V ∗
0 \ E∗

ϕ. Let y ∈ V ∗
0 \ E∗

ϕ:
this means that y : V0 → R cannot be extended to a continuous linear functional on Eϕ, i.e. there
is no constant C > 0 such that 〈y, x〉V ∗

0
,V0

≤ C ‖x‖ϕ for all x ∈ V0. Moreover, for all x ∈ Eϕ \ V0,
by density of V0 in Eϕ there is a sequence (xn)n ⊂ V0 such that xn → x in Eϕ. If for all x ∈ Eϕ \V0
there exists Cx > 0 such that 〈y, xn〉V ∗

0
,V0

≤ Cx ‖xn‖ϕ for all n ∈ N, then, due to the continous
embedding V0 →֒ Eϕ, one could extend by density y to a continuous linear functional on Eϕ.
However, this is not possible since y ∈ V ∗

0 \ E∗
ϕ: consequently, there exists x̄ ∈ Eϕ \ V0 and a

sequence (xn)n ⊂ V0 such that

xn → x̄ in Eϕ , 〈y, xn〉V ∗

0
,V0

> n ‖xn‖ϕ ∀n ∈ N .
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In particular, ϕ(xn) → ϕ(x̄) and, since x̄ 6= 0, 〈y, xn〉V ∗

0
,V0

→ +∞: hence

ϕ∗
0(y) = sup

x∈V0

{

〈y, x〉V ∗

0
,V0

− ϕ0(x)
}

≥ sup
n∈N

{

〈y, xn〉V ∗

0
,V0

− ϕ(xn)
}

≥ lim sup
n→∞

(

〈y, xn〉V ∗

0
,V0

− ϕ(xn)
)

= lim sup
n→∞

〈y, xn〉V ∗

0
,V0

− ϕ(x̄) = +∞ .

This shows that ϕ∗
0 = +∞ on V ∗

0 \E∗
ϕ. Let us prove now that (ϕ∗

0)|E∗

ϕ
= ϕ̄∗. Let y ∈ E∗

ϕ arbitrary:
we have

ϕ∗
0(y) = sup

x∈V0

{

〈y, x〉V ∗

0
,V0

− ϕ(x)
}

≤ sup
x∈Eϕ

{

〈y, x〉E∗

ϕ,Eϕ
− ϕ(x)

}

= ϕ̄∗(y) .

On the other hand, for all x ∈ Eϕ there is (xn)n ⊂ V0 such that xn → x in Eϕ, so that

〈y, xn〉E∗

ϕ,Eϕ
= 〈y, xn〉V ∗

0
,V0

≤ ϕ∗
0(y) + ϕ(xn) ∀n ∈ N ,

hence also, noting that ϕ(xn) → ϕ(x),

〈y, x〉E∗

ϕ,Eϕ
≤ ϕ∗

0(y) + ϕ(x) ∀x ∈ Eϕ .

It follows that
ϕ∗
0(y) ≥ sup

x∈Eϕ

{

〈y, x〉E∗
ϕ,Eϕ

− ϕ(x)
}

= ϕ̄∗(y) .

The shows that (ϕ∗
0)|E∗

ϕ
= ϕ̄∗, as required.

Finally, let us show that ϕ∗
0 is superlinear at ∞. To this end, by the Young inequality we have that

ϕ∗
0(y) ≥ 〈y, x〉V ∗

0
,V0

− ϕ(x) ∀x ∈ V0 , ∀ y ∈ V ∗
0 .

Since V0 is reflexive, for any y ∈ V ∗
0 \{0}, there is xy ∈ V0 such that 〈y, xy〉V ∗

0
,V0

= ‖y‖2V ∗

0

= ‖xy‖2V0
.

Choosing x = Lxy ‖y‖−1
V ∗

0

for arbitrary L > 0 in the last inequality yields

ϕ∗
0(y) ≥ L ‖y‖V ∗

0

− ϕ
(

Lxy ‖y‖−1
V ∗

0

)

∀ y ∈ V ∗
0 \ {0} , ∀L > 0 ,

where
∥

∥

∥
Lxy ‖y‖−1

V ∗

0

∥

∥

∥

V0

= L ∀ y ∈ V ∗
0 \ {0} , ∀L > 0 .

Since ϕ is bounded on bounded subsets of V0, there exists CL > 0 such that

ϕ∗
0(y) ≥ L ‖y‖V ∗

0

− CL ∀ y ∈ V ∗
0 \ {0} , ∀L > 0 .

Hence, for all arbitrary K > 0, choosing L = 2K, for all y ∈ V ∗
0 with ‖y‖V ∗

0

≥ C2K/K we have

ϕ∗
0(y)

‖y‖V ∗

0

≥ 2K − C2K

‖y‖V ∗

0

≥ K .

As K > 0 is arbitrary, we can conclude. �

By assumption H1, Lemma 5.1, and estimate (5.2), we deduce that
∫ T

0
ϕ∗
0(Aλ(uλ(s))) ds ≤M ,

where

lim
‖y‖V ∗

0

→+∞

ϕ∗
0(y)

‖y‖V ∗

0

= +∞ .

In particular, there exists an increasing sequence (rn)n of positive numbers such that

ϕ∗
0(y) ≥ n ‖y‖V ∗

0

∀ y ∈ V ∗
0 , ‖y‖V ∗

0

≥ rn , ∀n ∈ N .
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This readily implies that (Aλ(uλ))λ is bounded in L1(0, T ;V ∗
0 ). Moreover, for any measurable

I ⊂ [0, T ] we have
∫

I
‖Aλ(uλ))‖V ∗

0

=

∫

I∩{‖Aλ(uλ))‖V ∗

0

<rn}
‖Aλ(uλ))‖V ∗

0

+

∫

I∩{‖Aλ(uλ))‖V ∗

0

≥rn}
‖Aλ(uλ))‖V ∗

0

≤ |I|rn +
1

n

∫

I
ϕ∗
0(Aλ(uλ)) ≤ |I|rn +

M

n
.

Hence, for any arbitrary ε > 0, choosing n̄ = n̄(ε) sufficiently large such that M/n̄ ≤ ε/2, and
setting δ = δ(ε) := εr−1

n̄ /2, we have that

sup
λ>0

∫

I
‖Aλ(uλ))‖V ∗

0

≤ ε ∀ I ⊂ [0, T ] , |I| ≤ δ .

This implies that the family (Aλ(uλ))λ is uniformly integrable in L1(0, T ;V ∗
0 ), hence also by the

Dunford–Pettis theorem that

(Aλ(uλ))λ is sequentially weakly compact in L1(0, T ;V ∗
0 ) .

We deduce that there exists ξ ∈ L1(0, T ;V ∗
0 ) such that, on a not relabelled subsequence,

Aλ(uλ)⇀ ξ in L1(0, T ;V ∗
0 ) . (5.8)

Furthermore, by the weak lower semicontinuity of the convex integrand
∫ T
0 ϕ∗

0(·) ds and the estimate
(5.2), we have

∫ T

0
ϕ∗
0(ξ(s)) ds ≤ lim inf

λց0

∫ T

0
ϕ∗
0(Aλ(uλ(s))) ds ≤M .

Thanks to Lemma 5.1, this implies that actually ξ(t) ∈ E∗
ϕ for almost every t ∈ (0, T ) and that

ϕ̄∗(ξ) ∈ L1(0, T ), hence in particular that ξ is essentially Lϕ̄∗-valued. Moreover, proceeding as
in the proof of Theorem 3.6 we have that Lϕ̄∗ is a Borel subset of V ∗

0 , hence ξ : [0, T ] → Lϕ̄∗ is
Borel measurable and ‖ξ‖ϕ̄∗ is measurable. Since ‖y‖ϕ̄∗ ≤ 1 + ϕ̄∗(y) for all y ∈ Lϕ̄∗ , we have that
‖ξ‖ϕ̄∗ ∈ L1(0, T ). Furthermore, it also holds that ξ ∈ L1

w(0, T ;Lϕ̄∗). Indeed, under H2ii this is
immediate since Lϕ̄∗ is separable and ξ ∈ L1(0, T ;Lϕ̄∗), while under H2i the weak measurability
follows directly from the density of V0 in Lϕ and the strong measurability of ξ in V ∗

0 .

5.3. Passage to the limit. The approximated problem can be written as

uλ(t) +

∫ t

0
Aλ(uλ(s)) ds = u0 +

∫ t

0
f(s) ds ∀ t ∈ [0, T ] .

Fix now t ∈ [0, T ] arbitrary. By the convergence (5.8), it follows that as λց 0
∫ t

0
Aλ(uλ(s)) ds ⇀

∫ t

0
ξ(s) ds in V ∗

0 .

By comparison, we deduce that uλ(t) converges weakly in V ∗
0 , yielding thanks to (5.4) that

uλ(t)⇀ u(t) in H .

Hence, we have that

u(t) +

∫ t

0
ξ(s) ds = u0 +

∫ t

0
f(s) ds ∀ t ∈ [0, T ] .

This implies in particular also that u ∈ W 1,1
w (0, T ;Lϕ̄∗), with ∂tu = −ξ + f , hence also u ∈

C0([0, T ];H) by Theorem 3.6, and (u, ξ) solves (3.4)–(3.7).

We only need to show that ξ is the weak realization of ∂ϕ(u) in Lϕ̄∗ , namely condition (3.8). To
this end, note that we already proved that for every t ∈ [0, T ]

1

2
‖uλ(t)‖2H +

∫ t

0
(Aλ(uλ(s)), uλ(s)) ds =

1

2
‖u0‖2H +

∫ t

0
(f(s), uλ(s)) ds ,
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which yields, by the weak lower semicontinuity of the H-norm and the convergence (5.4),

lim sup
λց0

∫ T

0
(Aλ(uλ(s)), uλ(s)) ds =

1

2
‖u0‖2H +

∫ T

0
(f(s), u(s)) ds− 1

2
lim inf
λց0

‖uλ(T )‖2H

≤ 1

2
‖u0‖2H +

∫ T

0
(f(s), u(s)) ds− 1

2
‖u(T )‖2H .

Furthermore, since we have proved that

∂tu+ ξ = f in Lϕ̄∗ , u(0) = u0 ,

taking the [·, ·] duality with u and integrating on (0, t), using Theorem 3.6 we get exactly that

1

2
‖u(t)‖2H +

∫ t

0
[ξ(s), u(s)] ds =

1

2
‖u0‖2H +

∫ t

0
(f(s), u(s)) ds ∀ t ∈ [0, T ] ,

which in particular proves the energy equality (3.9). Putting this information together we obtain

lim sup
λց0

∫ T

0
(Aλ(uλ(s)), uλ(s)) ds ≤

∫ T

0
[ξ(s), u(s)] ds . (5.9)

Now, recalling that Aλ ∈ A(Jλ(·)), we have that

ϕ(Jλ(uλ)) + (Aλ(uλ), z − Jλ(uλ)) ≤ ϕ(z) a.e. in (0, T ) , ∀ z ∈ L2(0, T ;H) ,

so in particular it holds that
∫ T

0
ϕ(Jλ(uλ(s))) ds +

∫ T

0
(Aλ(uλ(s)), z(s) − Jλ(uλ(s))) ds ≤

∫ T

0
ϕ(z(s)) ds .

Now, we want to let λց 0 in the inequality. To this end, note first that the convergence (5.6) and
the weak lower semicontinuity of the convex integrands yields

∫ T

0
ϕ(u(s)) ds ≤ lim inf

λց0

∫ T

0
ϕ(Jλ(uλ(s))) ds .

Secondly, the weak convergence (5.8) readily implies that, for all z ∈ L∞(0, T ;V0),

lim
λց0

∫ T

0
(Aλ(uλ(s)), z(s))) ds =

∫ T

0
〈ξ(s), z(s)〉V ∗

0
,V0

ds =

∫ T

0
[ξ(s), z(s)] ds .

Finally, the limsup inequality (5.9) yields

lim sup
λց0

∫ T

0
(Aλ(uλ(s)), Jλ(uλ(s))) ds

= lim sup
λց0

∫ T

0

[

(Aλ(uλ(s)), uλ(s))− λ ‖Aλ(uλ(s))‖2H
]

ds

≤ lim sup
λց0

∫ T

0
(Aλ(uλ(s)), uλ(s)) ds ≤

∫ T

0
[ξ(s), u(s)] ds .

Hence, letting λց 0 we infer that, for all
∫ T

0
ϕ(u(s)) ds +

∫ T

0
[ξ(s), z(s)− u(s)] ds ≤

∫ T

0
ϕ(z(s)) ds ∀ z ∈ L∞(0, T ;V0) .

By a standard localization procedure and by the density of V0 in Eϕ we have

ϕ(u) + [ξ, x− u] ≤ ϕ(x) ∀x ∈ Eϕ , a.e. in (0, T ) .

This complete the proof of condition (3.8) and of existence of solutions in Theorem 3.7.
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5.4. Continuous dependence. We prove here the continuous dependence in Theorem 3.8, which
in particular implies uniqueness of solutions.

In the setting and notations of Theorem 3.8 we have that

∂t(u1 − u2) + ξ1 − ξ2 = f1 − f2 a.e. in (0, T ) , (u1 − u2)(0) = u10 − u20 .

Moreover, note that by convexity and symmetry of ϕ we have

ϕ

(

u1 − u2
2

)

≤ 1

2
ϕ(u1) +

1

2
ϕ(u2) ∈ L1(0, T ) ,

and similarly

ϕ̄∗

(

∂tu1 − ∂tu2
2

)

≤ 1

2
ϕ̄∗(∂tu1) +

1

2
ϕ̄∗(∂tu2) ∈ L1(0, T ) .

Consequently, taking the [·, ·] duality with u1 − u2, integrating on (0, t) and using Theorem 3.6 we
have, for every t ∈ [0, T ],

1

2
‖(u1 − u2)(t)‖2H +

∫ t

0
[(ξ1 − ξ2)(s), (u1 − u2)(s)] ds

=
1

2

∥

∥u10 − u20
∥

∥

2

H
+

∫ t

0
((f1 − f2)(s), (u1 − u2)(s)) ds .

Now, from (3.8) we know that

ϕ(u1) + ϕ̄∗(ξ1) = [ξ1, u1] , ϕ(u2) + ϕ̄∗(ξ2) = [ξ2, u2] ,

from which

[ξ1 − ξ2, u1 − u2] = ϕ(u1) + ϕ̄∗(ξ1) + ϕ(u2) + ϕ̄∗(ξ2)− [ξ1, u2]− [ξ2, u1] .

By the Young inequality we also deduce that

[ξ1, u2] ≤ ϕ̄∗(ξ1) + ϕ(u2) , [ξ2, u1] ≤ ϕ̄∗(ξ2) + ϕ(u1)

so that putting everything together we infer that

[ξ1 − ξ2, u1 − u2] ≥ 0 a.e. in (0, T ) .

We deduce that

1

2
‖(u1 − u2)(t)‖2H ≤ 1

2

∥

∥u10 − u20
∥

∥

2

H
+

∫ t

0
‖(f1 − f2)(s)‖H ‖(u1 − u2)(s)‖H ds

for every t ∈ [0, T ], and the thesis follows then by the Gronwall lemma.

6. Applications

In this section, we thoroughly discuss a wide spectrum of applications. First of all, we show
that the classical variational theory in reflexive and separable spaces is covered as a special case of
our results. Then, we show the applicability of our theory to much more general examples, such
as evolution equations in singular Orlicz spaces, in Muselak–Orlicz spaces, and Musielak–Orlicz–
Sobolev spaces. These cover, among many other examples, PDEs in variable-exponent Sobolev
spaces, in double-phase spaces, and PDE with dynamic boundary conditions driven by singular
potentials.
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6.1. The classical variational theory. We show here that the classical variational theory for
evolution equations is covered by our results: in this direction we refer the reader to the main
contributions [6, Thm. 4.10] and [2, 12].

LetH be a Hilbert space and V a separable reflexive Banach space such that V →֒ H continuously
and densely. Let ϕ : V → [0,+∞) be convex, lower semicontinuous, with ϕ(0) = 0, such that
V = D(∂ϕ), where D(∂ϕ) denotes a domain of ∂ϕ, and there exist constants c1, c2 > 0 and p ≥ 2
such that

〈y, x〉 ≥ c1 ‖x‖pV , ‖y‖p′V ∗ ≤ c2(1 + ‖x‖pV ) , ∀x ∈ V , ∀ y ∈ ∂ϕ(x) ,

where p′ := p
p−1 . Let also u0 ∈ H and f ∈ L2(0, T ;H). Then the classical variational theory

ensures that there exists a unique (u, ξ) with

u ∈W 1,p′(0, T ;V ∗) ∩ C0([0, T ];H) ∩ Lp(0, T ;V ) , ξ ∈ Lp′(0, T ;V ∗)

such that

∂tu+ ξ = f , ξ ∈ ∂ϕ(u) , u(0) = u0 .

Let us compare this with our results. In this setting, it is not difficult to check that ϕ (suitably
extended to +∞ on H \ V ) is actually a modular, and that assumption H0 holds with the choice
s = p. Furthermore, the growth conditions on ∂ϕ imply that

c′1 ‖x‖pV ≤ ϕ(x) ≤ c′2(1 + ‖x‖pV ) ∀x ∈ V ,

for some constants c′1, c
′
2 > 0. Consequently, we easily deduce that in this case

Eϕ = Lϕ = V ,

so that H1 holds with the trivial choice V0 = V . Clearly, one has then ϕ̄ = ϕ, E∗
ϕ = V ∗, and

ϕ̄∗ = ϕ∗. The growth conditions on ϕ yields

c3 ‖y‖p
′

V ∗ − 1/c′3 ≤ ϕ∗(y) ≤ c′4(1 + ‖y‖p′V ∗) y ∈ V ∗ ,

for some c′3, c
′
4 > 0, so that Eϕ̄∗ = Lϕ̄∗ = E∗

ϕ = V ∗. Finally, since V is both reflexive and dense in
H, it is a standard matter to check that both H2i and H2ii are satisfied.

Our main result Theorem 3.7 implies that for all u0 ∈ H and f ∈ L2(0, T ;H), there is a unique
pair (u, ξ) with

u ∈W 1,1
w (0, T ;V ∗) ∩C0([0, T ];H) ∩ L1

w(0, T ;V ) , ξ ∈ L1
w(0, T ;V

∗) ,

ϕ(u), ϕ̄∗(ξ) ∈ L1(0, T ) ,

such that

∂tu+ ξ = f , ξ ∈ ∂ϕ(u) , u(0) = u0 .

Since V and V ∗ are separable, one actually has

u ∈W 1,1(0, T ;V ∗) ∩ L1(0, T ;V ) , ξ ∈ L1(0, T ;V ∗) .

Moreover, thanks to the growth conditions on ϕ, we immediately see that the regularity ϕ(u),
ϕ̄∗(ξ) ∈ L1(0, T ) yields

u ∈ Lp(0, T ;V ) , ξ ∈ Lp′(0, T ;V ∗) .

Finally, by comparison in the equation we have ∂tu ∈ Lp′(0, T ;V ∗) as well.

Hence, in this simplified setting, our Theorem 3.7 actually coincides with the classical existence
result from the variational theory.
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6.2. Reaction-diffusion equations. We present here a first simple example of a class of PDEs
that falls out of the classical variational setting presented in Subsection 6.1, but that can nonetheless
be covered by our main existence result.

Let us consider partial differential equations in the form










∂tu− div(∂M(∇u)) + ∂N(u) ∋ f in (0, T ) × Ω ,

u = 0 on (0, T ) × ∂Ω ,

u(0) = 0 in Ω ,

(6.1)

where Ω ⊂ R
d is a bounded Lipschitz domain, T > 0 is a fixed final time, the data are chosen as

u0 ∈ L2(Ω) and f ∈ L2((0, T )×Ω), and M : Rd → [0,+∞) and N : R → R are convex, even, lower
semicontinuous and polynomially bounded by above and below. More specifically, we suppose that
there exist c1, c2 > 0 and p, q ≥ 2 such that

c1|x|p ≤ y · x , |y|p′ ≤ c2(1 + |x|p) ∀x ∈ R
d , ∀ y ∈ ∂M(x) ,

c1|r|q ≤ wr , |w|q′ ≤ c2(1 + |r|q) ∀ r ∈ R , ∀w ∈ ∂N(r) ,

where p′ and q′ are the conjugate exponents of p and q, respectively. Here the case M(∇u) = |∇u|p
leads to thoroughly studied p-Laplace operator: see, for example, [48, 49].

Since p and q may be different in general, this setting does not fall directly in the classical
framework presented in Subsection 6.1, as the coercivity condition is not satisfied if p 6= q. However,
let us show that it can be treated by using our results.

One can consider the modular ϕ : L2(Ω) → [0,+∞] defined as

ϕ(u) :=







∫

Ω
M(∇u) +

∫

Ω
N(u) if u ∈W 1,p

0 (Ω) ∩ Lq(Ω) ,

+∞ otherwise .

With this notation, the PDE (6.1) can be written in the abstract form

∂tu+ ∂ϕ(u) ∋ f , u(0) = u0 ,

by choosing

H := L2(Ω) , V :=W 1,p
0 (Ω) ∩ Lq(Ω) , V ∗ =W−1,p′(Ω) + Lq′(Ω) .

Thanks to the growth conditions on M and N we deduce that

c′1

(

‖∇u‖pLp(Ω) + ‖u‖qLq(Ω)

)

≤ ϕ(u) ≤ c′2

(

1 + ‖∇u‖pLp(Ω) + ‖u‖qLq(Ω)

)

∀u ∈ V .

Consequently, assumption H0 holds with s = min{p, q}. Furthermore, the growth condition readily
implies that V = Eϕ = Lϕ and Eϕ̄∗ = Lϕ̄∗ = E∗

ϕ = V ∗, so that also H1–H2i–H2ii are satisfied,
with the choice V0 = V . Moreover, the conjugate ϕ̄∗ : V ∗ → [0,+∞) satisfies

ϕ̄∗(v) = 〈v, u〉 − ϕ(u) ∀u ∈ V , ∀ v ∈ ∂ϕ̄(u) ,

where by [6, Thm. 2.10] we have that

∂ϕ̄(u) = {− div v1 + v2 : v1 ∈ ∂M(∇u) , v2 ∈ ∂N(u) a.e. in Ω} ∀u ∈ V .

In this expression, by assumption on M and N we have that v1 ∈ Lp′(Ω)d and v2 ∈ Lq′(Ω), and
the divergence is intended in the sense of distributions on Ω.

The existence Theorem 3.7 ensures then that for all u0 ∈ L2(Ω) and f ∈ L2((0, T ) × Ω) there
exists a unique pair (u, ξ) with

u ∈W 1,1
w (0, T ;V ∗) ∩C0([0, T ];H) ∩ L1

w(0, T ;V ) , ξ ∈ L1
w(0, T ;V

∗) ,

ϕ(u), ϕ̄∗(ξ) ∈ L1(0, T ) ,
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such that
∂tu+ ξ = f , ξ ∈ ∂ϕ̄(u) , u(0) = u0 .

Since V and V ∗ are separable, these conditions imply the existence and uniqueness of a solution of
(6.1) with

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lq(0, T ;Lq(Ω)) ,

∂tu ∈ Lp′(0, T ;W−1,p′(Ω)) + Lq′(0, T ;Lq′(Ω)) ,

ξ = − div ξ1 + ξ2 , ξ1 ∈ Lp′(0, T ;Lp′(Ω)d) , ξ2 ∈ Lq′(0, T ;Lq′(Ω)) ,

and
∂tu− div ξ1 + ξ2 ∋ f in V ∗ a.e. in (0, T ) , u(0) = u0 .

6.3. Singular PDEs in Musielak–Orlicz spaces. In this subsection, we examine our approach
in the setting of Muselak–Orlicz spaces. For all the abstract theory and general properties we
refer to the classical monograph [58, § 7]. We will show that our results cover several interesting
cases of singular PDEs, including evolution equations in both reflexive and non-reflexive spaces,
such as Lebesgue spaces with variable exponents, double-phase spaces, Orlicz spaces, and weighted
Lebesgue spaces.

Given a bounded domain Ω ⊂ R
d regular enough, we consider ϕM : L2(Ω) → [0,+∞] of the form

ϕM (v) =







∫

Ω
M(x, v(x)) dx if M(·, v) ∈ L1(Ω) ,

+∞ otherwise .

where M : Ω× R → [0,∞) is a generalized strong Φ-function [35] in the sense that

(1) M(·, z) is measurable for every z ∈ R;
(2) M(x, ·) is convex and continuous for almost every x ∈ Ω;
(3) M(x, 0) = limz→0M(x, z) = 0 and limz→∞M(x, z) = +∞ for almost all x ∈ Ω;
(4) there is ε ∈ (0, 1] such that M(x, ε) ≤ 1 and M(x, 1/ε) ≥ 1 for almost all x ∈ Ω;
(5) if M(x, αz) = 0 for all α > 0 and almost all x ∈ Ω, then z = 0;
(6) M(x, z) =M(x,−z) for all z ∈ R and almost all x ∈ Ω.

In this setting, ϕM is a lower semicontinuous convex semi-modular on L2(Ω). Let us use the
classical notation LM (Ω) := LϕM

and EM (Ω) := EϕM
for the respective Muselak–Orlicz spaces.

Moreover, if there exists c > 0 such that

M(x, z) ≥ cz2 for a.e. x ∈ Ω , ∀ z ∈ R ,

then we have LM (Ω) ⊂ L2(Ω). Hence, we can choose H := L2(Ω), and assumption H0 holds with
s = 2.

We denote by M∗ : Ω × R → [0,+∞] the convex conjugate of M with respect to its second
variable, namely

M∗(x, z) := sup
y∈R

{zy −M(x, y)} , (x, z) ∈ Ω× R .

Definition 6.1. A function M : Ω×R → [0,+∞] satisfies the weak doubling condition ∆w
2 if there

exist a constant k ≥ 2 and h ∈ L1(Ω) such that

M(x, 2z) ≤ kM(x, z) + h(x) (6.2)

for almost all x ∈ Ω and all z ∈ R. Similarly, M fulfils the condition ∇w
2 if M∗ satisfies ∆w

2 .
Whenever h ≡ 0, the conditions are referred to as strong ∆2 and strong ∇2.
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Definition 6.2. Let M,N : Ω×R → [0,+∞]. We say that M � N if there exist two constants c1,
c2 > 0 and h ∈ L1(Ω) such that

M(x, z) ≤ c1N(x, c2z) + h(x) for almost every x ∈ Ω and for all z ∈ R .

We say that M and N are equivalent if M � N �M .

It is well-known that every functionM meeting the ∆w
2 (∇w

2 ) condition has an equivalent function
N which satisfies the strong ∆2 (∇2) condition.

Definition 6.3. A generalized strong Φ-function M is said locally integrable if, for every measurable
compact subset K ⊂ Ω and for every z ∈ R, it holds that

∫

K
M(x, z) dx < +∞ .

We recall the main properties of the Musielak–Orlicz spaces in the following proposition: for
detailed proofs, the reader can refer to [17, 37, 58, 71].

Proposition 6.4. Let M be a generalized strong Φ-function. Then, the following holds:

(i) EM (Ω) and LM (Ω) are Banach spaces w.r.t. ‖ · ‖ϕM
, and L∞(Ω) is continuously embedded

in EM (Ω);
(ii) if M is locally integrable, then the simple functions on Ω and the smooth functions with

compact support C∞
c (Ω) are dense in EM (Ω) w.r.t. the norm ‖·‖ϕM

. In particular, EM (Ω)

is separable. Moreover, we have the characterization of the dual EM (Ω)∗ ∼= LM∗

(Ω);
(iii) if M satisfies the ∆2 condition, then LM (Ω) = EM (Ω) and there exists p > 1 such that

M(x,z)
|z|p → 0 as |z| → +∞ for almost all x ∈ Ω;

(iv) LM(Ω) is reflexive if and only if M satisfies both ∆w
2 and ∇w

2 conditions.

The evolution equation associated to this choice of ϕM reads
{

∂tu(t, x) + ∂M(x, u(t, x)) ∋ f(t, x) (t, x) ∈ (0, T ) ×Ω ,

u(0, x) = u0(x) x ∈ Ω ,
(6.3)

where, as in the previous subsection, T > 0 is a fixed final time, and the data are chosen as
u0 ∈ L2(Ω) and f ∈ L2((0, T )× Ω).

We have already pointed out that in the setting above, assumption H0 is satisfied with the
choices H := L2(Ω) and s = 2. We analyze now in detail the validity of the hypotheses H1,
H2i–H2ii in connection to the ∆2 and ∇2 conditions for M .

M satisfies both ∆2 and ∇2.

If M satisfies both the ∆2 and ∇2 conditions, then EM (Ω) = LM(Ω) is reflexive. Moreover, if also
M and M∗ are locally integrable on Ω, by property (ii) of Proposition 6.4, EM (Ω) is separable
and EM (Ω)∗ = LM∗

(Ω). In particular, it follows that EM (Ω)∗ = LM∗

(Ω) = EM∗

(Ω). Hence,
assumption H1 is satisfied by the trivial choice V0 = EM (Ω), and assumptions H2i–H2ii hold
since EM (Ω) = LM (Ω) and H is dense in LM∗

(Ω) = EM∗

(Ω).

In this setting, our Theorem 3.7 ensures then that the equation (6.3) has a unique solution

u ∈W 1,1(0, T ;LM∗

(Ω)) ∩C0([0, T ];L2(Ω)) ∩ L1(0, T ;LM (Ω)) , ξ ∈ L1(0, T ;LM∗

(Ω)) ,

such that
M(·, u), M∗(·, ξ) ∈ L1(0, T ) .

Let us stress that the separability properties of LM (Ω) and LM∗

(Ω) ensure actually that the
measurability in time of such solutions is intended in the usual strong sense. Moreover, thanks to
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the characterisation of ∂M in [6, Prop. 2.7] the subdifferential relation (3.8) in this case can be
written pointwise and reads

ξ ∈ ∂M(·, u) a.e. in (0, T )× Ω .

This framework where M is both ∆2 and ∇2 allows to cover several interesting cases, coming
mainly from the modelling of anisotropic/non-homogenous phenomena. We refer the interested
reader to the surveys [38] and [17] for more details. For instance, the following well-known examples
are included in this setting:

• Variable exponents spaces: M(x, z) = |z|p(x), where p : Ω → (1,+∞) is measurable and
such that

1 < p− := ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) =: p+ < +∞ .

• Double phase spaces: M(x, z) = |z|p(x) + a(x)|z|q(x), where a : Ω → [0,+∞) is measurable
and bounded, and

1 < p− ≤ p < q ≤ q+ < +∞ .

• Orlicz spaces: M(x, z) = Φ(z), independently of x ∈ Ω, where Φ is ∆2 and ∇2.
• Weighted Lebesgue spaces.

M satisfies either ∆2 or ∇2.

Let us start with M fulfilling the ∆2-condition (but not necessarily the ∇2 condition). In this
case, EM (Ω) coincides with LM (Ω). Moreover, if M is locally integrable on Ω, by property (ii)
of Proposition 6.4 the space EM (Ω) is separable and dense in L2(Ω). Furthermore, by property
(iii) there exists p > 1 such that lim|z|→+∞M(x, z)/|z|p = 0 for a.e. x ∈ Ω: hence, if we choose
V0 as the space Lp(Ω), then Lp(Ω) is dense EM (Ω), separable and reflexive, and ϕM is bounded
on bounded subsets of Lp(Ω). This shows that H1 is satisfied. Furthermore, assumption H2 is
trivially satisfied since H2i holds as EM (Ω) = LM (Ω).

Let us consider now M fulfilling the ∇2-condition (but not necessarily the ∆2 condition). In
this case, EM∗

(Ω) = LM∗

(Ω). Moreover, if M is locally integrable, then as before we have that
EM (Ω) is separable and dense in L2(Ω). Using also property (ii) of Proposition 6.4, we have that
C∞
c (Ω) is dense in EM (Ω) and L∞(Ω) →֒ EM (Ω) continuously. Hence, supposing that Ω is regular

enough (for example, bounded with Lipschitz-boundary), by the classical Sobolev embeddings one
can choose V0 := Wm,p(Ω) with m > d

p , so that C∞
c (Ω) ⊂ Wm,p(Ω) →֒ L∞(Ω). This shows that

assumption H1 holds. Furthermore, assumption H2 holds due to to the following argument: M∗

is ∆2, hence LM∗

(Ω) = EM∗

(Ω) is separable, and the collection of simple functions is a countable
and dense subset of LM∗

(Ω). Consequently, L2(Ω) is dense in LM∗

(Ω), so that in particular H2ii

is satisfied.

In this setting, Theorem 3.7 ensures then that the equation (6.3) has a unique solution

u ∈W 1,1
w (0, T ;LM∗

(Ω)) ∩ C0([0, T ];L2(Ω)) ∩ L1
w(0, T ;L

M (Ω)) , ξ ∈ L1
w(0, T ;L

M∗

(Ω)) ,

such that
M(·, u), M∗(·, ξ) ∈ L1(0, T ) .

Let us point out that the measurability in time is not intended in the strong sense. Nonetheless,
if M satisfies the ∆2 condition, then LM (Ω) is separable and actually it holds that also u ∈
L1(0, T ;LM (Ω)). Similarly, if M satisfies the ∇2 conditions, then LM∗

(Ω) is separable and it holds
also that u ∈ W 1,1(0, T ;LM∗

(Ω)) and ξ ∈ L1(0, T ;LM∗

(Ω)). As before, the differential inclusion
(3.8) can be written pointwise in Ω.

This more general framework where M is allowed to satisfy either the ∆2 or the ∇2 condition
(but not necessarily both of them) allows to cover almost all relevant cases of PDEs in Musielak–
Orlicz spaces. For these reasons, the variational theory presented here is widely applicable to most
interesting examples. For instance, let us mention the following [17]:
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• Orlicz spaces: M(x, z) = Φ(z), independently of x ∈ Ω, where Φ is either ∆2 or ∇2. For
instance, Φ(z) = exp |z|p − 1, p ≥ 1, or Φ(z) = (|z|+ 1) ln(|z|+ 1)− |z|.

6.4. Singular PDEs in Musielak–Orlicz–Sobolev spaces. In this subsection, we show that
our results conver also evolution problems in Muselak–Orlicz–Sobolev spaces. Again, for the ab-
stract theory we refer to the classical monograph [58, § 10]. This framework includes interesting
cases such as singular or degenerate evolution equations in Sobolev spaces with variable exponents,
double-phase spaces, Orlicz–Sobolev spaces, and weighted Sobolev spaces. For simplicity, we will
only focus on homogeneous Dirichlet boundary conditions: other classical choices can be easily
covered with natural adaptation of this approach.

Here, we assume that N and M are generalized strong Φ-functions as in Subsection 6.3. Given a
bounded domain Ω ⊂ R

d regular enough, we recall the definitions of the following Muselak–Orlicz–
Sobolev spaces (see [17]):

W 1
0L

M (Ω) :=
{

v ∈W 1,1
0 (Ω) : v, |∇v| ∈ LM (Ω)

}

,

W 1
0E

M (Ω) :=
{

v ∈W 1,1
0 (Ω) : v, |∇v| ∈ EM (Ω)

}

,

V 1
0 L

M (Ω) :=
{

v ∈W 1,1
0 (Ω) : |∇v| ∈ LM(Ω)

}

,

V 1
0 E

M (Ω) :=
{

v ∈W 1,1
0 (Ω) : |∇v| ∈ EM (Ω)

}

.

If M is also locally integrable in the sense of Definition 6.3 then all the above spaces are actually
Banach spaces. Moreover, the space of compactly supported smooth functions C∞

c (Ω) is dense in
W 1

0E
M (Ω) and in V 1

0 E
M (Ω): a possible proof can be readily adapted to the arguments of [28, § 2].

Also, if M is ∆2 and ∇2 then W 1
0L

M (Ω) =W 1
0E

M (Ω) is reflexive (see [37, Thm. 6.3]).

We introduce the lower semicontinuous convex semi-modular ϕM,N : L2(Ω) → [0,+∞] as

ϕM,N (v) =



























∫

Ω
N(x, v(x)) dx +

∫

Ω
M(x, |∇v(x)|) dx

if N(·, v) ∈ L1(Ω) , v ∈W 1,1
0 (Ω) , M(·, |∇v|) ∈ L1(Ω) ,

+∞
otherwise .

Supposing again that, for some c > 0,

M(x, z), N(x, z) ≥ cz2 for a.e. x ∈ Ω , ∀ z ∈ R ,

we have that LM (Ω), LN (Ω) ⊂ L2(Ω) and that W 1
0L

M (Ω), V 1
0 L

M (Ω) ⊂ H1
0 (Ω). Hence, one can

characterize the modular spaces associated to ϕM,N in terms of the Musielak–Orlicz–Sobolev spaces
related to N and M as

LϕM,N
=
{

v ∈ LN (Ω) ∩H1
0 (Ω) : |∇v| ∈ LM (Ω)

}

= LN (Ω) ∩ V 1
0 L

M(Ω) ,

EϕM,N
=
{

v ∈ EN (Ω) ∩H1
0 (Ω) : |∇v| ∈ EM (Ω)

}

= EN (Ω) ∩ V 1
0 E

M (Ω) .

As before, we can choose then H := L2(Ω) and assumption H0 holds with s = 2.

Now, we set M : Ω×R
d → R as M(x, z) := M(x, |z|), for (x, z) ∈ Ω×R

d, so in particular M is
symmetric in the second argument. With this notation, the evolution equation associated to this
choice of ϕM,N reads











∂tu(t, x)− div ∂M(x,∇u(t, x)) + ∂N(x, u(t, x)) ∋ f(t, x) (t, x) ∈ (0, T ) × Ω ,

u(t, y) = 0 (t, y) ∈ (0, T ) × ∂Ω ,

u(0, x) = u0(x) x ∈ Ω ,

(6.4)

where again T > 0 is a fixed final time, u0 ∈ L2(Ω), and f ∈ L2((0, T ) × Ω).
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Let us now discuss the validity of the hypotheses H1, H2i–H2ii. These strongly depend on
whether M and/or N satisfy the conditions ∆2 and/or ∇2: for sake of brevity, we only focus on
two cases, the other ones being analogous.

M and N satisfy both ∆2 and ∇2.

By the properties above, we have that the space EN (Ω) ∩ V 1
0 E

M (Ω) = LN (Ω) ∩ V 1
0 L

M (Ω) is
reflexive, and separable if also M and N are locally integrable. In particular, it is immediate to
check that H1 holds with the trivial choice V0 := EN (Ω)∩V 1

0 E
M (Ω), as well as both assumptions

H2i–H2ii.

Theorem 3.7 ensures then that the equation (6.4) has a unique solution

u ∈W 1,1(0, T ;E∗
ϕM,N

) ∩ C0([0, T ];L2(Ω)) ∩ L1(0, T ;EϕM,N
) , ξ ∈ L1(0, T ;E∗

ϕM,N
) ,

such that
ϕM,N (u), ϕ∗

M,N (ξ) ∈ L1(0, T ) .

Let us comment now on the subdifferential relation (3.8). Let us notice that since EϕM,N
=

EN (Ω)∩V 1
0 E

M (Ω) and EϕM,N
is dense in both EN (Ω) and V 1

0 E
M (Ω), we have the representation

of the dual as
E∗

ϕM,N

∼= LN∗

(Ω) + V 1
0 E

M (Ω)∗ .

Let us show now that the subdifferential relation (3.8) in this case can be written as

ξ = ξ1 − div ξ2 , ξ1 ∈ ∂N(·, u) , ξ2 ∈ ∂M (·,∇u) a.e. in (0, T ) × Ω .

To this end, we notice that we have the representation ϕM,N = ϕN + ψM , where ϕN is defined as
in Subsection 6.3 with respect to N , and ψM : L2(Ω) → [0,+∞] is given by

ψM (v) :=







∫

Ω
M(x, |∇v(x)|) dx if v ∈ H1

0 (Ω) , M(·, |∇v|) ∈ L1(Ω) ,

+∞ otherwise .

Lemma 6.5. In this setting, if M satisfies the ∆2 and ∇2 conditions, the subdifferential of the
restriction ψ : V 1

0 E
M (Ω) → R is the operator

AM : V 1
0 E

M (Ω) → 2V
1

0
EM (Ω)∗ ,

AM (v) :=
{

− div η : η ∈ LM∗

(Ω)d , η ∈ ∂M (·,∇v) a.e. in Ω
}

.

Proof. The proof can be directly adapted to the arguments of [6, Thm. 2.17–2.18], by taking into
account that under these assumptions the space V 1

0 E
M (Ω) is separable, reflexive, and dense in

L2(Ω). �

Lemma 6.6. In this setting, if M and N satisfy the ∆2 and ∇2 conditions, the subdifferential of
the restriction ϕM,N : EN (Ω) ∩ V 1

0 E
M (Ω) → R is the operator

AM,N : EN (Ω) ∩ V 1
0 E

M (Ω) → 2L
N∗

(Ω)+V 1

0
EM (Ω)∗ ,

AM,N (v) :=
{

− div η + ξ : η ∈ LM∗

(Ω)d , ξ ∈ LN∗

(Ω) ,

η ∈ ∂M (·,∇v) , ξ ∈ ∂N(·, v) a.e. in Ω
}

.

Proof. It follows from the classical result [6, Thm. 2.11, Rmk. 2.1]. �

M and N satisfy ∆2.

If M and N fulfil the ∆2-condition (but not necessarily the ∇2 condition), then we have that
V 1
0 E

M (Ω) = V 1
0 L

MΩ) and EN (Ω) = LN (Ω). Moreover, these spaces are separable and dense in
L2(Ω) if also M and N are locally integrable. As far as the choice of V0 is concerned, combining
the considerations made in Subsection 6.3, we can choose for example V0 := W 1,p

0 (Ω), where p
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realises condition (iii) of Proposition 6.4 for M and N . Clearly, V0 is separable reflexive and dense
in EϕM,N

. Furthermore, assumption H2 is trivially satisfied since H2i holds as EϕM,N
= LϕM,N

.

Theorem 3.7 ensures then that the equation (6.4) has a unique solution

u ∈W 1,1
w (0, T ;E∗

ϕM,N
) ∩C0([0, T ];L2(Ω)) ∩ L1(0, T ;LϕM,N

) , ξ ∈ L1
w(0, T ;L

M∗

(Ω)) ,

such that

ϕM,N (u), ϕ∗
M,N (ξ) ∈ L1(0, T )

and the differential inclusion (3.8) is satisfied.

6.5. Singular PDEs with dynamic boundary conditions. In this subsection we show that
the variational theory presented in this papers also allows to consider PDEs with possibly singular
dynamic boundary conditions. As a motivating example, let us focus now on problems in the
following form:



















∂tu−∆u+ ∂M(·, u) ∋ f in (0, T )× Ω ,

u = uΓ in (0, T )× Γ ,

∂tuΓ + ∂nu+ ∂MΓ(·, uΓ) ∋ fΓ in (0, T )× Γ ,

(u, uΓ)(0) = (u0, u0,Γ) in Ω× Γ ,

(6.5)

where Ω ⊂ R
d (d ≥ 2) is a bounded domain with sufficiently regular boundary Γ, ∆ denotes

the Laplace operator, and n is the outward unit normal vector on Γ. Here, f ∈ L2(0, T ;L2(Ω))
and fΓ ∈ L2(0, T ;L2(Γ)) represent two given forcing terms in the bulk and on the boundary,
respectively, while u0 ∈ L2(Ω) and u0,Γ ∈ L2(Γ) are the given initial data. Moreover, M and
MΓ are taken as strong Φ-fucntions on Ω and Γ, respectively, in the sense of conditions (1)–(5) of
Subsection 6.3.

In order to frame the evolution problem (6.5) in the context of modular spaces, it is natural to
consider the Hilbert space H := L2(Ω)× L2(Γ) and define ϕ : H → [0,+∞] as

ϕ(v, vΓ) :=



































∫

Ω

(

1

2
|∇v(x)|2 +M(x, v(x))

)

dx+

∫

Γ
MΓ(y, vΓ(y))dy,

if v ∈ H1(Ω) , M(·, v) ∈ L1(Ω) ,

v|Γ = vΓ , MΓ(·, vΓ) ∈ L1(Γ) ,

+∞
otherwise .

It is not difficult to check that problem (6.5) can be formulated in an abstract way as

∂tu+ ∂ϕ(u) ∋ f , u(0) = u0 ,

where we have used the bold notation to denote a general element of H, namely u := (u, uΓ),
f := (f, fΓ) ∈ L2(0, T ;H) and u0 := (u0, u0,Γ) ∈ H. Let us point out that for the general element
v = (v, vΓ) ∈ H it is not necessary true that vΓ is the trace of v on Γ. For this to be ensured, one
needs on v more regularity than just L2: for example, if v = (v, vΓ) ∈ D(ϕ), then v ∈ H1(Ω) and
vΓ is its trace (which is indeed well-defined in H1/2(Γ)).

Let us check that this problem can be framed in our variational setting. First of all, using the
notation of Subsection 6.3 for the Musielak–Orlicz spaces on Ω and Γ, we have that

Lϕ =
{

v ∈ H1(Ω)×H1/2(Γ) : v|Γ = vΓ , v ∈ LM (Ω) , vΓ ∈ LMΓ(Γ)
}

,

Eϕ =
{

v ∈ H1(Ω)×H1/2(Γ) : v|Γ = vΓ , v ∈ EM (Ω) , vΓ ∈ EMΓ(Γ)
}

,
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and the ‖·‖ϕ-norm is equivalent to the norm of the intersection of the spaces appearing on the
right-hand side, namely

1

4
‖v‖ϕ ≤ ‖v‖H1(Ω) + ‖v‖ϕM

+ ‖vΓ‖ϕMΓ

≤ 4 ‖v‖ϕ ∀v ∈ Lϕ .

It is immediate that ϕ is a lower semicontinuous convex semi-modular on H, which is indeed a
separable Hilbert space. Besides, the s-coercivity of ϕ in the sense of assumption H0 follows from
the respective hypothesis on M and MΓ as in Subsection 6.3 with s = 2 (actually, in this case it is
enough to require the above-mentioned coercivity only on MΓ, thanks to a suitable Poincaré-type
inequality and the gradient contribution in ϕ).

Secondly, let us check assumption H1. Using property (ii) of Proposition 6.4, we have that
L∞(Ω) × L∞(Γ) →֒ EM (Ω) × EMΓ(Γ) continuously, and C∞(Ω) × C∞(Γ) is dense in EM (Ω) ×
EMΓ(Γ). Consequently, a natural candidate for the space V0 is

V0 :=
{

v ∈ Hm(Ω)×Hm−1/2(Ω) : v|Γ = vΓ

}

, m >
d

2
.

Indeed, clearly V0 is separable, reflexive, and by the Sobolev embeddings we have the continuous
inclusions

Hm(Ω) →֒ L∞(Ω) ∩H1(Γ) , Hm−1/2(Γ) →֒ L∞(Γ) ∩H1/2(Γ) .

Recalling the equivalence of the ‖·‖ϕ-norm above, this ensures that V0 →֒ Eϕ continuously. As far
as the density of V0 in Eϕ is concerned, given v ∈ Eϕ, since Hm(Ω) is dense in EM (Ω) ∩H1(Ω),
there is a sequence (vn)n ⊂ Hm(Ω) such that vn → vΓ in EM (Ω) ∩ H1(Ω). Clearly, the traces
(vΓ,n)n ⊂ Hm−1/2(Γ) satisfy vΓ,n → vΓ in H1/2(Γ). Furthermore, if d = 2, then Γ has dimension 1

and by the Sobolev embeddings we have H1/2(Γ) →֒ L∞(Γ) →֒ EMΓ(Γ) continuously, so that also
vΓ,n → vΓ in EMΓ(Γ), hence vn → v in Eϕ. If d = 3, then Γ has dimension 2 and by the Sobolev
embeddings we have H1/2(Γ) →֒ L4(Γ): in this case, if we suppose that MΓ is controlled by a 4-th
power, then L4(Γ) →֒ EMΓ(Γ) and we can conclude as above.

Lastly, let us discuss assumption H2. Following the same line of Subsection 6.3 and without
going into the details, the main idea is that we can either assume ∆2-type conditions in order to
get H2i or ∇2-type conditions in order to get H2ii. For example, if both M and MΓ satisfy the
∆2 condition, then we have EM (Ω) = LM (Ω) and EMΓ(Γ) = LMΓ(Γ), so that condition H2i is
trivially satisfied.

Theorem 3.7 ensures then that the problem (6.5) admits a unique variational solution

u ∈W 1,1
w (0, T ;Lϕ̄∗) ∩ C0([0, T ];H) ∩ L1

w(0, T ;Lϕ) , ξ ∈ L1
w(0, T ;Lϕ̄∗) ,

such that
ϕ(u), ϕ∗(ξ) ∈ L1(0, T ) ,

in the sense that
∫

Ω
u(t)ζ +

∫

Γ
uΓ(t)ζΓ +

∫ t

0

∫

Ω
∇u · ∇ζ +

∫ t

0
[ξ, ζ]ϕM

+

∫ t

0
[ξΓ, ζΓ]ϕMΓ

=

∫

Ω
u0ζ +

∫

Γ
u0,ΓζΓ +

∫ t

0

∫

Ω
fζ +

∫ t

0

∫

Γ
fΓζΓ ∀ t ∈ [0, T ] , ∀ ζ ∈ Eϕ .
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