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Abstract

We prove well-posedness for a class of second-order SPDEs with multiplicative
Wiener noise and doubly nonlinear drift of the form − div γ(∇·) + β(·), where γ is
the subdifferential of a convex function on R

d and β is a maximal monotone graph
everywhere defined on R, on which neither growth nor continuity assumptions are
imposed.

1 Introduction

Let D be a bounded domain of Rd with smooth boundary and T > 0 a fixed number.
We shall establish well-posedness in the strong sense for stochastic partial differential
equations of the type











du(t) − div γ(∇u(t)) dt+ β(u(t)) dt ∋ B(t, u(t)) dW (t) in (0, T )×D,

u = 0 in (0, T )× ∂D,

u(0) = u0 in D,

(1.1)

where γ ⊂ R
d×R

d and β ⊂ R×R are everywhere-defined maximal monotone graphs, the
first one of which is assumed to be the subdifferential of a convex function k : Rd → R.
Furthermore, W is a cylindrical Wiener process on a separable Hilbert space U , and
B takes values in the space of Hilbert-Schmidt operators from U to L2(D). Precise
assumptions on the data of the problem are given in §2 below.

Equations with drift in divergence type, both in deterministic and stochastic settings,
have a long history and are thoroughly studied, especially because of their physical sig-
nificance. From a mathematical point of view, they are particularly interesting because
they are fully nonlinear, in the sense that they do not contain any “leading” linear term.
For stochastic equations, the first well-posedness result is most likely due to Pardoux, as
an application of his general results in [11] on monotone stochastic evolution equations in
the variational setting (see also [3] for improved results under more general assumptions
on B). In this case one needs to assume β = 0 and

γ(x) · x & |x|p − 1, |γ(x)| . |x|p−1 − 1 ∀x ∈ R
d,

with p > 1 (the centered dot stands for the usual Euclidean scalar product in R
d). These

are precisely the classical Leray-Lions conditions, well known in the deterministic theory
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(cf. [4]). In some special cases a simple polynomial-type β can be added: for instance,
if γ corresponds to the p-Laplacian, i.e. γ(x) = |x|p−2x, p ≥ 2, one may consider
β(x) = |x|p−2x (cf. [5, p. 83]). However, it is well known that if two nonlinear operators
satisfy the conditions needed in the variational setting, their sum in general does not.
This phenomenon already gives rise to severe restrictions on the class of semilinear
equations with polynomial nonlinearities that can be solved bu such methods.

In some recent works we have obtained well-posedness results for (1.1) under much
more general hypotheses than those mentioned above. In particular, in [12] we assume
that γ still satisfies the classical Leray-Lions assumptions, but we impose no growth
restriction on β: a very mild symmetry-like condition on its behavior at infinity is shown
to suffice. On the other hand, in [8] we consider the case β = 0, with no hypotheses on the
growth of γ, but with the additional requirement that γ is single-valued (a symmetry-like
assumption on γ is needed in this case as well). Equations with more general, possibly
multivalued γ, are treated in [9], where, however, less regular solutions are obtained.

Our goal is to unify and extend the above-mentioned well-posedness results for equa-
tion (1.1), thus treating the case where both γ and β can be multivalued, without any
restriction on their rate of growth. We shall also show that we can do so without loosing
any regularity of solutions with respect to the results of [8]. The approach we take,
initiated in [10] and further refined and extended in [6]–[9], consists in a combination of
(deterministic and stochastic) variational techniques and weak compactness in L1 spaces.
A key feature is the construction of a candidate solution as pathwise limit, in suitable
topologies, of solutions to regularized equations. In particular, due to this type of con-
struction, in order to obtain measurability properties of solutions, uniqueness of limits is
crucial. Roughly speaking, we can prove that − div γ(∇u) + β(u) is unique, hence that
it is measurable, but showing that each one of them is unique (hence measurable) seems
difficult, if not impossible. This is the reason why γ was assumed to be single-valued in
[8, 12]. In the general setting of this work we thus need different ideas: let uλ, γλ, and
βλ be suitable regularizations of u, γ, and β, respectively, and set ηλ := γλ(∇uλ) and
ξλ := βλ(uλ). Comparing weak limits, obtained in different ways, of the image of the
pair (ηλ, ξλ) under a continuous linear map, we are going to prove that there exist two
limiting processes η and ξ, “sections” of γ(∇u) and β(u), respectively, that are indeed
predictable and satisfy suitable uniqueness properties. One may say that we restore
uniqueness working in a suitable quotient space, although quotient spaces do not appear
explicitly.

The well-posedness result obtained here may be interesting also in the deterministic
setting, as our results extend to the doubly nonlinear case the sharpest results available
for equations with β = 0 and B = 0, whose hypotheses on γ are identical to ours (cf. [1,
p. 207-ff])

The paper is organized as follows: in Section 2 we state the assumptions and the
main result, which is then proved in Section 3.

Acknowledgments. Part of the work for this paper was done while the authors were
supported by a grant of the Royal Society. The first-named author gratefully acknowl-
edges the hospitality of the IZKS at the University of Bonn.
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2 Main result

Before stating the main result, we fix notation and introduce the necessary assumptions.
As already mentioned, D stands for a bounded domain in R

d with smooth boundary.
We shall denote the Hilbert space L2(D) by H, its norm and scalar product by ‖·‖
and 〈·, ·〉, respectively. We shall denote the Dirichlet Laplacian on L1(D) (as well as
on L2(D), without notationally distinguish them) by ∆. The space of Hilbert-Schmidt
operators from the separable Hilbert space U to H is denoted by L 2(U,H). We shall
write a . b to mean that there exists a constant N > 0 such that a ≤ Nb.

Let (Ω,F ,P) be a probability space, endowed with a filtration (Ft)t∈[0,T ] satisfying
the so-called usual conditions, on which all random elements will be defined. Equality of
stochastic processes is meant to be in the sense of indistinguishability, unless otherwise
stated. We assume that the diffusion coefficient

B : Ω× [0, T ] ×H → L
2(U,H)

is such that B(·, ·, h) is progressively measurable for all h ∈ H, and there exists a positive
constant NB such that

∥

∥B(ω, t, x)
∥

∥

L 2(U,H)
≤ NB

(

1 + ‖x‖
)

,
∥

∥B(ω, t, x)−B(ω, t, y)
∥

∥

L 2(U,H)
≤ NB‖x− y‖

for all (ω, t) ∈ Ω × [0, T ] and x, y ∈ H. Moreover, let the initial datum u0 be F0-
measurable with finite second moment, i.e. u0 ∈ L2(Ω,F0;H).

Let k : Rd → R+ be a convex function with k(0) = 0 such that

lim sup
|x|→+∞

k(x)

k(−x)
< +∞, lim

|x|→+∞

k(x)

|x|
= +∞

(we shall call the second condition superlinearity at infinity). Then its subdifferential
γ := ∂k is a maximal monotone graph in R

d × R
d. We assume that the domain of γ

coincides with R
d, which implies that k∗, the convex conjugate of k, is superlinear at

infinity as well. Moreover, let j : R → R+ be a further convex function with j(0) = 0
such that

lim sup
|x|→+∞

j(x)

j(−x)
< +∞,

whose subdifferential β := ∂j is an everywhere defined maximal monotone graph in
R× R, so that j∗ is superlinear at infinity. All notions of convex analysis and from the
theory of maximal monotone operators used thus far and in the sequel are standard and
are treated in detail, for instance, in [1].

We can now give the notion of solution to (1.1) that we are going to work with.
Throughout the work, V0 is a separable Hilbert space continuously embedded in both
W 1,∞(D) and H1

0 (D): for instance one can take, thanks to Sobolev embedding theorems,
V0 := Hk

0 (D) for k ∈ N sufficiently large. Moreover, the divergence operator is defined
as

div : L1(D)d −→ V ′
0

f 7−→
[

g 7→ −〈f,∇g〉
]

,
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which is thus linear and bounded. In fact, for any f ∈ L1(D)d and g ∈ V0,
∣

∣〈f,∇g〉
∣

∣ ≤
∥

∥f
∥

∥

L1(D)

∥

∥g
∥

∥

W 1,∞ .
∥

∥f
∥

∥

L1(D)

∥

∥g
∥

∥

V0

because V0 is continuously embedded in W 1,∞.

Definition 2.1. A strong solution to (1.1) is a triplet (u, η, ξ), where u, η, and ξ are

adapted processes taking values in W 1,1
0 (D) ∩H, L1(D)d, and L1(D), respectively, such

that η ∈ γ(∇u) and ξ ∈ β(u) a.e. in Ω× (0, T )×D,

u ∈ L0(Ω;C([0, T ];H)) ∩ L0(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L0(Ω;L1((0, T ) ×D)d),

ξ ∈ L0(Ω;L1((0, T ) ×D)),

∇u · η + uξ ∈ L0(Ω;L1((0, T ) ×D)),

and

〈

u, φ
〉

+

∫ ·

0

〈

η(s),∇φ
〉

ds +

∫ ·

0

〈

ξ(s), φ
〉

ds = 〈u0, φ〉+

〈
∫ ·

0
B(s, u(s)) dW (s), φ

〉

for all φ ∈ V0.

The last identity in the above definition is equivalent to the validity in the dual of V0 of
the equality

u−

∫ ·

0
div η(s) ds +

∫ ·

0
ξ(s) ds = u0 +

∫ ·

0
B(s, u(s)) dW (s).

Note that u, u0 and the stochastic integrals take values in H and the third term on the
left-hand side takes values in L1(D), hence also the second term on the right-hand side
belongs to L1(D), so that the equality holds also in L1(D). The same reasoning implies
that the sum of the second and third terms on the left-hand side take values in H, so
that the above equality can also be seen as valid in H.

The main result of the paper is the following. The proof is given in §3 below.

Theorem 2.2. There exists a strong solution (u, η, ξ) to equation (1.1). It is predictable
and satisfies the following properties:

u ∈ L2(Ω;C([0, T ];H)) ∩ L1(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L1(Ω × (0, T )×D)d,

ξ ∈ L1(Ω × (0, T )×D),

∇u · η ∈ L1(Ω × (0, T )×D),

uξ ∈ L1(Ω × (0, T )×D).

Moreover, the solution map

L2(Ω,F0;H) −→ L2(Ω;C([0, T ];H))

u0 7−→ u

is Lipschitz-continuous. In particular, if (u1, η1, ξ1) and (u2, η2, ξ2) are any two strong

solutions satisfying the properties above, then u1 = u2 and − div η1 + ξ1 = − div η2 + ξ2
in L2(Ω;C([0, T ];H)) and L1(Ω;L1(0, T ;V ′

0)), respectively.
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3 Proof of Theorem 2.2

3.1 Itô’s formula for the square of the H-norm

We establish a version of Itô’s formula for the square of the H-norm in a generalized
variational setting, which will play an important role in the sequel. The result is in-
teresting in its own right, as it does not follow from the classical ones in [3, 11], and is
apparently new for Itô processes containing a drift term in divergence form with minimal
integrability properties.

Proposition 3.1. Let Y , f , and g be measurable adapted processes with values in H ∩
W 1,1

0 (D), L1(D)d, and L1(D), respectively, such that

Y ∈ L0(Ω;L∞(0, T ;H)) ∩ L0(Ω;L1(0, T ;W 1,1
0 (D))),

f ∈ L0(Ω;L1((0, T ) ×D)d),

g ∈ L0(Ω;L1((0, T ) ×D)),

and there exists constants a, b > 0 such that

k(a∇u) + k∗(af) + j(bu) + j∗(bg) ∈ L0(Ω;L1((0, T ) ×D)).

Moreover, let Y0 ∈ L0(Ω,F0;H) and G be an L 2(U,H)-valued progressively measurable

process such that G ∈ L0(Ω;L2(0, T ;L 2(U,H))). If

Y −

∫ ·

0
div f(s) ds+

∫ ·

0
g(s) ds = Y0 +

∫ ·

0
G(s) dW (s)

as an identity in V ′
0 , then

1

2
‖Y ‖2 +

∫ ·

0

∫

D

f(s) · ∇Y (s) ds +

∫ ·

0

∫

D

g(s)Y (s) ds

=
1

2
‖Y0‖

2 +
1

2

∫ ·

0
‖G(s)‖2

L 2(U,H) ds+

∫ ·

0
Y (s)G(s) dW (s).

Proof. The proof is essentially a combination of arguments described in great detail in
[7, 8], hence we shall limit ourselves to a sketch only. Using a superscript δ to denote
the action of (I − δ∆)−m, for a sufficiently large m ∈ N, we have, thanks to Sobolev
embedding theorems and classical elliptic regularity results,

Y δ −

∫ ·

0
div f δ(s) ds +

∫ ·

0
gδ(s) ds = Y δ

0 +

∫ ·

0
Gδ(s) dW (s)

as an identity of H-valued processes. Itô’s formula for Hilbert-space valued continuous
semimartingales thus yields

1

2
‖Y δ‖2 +

∫ ·

0

∫

D

f δ(s) · ∇Y δ(s) ds+

∫ ·

0

∫

D

gδ(s)Y δ(s) ds

=
1

2
‖Y δ

0 ‖
2 +

1

2

∫ ·

0
‖Gδ(s)‖2

L 2(U,H) ds+

∫ ·

0
Y δ(s)Gδ(s) dW (s).

(3.1)
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Thanks to the assumptions on Y , f , g ad G, it easily follows that, P-a.s.,

Y δ
0 −→ Y0 in H,

Y δ(t) −→ Y (t) in H ∀ t ∈ [0, T ],

f δ −→ f in L1((0, T ) ×D)d,

gδ −→ g in L1((0, T ) ×D),

Gδ −→ G in L2(0, T ;L 2(U,H)).

Similarly, using simple properties of Hilbert-Schmidt operators and the dominated con-
vergence theorem, it is not difficult to verify that the quadratic variation of (Y δGδ −
Y G) ·W converges to zero in probability, so that

∫ ·

0
Y δGδ dW −→

∫ ·

0
Y GdW

uniformly (with respect to time) in probability. Furthermore, thanks to the hypotheses
on k and j, the families (∇uδ · Y δ) and (gδY δ) are uniformly integrable in (0, T ) × D
P-a.s., hence by Vitali’s theorem we also have that, P-a.s.,

f δ · ∇Y δ −→ f · ∇Y in L1((0, T ) ×D),

gδY δ −→ gY in L1((0, T ) ×D).

The proof is completed passing to the limit as δ → 0 in (3.1), in complete analogy to [6,
§ 4] and [8, § 3].

Corollary 3.2. Under the assumptions of the previous proposition, one has

Y ∈ L0(Ω;C([0, T ];H)).

Proof. Since Y ∈ L∞(0, T ;H)∩C([0, T ];V ′
0 ), the trajectories of Y are weakly continuous

in H (see, e.g.,[13]). Moreover, by Itô’s formula one has

1

2
‖Y (t)‖2 −

1

2
‖Y (r)‖2 +

∫ t

r

∫

D

f(s) · ∇Y (s) ds+

∫ t

r

∫

D

g(s)Y (s) ds

=
1

2

∫ t

r

‖G(s)‖2
L 2(U,H) ds+

∫ t

r

Y (s)G(s) dW (s)

for every r, t ∈ [0, T ]. This implies, by an argument analogous to the one used in [7,
§ 3], that the function t 7→ ‖Y (t)‖ is continuous on [0, T ]. By a well-known criterion we
thus conclude that Y has strongly continuous trajectories in H.

3.2 Well-posedness in a special case

As a first step we prove existence of solutions to (1.1) assuming that the noise is of
additive type and that

B ∈ L2(Ω;L2(0, T ;L 2(U, V0))).
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For any λ > 0, let γλ and βλ denote the Yosida approximations of γ and β, respectively,
and consider the regularized equation

duλ(t)− λ∆uλ(t) dt− div γλ(∇uλ(t)) dt+ βλ(uλ(t)) dt = B(t) dW (t), uλ(0) = u0.

Since γλ and βλ are monotone and Lipschitz-continuous, it is not difficult to check that
the operator

φ 7−→ −λ∆φ− div γλ(∇φ) + βλ(φ)

is hemicontinuous, monotone, coercive and bounded on the triple (H1
0 (D),H,H−1(D)),

so that the classical results by Pardoux [11] provide existence and uniqueness of a vari-
ational solution

uλ ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;H1
0 (D))).

The a priori estimates on the solution uλ contained in the next lemma can be obtained
essentially as in [8, 9, 10, 12].

Lemma 3.3. There exists a constant N independent of λ such that

‖uλ‖
2
L2(Ω;C([0,T ];H)) + λ‖∇uλ‖

2
L2(Ω;L2(0,T ;H))

+ ‖γλ(∇uλ) · ∇uλ‖L1(Ω×(0,T )×D) + ‖βλ(uλ)uλ‖L1(Ω×(0,T )×D) < N

for all λ ∈ (0, 1). Furthermore, there exists Ω′ ∈ F with P(Ω′) = 1 such that, for every

ω ∈ Ω′, there exists a constant M(ω) independent of λ such that

‖uλ(ω)‖
2
C([0,T ];H) + λ‖∇uλ(ω)‖

2
L2(0,T ;H)

+ ‖γλ(∇uλ(ω)) · ∇uλ(ω)‖L1((0,T )×D) + ‖βλ(uλ(ω))uλ(ω)‖L1((0,T )×D) < M(ω)

for all λ ∈ (0, 1).

Proof. It is an immediate consequence of the (proofs of the) [8, Lemmata 4.3–4.7], for
the part involving γ, and [10, Lemmata 5.3–5.6], for the part involving β.

Since

k∗(γλ(∇uλ)) ≤ k∗(γλ(∇uλ)) + k((I + λγ)−1∇uλ) = γλ(∇uλ) · (I + λγ)−1∇uλ

≤ γλ(∇uλ) · ∇uλ

and

j∗(βλ(uλ)) ≤ j∗(βλ(uλ)) + j((I + λβ)−1uλ) = βλ(uλ)(I + λβ)−1uλ ≤ βλ(uλ)uλ,

we infer that the families (k∗(γλ(∇uλ))) and (j∗(βλ(uλ))) are uniformly bounded in
L1(Ω × (0, T ) × D). Therefore, recalling that k∗ and j∗ are superlinear, thanks to
the de la Vallée-Poussin criterion and the Dunford-Pettis theorem we deduce that the
families (γλ(uλ)) and (βλ(uλ)) are relatively weakly compact in L1(Ω× (0, T )×D)d and
L1(Ω× (0, T )×D), respectively. Analogously, the families (γλ(uλ(ω))) and (βλ(uλ(ω)))
are relatively weakly compact in L1((0, T ) × D)d and L1((0, T ) × D), respectively, for
P-a.e. ω ∈ Ω.
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Let Ω′ be as in the previous lemma and take ω ∈ Ω′. Then we have, along a
subsequence λ′ of λ depending on ω,

uλ′(ω) −→ u(ω) weakly* in L∞(0, T ;H),

∇uλ′(ω) −→ ∇u(ω) weakly in L1((0, T )×D)d,

λ′uλ′(ω) −→ 0 in L2(0, T ;H1
0 (D)),

γλ′(uλ′(ω)) −→ η(ω) weakly in L1((0, T )×D)d,

βλ′(uλ′(ω)) −→ ξ(ω) weakly in L1((0, T )×D),

hence, by passage to the weak limit in the regularized equation taking test functions in
V0, we have

u−

∫ ·

0
div η(s) ds +

∫ ·

0
ξ(s) ds = u0 +

∫ ·

0
B(s) dW (s). (3.2)

Moreover, by the lower semicontinuity of convex integrals, it also follows that

k(∇u(ω)) + k∗(η(ω)) + j(u(ω)) + j∗(ξ(ω)) ∈ L1((0, T ) ×D).

Arguing as in [10, pp. 27–28] and [8, pp. 18–19], one can show that the process u
constructed in this way is unique in the space L2(Ω;C([0, T ];H)). This ensures in turn
that the convergences of (uλ) to u hold along the entire sequence λ, which is independent
of ω. In particular, we have that

uλ(ω) −→ u(ω) weakly in L2(0, T ;H) ∀ω ∈ Ω′.

Since (uλ) is bounded in L2(Ω × (0, T ) × D), we deduce that uλ converges weakly to
u also in L2(Ω × (0, T );H). Hence, by a direct application of Mazur’s lemma, we infer
that u is a predictable process with values in H. Unfortunately a similar argument does
not apply to η and ξ. In fact, by uniqueness of u, we can only infer from (3.2) that
− div η + ξ is unique: namely, assume that (ηi(ω), ξi(ω)), i = 1, 2, are weak limits in
L1(0, T ;L1(D))d+1 of

(

γλ(∇uλ(ω)), βλ(uλ)
)

along two subsequences of λ (depending on
ω). Then

∫ t

0

(

− div(η1 − η2) + (ξ1 − ξ2)
)

ds = 0 ∀t ∈ [0, T ],

hence − div(η1 − η2) + (ξ1 − ξ2) = 0, or, equivalently, − div η1 + ξ1 = − div η2 + ξ2 in
V ′
0 for a.a. t ∈ [0, T ]. However, this allows us to claim, setting ηλ := γλ(∇uλ) and
ξλ := βλ(uλ), that

− div ηλ + ξλ −→ − div η + ξ weakly in L1(0, T ;V ′
0) ∀ω ∈ Ω′

along the whole sequence λ, thanks to the same uniqueness argument already used for
u. In fact, let us set, for notational convenience,

Φ : L1(D)d+1 −→ V ′
0

(v, f) 7−→ − div v + f

and ζλ := (ηλ, ξλ), ζ := (η, ξ). Note that Φ, being a linear bounded operator, can be
extended to a linear bounded operator from L1((0, T ) ×D)d+1 ≃ L1(0, T ;L1(D)d+1) to
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L1(0, T ;V ′
0), also when both spaces are endowed with the weak topology. Then ζλ → ζ

weakly in L1((0, T )×D)d+1 implies that Φζλ → Φζ weakly in L1(0, T ;V ′
0) for all ω ∈ Ω′.

Such a convergence, however, does not allow to infer that − div η + ξ is predictable as
a V ′

0-valued process. The reason is that we may certainly find, by Mazur’s lemma, a
convex combination of − div ηλ + ξλ converging strongly to − div η + ξ in L1(0, T ;V ′

0)
for all ω ∈ Ω′, but such a convex combination would depend on ω, bringing us back to
the same problem we are trying to solve.1 In order to show that − div η + ξ is indeed
predictable, we are first going to prove that

− div ηλ + ξλ −→ − div η + ξ weakly in L1(Ω × (0, T );V ′
0).

We have just shown that

∫ T

0

〈

Φζλ(ω, t), φ(t)
〉

dt −→

∫ T

0

〈

Φζλ(ω, t), φ(t)
〉

dt

for all φ ∈ L∞(0, T ;V0), for all ω ∈ Ω′, where 〈·, ·〉 stands for the duality between V ′
0 and

V ′′
0 = V0. Let ψ ∈ L∞(Ω × (0, T );V0). Then ψ(ω, ·) ∈ L∞(0, T ;V0) for P-a.e. ω ∈ Ω.

Indeed, the set

A :=
{

(ω, t) ∈ Ω× [0, T ] : ‖ψ(ω, t)‖V0
> ‖ψ‖L∞(Ω×(0,T );V0)

}

belongs to F ⊗ B([0, T ]), and, by Tonelli’s theorem,

|A| =

∫

Ω

∫ T

0
1A dt dP =

∫

Ω
Leb(Aω)P(dω),

where |A| denotes the measure of A and Aω stands for the section of A at ω, i.e.

Aω :=
{

t ∈ [0, T ] : (ω, t) ∈ A
}

,

which belongs to B([0, T ]) for P-a.e. ω ∈ Ω. Since |A| = 0, it follows that |Aω| = 0 for
P-a.e. ω ∈ Ω. This implies, by definition of A, that ψ(ω, ·) ∈ L∞(0, T ) for P-a.e. ω ∈ Ω.
Consequently, we have

∫ T

0

〈

Φζλ(ω, t), ψ(ω, t)
〉

dt −→

∫ T

0

〈

Φζ(ω, t), ψ(ω, t)
〉

dt

for P-a.e. ω ∈ Ω. To complete the argument it is then enough to show that the left-hand
side, as a subset of L0(Ω) indexed by λ, is uniformly integrable. To this end, we collect
some simple facts about uniform integrability in the following lemma.

Lemma 3.4. Let (X,A ,m) be a finite measure space and I an arbitrary index set.

(a) Let (fi)i∈I , (gi)i∈I ⊂ L0(X;Rn) be such that |fi| ≤ |gi| for all i ∈ I and assume

that (gi) is uniformly integrable. Then (fi) is uniformly integrable.

1We could just say that −div η + ξ is weakly measurable with respect to F and the Borel σ-algebra
of L1(0, T ;V ′

0). Since this space is separable, by Pettis’ theorem we also have strong measurability. This
observation, however, does not seem to imply the desired result.
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(b) Let (fi) ⊂ L0(X;Rn) be uniformly integrable and φ ∈ L∞(X;Rn). Then (φ · fi) ⊂
L0(X) is uniformly integrable.

(c) Let F : Rn → R with F (0) = 0 be convex and superlinear at infinity, and (fi) ⊂
L0(X;Rn) be such that (F ◦ fi) is bounded in L1(X). Then (fi) is uniformly

integrable.

(d) Let (Y,B, n) be a further finite measure space. If (fi) ⊂ L0(X × Y,A ⊗ B,m ⊗
n;Rn) is uniformly integrable, then (gi) ⊂ L0(X;Rn) defined by

gi :=

∫

Y

fi(·, y)n(dy)

is uniformly integrable.

Proof. (a) is an immediate consequence of the definition of uniform integrability.
(b) Let ε > 0. By assumption, there exists δ = δ(ε) > 0 such that

∫

A

∣

∣fi
∣

∣

Rn
dm <

ε

‖φ‖L∞

∀A ∈ A , m(A) < δ.

Then
∫

A

∣

∣φ · fi
∣

∣ dm ≤ ‖φ‖L∞

∫

A

∣

∣fi
∣

∣

Rn
dm < ε.

(c) is a variation of the classical criterion by de la Vallée-Poussin. A detailed proof
(which is nonetheless very close to the one in the standard one-dimensional case) can be
found in [8].
(d) Let ε > 0. By assumption, there exists δ′ = δ′(ε) > 0 such that

∫

C

∣

∣fi
∣

∣

Rn
dm⊗ n < ε ∀C ∈ A ⊗ B, m⊗ n(C) < δ′.

Let δ := δ′/n(Y ) and A ∈ A with m(A) < δ. Then

∫

A

∣

∣

∣

∣

∫

Y

fi(x, y)n(dy)

∣

∣

∣

∣

Rn

m(dx) ≤

∫

A×Y

∣

∣fi(x, y)
∣

∣

Rn
m(dx)n(dy) < ε

because m⊗ n(A× Y ) = m(A)n(Y ) < δn(Y ) = δ′.

Let us now resume with the main reasoning. Since

∫ T

0

〈

Φζλ, ψ
〉

. ‖ψ‖L∞(Ω×(0,T );V0)

(
∫ T

0

∫

D

|ηλ|+

∫ T

0

∫

D

|ξλ|

)

,

by parts (a), (b) and (d) of the previous lemma it is sufficient to show that (ηλ) and (ξλ)
are uniformly integrable in Ω × (0, T ) ×D. But this is true, in view of part (c) of the
previous lemma, because k∗(ηλ) and j

∗(ξλ) are uniformly bounded in L1(Ω×(0, T )×D).
Vitali’s theorem then yields

∫ T

0

〈

Φζλ(ω, t), ψ(ω, t)
〉

dt −→

∫ T

0

〈

Φζ(ω, t), ψ(ω, t)
〉

dt in L1(Ω),
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hence, in particular,

Φ(ηλ, ξλ) −→ Φ(η, ξ) weakly in L1(Ω× (0, T );V ′
0).

Furthermore, from the uniform integrability of (ηλ) and (ξλ) in Ω × (0, T ) × D it also
follows that, along a subsequence µ of λ,

(ηµ, ξµ) −→ (η̄, ξ̄) weakly in L1(Ω × (0, T )×D)d+1,

hence also
Φ(ηµ, ξµ) −→ Φ(η̄, ξ̄) weakly in L1(Ω× (0, T );V ′

0 ).

An application of Mazur’s lemma yields, in complete analogy to the case of u, that η̄
and ξ̄ are predictable processes with values in L1(D)d and L1(D), respectively. Since µ
is a subsequence of λ, by uniqueness of the weak limit we have that Φ(η, ξ) = Φ(η̄, ξ̄),
i.e.

− div η + ξ = − div η̄ + ξ̄.

This implies that the identity (3.2) remains true with η and ξ replaced by η̄ and ξ̄,
respectively. In other words, modulo relabeling, we can just assume, without loss of
generality, that η and ξ in (3.2) are predictable and that

(ηλ, ξλ) −→ (η, ξ) weakly in L1(Ω× (0, T ) ×D)d+1.

By weak lower semicontinuity and Lemma 3.3, this also implies, arguing as in [8, 9, 10,
12], that

u ∈ L2(Ω;L∞(0, T ;H)) ∩ L1(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L1(Ω× (0, T ) ×D)d,

ξ ∈ L1(Ω× (0, T ) ×D),

k(∇u) + k∗(η) = ∇u · η ∈ L1(Ω× (0, T ) ×D),

j(u) + j∗(ξ) = uξ ∈ L1(Ω× (0, T ) ×D).

In order to show that η ∈ γ(∇u) and ξ ∈ β(u) a.e. in Ω× (0, T )×D, it suffices to prove,
by the maximal monotonicity of γ and β, that

lim sup
λ→0

E

∫ T

0

∫

D

(

ηλ · ∇uλ + ξλuλ
)

≤ E

∫ T

0

∫

D

(

η · ∇u+ ξu
)

(3.3)

(cf. [8, pp. 17-18]). To this purpose, note that the ordinary Itô formula and Proposi-
tion 3.1 yield

1

2
E‖uλ(T )‖

2 + E

∫ T

0

∫

D

(

ηλ · ∇uλ + ξλuλ
)

=
1

2
E‖u0‖

2 +
1

2
E

∫ T

0

∥

∥B(s)
∥

∥

2

L 2(U,H)
ds

and

1

2
E‖u(T )‖2 + E

∫ T

0

∫

D

(

η · ∇u+ ξu
)

=
1

2
E‖u0‖

2 +
1

2
E

∫ T

0

∥

∥B(s)
∥

∥

2

L 2(U,H)
ds,
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respectively (the stochastic integrals appearing in both versions of Itô’s formula are
in fact martingales, not just local martingales, hence their expectation is zero). Since
uλ(T ) → u(T ) weakly in L2(Ω;H), one has E‖u(T )‖2 ≤ lim infλ→0 E‖uλ(T )‖

2, hence,
by comparison, (3.3) follows.

Finally, the strong pathwise continuity (in H) of u is an immediate consequence of
the corollary to Proposition 3.1.

Remark 3.5. Another way to “restore” uniqueness of limits for the pair ζλ = (ηλ, ξλ)
is to view it as element of the quotient space L1(D)d+1/M , where M := kerΦ. Note
that M is a closed subset of L1 (we suppress the superscript as well as the indication of
the domain just within this remark), as the inverse image of the closed set {0} through
a continuous linear map, hence L1/M is a Banach space. However, working with the
spaces L1(0, T ;L1/M) and L1(Ω× (0, T );L1/M) present technical difficulties due to the
fact that their dual spaces are hard to characterize. A bit more precisely, this has to
do with the fact that the dual of L1(0, T ;E) is L∞(0, T ;E′) if and only if E has the
Radon-Nikodym property. This property is enjoyed by reflexive spaces, but not by L1

spaces (see, e.g., [2]).

3.3 Well-posedness in the general case

Let us consider now equation (1.1) with general additive noise, i.e. with

B ∈ L2(Ω;L2(0, T ;L 2(U,H))).

Thanks to classical elliptic regularity results, there existsm ∈ N such that the (I−δ∆)−m

is a continuous linear map from L1(D) toW 1,∞(D)∩H1
0 (D) for every δ > 0. Setting then

V0 := (I−∆)−m(H) and Bδ := (I− δ∆)−mB, we have Bδ ∈ L2(Ω;L2(0, T ;L 2(U, V0))),
hence, by the well-posedness results already obtained, the equation

duδ − div γ(∇uδ) dt+ β(uδ) dt ∋ Bδ dW, uδ(0) = u0,

admits a strong solution (uδ, ηδ , ξδ). Arguing as in [8, 9, 10, 12], one can show using
Itô’s formula that (uδ) is a Cauchy sequence in L2(Ω;C([0, T ];H)) and that (∇uδ), (ηδ),
and (ξδ) are relatively weakly compact in L1(Ω× (0, T )×D), so that

uδ −→ u in L2(Ω;C([0, T ];H)),

uδ −→ u weakly in L1(Ω× (0, T );W 1,1
0 (D)),

ηδ −→ η weakly in L1(Ω× (0, T ) ×D)d,

ξδ −→ ξ weakly in L1(Ω× (0, T ) ×D),

from which it follows that (u, η, ξ) solves the original equation. Moreover, the strong-
weak closure of β readily implies that ξ ∈ β(u) a.e. in Ω× (0, T ) ×D. Finally, arguing
as in the previous subsection, by weak lower semicontinuity of convex integrals and Itô’s
formula one can show that

lim sup
λ→0

E

∫ T

0

∫

D

ηλ · ∇uλ ≤ E

∫ T

0

∫

D

η · ∇u,

so that η ∈ γ(∇u) a.e. in Ω× (0, T )×D as well.

12



Continuous dependence on the initial datum is a consequence of Itô’s formula and
the monotonicity of γ and β. Finally, the generalization to the case of multiplicative
noise follows using the Lipschitz continuity of B and a classical fixed point argument.
A detailed exposition of the arguments needed to prove these claims can be found in
[8, 9, 10, 12].
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