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Abstract: A Kalman filter is a concept that has been in existence for decades now and it is widely used
in numerous areas. It provides a prediction of the system states as well as the uncertainty associated
to it. The original Kalman filter can not propagate uncertainty in a correct way when the variables
are not distributed normally or when there is a correlation in the measurements or when there is a
systematic error in the measurements. For these reasons, there have been numerous variations of the
original Kalman filter, most of them mathematically based (like the original one) on the theory of
probability. Some of the variations indeed introduce some improvements, but without being com-
pletely successful. To deal with these problems, more recently, Kalman filters have also been defined
using random-fuzzy variables (RFVs). These filters are capable of also propagating distributions that
are not normal and propagating systematic contributions to uncertainty, thus providing the overall
measurement uncertainty associated to the state predictions. In this paper, the authors make another
step forward, by defining a possibilistic Kalman filter using random-fuzzy variables which not only
considers and propagates both random and systematic contributions to uncertainty, but also reduces
the overall uncertainty associated to the state predictions by compensating for the unknown residual
systematic contributions.
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1. Introduction

The Kalman filter (KF) is an algorithm that has long been in existence. It filters the
noise on the measured values of the states and provides an estimation of the system states
based on the state equations. The classical KF algorithm requires that the states are free
from any systematic errors and that the state variables are independent from each other
and can be represented by Gaussian distributions [1]. But in most practical situations,
the systematic error can not be compensated perfectly and there is a residual systematic
error. In this case, the classical formulations of the KF underestimate the uncertainty
associated to the state estimates, because the systematic error is not propagated in a correct
mathematical way. To deal with this, attempts have been made to develop KF algorithms
that are also able to consider systematic contributions to uncertainty [2–5]. For instance,
in [5], the authors try to use a Schmidt KF that considers the systematic error as a separate
state in the state equations and a noise covariance matrix of the possible systematic errors
is built and propagated.

More recently, the theory of possibility has been proposed in the literature to represent
and propagate both systematic and random contributions to uncertainty. The theory
of possibility has been proven by numerous applications in the literature [6–11] to be
an effective alternative to the theory of probability when both random and systematic
contributions to uncertainty are present in the measurement procedure.
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Some attempts to define KFs based on the theory of possibility are already present in
the literature [12,13]. However, in [12,13], as far as understood, they consider uncertainty
in a fuzzy way that is not compatible with the recommended guidelines in metrology,
as specified in [14,15]. In metrology, uncertainty must be considered according to the
definitions given in [15].

Within the framework of the theory of possibility, quantities are represented by possi-
bility distributions [16–21]. In particular, as shown in [16–18], where measurement results
are considered to be affected by both random and systematic contributions to uncertainty,
measured quantities are represented by random-fuzzy variables (RFVs). RFVs consist of an
internal membership function which represents the systematic contribution to uncertainty
in the quantity and an external membership function which represents the overall uncer-
tainty due to both the systematic and random contributions. As shown in [16,18], this way
of representation is perfectly compatible with the metrological definitions given in [14,15].
So, to be able to utilize all the advantages of RFVs, the KF should be able to process them
as well.

Possibilistic KFs based on RFVs are available in the literature [22,23]. In [22], a KF
using RFVs is defined but there is a high noise in the state predictions given by the KF.
In [23], the authors define a possibilistic KF that also uses RFVs and make a comparison
with a few other existing KFs, including the Schmidt KF, clearly showing the advantages of
the defined possibilistic KF.

Starting from the possibilistic KF defined in [23], this paper proposes an alternative
version, which also allows reducing the effects of the systematic contributions to uncertainty,
thereby reducing the overall uncertainty associated to the system state predictions. While
the possibilistic KF defined in [23] is useful when we are only interested in propagating
the residual systematic uncertainty to evaluate the total uncertainty associated to the state
predictions from both the random and systematic contributions, the KF defined in this
paper can be used to reduce the effects of the systematic contributions to uncertainty and
thereby also reduce the overall uncertainty associated to the state predictions.

The rest of the paper has been organized in six sections. Section 2 describes the case
study used for the simulation results for an initial validation of the alternative possibilistic
KF. Section 3 describes the construction of the RFVs and the algorithm of the modified
possibilistic KF described in [23]. Section 4 describes the algorithm for the alternative
possibilistic KF proposed in this paper. Section 5 describes more simulations that have
been performed to further validate the alternative possibilistic KF. Section 6 describes
the experimental case study that has been performed to prove the effectiveness of the
alternative possibilistic KF. Section 7 summarizes the paper and gives a conclusion.

To facilitate an easy comparison between the proposed possibilistic KF and the original
one defined in [23], the same simulated case study as in [23] is considered here, as briefly
described in Section 2.

2. The Case Study

The considered case study is quite simple. A vehicle is moving at a velocity vref(t)
with an acceleration aref(t), as shown in Figure 1.

The state equations of the vehicle can be written as:

vk = vk−1 + τ · ak−1 + wv
k

ak = ak−1 + wa
k

(1)

• vk and ak are velocity and acceleration of the vehicle at time k;
• wv

k and wa
k are the standard deviation of the noise in velocity and acceleration respec-

tively at time k;
• τ is the time period within two successive measurements
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Figure 1. Reference values of velocity (blue line) and acceleration (red line) over time.

It is assumed that the noises are random in nature and belong to Gaussian distributions
that do not vary with time (Gaussian distributions are considered as in [23], for a direct
comparison). So, wv

k = wv and wa
k = wa are the standard deviations of the constant normal

distributions with zero mean.
wv is assumed to be 0.003 m/s. This value has been derived by considering the

accuracy of a GPS which has been reported in the official GPS website [24], which is usually
quite accurate compared to the speedometer of the vehicle. Whereas, wa is assumed to be
0.0005 m/s2 and is supposed to be due to some noise in the circuit or to the driver applying
force on the accelerator.

The measured values of the velocity and the acceleration are supposed to have been
obtained from the on board sensors of the vehicle. The accuracies of the onboard sensors
are in general one or two magnitudes less accurate than a GPS based measurement. So,
the following is considered:

• For the velocity, the random contribution is assumed to be normally distributed with
a standard deviation of σv

m = 0.16 m/s. It has also been assumed that there is a
residual systematic error in the measurement with an estimated value of 0.3 m/s.
However, this is unknown and only an interval of possible values is known: esys =
[−0.32 m/s,+0.32 m/s] has been assumed.

• For the acceleration, it has been assumed that there is no systematic error in the
measurements and the random error is supposed to be normally distributed with a
standard deviation of σa

m = 0.005 m/s2.

3. Construction of the RFVs and the Possibilistic Kalman Filter

Although this has been explained in detail in [23], it has been recalled in this paper as
the construction of the RFVs is the same also for the alternative possibilisitc KF defined in
this paper.

In the possibilistic KF defined in [23], all the states are RFVs and the algorithm is as
shown in Figure 2 [23].

According to Equation (1): Ak = A =

[
1 τ
0 1

]
and Hk = H =

[
1 0
0 1

]
.

Matrix QPOS considers the model uncertainties and is a matrix of RFVs. According to
the assumptions given in Section 2, we define QPOS where:

• The element related to velocity is an RFV obtained by transforming the velocity noise
variable into the possibility domain. Since there is no systematic error in the noise and
the random part is assumed to be Gaussian, there is no internal possibility distribution
(PD) in the RFV and the random PD is obtained by applying the probability-possibility
transformation [16] on the zero mean normal probability density function (pdf) with
standard deviation wv in the possibility domain;

• Similarly, the element related to acceleration is also an RFV in which there is no
internal PD and the random PD is obtained by applying the probability-possibility
transformation [16] on a zero mean normal pdf with standard deviation wa in the
possibility domain;
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Figure 2. The possibilistic Kalman filter algorithm [23].

As for the initial state vector Xa
0, it is assumed that there are no systematic contributions

to uncertainty. So, the RFV is obtained by just the random PD as follows:

• The initial velocity is an RFV consisting of just the random PD which is obtained by
using the probability-possibility transformation [16] on a normal pdf with mean equal
to the first measured value for velocity (vm1) and standard deviation wv;

• Similarly, the initial acceleration is an RFV consisting of just the random PD obtained
by using the probability-possibility transformation [16] on a normal pdf with mean
equal to the first measured value for acceleration (am1) and standard deviation wa.

As for the measured values in each step k, matrix Yk is the matrix of the RFVs of the
velocity and acceleration measurements. The RFV associated with the simulated measured
velocity is centered on the simulated measured velocity at step k (vmk) and

• The internal PD is a rectangular PD with width ±esys around vmk;
• the random PD is obtained by using the probability-possibility transformation [16] on

a zero mean normal pdf, with standard deviation σv
m.

On the other hand, the acceleration has no systematic error. So, the RFV associated to
the simulated measured acceleration is centered on the simulated measured acceleration at
step k (amk) and

• the internal PD is zero;
• the random PD is obtained by using the probability-possibility transformation [16] on

a normal pdf, with mean ak and standard deviation ua
ran.

Matrix C
X f

k
is the noise covariance matrix of the velocity and acceleration RFVs. However,

as it is shown in the equations in Figure 2 and explained in [23], C
X f

k
= Cran

X f
k

. So, the pos-

sibilistic variances and covariances are evaluated from only the random contributions to
uncertainty in both the velocity and acceleration RFVs.

Similarly, CYk = CYran
k

which means that the possibilistic variances and covariances of
the noise covariance matrix associated with the measurements are evaluated from just the
random uncertainty contributions in the velocity and acceleration measurements.

The described KF has been applied to the case study described in Section 2. The results
obtained from the simulations are presented in Figures 3 and 4.

The predicted values of the velocity and acceleration from the KF are obtained by
evaluating the mean values of the a posteriori RFVs in matrix Xa

k. In both Figures 3 and 4,
the blue lines represent the differences in the predicted values given by the KF and the true
values of the velocity and acceleration respectively.
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The uncertainty limits associated to the state predictions (red lines) are the α−cut
at α = 0.01 of the velocity and acceleration RFVs predicted by the KF. The α−cut can be
considered as the confidence interval at the confidence level 1-α [16]. For α = 0.01, these
intervals correspond to the 99% confidence interval in the corresponding pdf.

Figure 3. Difference in the reference and predicted velocity values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).

Figure 4. Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).

4. The Alternative Kalman filter Algorithm

In this paper, an alternative version of the KF algorithm described in Section 3 is
presented, which allows for the reduction of the residual systematic error. As can be seen in
the results in Figures 3 and 4, the possibilistic KF algorithm described in Section 3 estimates
the uncertainty intervals associated with the predictions very accurately in the presence of
a systematic error. However, it does not compensate for the systematic error.

The alternative possibilistic KF which is proposed in this paper makes use of the above
uncertainty interval to partially compensate for the systematic error. The new algorithm is
synthetically shown in Figure 5. With respect to the algorithm in Figure 2, it can be seen
that all steps are equal, except the last one, which corresponds to the “correction of the
predicted states”.

In particular, a new RFV Ycomp
k is considered, which tries to compensate for the residual

systematic error. At each step k, Ycomp
k consists of just the internal PD which is centered at

the positive uncertainty limit evaluated by the KF at the previous iteration (step k − 1) and
with the same width and shape as the internal membership function of the RFVs of the
state variables estimated by the KF in the previous iteration (Xint

k−1).

Yint_modi f ied
k is then obtained by adding or subtracting the RFV Ycomp

k from Yint
k , de-

pending on if the systematic error is positive or negative:

Yint_modi f ied
k =

{
Yint

k + Ycomp
k if systematic error < 0

Yint
k − Ycomp

k if systematic error > 0
(2)
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Figure 5. The alternative possibilistic Kalman filter algorithm.

It is exactly like a negative feedback loop: the effects of the systematic contrbutions to
uncertainty predicted by the KF is used as a feedback to compensate for a possible system-
atic error and the systematic error is partially compensated for. The intrinsic requirement
for applying this method is that we know the direction of the systematic error i.e., it should
be known if the error is positive or negative.

The obtained results are shown in Figures 6 and 7. Again, the predicted values for
the velocity and acceleration given by the KF are the mean values of the velocity and
acceleration RFVs in matrix Xa

k.

Figure 6. Difference in the reference and predicted velocity values (blue line) provided by the
possibilistic Kalman filter defined in this paper, together with the predicted uncertainty interval
(red lines).

As in Figures 3 and 4, also in Figures 6 and 7 the blue lines represent the differences in
the predicted values given by the KF and the true values of the velocity and acceleration
respectively. The uncertainty limits associated the state predictions (red lines) are the
α − cut at α = 0.01 of the velocity and acceleration RFVs predicted by the KF.
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Figure 7. Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in this paper, together with the predicted uncertainty interval
(red lines).

In Figure 6, with respect to Figure 3, it can be clearly seen that the uncertainty limits
have been significantly reduced along with the residual systematic error in the velocity esti-
mate. Table 1 gives a comparison with synthetic indexes for the velocity of the possibilistic
KF and the alternative possibilistic KF.

Table 1. Comparison of synthetic indexes for the velocity.

KF Possibilistic Alternative Possibilistic

Convergence(s) 151 138

Steady-state error 0.3024 0.1696

Variation of error 0.0220 0.0257

Uncertainty limits ±0.3589 ±0.2106

Variation of uncertainty limits 0 0

Percentage inside the uncertainty limits 99.00 95.88

5. Further Simulations

Further simulations have been performed in order to verify the effectiveness of the
alternative possibilistic KF in all situations. In particular, we want to verify whether the
algorithm still works in a good way when it is applied, but no residual systematic error
is present.

In fact, the result of the introduction of the “feedback” loop is that the residual
systematic error is compensated by the maximum possible value since the uncertainty limit
of the RFVs evaluated in each step (which is the value of the α-cut at α = 0.01 of the RFV)
is considered. This means that it is possible that the residual systematic error could be
overcompensated as the magnitude of this is unknown.

So, it is important that even if the residual systematic error happens to be zero (which
is the limiting case), the overcompensation should not be so high that the predictions of the
state variables obtained from the KF fall out of the evaluated uncertainty limits. To verify
this, the same example described in the Section 2 is considered except that the systematic
error is considered to be zero (instead of 0.3 m/s).

In this case, the results in Figures 8 and 9 are obtained.
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Figure 8. Difference in the reference and predicted velocity values (blue line) provided by the
alternative possibilistic KF, together with the predicted uncertainty interval (red lines) when residual
systematic error is zero.

Figure 9. Difference in the reference and predicted acceleration values (blue line) provided by the
alternative possibilistic KF, together with the predicted uncertainty interval (red lines) when residual
systematic error is zero.

As expected, as can be seen in Figure 8, the systematic error in the velocity has
been overcompensated, but it is still mostly inside the evaluated uncertainty limits. This
demonstrates that the alternative possibilistic KF algorithm successfully decreases the
uncertainty associated to the state predictions provided by the KF in all situations. In fact,
the average uncertainty in Figure 8 is in any case smaller than the one in Figure 3.

6. Experimental Case Study

To validate the simulation results, a parrot AR drone has been used for the experi-
mental case study. The drone has the following technical specifications as given by the
manufacturer:

• 1 GHz 32 bit ARM Cortex processor with 800 MHz video DSP.
• 1 Gbit DDR2 RAM at 200 MHz.
• Wi-Fi b/g/n.
• 3 axis accelerometer +/−50 mg precision.
• 3 axis gyroscope 2000◦ second precision.
• Pressure sensor +/−10 Pa precision.
• 60fps vertical QVGA camera.
• 3 axis magnetometer 6◦ precision
• Ultrasound sensors.

The parrot AR drone has been developed as a low cost drone by parrot company
and is quite customizable. The code is open source and can be modified according to the
necessity. It has a variety of sensors and the data can be obtained from them and processed
as needed. For the present case study, the velocity and acceleration measurements have
been considered. For information about the algorithm used by the drone to calculate its
speed, the readers are suggested to refer to [25].
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The employed drone has been observed to have a negative systematic error in the
velocity measurements obtained from the sensors present in the drone itself. So, the velocity
is being underestimated by the sensors of the drone. It has also been observed that the
systematic error is not constant for all runs. Each individual run had a systematic error
that may be different from the other runs. So, only an interval of values can be estimated
and the error can not just be compensated.

By performing a large number of runs of the drone, the interval for the systematic
error has been estimated and this was used to construct the internal membership function
of the RFV for the measured velocity. The constructed RFV assumed to be centered at zero
velocity can be seen in Figure 10.

Figure 10. RFV of the velocity constructed from the data. The blue line represents the external
membership function and the red line represents the internal membership function.

The measured acceleration, on the other hand, does not have any systematic contri-
butions to uncertainty. Hence, the RFV can be constructed by simply using a probability-
possibility transformation on the probability distribution of the acceleration.

The drone was made to fly for a few seconds to cover a distance of approximately
4 m. The velocity and acceleration data from the sensors is obtained from the drone every
5 ms using a software program that links the computer with the drone using the Wi-Fi
network. The alternative possibilistic KF described in Section 4 was used to provide the
filtered velocity and acceleration predictions with their respective uncertainties as well as
compensate partially for the systematic error in the velocity measurements provided by
the drone.

The velocity estimates provided by the KF were integrated to get the estimated
distance traveled by the drone. Similarly, the velocity measurements directly obtained by
the drone were integrated as well, to get the distance that the drone traveled according to
the sensors present in the drone.

At the end of every run, the actual distance from the starting point was been measured.
Measuring tape was used to do this since the error in the distance calculated using the
velocity data from the sensors is quite high and the precision of the measuring tape is
enough to be deemed negligible. Several runs were made and the distances estimated by
the KF and those estimated according to the sensor data were compared with the actual
distance traveled by the drone. To facilitate a comparison between the alternative KF
defined in this paper and the possibilistic KF defined in [23], the sensor data was processed
using both the KFs seperately.

The results using the possibilistic KF defined in [23] can be seen in Figure 11. The green
line represents the distances estimated according to the velocity measurements obtained
directly from the sensors in the drone. The blue line represents the distance obtained from
the velocity estimates of the defined possibilistic KF. The black line represents the actual
distance traveled by the drone. Finally, the red lines represent the upper and lower bounds
for the uncertainty.
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Figure 11. Distances obtained from the velocity estimates of the possibilistic KF (blue line). The pre-
dicted uncertainty intervals (red lines). Actual distance traveled by the drone (black line) and
distances estimated according to the velocity measurements obtained directly from the sensors in the
drone (green line). Green line and blue line are almost the same.

It can be seen that the distances estimated by the possibilistic KF are quite close to
the distances from the sensors. The blue line and the green line in Figure 11 are almost
the same and that is why only the green dots and the blue line can be seen in the figure.
However, the real measurements lie inside the uncertainty limits of the distances provided
by the KF.

Figure 12. Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The predicted uncertainty intervals (red lines). Actual distance traveled by the drone
(black line) and distances estimated according to the velocity measurements obtained directly from
the sensors in the drone (green line).

The results using the alternative KF defined in this paper can be seen in Figure 12.
Again, the green line represents the distances estimated according to the velocity mea-
surements obtained directly from the sensors in the drone. The blue line represents the
distance obtained from the velocity estimates of the defined possibilistic KF. The black line
represents the actual distance traveled by the drone. Finally, the red lines represents the
upper and lower bounds for the uncertainty.

For an easier comparison, Figure 13 shows again the distances obtained using the
modified possibilistic KF (green line) and those obtained using the alternative possibilistic
KF (blue line) along with the actual distance traveled by the drone (red line).
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Figure 13. Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The distances obtained from the velocity estimates of the modified alternative possibilistic
KF (green lines). Actual distance traveled by the drone (red line).

A comparison of the results obtained from the two KFs has also been given in Table 2.
From Table 2, it can be clearly seen that the distance obtained using the alternative KF
defined in this paper is much more accurate and closer to the real measurements than the
distances obtained from the sensor measurements or those obtained from the possibilistic
KF defined in [23].

Table 2. Comparison of the distance estimates of the drone obtained from the two KFs.

KF Possibilistic Alternative Possibilistic

Average error between the real distance
and estimated distance 115.3273 12.4821

Mean width of the uncertainty band ±416.30 ±210.63

Additionally, it can be easily seen that the width of the uncertainty limits associated
with the distance (red lines) are also smaller in Figure 12 compared to that in Figure 11.
The same can be verified from Table 2.

This confirms that the systematic error in the velocity is being compensated quite effi-
ciently using the defined alternative possibilistic KF and the overall uncertainty associated
to the predictions is being decreased as well.

7. Conclusions

The modified possibilistic KF defined in [23] is capable of propagating the systematic
contributions to uncertainty effectively. This paper defines an alternative possibilistic KF
which also decreases the effects of the systematic uncertainty contributions on the final
measurement and therefore can be considered an improved version of the KF defined
in [23].

The same simulated case study as in [23] has been considered to facilitate an easy
comparison and the results obtained using the KF defined in this paper have been shown
along with the results obtained by using the KF defined in [23]. The obtained results show
that the proposed KF provides a compensation of the systematic uncertainty and decreases
the overall uncertainty associated to the predictions.

The only requirement to use this method is that the direction of the residual systematic
error should be known. This requirement is not so difficult to be satisfied in the era of
big data. In any case, if not satisfied, the modified possibilistic KF defined in [23] is still
valid and can be successfully applied. A possible area of application of the alternative
possibilistic KF proposed in this paper could be in PTP networks where the network traffic
is being monitored and thereby it can be evaluated if the transmission delay is higher from
master to slave or from slave to master, thus identifying the direction of the systematic error
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in the calculation of the offset. Therefore, this method could be used to further decrease the
uncertainty associated with the time predictions provided by the KF.
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