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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

The increasing popularity of additive manufacturing (AM) is pushing the industry to provide new solutions to improve the 
process stability. In the past, process monitoring and control has proved to be a fundamental tool to enhance the repeatability of 
many manufacturing processes, however the typical AM fast dynamics require a high spatiotemporal resolution data flow to 
accurately describe the process and these new types of data are presenting new challenges for standard statistical process 
monitoring (SPM) techniques.  
In this work, the capabilities of a new machine learning (ML) based framework for the detection of cooling rate-related defects in 
metal additive manufacturing processes via in-situ high-speed cameras are presented and discussed. 
© 2020 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction  

The high-speed of AM process dynamics have always 
represented a challenge in terms of process monitoring as it 
requires a combination of both high spatiotemporal resolution 
data streams and fast data analysis techniques.  

The increased availability of low-cost machine vision 
systems allowed a more widespread adoption of this new 
generation of sensors but standard SPM techniques struggle to 
keep up with the execution speed required for real-time 
application and to adapt to the new types of dataset which are 
very often non-normal and highly autocorrelated.  

To deal with the new type of dataset, mostly images and 
high-speed videos, two main strategies have been adopted:  
• Feature extraction via computer vision [1-6]: which 

aims at extracting relevant features from the single 
images and then monitor the trend of the feature along 
time to detect defects via standard SPM methods. 

 

Nomenclature 

AM additive manufacturing 
c cluster index 
KM K-means method 
L data extraction window length 
vi,c  centroid of cluster c at frame i 
xi  mean brightness at frame i 

 
• Dimensionality reduction [7-12]: this set of techniques 

aims at achieving a lower dimensional description of the 
complex dataset and to use the new set of low 
dimensional features for monitoring. 

 
Despite the successful application of some of these 

methods for anomaly detection in spatiotemporal data 
streams, they all still show some limitations either in terms of 
spatiotemporal accuracy or computational speed. 
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The method proposed in this paper aims at combining the 
simplicity of feature extraction together with the 
computational efficiency of dimensionality reduction to 
synthetize the relevant content of the complex dataset into a 
new, simpler dataset that can be quickly processed using a 
machine learning technique for anomaly detection.  

2. Experimental case study 

To test the capabilities of detecting spatiotemporal 
anomalies in high-speed data streams, the data acquired 
during a laser powder bed fusion process were employed. The 
dataset is composed by 3 different high-speed videos, named 
Out-of-control (OOC) Scenario 1, 2 and 3, showing the laser 
scanning across the powder bed to melt the predefined slice 
shape of a complex part (see fig. 1). Due to the complex shape 
and the reduced heat diffusion of certain areas of the slice, i.e. 
areas mostly surrounded by powder (e.g. overhanging walls, 
acute corners etc.), a slower, out-of-control cooling behavior 
can be noticed during all the videos, denoting what is called 
the hot-spot phenomenon, i.e. a localized heat accumulation 
that can result in a higher surface roughness, microstructural 
inhomogeneity and also porosity formation.  

Further details on the experimental and monitoring setup 
are described in the original work published by the owners of 
the dataset [11].  

3. Methodology 

The new method presented here exploits the very different 
cooling behavior of normal (i.e. laser, spatters) and defect-
related (i.e. hot spots) bright regions. In fact, even if they are 
similarly shaped and most often coexist in the same video 
frame, their brightness temporal evolution is very different, 
which corresponds to a different cooling behavior. The core 
idea is to exploit the fast dynamics of normal bright regions to 
correctly separate them from the defective bright regions, 
which exhibit much slower cooling history. 

To highlight these differences, a new simpler low-
dimensional dataset is extracted using computer vision from 
the high-dimensional data coming from the high-speed 
camera used for monitoring. The low-dimensional dataset is 
then fed to a machine learning classifier to detect the position 
in time and space of the anomalies, i.e. the hot-spots. The 
sequence of steps is:  

1. Thresholding: simple binary image thresholding is 
performed to identify all types of bright regions 
observed during the process (laser heated zones, 
spatters and hot-spots). For this step an arbitrary 
brightness level was set to twice the background gray 
level (~ 200).  

2. Region isolation: the pixels inside each individual 
bright region are isolated 

3. Data extraction: the mean brightness pixels in the 
isolated region is extracted from the L=10 following 
frames, as well as the region’s centroid position and 
first frame number.  

The resulting dataset is a simple array of time series 
describing the brightness decay of each bright region (see fig. 
2) and the new 1D functional data can then be used for 
training/testing the machine learning-based classifier used for 
anomaly detection.  
 
 

 

Fig. 1. (a) complex shape; (b) monitored slices position; (c) local defects 
caused by the hot.spots [11] 
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Fig. 2. Representation of the data extraction method

3.1. Machine learning-based defect detection 

The machine learning algorithm trained for anomaly 
detection is the K-means (KM) clustering method. This is the 
extension to functional data of the popular k-means 
classification algorithm used in multivariate statistics. 

Since the videos contain both normal and defective 
regions, the number of clusters can be set to 2 in order to 
separate the hot-spots from the normal process-related bright 
regions found in the video. Once the 2 functional centroids of 
the predefined clusters are computed using one of the out-of-
control videos, they can be used to set up a simple classifier 
that compares the distances of a new observed brightness 
history from each functional cluster to assess if it corresponds 
to a defective, hot-spot region, by assigning a cluster 
according to Equation 1:  

 
 

(1)                             
 
 

where xi is the mean region brightness observed at frame i and 
vi,c is the centroid of cluster c at frame i. 

In this first study, all the time series extracted from OOC 
Scenario 1 were used to compute the clusters’ functional 
centroids which have been employed for classification of new 
observations.  

4. Discussion of results 

Since a description of hot-spot is not uniquely defined, the 
position of the detected hot-spots will be compared with the 
true defect location observed in the final part and, together 

with time of first signal, it will serve as an indicator 
performance of the method.  

Figure 3 shows the shape of the scanned slice in the three 
monitored layers and the resulting KM-based classification of 
all the time series extracted from the original videos. To avoid 
any human bias, KM predictions were compared with a 
position-based ground truth that classifies as hot-spot only the 
bright regions that fall sufficiently close to the real defect 
location. The comparisons are reported in Tables 1-3.  

Table 1. OOC Scenario 1 confusion matrix. 

KM Position-based prediction 
pred. Normal Hot-spot 

Normal 298 15 
Hot-spot 14 87 

Table 2. OOC Scenario 2 confusion matrix. 

KM Position-based prediction 
pred. Normal Hot-spot 

Normal 209 7 
Hot-spot 16 92 

Table 3. OOC Scenario 3 confusion matrix. 

KM Position-based prediction 
pred. Normal Hot-spot 

Normal 238 15 
Hot-spot 22 92 

 
A considerable number of observations falling in the 

neighborhood of the real defect are correctly classified as hot-
spot, with the first alarm raised in the correct location just 
after 20 to 40 frames after the start of the video.  
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Fig. 3. Top panels: slice shapes and defect location; bottom panels: KM-based 
classifications 

 
However, in all of the 3 considered OOC scenarios, a few 

alarms were also raised outside of that region. It should be 
noted that most of these apparent misclassifications are 
located near other acute corners of the slice, i.e. in a position 
where the heat diffusion is poor, thus either revealing other 
less severe hot-spots that did not result in a final defect on the 
part, or simply highlighting a slower cool-down dynamics 
caused by the lower speed of the laser at turn-point. In the 
latter case, the whole hypothesis of extracting the brightness 
decay from the video would fall short and either further 
processing, longer data extraction windows or additional 
process information (e.g. laser position and speed) shall be 
needed to improve the prediction accuracy of the method.  

4.1. Real-time applicability 

High-speed data processing is fundamental to achieve real-
time defect detection when monitoring processes 
characterized by the fast dynamics typical of AM. For this 
reason, the real-time applicability of the developed method 
should always be kept into consideration when developing a 
new monitoring method.  

In this preliminary study a first assessment on the real-time 
applicability was performed considering the computational 
speed for classifying new time series observation. All tests 
were performed on a laptop equipped with an Intel i7-8550U 
CPU and 16GB of RAM. The average classification time of a 
single time series was found to be below 5 µs, which is 3 
orders of magnitude less than the time resolution of the high-
speed videos analyzed in this work. This reveals the clear 
potential of this method for fast and real-time detection of 
hot-spot phenomena.  

5. Conclusion and future work 

The new method presented in this work combines feature 
extraction via computer vision together with an effective 
dimensionality reduction approach for hot-spot defects 
detection in AM processes. The performance of the method 
on a real experimental case study has been discussed, 
revealing a low error rate and a promising potential for its 
real-time application.  

In future work, additional effort will be put into addressing 
the questions raised from this preliminary study, studying the 
sensitivity of the method to its hyperparameters (e.g. length of 
data extraction window) and to investigate further its 
performance compared to other existing approaches reported 
in literature.  
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