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I. Introduction

T HE need to preserve commercial and scientific relevant orbits in
the low Earth belt asks for the active removal of inoperative

satellites, which lay on slowly decaying orbits and typically present a
moderate eccentricity value [1]. Proximity operations around non-
cooperative targets require the capability to execute prompt inbound/
receding trajectories as well as a certain level of autonomy to react in
an operationally safe fashion. The guidance and control strategies
developed for docking cooperative craft can hardly be used in this
case for operational reasons. As a result, the study of control solutions
applicable to close-range proximity operations and suitable for
spaceborne implementation is an active research field.
Relative orbital elements (ROEs) are one of the many existing sets

of variables to describe the relative dynamics between satellites
orbiting around the same main attractor. With reference to the survey
[2], theROEs used in thiswork are the quasi-nonsingularROEs based
on relative eccentricity/inclination vectors. For formation-flying and
space rendezvous applications where the satellites are separated from
few to several tens of kilometers, this is a convenient choice to reduce
the linearization errors, to include the effect of orbital perturbations
[3], and to exploit the methods of celestial mechanics to identify the
most efficient locations of the orbit correction maneuvers [4]. As
ROEs are nonlinear functions of the nonsingular orbital elements,
they are slowly varying variables. Moreover, theymerge the physical
insight in the absolute orbits with a straightforward visualization of
the relative motion in the local Cartesian orbital comoving frame—
the Hill frame. Lastly, recalling their origin from the study of satellite
co-location on geostationary orbits, they allow to compute easily the
minimum distance between the two satellites over one orbital period
in the plane perpendicular to the velocity. As explained in [5], this
quantity is related to the difference of phase angles of the relative
eccentricity/inclination vectors for almost bounded relative orbits. In
the presence of a nonvanishing relative semimajor axis, instead, its
expression is derived in [6]. This one-orbit minimum distance plays a
crucial role to assess the safety of a formation in the presence of
navigation uncertainties in the along-track direction [7]. To date these
ROEs have been widely exploited to support the flight dynamics
activities and to design the spaceborne guidance navigation and
control (GNC) systems of a large number of formation-flying mis-

sions flown in low Earth orbits (e.g., GRACE formation switch,

TerraSAR-X–TanDEM-X, PRISMA, AVANTI) [8].
In the close-range domain (when the intersatellite separation is less

than 1 km), the relative dynamics is often described using the

Cartesian relative state composed by position and velocity. For the

Keplerian near-circular case, the linearized equations of the relative

motion have been first derived in [9] and extensively used since then.
These are known as the Hill–Clohessy–Wiltshire (HCW) equations.

In the close-range domain, where small relative distances and short

time scales limit the impact of errors due to simplifications and non-

Keplerian effects, the HCWequations are widely used thanks to the
existence of a simple solution (i.e., they are a system of first-order

differential equations with constant coefficients). The presence in the

state of the Cartesian relative position eases the modeling of the field

of view of the sensors and of the path constraints of the approach
corridor. Moreover, for the phases of forced motion, the continuous

control acceleration profile can be computed using the convolution

matrix. Nevertheless, the Cartesian relative position and velocity
state is composed of fast varying variables.
This Note aims at merging advantages from both the two men-

tioned approaches in the specific application of close-range proxim-

ity operations. Previous research already identified some points of
connection that were then exploited to derive specific results. In [10]

it was shown that the linearized relative dynamics described either in

the local Cartesian frame or through orbital elements’ differences

share equivalence through a linearized transformation. This was used
to calibrate the initial conditions in Cartesian state to reduce the

subsequent propagation error. In [11] it was recognized that ROEs

can be written as functions of the integration constants of the HCW

equations. This was used to derive an effective and simple interpre-
tation of the geometry of the natural solutions of the HCWequations

in terms of the ROE components. Such underlying mapping from

ROEs to the Cartesian relative state has been then used in [12] to
derive a general empirical formulation to include the mean effects

produced by nonconservative perturbations onto the relative motion

in ROEs. Despite these results, the definition of a rigorous formal

transformation to prove the equivalence of such formulations was
lacking. It is here shown that the geometrical mapping of the ROEs in

the local Hill frame is de facto the change of variables sought. By

applying it, the matrices of the plant, input control, state transition,

and convolution are consistently transformed back and forth.
Because the change of variables is time-varying, it matches the fact

that ROEs derive from expanding the orbital elements of the refer-

ence absolute orbit (which are defined in an inertial frame), whereas

the Cartesian relative state is defined into the local Hill frame (which
rotates at the rate of the mean motion). Accordingly, results from

linear control theory can be interpreted under the perspective of

astrodynamics. Conversely, observations about the optimal locations

of the maneuvers based on the Gauss’s variational equations can be
used to define the distribution over time of the control points. In this

context, this Note presents a methodology to generate piecewise

constant acceleration profiles from an impulsive guidance solution,
setting up a control grid that minimizes the difference between

impulsive and equivalent delta-v burns corresponding to the accel-

eration profile. This allows tackling and solving the simpler problem

based on the impulsive approximation, while exploiting results and
insight in the solution that are available from impulsive analysis in the

ROE framework. The goal is to produce solutions feasible for space-

borne autonomous implementations as well as to aid the definition of

safety checks during autonomous operations. As an example the
synchronized relative motion with respect to a spinning target satel-

lite is taken and a map of the delta-v required for the 3D fly-around

solutions is generated.
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The Note is organized as follows. After a brief recall of definition
and properties of the ROEs (Sec. II), Sec. III introduces the unified
ROE-HCW framework and revisits under this perspective known
results of natural solutions. Section IV addresses the controlled
relative motion to deliver a method of synthesis of the piecewise
continuous profile of control accelerations, when a reconfiguration
guidance profile is designed in either the Cartesian frame or the
ROE space.

II. Background

The dimensionless ROEs are defined as [12,13]

δα �
�
δa; δλ; δex; δey; δix; δiy

�
T

�
�
Δa∕ac;Δu� ΔΩ cos ic;Δex;Δey;Δi;ΔΩ sin ic

�
T

(1)

where α � �a; u; ex; ey; i;Ω�T is the set of Keplerian nonsingular
elements, ex � e cosω and ey � e sinω are the x and y components

of the eccentricity vector, u � ω�M is the spacecraft mean argu-
ment of latitude, a is the semimajor axis, ω is the argument of the
perigee,M is themean anomaly, and i is the inclination. In Eq. (1), the
symbol Δ denotes the difference between quantities of the two
satellites, respectively, named the chief (c) and the deputy. The term
δλ is called the relative mean argument of longitude, whereas δe and
δi are the relative eccentricity and relative inclination vectors, respec-
tively. By introducing a polar notation for both δe and δi, the phase
angles defined from the axes through the ascending node of the chief
satellite have, respectively, the meaning of perigee φ and ascending
node θ of the relative orbit [7,13].
In particular, as explained in [5], the relative inclination vector δi is

directed as the unit non-coplanar vector between the orbits of the
chief and the deputy. When the differences in inclination and right
ascension of the ascending node are small, its components are given
as in Eq. (1). The phase angle θ corresponds to the true argument of
latitude of the intersection point of the plane-change maneuver
between the chief and deputy orbits. The magnitude of the relative
inclination vector, instead, is given by the angle between the two
orbital planes computed with the spherical trigonometry at the inter-
section point. The relative eccentricity vector defined in Eq. (1) is the
difference of the x and y components of the eccentricity vectors of the
chief and deputy satellites, having assumed that their orbital planes
almost coincide (i.e., Δi and ΔΩ ≪ 1).
The Keplerian relative dynamics in ROEs is modeled by the

following system:

8<
:
δ _α � Aδα� B ~u

δα�t0� � δα0

; A �

2
666666666664

0 0 0 0 0 0

− 3
2
n 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775
;

B � 1

na

2
666666666664

0 2 0

−2 0 0

� sin u 2 cos u 0

− cos u 2 sin u 0

0 0 cos�u�
0 0 sin�u�

3
777777777775

(2)

where ~u is the vector of the control accelerations written in the radial–
tangential–normal (RTN) frame, with R positive outward with
respect to the center of the Earth and N directed as the orbital angular
momentum. For near-circular orbits the transverse direction almost

coincides with the one of the velocity (here referred to as tangential
direction). Moreover, n is the mean motion of the chief craft.
For the sake of completeness, also the linear time-invariant for-

mulation of the HCWequations is as follows:

8<
: _x � Âx� B̂ ~u

x�t0� � x0
; Â �

2
6666666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

3
7777777777775
;

B̂ �

2
666666666664

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

3
777777777775

(3)

III. Unified ROE-HCW Framework
for the Keplerian Motion

Inspired by the fact that ROEs can be written as functions of the
integration constants of the HCW equations [11] and from the lin-
earized-relative-orbit-element variational equations developed in
[14], to study how such invariants of the HCW equations vary over
time when subject to external accelerations, the unified ROE-HCW
framework for the close-range domain is obtained as follows. The
change of variables (Lyapunov transformation) T�t� is introduced:

T�t��

2
66666664

1 0 −cos�nt� −sin�nt� 0 0

0 1 2sin�nt� −2cos�nt� 0 0

0 0 0 0 sin�nt� −cos�nt�
0 0 nsin�nt� −ncos�nt� 0 0

−�3n�∕2 0 2ncos�nt� 2nsin�nt� 0 0

0 0 0 0 ncos�nt� nsin�nt�

3
77777775

(4)

where the rows of T�t� transform the ROE set defined in Eq. (1),
respectively, in the RTN components of the relative position and
relativevelocity. The transformationT�t� is nonsingular for all t as the
determinant is constant and equal to n3∕2. Note also that both T�t�
and T−1�t� are continuously differentiable. Accordingly, the inverse
transformation is given by

T−1�t� �

2
666666666664

4 0 0 0 2∕n 0

0 1 0 −2∕n 0 0

3 cos�nt� 0 0 sin�nt�
n 2 cos�nt�

n 0

3 sin�nt� 0 0 − cos�nt�
n 2 sin�nt�

n 0

0 0 sin�nt� 0 0 cos�nt�
n

0 0 − cos�nt� 0 0 sin�nt�
n

3
777777777775
(5)

so that

x � T�t�aδα aδα � T−1�t�x (6)

where the semimajor axis of the chief scales δα to set all the quantities
in the unit of the length. By using this change of variables, it holds
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Φ�t; t0� � T−1�t�Φ̂�t; t0�T�t0� Φ̂�t; t0� � T�t�Φ�t; t0�T−1�t0�
A � T−1�t�ÂT�t� − T−1�t� _T�t� Â � T�t�AT−1�t� − T�t� _T−1�t�
aB � T−1�t�B̂ B̂ � T�t�aB
Ψ � T−1�t�Ψ̂ Ψ̂ � T�t�Ψ (7)

where ⋅̂ quantities refer to the HCW dynamics, whereas the others to

their respective in ROEs.Φ is the state transitionmatrix, whereasΨ is

the convolution matrix. The term

T−1�t� _T�t� �

2
66666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 n 0 0

0 0 −n 0 0 0

0 0 0 0 0 n
0 0 0 0 −n 0

3
77777775

(8)

represents a rotation of the relative eccentricity and inclination vec-

tors at the rate of the meanmotion andmatches the fact that the ROEs

are defined in the inertial frame, whereas the Cartesian relative state is

defined into the local orbital comoving frame. Note that due to the

presence of this term the change of variable T differs from the one
proposed in [15] to transform the in-plane HCW equations into two
uncoupled, second-order, linear differential equations in the new
variables.
Several useful relative orbits for formation flying are derived from

the solution of Eq. (2) or Eq. (3). To show the whole information that
is conveyed by the unified framework, two cases are here shown.
The first example (depicted in Fig. 1) is a passively safe relative
orbit, typically used for approaching non-cooperative targets (e.g.,
AVANTI) or for interferometry (e.g., TanDEM-X–TerraSAR-X).
The second example (depicted in Fig. 2) is a projected circular orbit:
a bounded, centered, relative orbit whose projection on the T-N plane
is a circle.
The plots in the (a)-view of Figs. 1 and 2 show the 3D trajectory (in

black) in the RTN frame. Note that the axes are oriented in agreement
with the physical sense of a satellite flying along its orbit: the radial is
the vertical axis (local vertical direction), with the Earth at the bottom
of the page. The thicker part of the 3D orbit is the portion above the
chief’s orbital plane (i.e., with positive normal component). To aid
the visualization of the trajectory, the orbital plane (R-T) is high-
lighted and the in-plane projection is plotted in gray. The remaining
projections are shown in green for the T-N plane and in blue for the
R-N plane. The blue line provides an immediate understanding of the
safety of the formation that is whether the deputy satellite will cross

a) RTN view. b) XY view.

Y

u

Fig. 1 Passive safe orbit aδα � �0; 0; 0; 25; 0;−50� m.

a) RTN view. b) XY view.

Y

u

Fig. 2 Projected circular orbit aδα � �0; 0; 0;−25; 50; 0� m.
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the origin during one revolution. Larger dots on the projections
identify the position at initial time; on the 3D trajectory they also
allow understanding the direction of traveling of the deputy satellite.
In the case of Fig. 1, the orbit is bounded (i.e., δa � 0) and centered
with respect to the chief (i.e., δλ � 0). Passive safety is achieved by
phasing the relative eccentricity inclination vectors in an (anti)paral-
lel fashion [5,7]: θ � φ� zπ, with z ∈ N. Among all the possible
combinations, a convenient choice is to set δix � 0, to cancel the
mean effect due to J2 on the relative inclination vector. The chosen
case is of this kind (see aδα in the caption). The second example of
Fig. 2 is typically used in interferometry when a baseline of constant
length is needed in the plane perpendicular to the radial direction.
Once imposed this constraint, the ROE state has the structure of
aδα � �0; 0; 0;−k∕2; k; 0�. Accordingly, there are no degrees of
freedom left, and thus it is not possible to mitigate the effect of the
mean perturbation due to J2.
The visualization of the geometry of the relative trajectory is more

straightforward using the Cartesian state formulation. The ROEs, in
fact, convey only the size (δe) and position (δa, δλ) of the center of the
in-plane ellipse, the maximum amplitude of the out-of-plane motion
(δi), and the amount of the minimum distance to the origin on the

R-N plane (δeTδi) [7,11,13]. On the other hand, the ROEs provide
additional information related to the absolute orbit of the chief. The
(b)-view of Figs. 1 and 2 shows the relative eccentricity (in black) and
inclination (in gray) unit-vectors in the orbital planes of the satellites
(Ωc ≅ Ωd, ic ≅ id). From this plot, one can obtain the following
additional information: the δe/δi phasing (related to formation
safety) and the moment along the orbit (u) when the maximum
separations in R (i.e., u � φ� zπ), T (i.e., u � φ� π∕2� zπ),
and N (i.e., u � θ� zπ) are reached. Moreover, because it is known
how δe and δi move due to the mean effect of orbital perturbations
(e.g., Earth oblateness) one can predict how the motion will be
affected over time [11–13]. Note that theΩ-Y plane is often denoted
as δ⋅x-δ⋅y plane when designing guidance and control schemes

directly in the ROE space [4,13,16]. Therefore, known current and
aimed directions of the relative eccentricity and inclination vectors,
the mean argument of latitude u at which performing the maneuver is
simply the phase angle (measured from theΩ axis) of the ROE differ-
ence vector. This provides the additional flight dynamics information
about possible time and corresponding location on the chief’s orbit of
the required maneuvers.
The change of variable T is strictly valid for the Keplerian motion

and performs the back-and-forth transformation of the relative
Cartesian state into the osculating ROEs. The modeling of the geo-
potential effects (the major perturbation in low terrestrial orbits) is
detailed in [3], whereas the mapping of ROEs into the Cartesian
frame (also applicable at large intersatellite separations) is discussed
in [17]. Nevertheless, when the intersatellite distance is definitely
below 1 km, a quick assessment of the effect produced by J2 can be
obtained by mapping directly the mean ROEs through T, because the
closer the satellites themore effective is the natural cancellation of the
oscillating terms. Accordingly, for projected circular orbits, which
represent a worse-case scenario, it amounts to circa 3% of the radius
of the circumference in the T-N plane when accumulated over five
orbital periods.

IV. Inclusion of Control Accelerations

The reconfiguration and maintenance of a satellite formation is
generally achieved bymeans of impulsive control techniques. This is
motivated by the following facts: orbit corrections are mostly of the
order of few cm/s, often chemical propulsion systems are employed,
and payloads usually ask for extended arcs without maneuvers to
avoid interferencewith the instruments. Impulsive control techniques
are often based on theGauss’s variational equations (GVEs), to relate
delta-v burns in theRTN frame to instantaneous changes in the orbital
elements. In theROE framework, the control inputmatrix of Eq. (2) is
derived from the GVEs written for the nonsingular orbital elements’
set and for circular orbits [11]. This served as basis for the develop-
ment of delta-v optimal closed-form schemes for formation keeping
[13] and reconfiguration [16]. At the practical level, when the

prescribed impulsive maneuvers are realized through burns of up
to few minutes of duration, the error introduced is still acceptable.
This is true also for reconfigurations completed over several orbits,
provided that the cumulative effect of J2 is taken into account by
the guidance solution, as, for example, done in [4]. Nevertheless, the
refinement of impulsive control techniques to include the finite-time
modeling of the burn has been studied in [18] (by performing the
analytical integration of the GVE over the burn time) and in [19]
(by employing the ROE-based convolution matrix).
The change of ROEs achieved at time tF after an impulsive delta-v

occurred at t0 is

aΔδα � Φ�tF; t0�aBδv (9)

where δv is the delta-v vector in RTN. Note that for the Keplerian
motion the plantmatrix of the dynamics inROEs is nil-potent of order
2, and therefore Φ�tF; t0� is trivially �I� A�tF − t0��. At a practical
level, the propulsion system imparts an acceleration to yield the
following equivalent delta-v:

δvi � CiΔt � Ci

Δu
n

� Ci

2hba
n

(10)

where, for each component i, C is a constant acceleration, and Δt
is the total burn time corresponding to a change of mean argument of
latitude Δu with 2hba the double of half-burn-arc angle. Using
Eq. (10) the ROE change is expressed as

aΔδα � 2hba
n2

2
6666664

0 2 0

−2 −3�uF − u0� 0

sin u0 2 cos u0 0

− cos u0 2 sin u0 0

0 0 cos u0
0 0 sin u0

3
7777775
0
@CR

CT

CN

1
A (11)

The convolutionmatrix inROEs for a burn starting atu0 and ending at
uF, with Δu � uF − u0 is

Ψ�uF; u0� �
1

n2

2
6666664

0 2Δu 0

−2Δu − 3
2
�Δu�2 0

−�cuF − cu0 � �2�suF − su0� 0

−�suF − su0� −2�cuF − cu0� 0

0 0 ��suF − su0�
0 0 −�cuF − cu0�

3
7777775

(12)

where a short-hand notation has been used for sine and cosine terms.
By taking the mean argument of latitude of the center-of-burn uc so
that uc � u0 � hba, the ROE change becomes:

aΔδα�uF� � Ψ�uF; u0�C

� 1

n2

2
666666666664

0 4hba 0

−4hba − 3
2
�2hba�2 0

�suc2shba 2cuc2chba 0

−cuc2chba 2cuc2chba 0

0 0 cuc2chba

0 0 suc2shba

3
777777777775

0
BBB@
CR

CT

CN

1
CCCA

(13)

Thus,modeling amaneuver as impulsive (at u0) does not affect the δa
and δλ components, but introduces errors on the relative eccentricity
and inclination vectors. The latter would be partly reduced by locat-
ing the impulsive maneuver at uc, thus leaving the errors due to the
sine/cosine of the half-burn-arc angle. However, the propagation time
tF − tc (different from tF − t0) generates then an error on δλ. Note
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that the expression of Eq. (13) is equivalent to the one used in Eq. (24)

of [18] to refine the control scheme of [13], since the B matrix itself

derives from the GVEs. Moreover, the unified ROE-HCW frame-

work established by the change of variables T shows thatΨ is also the

transformed of its equivalent in Cartesian variables [see Eq. (7)].
During close-range proximity operations there is the need to

perform translational motion in any direction (as, e.g., for the final

approach before docking) or fly-around trajectories with respect to

any given axis of rotation (as for inspection purposes [20] or for the

synchronized motion for active debris removal). These actions

require definitely larger maneuvers than formation keeping and

reconfiguration, especially when they are performed over limited

time windows. Guidance and control algorithms for such phases are

typically developed working with the Cartesian state. Accordingly,

impulsive guidance solutions are built from the solution of the HCW

Φ̂. For inbound/recede straight-line trajectories, the N-maneuvers

profile is computed by solving a two-boundary problem for each

successive interval �tNi
; tN�i�1� �, with two maneuvers occurring at the

initial and final times of each interval. For each problem, the complete

set of boundary conditions is derived by setting aimed position way

points and a desired velocity profile. Examples are the glideslope

profile [20] or the one used for the unmanned Automated Transfer

Vehicle [21]. These velocity profiles are generated to fulfill technol-

ogy or safety requirements. Disregarding how the boundary condi-

tions are designed, the computation of the necessary impulsive

changes of velocity is performed splitting Φ̂ in its position and

velocity subblocks, as explained in [20].
By exploiting the equivalence between HCWequations and ROE-

based equations, the computation of the impulsive delta-v burns to

realize a given guidance profile defined in the Cartesian frame can be

performed directly in the ROE variables, in a more compact fashion.

It is formalized as

M

 
δvi

δvi�1

!
� na

�
δα�ui�1�−Φ�ui�1; ui�δα�ui�

�

M�

2
6666666666664

0 2 0 0 2 0

−2 −3ξ 0 −2 0 0

�sui 2cui 0 �sui�ξ 2cui�ξ 0

−cui 2sui 0 −cui�ξ 2sui�ξ 0

0 0 cui 0 0 cui�ξ

0 0 sui 0 0 sui�ξ

3
7777777777775

(14)

with ξ � ui�1 − ui. Note also that detM ≠ 0 if and only if ξ ≠ 0; i.e.,
the solution always exists provided that themaneuvers are carried out

at distinct time instants. The existence and mitigation of singularities

for the 2-burn impulsive solution when in-plane and out-of-plane

reconfigurations are treated separately and are discussed in [22].
As an example, consider the straight-line approach along the

T direction, referred as V-bar approach, discussed in [20]. This

approach requires the deputy to move from −500 to −100 m in

approximately 8 minutes. Unlike [20], where the glideslope velocity

profile is used to reach the endpoint, here the distance is set to be

covered with constant velocity in the available time (resulting in

equally spaced position way points on the V-bar). By setting N = 8

maneuvers, the solution in the ROE space is shown in Fig. 3a,

following the plotting conventions of [16]. The initial ROE state is

marked by the black-white bullet; the end one by the red triangle. For

the sake of readability, these are also annotated in Fig. 3a. Pre- and

postmaneuver ROEs aremarked differently to show the effect of each

single pulse. The left subplot displays the evolution of the in-plane

mean motion (i.e., δa and δλ). Here, the natural relative dynamics

make δλ to drift over time (horizontally), as soon as the relative

semimajor axis is not null. The right subplot displays the evolution

of the relative eccentricity vector. Note that this view is the Ω-Y

plane. In the unperturbed case, the relative eccentricity vector is
moved only through maneuvers.
The fact that forced motion phases, like the one of the example,

require large maneuvers is clear already from the values assumed by
the ROEs in Fig. 3. Accordingly, a finite-burn modeling is essential
to represent more faithfully the physical realization of the maneuver
by means of the propulsion system typically embarked on small-
medium satellites. Moreover, given the tight timewindow, a continu-
ous acceleration profile should be considered.
The same guidance just employed can be used to generate a

piecewise constant acceleration profile. Again, for simplicity, the
solution is obtained in the equivalent ROE space. The continuous
version of the two-point boundary problem of Eq. (14) becomes

h
Φ�ui�1; uint�Ψ�uint; ui� Ψ�ui�1; uint�

i Ci

Ci�1

!

� na
�
δ ~α�

i�1 −Φ�ui�1; ui�δ ~α−
i

�
(15)

where uint � �ui � ui�1�∕2. The initial/final ROE states are denoted
by ~⋅ to indicate that they are not the same as of Eq. (14) when
i � 2 : : : N − 1, due to the continuity condition imposed on the
state. The in-plane ROEs evolution is displayed in Fig. 3b. Here
the intermediate ROE states at ui (marked in black) are reached
continuously as a consequence of the control accelerations.
The trajectories obtained in the two cases are plotted in Fig. 4a: in

solid black the impulsive solution, and in dashed gray the continuous
one. For the same example, the trajectory obtained implementing the
glideslope guidance profile of [20] is shown in Fig. 4b. Irrespective of
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Fig. 3 V-bar: in-plane views of the ROE space.
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the strategy used to design the approach, once available the sequence
of δα (or x) at corresponding times, the piecewise constant acceler-
ation profile is computed through Eq. (15) on the N − 1 intervals.

A. Design of the Control Grid

The accelerations for the two considered examples are displayed in
Fig. 5, respectively, in dashed gray and solid black for equally spaced
way points and glideslope relative velocity profile. These are
obtained solvingN − 1 problems of Eq. (15), which is implementing
the control grid sketched in the top part of Fig. 6. There, each full-
node corresponds to the location of an impulsive delta-v from the
guidance plan (i.e., occurring at ui). Accordingly, the duration of the
shortest piece of constant burn is set by the distance between two
consecutive nodes; a quantity linked to the functioning of the pro-
pulsion system. Recall that the focus is on reconfigurations that occur
over limited time horizons (i.e., fractions of the orbital period) which
justifies the use of equally spaced nodes. In Fig. 6, square brackets
delimit the ith two-boundaries interval and the dashed vertical line
marks the position of uint. Additionally, the centers of burn of the two
constant acceleration legs are highlighted (i.e., uc;i and uc;i�1). By

recalling the insight provided by Eq. (13) on the location of the
center-of-burn of a maneuver, it is evident that the impulsive equiv-
alent maneuver generated by the continuous acceleration profile is
placed in the farthest location, within the limits of the considered
interval, from the impulsive maneuvers of the original guidance
profile. Accordingly, if the latter was generated to fulfill a delta-v
optimal score, its actual continuous realization degrades the original
solution due to such discrepancy between the original design and the
location of the equivalent impulsivemaneuver.As a consequence, the

fuel consumption assessed through the original impulsive analysis will
not represent the fuel consumption required by its continuous imple-
mentation. In light of these considerations, a second grid scheme is
provided in the bottom part of Fig. 6. There, the idea is tominimize the
difference between the impulsive and piecewise continuous solutions.
The rationale is that often the impulsive guidance profile is designed
aiming at the minimization of the delta-v consumption. Moreover, it is
generally easier to solve the open-loop guidance problem exploiting
an impulsive approach rather than tackling directly the continuous
problem. The grid control points are still equally spaced, though the
intervals are defined to overlap the impulsive burns to the equivalent
center-of-burn locations. The approach is straightforward for recon-
figuration horizons that do not require to fire at initial and final times
(i.e., marked by the empty nodes). Furthermore, it requires some
adaptations for the cases in which a trajectory correction is indeed
required at the boundary times.
The effect of the choice of the type of control grid when imple-

menting a continuous acceleration to follow an impulsive maneuver
plan is considered in the following example. Here, initial and final
states in meters are δα0 � �0;−500; 600; 300; 0; 0� and δαF �
�0;−100; 0; 0; 0; 0�, and semimajor axis of≈7153 km. The reconfig-
uration is covered in half-orbit-period time and the N grid nodes are
equally distributed over the reconfiguration horizon without com-
prising the initial and final times. The impulsive guidance profile is
obtained solving a linear programming problem (in the ROE space)
where the 1-norm of the delta-v is minimized. Accordingly, at some
nodes no maneuver may occur.
Figure 7 shows the results in terms of trajectory and acceleration

profiles, when either boundary grid (solid black) or the centered grid
(dashed gray) are used to realize the same impulsive guidance profile.
By increasing the number of nodes, the trajectories tend to overlap.
Nonetheless, as summarized in Table 1, the equivalent delta-v cost
obtained by adopting the centered control grid is cheaper and closer
to the budget of the original impulsive guidance profile.

B. Example of Synchronized Relative Motion

An example of possible 3D forced relative motion occurring
during close proximity operation is represented by the flyaround.
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Fig. 4 V-bar approach: trajectories obtained with impulsive (solid black) and continuous (dashed gray) control.
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Fig. 5 Acceleration profiles: equally spaced way points (dashed gray)
and glideslope (solid black).

Fig. 6 Possible structures of the control grids: boundary (top) and
centered (bottom).
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This is typically required to synchronize a chaser spacecraft with the

rotational motion of the target satellite, to inspect continuously a

given point or to enable its robotic capture. When dealing with active

debris removal activities, the target is generally non-cooperative (i.e.,

in real-time there is no exchange of information between the satel-

lites) and noncollaborative (i.e., the target is not actively keeping

an attitude that can aid during its capture). At the moment of the

rendezvous, such targets have an unknown rotational dynamics and

they are possibly tumbling. Even by adopting detumbling techniques

devoted to damp the excessive rotational rate, a residual rotational

motion is to be considered. Accordingly, a first step to understand the

control action needed by a possible precapture phase is to assess

required accelerations and corresponding delta-v budget for a forced
circular relative trajectory in the plane perpendicular to the axis of

rotation of the target. The impulsive guidance profile for such a

motion can be designed following the flyaround method of [20],

whereas the required continuous accelerations can be computed

through the methodology presented in this Note.

As an exampleFig. 8 reports themap of the equivalent delta-v costs
for synchronized relative motion at a separation between the centers

of mass of the satellites rc of 10 m and a residual angular rate of the
target of 0.1 deg/s. The orientation of the axis of rotation into the RTN
frame is expressed by adopting the θx and θz angles introduced in [20]
to express its direction in the local vertical/local horizontal orbital
frame. In particular, for this example the impulsive guidance is
designed using N � 9 pulses. No final condition on the relative
velocity after one loop is posed. As a consequence, when the chaser
reaches again the initial relative position at time N � 1 (i.e., com-
pletes one loop) it has a velocity that will not make it to continue on
the circumference for a second loop. For the sake of building a map,
the initial conditions of each case are derived from the initial dis-
placement of rc while imposing null relative velocity at that point.
Note that in general such relative state is not a stable condition for the
relative dynamics, nor it might be the optimal starting point for
the operational strategy of the capture. Nevertheless, this serves the
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Fig. 7 In-plane reconfiguration: comparison between boundary (solid black) and centered (dashed gray) control grids, with different number of nodes.

Table 1 Summary of delta-v costs for the
reconfiguration of Fig. 7

N maneuvers

Delta-v, m∕s
Impulsive Boundary grid Centered grid

1 2.664 5.140 2.848
2 1.548 3.035 1.636
3 1.294 2.560 1.417
4 1.120 2.226 1.198
5 1.054 2.099 1.112

Fig. 8 Map of delta-v costs of all possible orientations of the rotational
axis in RTN. Map obtained for ω � 0.1 deg/s and rc � 10m.
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scope of providing comparable initial conditions for all the runs of the

map, enabling a comparison between the different costs.

Following the considerations drawn in this Note, the centered grid

is employed to derive the continuous acceleration profile and aminor

adjustment is introduced to take into account the pulse at the starting

time. The map of Fig. 8 provides the following results: the realistic

delta-v budget associated with the different synchronization motions

depending on the actual orientation of the rotational axis of the target

satellite and the acceleration requirements for the propulsion system

to enable that kind of motion. These results can be also used to

support the operational tradeoff analysis between synchronization

costs and possible redirection of the target spin axis by means of

detumbling techniques. As expected from the equations of the rela-

tive dynamics, the cheapest flyaround is around the−N direction. By

recalling the in-plane views of the natural relative orbits of Figs. 1 and

2, in fact, this condition requires only to circularize the relative in-

plane trajectory without changing the verse of movement. On the

contrary, a flyaround with respect to �N requires counteracting in

full the relative effect of the gravitational pull. Note that the condition

of a target satellite spinning around the normal direction is a very

special situation, because it is fixed both in the inertial and in the local

orbital frames. In general, for the robotic capture of non-cooperative

targets, synchronization, precession of the rotational axis as seen in

the local orbital frame, and straight-line approach have to be com-

bined. Accordingly, the complete guidance plan has to be obtained

combining the elementary solutions recalled in this Note. Once

designed it, the methodology described here to retrieve the open-

loop accelerations is applicable to the general case.

V. Conclusions

The equivalence between the linearized equations of the relative

dynamics in Cartesian state and the linearized equations in relative

orbital elements is proved through a Lyapunov transformation, for

near-circular reference orbits. This is used to generate piecewise

constant acceleration profiles from an available impulsive guidance

solution: a sequence of two boundary problems are solved, each one

covering intervals that contain two impulsive burns. The method is

thought to support close-range proximity operations, which require

larger maneuvers than formation keeping and reconfiguration, over

limited time windows. For spaceborne autonomous applications it

may be more convenient to solve the problem exploiting the impul-

sive approximation. However, it is shown that this introduces errors

on the relative eccentricity and inclination vectors and on the relative

mean argument of longitude if the error on the eccentricity vector is

minimized. By comparing the trajectories obtained with impulsive

and piecewise continuous controls, it is noted that they tend to overlap

when the number of burns increases.

For the proposed approach it is important to properly set the

structure of the control grid used to solve the two boundary problem.

By analyzing the equations written in relative orbital elements, it is

shown that a centered control grid minimizes the difference between

the impulsive delta-v and the equivalent one from the piecewise

continuous implementation. Moreover, by increasing the number

of nodes the delta-v cost of the continuous implementation gets closer

to the impulsive one.

Finally, the proposed method can be used to quickly assess delta-v
cost and required accelerations to realize any given forced motion

phase of close-proximity operations. As an example, the synchron-

ized relative motion between a chaser spacecraft and a rotating target

has been discussed.
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