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MODELLING THE WHOLE SPACE DEBRIS ENVIRONMENT
THROUGH A SPATIAL DENSITY APPROACH

Cristina Duran*, Lorenzo Giudici†, Camilla Colombo‡

This paper proposes a continuum density approach for analyzing the impact of
a fragmentation event into the global debris environment. The debris population
in LEO is represented through its spatial density, defined as a function depend-
ing only on the radial distance from the Earth. The time evolution of the density
function is modelled through the continuity equation, considering the atmospheric
drag effect. At a certain instant, a fragmentation cloud is generated. After the
band formation, its contribution is added to the background population, analyzing
the evolution of the total spatial density function. Finally, a novel formulation is
introduced to also take into account the effect of the secondary phenomena derived
from a collision or explosion in space. In particular, a chain of concatenated col-
lisions, triggered by a single original fragmentation event, is considered, as well
as its feedback effect on the overall debris population. Results are presented for
three different scenarios to illustrate the long-term repercussions of fragmentation
events.

INTRODUCTION

Since the first satellite was launched in 1957, the number of man-made objects in Earth orbit has
been exponentially increasing.1 Nowadays, space debris constitutes a real threat for space activities
and space agencies are cooperating to identify appropriate space debris mitigation measures. Within
this context, explosions of the abandoned spacecraft or upper rocket stages composing the debris
population, as well as collisions between them and other objects orbiting around the Earth, might
have a fatal impact into the space environment, generating hundreds of thousands of fragments with
a diameter larger than 1 mm.2

Several methods have been developed in order to estimate the long-term consequences of such
fragmentation clouds. Evolutionary debris models generally rely on semi-analytical methods to
propagate the dynamics of space debris under orbit perturbations.3–5 To ensure the robustness of
the results against uncertainties and to overcome the absence of a complete set of experimental data,
these methods use several Monte Carlo runs in order to consider a large number of possible evolution
scenarios of the debris population.3, 6, 7 This considerably increases the required computational time
and, thus, limits the variety of possible analyses. In this paper, a continuum approach is employed to
predict the evolution of debris clouds in Low Earth Orbit (LEO). Instead of separately propagating
the trajectory of an extensive set of objects, here the cloud behavior is studied globally, which allows
massive sets of debris data to be handled within a reasonable computational time.
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In this paper, the approach in Letizia et al.8 for continuum modelling of fragmentation clouds is
modified and extended to the study of the global debris population. A density-based approach is
employed in order to analyze the effect of a fragmentation event on the overall debris population
(the IADC population is considered), taking as starting point the strategy in Colombo et al.9

The debris population in LEO is represented through its spatial density, defined as a function
depending only on the radial distance from the Earth. The time evolution of this function is mod-
elled, under the assumption of quasi-circular orbits, through the continuity equation, considering
the effect of atmospheric drag.10 Simultaneously, the NASA breakup model2 is used to characterize
the fragments generated from a certain collision or explosion. The orbital elements of the produced
fragments are propagated, considering atmospheric drag and J2 perturbations, up to the band forma-
tion, when the continuum formulation in McInnes10 becomes applicable also for the fragmentation
cloud. At this time instant, the spatial density function of the fragmentation is built and its con-
tribution is added to the background debris population. The resulting spatial density function is
propagated again, obtaining the evolution in time of the total debris population.10 Finally, a novel
formulation, based on the approach in Somma et al.,11 is introduced to also take into account the
effect of the secondary phenomena derived from a collision or explosion in space. In particular, a
chain of concatenated collisions, triggered by a single original fragmentation event, is considered,
as well as its feedback effect on the overall population in LEO.

CONTINUUM FORMULATION FOR A FRAGMENTATION EVENT

Taking as starting point the strategy proposed in Letizia et al.,8 an efficient method is developed,
to describe the time evolution of the fragmentation cloud resulting from a collision or explosion in
space. The algorithm implementing this method is structured according to the following blocks (see
Figure 1):

• A breakup model, that characterizes the generated fragments, given the initial conditions
under which the fragmentation event takes place.

• A numerical long-term propagator to determine the evolution in time of the orbital elements of
the produced fragments, until the continuum formulation in McInnes10 becomes applicable.

• The spatial density function, defined to translate the orbital parameters of each single frag-
ment into a continuous function depending only on the radial distance from the Earth.

• A numerical continuum propagator to describe the evolution in time of the spatial density
function, from the band formation instant onward.

Breakup
model

Numerical
propagation

Spatial
density
function

Continuum
propagation

Fragmentation
event’s initial

conditions

Fragments’
characterization

Fragmentation
cloud at the

band formation

Spatial density
function at the
band formation

Band
formation

Figure 1: Schematics of the algorithm for the propagation of the fragmentation cloud.
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NASA Breakup model

The fragmentation event, collision or explosion, is here modelled through the standard NASA
breakup model.2, 12 According to the implementation in Krisko,12 the number of produced frag-
ments, Nf , of a given characteristic length Lc or larger can be computed through Equation 1, de-
pending on the nature of the considered fragmentation event:

Explosion : Nf = 6S(Lc[m])−1.6

Collision : Nf = 0.1(Me[kg])0.75(Lc[m])−1.71
(1)

with S an empirically derived unitless factor between 0.1 and 1 (dependent on the explosive body
type) and the reference mass of the collision, Me, defined according to the expressions in Equation
2. Here, a catastrophic collision is considered for values of the impact energy per target mass
exceeding 40 J/g, since, under these conditions, the collision is assumed to cause the complete
fragmentation of both the impactor and the target.6

Catastrophic collision : Me[kg] = Mt[kg] +Mp[kg]

Non− catastrophic collision : Me[kg] = Mp[kg](vc[km/s]/1[km/s])2
(2)

whereMt is the target mass, Mp is the projectile mass and vc is the relative impact velocity between
the projectile and the target.

The area-to-mass ratio A/M distribution is modelled as a lognormal distribution function, with
mean value µA/M [m2/kg] and standard deviation σA/M [m2/kg]. Expressions for these parameters
can be found in Johnson and Krisko,2 for the three different types of considered objects (rocket
bodies, spacecraft and small objects).

The magnitude of the velocity variation caused by the fragmentation, ∆v, is defined as a function
of the area-to-mass ratio and, similarly, its distribution is modelled as a lognormal distribution
function. Again, the expressions for the mean value µ∆v [km/s] and the stardard deviation σ∆v

[km/s] characterizing this distribution are taken from Johnson and Krisko.2

Following the strategy in Letizia,13 in this work, the ∆v direction is randomized and a limitation
to the maximum velocity variation is imposed (equal to 1.3vc) since, otherwise, the method would
generate a small set of fragments with very high ejection velocity (in the order of 60 km/s). Despite
the weaknesses of the NASA breakup model,13 it does not represent a limitation for the approach
here presented. The continuum method proposed in this work does not rely on a specific breakup
model: any alternative model could be implemented by replacing only the first block in Figure 1,
whereas the other blocks would remain unchanged (see Olivieri et al.14).

Band formation and numerical propagation

Phases of the evolution of a debris cloud in LEO

The dispersion model of a fragmentation cloud in LEO can be divided into four phases.15 In the
first phase, right after the fragmentation event, the produced fragments form an ellipsoid-shaped
cloud, concentrated at the location where the collision or explosion took place. The energy dif-
ferences among the generated fragments and, hence, their variable orbital periods, cause the initial
cloud to be spread out along the parent orbit, forming a toroid (phase two). During phase three,
the toroid is gradually dismantled, due to the change of the right ascension of the ascending node,
Ω, and the variation of the argument of perigee, ω, both caused by the Earth’s oblateness. In the
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final configuration (phase four), the cloud forms a band around the Earth, limited in latitude by the
inclination of the parent orbit. Throughout this phase, atmospheric drag can be assumed to be the
dominant perturbation,15 since ω, Ω and the true anomaly, θ, are randomized.

Consequently, the continuum formulation in McInnes,10 which takes into account only the atmo-
spheric drag effect, can be applied only after the band formation, while a numerical propagator is
needed to follow the first phases of the cloud evolution.

Adopting the approach in Letizia et al.,8 the band formation time is estimated as TB = 3Tb,
where Tb is the expression for the band formation time proposed by Ashenberg.16

Numerical propagation

Once the fragments are generated and characterized, their associated position and velocity vec-
tors are computed; the fragments are assumed to suffer an instantaneous velocity variation without
position change. Then, the Keplerian elements defining each fragment’s orbit right after the frag-
mentation event are obtained.

The evolution in time of the fragment’s orbital elements is computed through the numerical in-
tegration of the Gauss’ planetary equations,17 considering atmospheric drag and Earth’s oblateness
perturbations. Drag effect is estimated assuming an exponential density model:17

ρ = ρref exp

(
−
h− href

H

)
(3)

where ρ is the atmospheric density, h is the altitude and href is the reference altitude where the
reference density ρref and the scale height H are defined. The reference values are taken from
Vallado.17 Following the approach in Letizia et al.,8 in this work, the reference altitude href is
selected as the closest tabulated value to the altitude where the fragmentation event takes place and
its value is kept constant for the entire simulation; drag effect is considered up to a 1000 km altitude
and atmosphere rotation is not taken into account.

The effect of atmospheric drag is computed through the expressions reported in King-Hele,18

describing the secular variation of the orbital elements. Regarding the Earth’s oblateness perturba-
tion, only the secular effect of J2 is considered. This assumption is made since, over the long-term,
the Earth’s oblateness only affects ω and Ω and, consequently, high-precision modelling of this
perturbation is not essential.

The set of resulting differential equations is numerically integrated up to the band formation time.
The numerical integration process is halted if the fragment’s perigee altitude falls below 50 km,
since, under this condition, the fragment is considered to be re-entering through the atmosphere.8

Spatial density function

Once the band is formed, the information on each single fragment is translated into a total con-
tinuous density function. Here, the spatial density function is built on the probability of finding a
fragment at a distance r from the center of the Earth, given the semimajor axis a and the eccentricity
e of its orbit. Taking the expression reported in Kessler,19 the spatial density function ni(r) defining
the contribution of fragment i is

ni(r) =
1

4π2rai
√

(r − rpi)(rai − r)
(4)
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where rpi and rai are, respectively, the periapsis and the apoapsis of the fragment’s orbit:

rpi = ai(1− ei)
rai = ai(1 + ei)

(5)

In order to build the total spatial density function, used as initial condition for the continuum
propagation, the contribution of each fragment in the fragmentation cloud must be considered:

n(r) =

N∑
i=1

ni(r) (6)

where N is the total number of objects constituting the fragmentation cloud at the band formation.

Continuum propagation

Once the spatial density function is built at the band formation instant, the continuity equation is
used to compute the density function evolution in time, under the effect of atmospheric drag. Here,
the approach developed by McInnes10 is followed. However, instead of using the analytical expres-
sion therein for the density function propagation, the derived differential equations are numerically
integrated, from the band formation instant onward, as previously done in Frey et al.20 Despite the
consequent increase on the computational time, the numerical approach constitutes a step forward in
terms of versatility, allowing for the propagation of the continuity equation with source-sink terms,
as well as a wider variety of orbit perturbations (considering more sophisticated force models) and
orbit geometries.

The continuity equation (traditionally used in fluid dynamics) provides a description of the evo-
lution of the density of a continuum, given the velocity of its constituting particles. In particular, if
n represents a generic density function, the continuity equation can be written as10

∂n

∂t
+∇ · (nf) = ṅ+ − ṅ− (7)

where t is the time, the term ∇ · (nf) models the forces acting on the system and accounts for
slow/continuous phenomena (such as orbit perturbations) and ṅ+ − ṅ− represents the sources and
sinks of the system, so it can model fast/discontinuous events.

In this Section, neither sources nor sinks are considered. Hence, the continuity equation can be
expressed as

∂n

∂t
+∇ · (nf) = 0 (8)

where the term ∇ · (nf) models, in this case, the atmospheric drag effect.10 In this approach,
the radial distance r is the only spatial coordinate, so spherical symmetry is assumed. For that
reason and since the atmospheric drag is the only considered perturbation, this formulation is only
applicable after the band formation.

The vector field has then only one component:

fr = vr (9)
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where vr is the drift velocity in the radial direction due to drag. According to the derivations in
Letizia et al.,8 under the hypothesis of quasi-circular orbits, vr can be written as

vr = −ε
√
r exp

(
−r −Rh

H

)
(10)

with Rh = RE + href and the parameter ε collecting all the terms that do not depend on r:

ε =
√
µEcd

A

M
ρref (11)

where µE is the Earth’s gravitational constant; cd is the drag coefficient of the fragment, assumed to
be constant and equal to 2.2;17 A is the fragment cross-sectional area; and M is the fragment mass.

Using the method of the characteristics, the continuity equation (Equation 8) can be written as
a system of ordinary differential equations describing the evolution in time of the density function
along the characteristic lines:

dr

dt
= vr = −ε

√
r exp

(
−r −Rh

H

)
dn

dt
= −

[
2

r
vr + v′r

]
n(r, t)

(12)

with initial conditions

r(t0 = TB) = r0

n(r0, t0 = TB) = n0(r0)
(13)

Results

In this Section, three different scenarios are considered:

• Scenario 1: Rocket-body explosion, in an 800-km altitude equatorial, circular orbit. The
NASA breakup model is implemented considering a value of the unitless factor S = 1 (see
Equation 1).

• Scenario 2: Non-catastrophic collision between a spacecraft and a 1-kg projectile with a
relative impact velocity of 1 km/s. The orbit of the considered spacecraft is equatorial and
circular, with an altitude equal to 800 km.

• Scenario 3: Catastrophic collision reproducing the Cosmos 2251 - Iridium 33 encounter in
2009.21 The collision’s initial conditions are extracted from Tan et al.22 The orbit of the
Iridium 3322 is selected as parent orbit.

The results below correspond to a particular run of the NASA breakup model.

In Table 1, the values of the main parameters characterizing the produced fragmentation clouds
are reported.

6



Number of generated
fragments

Number of fragments
at the band formation

Band formation time

Scenario 1 378333 372442 3068.5 days
Scenario 2 13487 12867 314.94 days
Scenario 3 3182831 3012651 1660.0 days

Table 1: Parameters characterizing the generated fragmentation clouds.

In Figure 2, an alternative representation of the Gabbard diagram23 is presented, for two different
time instants: right after the fragmentation event and at the band formation. As illustrated in Figures
2a, 2c and 2e, immediately after the breakup, the fragments’ distribution forms a v-shaped curve
centered at the altitude where the fragmentation event occurs. The leg on the left represents the
fragments whose orbit’s apogee is at the breakup location, while the leg on the right shows those
with the perigee at the breakup location. Figures 2b, 2d and 2f, instead, refer to the fragments’
distribution at the band formation. As can be noticed, the number of fragments is reduced, since
some of them have re-entered through the atmosphere. Moreover, due to atmospheric drag, the
apogee altitudes decrease over time; this effect is more perceptible for fragments with low semi-
major axis, which are now on circular orbits. Consequently, at the band formation, the leg on the
left of the v-shaped distribution disappears.

(a) Scenario 1 (t0) (b) Scenario 1 (t0 + 3068 days)

(c) Scenario 2 (t0) (d) Scenario 2 (t0 + 315 days)
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(e) Scenario 3 (t0) (f) Scenario 3 (t0 + 1660 days)

Figure 2: Distribution of semi-major axis and eccentricity, immediately after the fragmentation
event (left) and at the band formation (right).

As an additional remark, in Scenario 3, some fragments with eccentricity values higher than one
are generated. The fact that the proposed formulation cannot deal with these fragments does not
represent a limitation. Following their parabolic and hyperbolic orbits, the fragments will escape
before the band is formed and, hence, they will have no contribution to the spatial density function.
Therefore, they are discarded from the set of produced fragments.

The time evolution of the spatial density function is presented in Figure 3. The fragmentation
cloud is divided into seven A/M bins, each one containing the same number of objects at the band
formation. The continuity equation is then integrated for each bin separately, taking the average
area-to-mass ratio in the bin. As can be observed, for low values of A/M , there is a noticeable peak
in the density profile even after 1000 days. Instead, for high values ofA/M , the peak is less marked
and rapidly decays with time, since, in this case, the drag effect is predominant.

(a) Scenario 1
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(b) Scenario 2

(c) Scenario 3

Figure 3: Time evolution of the fragmentation’s spatial density function under drag effect (time
origin set at the band formation instant).

As stated before, after the band formation, the assumption of quasi-circular orbits is imposed. To
critically assess the accuracy of this hypothesis, the eccentricity distributions have been analyzed
at the band formation. For all the considered scenarios, most eccentricity values were well below
0.1. Consequently, even if the proposed formulation is not well-suited for highly eccentric orbits,
their contribution to the spatial density function is small and, hence, the loss of accuracy can be
considered reasonable.

Finally, the dependence on the breakup altitude is analyzed. For this purpose, the dilution time is
defined as the time it takes for the density peak to halve its value. As illustrated in Figure 4, both the
altitude and the area-to-mass ratio have a significant effect on the dilution time, since both variables
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heavily influence the intensity of the atmospheric drag force:

1. The dilution time increases for increasing breakup altitudes.

2. The dilution time increases for decreasing values of the area-to-mass ratio.

Figure 4: Dilution time as a function of area-to-mass ratio and breakup altitude (Scenario 2).

CONTINUUM FORMULATION FOR THE GLOBAL DEBRIS POPULATION

For the purpose of studying the impact of a possible collision or explosion into the overall space
environment, the evolution of the entire debris population is analyzed, when at a certain instant
a fragmentation event takes place. The adopted strategy is summarized in Figure 5. The IADC
population is used as background debris population. Similarly to Colombo et al.,9 the impact of the
fragmentation is modelled by superimposition of effects.
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Figure 5: Schematics of the algorithm for the propagation of the total debris population, under
atmospheric drag effect.
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At the initial time, the spatial density function of the background population is computed and
it is propagated in time according to the continuum formulation previously described. Simultane-
ously, the NASA breakup model is used to characterize the fragments generated from the collision
or explosion, in terms of number, size, area-to-mass ratio and velocity. The orbital elements of the
produced fragments are propagated up to the band formation, when the continuum approach be-
comes applicable also for the fragmentation cloud. At this time instant, the spatial density function
of the fragmentation is built and its contribution is added to the pre-existing debris population. Fi-
nally, the resulting spatial density function is propagated again, obtaining the evolution in time of
the total debris population under atmospheric drag effect.

Results

In Figure 6, the spatial density function corresponding to the background debris population at
the band formation instant is presented, before and after adding the fragmentation’s contribution.
Again, the background population is divided into seven area-to-mass ratio bins, each one containing
the same number of objects at the initial time. At the band formation, the same A/M binning is
considered: the contribution of each new fragment is added to the corresponding bin, according to
its area-to-mass ratio. Hence, after the band is formed, each curve accounts for the contribution of
a different number of objects.

(a) Scenario 1, without fragmentation’s contribution (b) Scenario 1, with fragmentation’s contribution

(c) Scenario 2, without fragmentation’s contribution (d) Scenario 2, with fragmentation’s contribution
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(e) Scenario 3, without fragmentation’s contribution (f) Scenario 3, with fragmentation’s contribution

Figure 6: Spatial density function at the band formation, before (left) and after (right) adding the
fragmentation’s contribution.

As can be noticed, the considered fragmentation events have dramatic effects on the total debris
population. In Scenarios 1 and 2, the increase of the spatial density function is higher than 1000%
at the altitude where the breakup occurs, whereas, for Scenario 3, the spatial density function un-
dergoes a thousandfold growth at the collision altitude.

The evolution in time of the total spatial density function is shown in Figure 7, from the band
formation instant. As illustrated, in addition to the dramatic increase of the spatial density function,
the fragmentation events have further consequences. Drag effect is minimal for fragments with
low area-to-mass ratio; consequently, these new generated fragments will remain in orbit for long
periods of time, exacerbating the space debris issue.

(a) Scenario 1
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(b) Scenario 2

(c) Scenario 3

Figure 7: Time evolution of the total spatial density function under drag effect (time origin set at
the band formation instant).

FEEDBACK EFFECT: CHAIN COLLISIONS

As a novelty, in this paper, the impact of a fragmentation event is studied by also taking into
account the effect of the secondary phenomena derived from a collision or explosion in space.

The starting idea is that a fragmentation event may have not a single but a double effect on the
debris population. The primary effect is a sudden increase on the number and density of space
debris. However, this increase might, in turn, trigger a series of concatenated collisions, which
would have a feedback effect on the global population, modifying the predicted evolution of the
spatial density function.
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The approach in Somma et al.11 (which accounts for the effect of collisions into the debris popula-
tion evolution) is here adapted to the modelling of the feedback effect. This additional phenomenon
is included in the continuity equation as a source-sink term, which allows to study the evolution of
the total population in LEO under the combined influence of atmospheric drag and feedback effect.

The adopted strategy is summarized in Figure 8. At the initial time, the background population is
represented through its spatial density function and its time evolution is computed according to the
continuum formulation previously presented. Simultaneously, the breakup model is employed to
characterize the fragments generated as a result of the collision or explosion. The orbital elements
of the produced fragments are propagated up to the band formation, when the continuum formula-
tion becomes applicable also for the fragmentation cloud. At this time instant, the spatial density
function of the fragmentation is built and its contribution is added to the background population.
Finally, the resulting spatial density function is propagated again, considering now the additional
feedback effect, obtaining the evolution in time of the total debris population in LEO.
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Figure 8: Schematics of the algorithm for the propagation of the total debris population, under the
combined influence of atmospheric drag and feedback effect.

Formulation

Following the approach presented in Somma et al.,11 a multi-shell and multi-species source-sink
model is here adopted.

A set of first order differential equations is considered in order to determine the feedback effect’s
contribution to the evolution of the spatial density function. The overall debris population is divided
into four different objects species: rocket bodies, payloads, mission-related objects and fragmen-
tation debris (including both collision and explosion fragments). Again, the IADC population is
considered as background debris population.

The expression in Somma et al.11 for the population variation due to collisions is here translated
into variation of the spatial density function, by merely dividing by the volume of the spherical shell
of radius r and width w, V (r, w):

dni(r, t)

dt
=

Ns∑
j,k=1

CRj,k
(r, t)

V (r, w)
ηjk,i ∀i = 1, ..., Ns (14)
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with

V (r, w) = 4πw

(
w2

12
+ r2

)
(15)

where ni is the spatial density function of species i, Ns is the number of considered species (in this
case, Ns = 4), CRj,k

is the collision rate among two species j and k and ηjk,i is the number of
objects of species i generated (ηjk,i positive) or removed (ηjk,i negative) as a result of a collision
between objects of species j and k.

As an example, an impact between rocket bodies would remove two of them, whereas a collision
between a rocket body and a payload would remove one of each kind. The number of fragments
generated as a result of all the possible considered collisions is computed a priori through the NASA
breakup model,2 assuming that all the impacts between intact objects (rocket bodies, payloads and
mission-related objects) are catastrophic, while all the remaining collisions are considered non-
catastrophic.11

The collision rate among two species j and k can be computed as11

CRj,k
(r, t) = p(r)σj,k

Nj(r, t)[Nk(r, t)− δj,k]
1 + δj,k

(16)

where Nj and Nk are, respectively, the number of objects of species j and k contained in the
spherical shell of volume V (r, w) at instant t; δj,k is the Kronecker’s delta (equal to one if both
indexes are identical; zero, otherwise); σj,k is the square of the impact parameter, defined as the
squared sum of the two objects radii, Rj and Rk:

σj,k = (Rj +Rk)
2 (17)

and p(r) is the intrinsic collision probability per unit time, as originally defined in Wetherill24 for
collisions among meteoroids in the asteroid belt:

p(r) = π
v̄rel

V (r, w)
(18)

with v̄rel the average relative velocity in the shell, assumed to be constant and equal to 10 km/s.25–27

Substituting in Equation 14 the expression for the collision rate:

dni(r, t)

dt
=

Ns∑
j,k=1

πv̄rel(Rj +Rk)
2

Nj(r,t)
V (r,w)

[
Nk(r,t)−δj,k
V (r,w)

]
1 + δj,k

ηjk,i ∀i = 1, ..., Ns (19)

In the original formulation,11 the variables N(r, t) and w are linked, since, as previously men-
tioned, N(r, t) is the number of objects contained in the spherical shell of radius r and width w.
Here, accordingly to the definition of the spatial density function, an infinitesimal shell width is con-
sidered; thus, the discrete formulation in Somma et al.11 is converted into a continuous approach:

dni(r, t)

dt
= lim

w→0

Ns∑
j,k=1

πv̄rel(Rj +Rk)
2

Nj(r,t)
V (r,w)

[
Nk(r,t)−δj,k
V (r,w)

]
1 + δj,k

ηjk,i

∀i = 1, ..., Ns

(20)
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Note that the term
[
Nk(r,t)−δj,k
V (r,w)

]
in Equation 20 cannot be negative, since it would imply that

intact objects can be regenerated by colliding between them; here, under these conditions (e.g. in
the case j = k), the term is imposed to be zero. Consequently, collisions among the same species
are not considered, as a direct consequence of the transformation of the selected discrete formulation
into a continuous one. Note that the denominator in Equation 20 is always equal to one, since the
case j = k is no longer considered.

Hence, the expression accounting for the feedback effect on the spatial density function evolution
can be written as

dni(r, t)

dt
=

Ns∑
j,k=1
j 6=k

πv̄rel(Rj +Rk)
2nj(r, t)nk(r, t)ηjk,i ∀i = 1, ..., Ns (21)

The contribution of the feedback effect is included in the continuity equation as a source-sink
term, since its dynamics is much faster than orbit perturbations dynamics. The expression of the
continuity equation is here particularized, with the term ∇ · (nf) modelling the atmospheric drag
and ṅ+ − ṅ− accounting for the feedback effect:

∂ni(r, t)

∂t
+ vr

∂ni(r, t)

∂r
+

(
2

r
vr + v′r

)
ni(r, t)

=

Ns∑
j,k=1
j 6=k

πv̄rel(Rj +Rk)
2nj(r, t)nk(r, t)ηjk,i ∀i = 1, ..., Ns

(22)

The method of characteristics allows to obtain the set of differential equations describing the time
evolution of the spatial density function along the characteristic lines, under the combined influence
of atmospheric drag and feedback effect:

dr

dt
= vr = −ε

√
r exp

(
−r −Rh

H

)
dni
dt

=−
(

2

r
vr + v′r

)
ni(r, t)

+

Ns∑
j,k=1
j 6=k

πv̄rel(Rj +Rk)
2nj(r, t)nk(r, t)ηjk,i ∀i = 1, ..., Ns

(23)

with initial conditions

r(t0 = TB) =r0

ni(r0, t0 = TB) =ni0(r0)
(24)

Results

For the sake of conciseness, results are presented only for Scenario 1. Similar results are obtained
for the remaining scenarios.
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In Figure 9, the spatial density function of the background population is represented, at the band
formation, before and after adding the fragmentation’s contribution. As can be observed, now, the
population is divided into species, instead of considering an A/M binning. Consequently, in this
case, the differential equations corresponding to all the species are integrated together, considering
an averaged area-to-mass ratio for the full debris population.

(a) Without fragmentation’s contribution (b) With fragmentation’s contribution

Figure 9: Spatial density function at the band formation, before and after adding the fragmentation’s
contribution (Scenario 1). Species ‘1’, ‘2’, ‘3’ and ‘4’ refer, respectively, to rocket bodies, payloads,
mission-related objects and fragmentation debris.

The time evolution of the density peak is presented in Figure 10; the peak height is normalized
with the value at the band formation.

Figure 10: Evolution of the normalized density peak, under the combined influence of drag and
feedback effect, for Scenario 1 (time origin set at the band formation instant). Species ‘1’, ‘2’, ‘3’
and ‘4’ refer, respectively, to rocket bodies, payloads, mission-related objects and fragmentation
debris.

As illustrated, in absence of sources of intact objects (launches), three phases can be clearly dis-
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tinguished. In the first phase, immediately after the band formation, all the spatial density functions
are relatively small and, consequently, the evolution of the density peak height is governed by at-
mospheric drag. Instead, the feedback effect controls the second phase, when the fragmentation
debris peak increases quadratically (while the density peaks of the intact objects decrease) up to a
tipping point. From this point on (third phase), the spatial density functions of the intact objects
are so small that no significant amount of new fragmentation debris is generated (since collisions
among the same species are not considered) and, hence, the atmospheric drag effect overcomes the
feedback effect.

In Figure 11, the evolution of the normalized density peak is shown, for each considered species.

(a) Rocket bodies (b) Payloads

(c) Mission-related objects (d) Fragmentation debris

Figure 11: Evolution of the normalized density peak, under the individual and combined influence
of drag and feedback effect, for Scenario 1 (time origin set at the band formation instant).

As can be noticed, for intact objects (rocket bodies, payloads and mission-related objects) the
density peak always decreases, both under the independent influence of drag and feedback effect,
even though the decrease is higher for this latter case. Instead, for the fragmentation debris, if the
atmospheric drag effect were not present, the density peak would always increase until reaching a
state of saturation. However, under the combined influence of atmospheric drag and feedback effect,
such state of saturation is never achieved since, when the production of new fragments is no longer
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significant, the atmospheric drag effect becomes dominant, leading to a density peak decrease after
the tipping point.

CONCLUSION

The modelling of small debris fragments requires methods that do not rely on the propagation of
single objects; within this context, density-based models offer an interesting alternative. A method
based on the continuity equation is here proposed in order to analyze the impact of a fragmenta-
tion event into the global debris population, in terms of spatial density variations. Additionally, the
impact of a possible chain of concatenated collisions, triggered by a single original fragmentation
event, is studied, as well as its feedback effect on the overall debris population in LEO. This feed-
back effect is modelled through a continuum formulation and included in the continuity equation
as a source-sink term, which allows to analyze the evolution of the total debris population in LEO
under the combined influence of atmospheric drag and feedback effect.

In the light of the obtained results, the effect of a collision or explosion is disastrous for the global
space environment, causing a dramatic increase in the debris spatial density function. In addition,
the long-term repercussions of fragmentation events are revealed. Since the drag effect is minimal
for fragments with low area-to-mass ratio, a great portion of these new generated fragments will
stay in orbit for a long time. The feedback effect further aggravated the debris situation, severely
increasing the fragmentation debris population after a collision or explosion takes place.

ACKNOWLEDGEMENTS

This work has received funding from the Italian Space Agency, in the framework of the ASI-INAF
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