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Abstract: The prediction of the macroscopic behaviour of Flemish bond 
brickwork (FBB) is dealt with. From the finite element analysis of a 
representative volume element (RVE) of masonry, assumed to be a 
heterogeneous medium with periodic properties along two perpendicular 
directions, information on the macroscopic mechanical properties of masonry is 
obtained. The RVE is subjected to particular boundary conditions, which match 
the periodicity of the medium, to predict its response under elementary 
macroscopic stresses. The model takes into account the nonlinear behaviour of 
mortar and bricks by means of a combined plasticity and damage model. The 
macroscopic strength and post-peak behaviour of FBB under elementary in- 
and out-of-plane stresses are predicted. The biaxial macroscopic strength 
domain of masonry subjected to in-plane stress is also predicted for different 
orientations of the maximum principal stress to the bed joints. 
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This paper is a revised and expanded version of a paper entitled ‘Flemish bond 
brickwork: macroscopic elastic properties and nonlinear behaviour’ presented 
at the 17th Int. Brick & Block Masonry Conf., Krakow, Poland, 5–8 July 2020. 

 

1 Introduction 

Flemish bond brickwork (FBB) is characterised by courses of units in which stretchers 
are alternated with headers. Headers are centred over the stretchers in the courses below, 
and connect the two wythes of stretchers effectively, thus providing FBB walls with a 
monolithic behaviour. 

Flemish bond is extremely common in historical buildings (and beyond). Despite its 
diffusion, FBB has been addressed by a very limited number of authors, both from the 
experimental and the theoretical point of view. Indeed, a huge amount of papers exist 
addressing simpler brick patterns, such as running bond and header bond, which are 
characterised by homogeneous mechanical properties along the wall thickness. Interested 
readers are referred, e.g., to Pande et al. (1989), Cecchi and Sab (2002), Zucchini and 
Lourenço (2002), Mistler et al. (2007) and Taliercio (2014, 2016) as far as the prediction 
of the macroscopic elastic properties of masonry is concerned, and to Pietruszczak and 
Niu (1992), Milani (2011) and Milani and Taliercio (2015, 2016) as far as the modelling 
of the nonlinear behaviour and the macroscopic strength properties of masonry are 
concerned. 

At the authors’ knowledge, Drougkas et al. are the only researchers who have tried to 
predict the macroscopic mechanical properties of FBB. Assuming FBB to be a periodic, 
heterogeneous medium, these authors estimated the linear elastic properties of FBB by 
subdividing a representative element (RVE) in cubic sub-elements (Drougkas et al., 
2015). By selecting suitable plasticity and damage models for mortar and units, they also 
predicted the nonlinear macroscopic stress-strain curves of FBB under uniaxial stress and 
the macroscopic strength domain of FBB under biaxial stresses parallel to the mortar 
joints (Drougkas et al., 2016). 

Recently, Taliercio (2018) derived closed-form expressions for the macroscopic  
in-plane elastic constants and for the transverse shear moduli of FBB. An approach 
similar to the so-called Method of Cells proposed by Aboudi (1991) for fibre reinforced 
composites was used: any RVE is subdivided into sub-cells, and a piecewise 
differentiable, strain-periodic displacement field depending on a limited number of 
degrees of freedom (d.o.f.s) is formulated. Suitable equilibrium conditions at the interface 
between adjacent subcells reduce the number of independent d.o.f.s. Upon integration of 
the microscopic stress and strain fields, the macroscopic elastic constants can be 
identified. 

Having reliable tools available to predict the macroscopic behaviour of masonry, 
including FBB, is of paramount importance in the analysis of large masonry buildings, 
for which a microscopic approach taking the heterogeneous nature of brickwork into 
account is impractical. In the present work, a numerical method suitable to describe the 
macroscopic nonlinear behaviour and the homogenised strength domain of FBB under 
any macroscopic stress conditions is presented, in order to contribute and fill the existing 
gap in this field. 
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Assuming FBB to be periodic, a finite element model of any RVE is analysed beyond 
the elastic limit. Suitable kinematic boundary conditions are enforced to match the  
strain-periodicity of the microscopic displacement field. The nonlinear mechanical 
behaviour and the development of cracks in units and mortar joints are described by the 
concrete damaged plasticity model, implemented in the FE commercial code Abaqus. 
The FE model is applied to predict the homogenised strength of FBB under elementary 
macroscopic in-plane stresses and transverse shear, assuming the units to be either weak 
or strong compared to mortar, in order to point out the change in macroscopic behaviour 
of masonry with the microscopic parameters. The effect of the collar joint on the 
macroscopic response is highlighted by comparing the numerical results with those 
obtained for header bond brickwork. 

Under biaxial stresses, the strength domain and the elastic limit were evaluated at 
different orientations of the bed joints to the maximum principal stress; the results are 
qualitatively compared with those found in the literature for running bond masonry. 
Eventually, the main results of the research are critically discussed, and possible future 
perspectives of the research are outlined. 

2 Numerical model 

In this Section, the mathematical tools required to formulate the numerical model are 
summarised. First, some basic concepts of homogenisation theory for periodic media are 
recalled, and the periodicity conditions that the microscopic displacement field has to 
fulfil over any Representative Volume Element of FBB are shown (Section 2.1). Then, 
the constitutive law proposed for units and mortar in uniaxial tension or compression is 
described (Section 2.2), and the yield surface of the materials under 3D stress is outlined 
(Section 2.3). 

2.1 Representative volume element of Flemish bond brickwork 

Consider a typical masonry wall built using Flemish bond [Figure 1(a)]. From now 
onwards, x1 and x3 will denote a couple of axes parallel to the mid-plane of the wall, and 
x2 an axis running across the wall thickness. Owing to the assumed periodicity, a single 
unit cell, V, can be used as RVE. For numerical purposes, only half of the RVE needs to 
be analysed and discretised into finite elements; in Figure 1(b), light elements correspond 
to mortar joints and dark elements to units. 

Goal of homogenisation theory is replacing the real heterogeneous medium with a 
homogeneous material, and defining the homogenised, or macroscopic, properties though 
the analysis of any RVE. The homogenised constitutive law relates macroscopic stresses 
() and macroscopic strains (E), or their rates beyond the linear elastic field.  and E are 
defined as the volume averages of the corresponding microscopic fields, (x) and (x), 
over the volume, V, of the RVE, x being any point in V: 

1 1
( ) , ( ) .

| | | |
V V

dV dV
V V

  Σ σ x E ε x  (1) 
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Further details on homogenisation theory for periodic media can be found, e.g., in 
Nemat-Nasser and Hori (1993). 

Figure 1 (a) Typical Flemish bond brickwork (b) possible representative volume element (RVE) 
(see online version for colours) 

 

hb

 x1 

 x2 

x3 

hm

bs

bh 
bs 

bm 

V 

  

 (a) (b) 

According to Mistler et al. (2007), the (infinitesimal) microscopic displacement field in 
the RVE of any periodic, heterogeneous body can be expressed as: 

0( ) ( ),px    Ω u x u Ex u x  (2) 

where u0 is a rigid displacement,  is a rigid rotation, and up is the periodic part of the 

displacement field: up matches the periodicity of the medium along x1 and x3. E  is the 
extensive variable conjugate to the macroscopic stress in the so-called Hill’s  
macro-homogeneity: 

1
: ( ) : ( )

| |
V

dV
V

 Σ E σ x ε x  (3) 

and differs from the macroscopic strain E unlike the case of fully periodic media  
(Nemat-Nasser and Hori, 1993). Equation (3) applies provided that the microscopic stress 
field is anti-periodic in (x1, x3) over the boundary of the RVE in contact with the 
surrounding RVEs, whereas the faces perpendicular to x2 are traction-free. 

A microscopic displacement field of the form (2) over the RVE is said to be  
‘strain-periodic’. 

Any macroscopic strain or stress can be prescribed by applying suitable boundary 
conditions, in terms of displacements or forces, respectively. Interested readers are 
referred to Mistler et al. (2007) for further details. 

2.2 Constitutive law of units and joints 

In the numerical applications, the nonlinear behaviour of units and mortar is described by 
the so-called ‘concrete damaged plasticity’ (hereafter, CDP) model implemented in 
Abaqus. This model takes into account both plastic strains and damage, and was 
successfully used by other authors to analyse masonry buildings under seismic actions 
(Milani and Valente, 2015; Valente and Milani, 2016; Condoleo et al., 2020). The CDP 
model is only briefly described hereafter: readers are referred to the Abaqus Theory 
Manual for additional details. 
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Figure 2 Stress-strain curves (blue) and damage evolution (red) in tension (dt) and compression 
(dc) for (a, b) weak units, (c, d) strong units and (e, f) mortar (see online version  
for colours) 

 

(a)     (b) 

 

(c)     (d) 

 

(e)     (f) 
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The model makes use of the concept of ‘effective stress’ to define the stress-strain 
relations, both in tension and compression: 

,
1

h

h

σ
σ

d



 (4) 

where h = t for tension and h = c for compression. The damage variables in tension and 
compression are denoted by dt and dc, respectively. Figure 2 summarises the post-peak 
stress-strain curves assumed in the numerical analyses for weak units [Figures 2(a) and 
2(b)], strong units [Figures 2(c) and 2(d)] and mortar [Figures 2(e) and 2(f)], both in 
tension [Figures 2(a), 2(c) and 2(e)] and compression [Figures 2(b), 2(d) and 2(f)]. The 
same figures also show the assumed evolution of dt and dc as strain increases. 

Two different brick types were considered in the applications, namely bricks having a 
tensile strength comparable to that of mortar (‘weak’ units), and bricks having a tensile 
strength of an order of magnitude greater than that of mortar (‘strong’ units). The values 
of the uniaxial tensile (t0) and compressive (c0) strength of bricks and mortar are listed 
in Table 1. 

Table 1 Uniaxial tensile and compressive strength of units and mortar 

Material 
σt0  σc0 

N/mm2  N/mm2 

Weak units 1  50 

Strong units 5  

Mortar 0.35  6 

The tensile behaviour of bricks and mortar is assumed to be linearly elastic up to t0. 
Then microcracking occurs, and the material exhibits strain softening behaviour. The 
blue curves in Figures 2(a), 2(c) and 2(e) show the assumed post-peak behaviour in 
tension for weak units, strong units, and mortar, respectively. Basically, an exponential 
softening is assumed. 

Conversely, in compression the assumed post-peak behaviour of the component 
materials is shown in Figures 2(b), 2(d) and 2(f) for weak units, strong units, and mortar, 
respectively. A sort of parabolic softening is prescribed. 

2.3 Multiaxial nonlinear behaviour 

Under multiaxial stresses, the yield surface implemented in the CDP model is a modified 
Drucker-Prager surface, with a smoothed tip and a non-circular cross-section in the space 
of the principal stresses. A non-associated plastic flow rule, defined by a dilation angle , 
is assumed. The values of the parameters that define the CDP model are summarised in 
Table 2; the same values were used for both mortar and units, irrespective of the strength 
of the units. The ‘eccentricity’  is a small positive number related to the flow potential. 
b0 is initial yield stress in biaxial compression when the two principal stresses are equal. 
Kc defines the shape of the cross-section of the yield surface in a plane perpendicular to 
the hydrostatic axis. The parameter μ is introduced for the visco-plastic regularisation of 
the constitutive equations. Readers are referred to the Abaqus Theory Manual (2006) for 
additional details. 
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Table 2 Parameters defining the CDP model used in the numerical applications 

ψ (deg) ε σb0/σc0 Kc μ 

10 0.1 1.16 2/3 0.0001 

3 Macroscopic behaviour under elementary macroscopic stress 

The results of numerical tests on RVEs subjected to selected elementary macroscopic 
stresses will be now shown and discussed in terms of macroscopic stress-strain curves 
and contours of the damage variables at the last increments of the numerical analyses, 
when a failure mechanism is apparent. In order to highlight the influence of the collar 
joint on the macroscopic response of masonry, the results are compared with those 
obtained on RVEs of Header Bond Brickwork (HBB) having the same geometrical and 
mechanical properties as FBB. 

3.1 Vertical compression (33 < 0) 

Masonry walls are mainly supposed to withstand vertical loads. Thus, it is of particular 
interest to investigate the behaviour of masonry (namely, its load-bearing capacity) under 
vertical compression, 33. Figure 3 shows the macroscopic stress-strain curves obtained 
for FBB and HBB assuming the units to be either weak [Figure 3(a)] or strong  
[Figure 3(b)]. Unsurprisingly, the macroscopic strength is similar for both bonds, as the 
vertical joints do not contribute to the vertical strength significantly. The post-peak 
behaviour of FBB and HBB is somewhat different, although the ultimate behaviour is 
similar. If the units are weak, tensile damage is mainly located in the vertical (head and 
collar) joints in both bonds [Figures 4(a) and 4(b)], but headers are also damaged in FBB. 
If the units are strong, they turn out to be heavily damaged in tension in both bonds 
[Figures 4(c) and 4(d)]. Compressive damage is basically located in the bed joints, for 
both bonds and irrespective of the strength of the units (Figure 5). 

Figure 3 Macroscopic stress-strain curves for FBB and HBB under vertical compression,  
(a) weak units (b) strong units (see online version for colours) 

  

(a)     (b) 
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Figure 4 Ultimate contours of tensile damage for (a, c) Flemish bond and (b, d) header bond  
brickwork under vertical compression, (a, b) weak units (c, d) strong units (see online 
version for colours) 

  

 (a) (b) 

  

 (c) (d) 

Figure 5 Ultimate contours of compression damage for (a, c) Flemish bond and (b, d) header 
bond brickwork under vertical compression, (a, b) weak units (c, d) strong units  
(see online version for colours) 

  

 (a) (b) 
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Figure 5 Ultimate contours of compression damage for (a, c) Flemish bond and (b, d) header 
bond brickwork under vertical compression, (a, b) weak units (c, d) strong units  
(continued) (see online version for colours) 

  

 (c) (d) 

3.2 Horizontal tension (11 > 0) 

Under horizontal tension, the two bonds have the same macroscopic strength if units are 
weak [Figure 6(a)]. Indeed, tensile damage is localised in the bed and head joints  
[Figures 7(a) and 7(b); the occurrence of tensile damage also in the stretchers of FBB 
explains the difference in post-peak behaviour of the two bonds [Figures 6(a)]. If units 
are strong, FBB exhibits a macroscopic strength much higher than HBB [Figure 6(b)], 
although the ultimate damage distribution is similar [Figure 7(c) and 7(d)]. The higher 
tensile strength of the units prevents stretchers from cracking, whereas the failure 
mechanism of HBB is basically the same, irrespective of the brick strength. Note that 
collar joints are undamaged in FBB under horizontal tension. 

Figure 6 Macroscopic stress-strain curves for FBB and HBB under horizontal tension, (a) weak 
units (b) strong units (see online version for colours) 

  

(a)     (b) 
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Figure 7 Ultimate contours of tensile damage for (a, c) Flemish bond and header (b, d) bond 
brickwork under horizontal tension, (a, b) weak units (c, d) strong units (see online 
version for colours) 

   

 (a) (b) 

   

 (c) (d) 

Figure 8 Macroscopic stress-strain curves for FBB and HBB under in-plane shear, (a) weak units 
(b) strong units (see online version for colours) 

  

(a)     (b) 
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3.3 In-plane shear (13) 

Under in-plane shear, neither the brick strength nor the brick pattern affects the 
macroscopic behaviour of masonry significantly. Figure 8 shows the macroscopic  
stress-strain curves for weak units [Figure 8(a)] and strong units [Figure 8(b)]. The 
difference in behaviour is barely perceptible. Indeed, damage evolution is basically the 
same in FBB and HBB, irrespective of the brick strength, as it basically affects only head 
and bed joints (Figure 9). 

Figure 9 Ultimate contours of tensile damage for (a, c) Flemish bond and (b, d) header bond 
brickwork under in-plane shear, (a, b) weak units and (c, d) strong units (see online 
version for colours) 

   

 (a) (b) 

   

 (c) (d) 

Similar remarks apply to the macroscopic behaviour under vertical transverse shear (23), 
both in terms of macroscopic strength and damage evolution. In this case, only the bed 
joints are significantly affected by damage. 

3.4 Horizontal transverse shear (12) 

Finally, in the case of horizontal shear both the macroscopic strength and the 
macroscopic nonlinear behaviour are significantly affected by the type of bond and the 
brick strength. Figure 10(a) shows that if units are weak the macroscopic shear strength 
of FBB is significantly lower than that of HBB. This can be easily understood referring to 
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Figure 11, where the contours of the ultimate tensile damage and the failure mechanism 
are shown. In FBB, damage occurs in the collar joint and then propagates in the weak 
units [Figure 11(a)]: the ultimate behaviour of the RVE is basically that of two rigid 
elements undergoing a relative sliding [Figure 11(c)]. The absence of any collar joint 
enhances the strength of HBB. 

Conversely, if units are strong damage is mostly confined in the bed and head joints, 
both in FBB and in HBB (Figure 12). The collar joint is affected by damage only to a 
limited extent, and the macroscopic strength of FBB is higher than that of HBB [Figure 
10(b)]. 

Figure 10 Macroscopic stress-strain curves for FBB and HBB under horizontal transverse shear, 
(a) weak units (b) strong units (see online version for colours) 

  

(a)     (b) 

Figure 11 Brickwork with weak units under horizontal transverse shear: ultimate contours of  
(a, b) tensile damage and (c, d) failure mechanisms for (a, c) Flemish bond and  
(b, d) header bond (see online version for colours) 

   

 (a) (b) 
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Figure 11 Brickwork with weak units under horizontal transverse shear: ultimate contours of  
(a, b) tensile damage and (c, d) failure mechanisms for (a, c) Flemish bond and  
(b, d) header bond (continued) (see online version for colours) 

   

 (c) (d) 

Figure 12 Brickwork with strong units under horizontal transverse shear: ultimate contours of  
(a, b) tensile damage and (c, d) failure mechanisms  for (a, c) Flemish bond and  
(b, d) header bond (see online version for colours) 

   

 (a) (b) 

   

 (c) (d) 
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4 Homogenised biaxial strength 

The homogenised biaxial strength of FBB was predicted by submitting any RVE to  
in-plane macroscopic stresses, I and II. The orientation, , of the maximum principal 
stress to the bed joints was assumed to range from 0 to 90°, with a step of 22.5°. Radial 
stress paths were followed in the plane (I, II): the macroscopic strength domain was 
obtained as the envelope of the stress points at the last increment of the analysis for each 
stress path. The mechanical properties of the component materials are those listed in 
Table 1 for strong units. The results obtained for weak units are not presented hereafter, 
for the sake of brevity; where appropriate, comments on the influence of the unit strength 
on the macroscopic strength will be added. 

Figure 13(a) shows the failure surfaces obtained according to the procedure outlined 
above. Apparently, the numerical model is capable of capturing the macroscopically 
anisotropic behaviour of brickwork. At a given orientation , under biaxial compression 
the macroscopic strength is affected at a limited extent by the ratio of the two principal 
stresses: conversely, there is a significant increase in strength from uniaxial to biaxial 
compression. Note that all the failure surfaces referred to different orientations are 
supposed to intersect at the same point under equi-biaxial compression (or tension): this 
requirement is not rigorously fulfilled in Figure 13a because of the difficulty in 
identifying macroscopic failure numerically. 

In Figure 13(b), the elastic domains of FBB at different orientations are shown. For 
each orientation, the elastic domain was numerically identified as the envelope of the 
macroscopic stress points at which damage was found to occur in the RVE. At a given , 
it is interesting to note that the elastic domain is not a simple homothetic contraction of 
the corresponding strength domain.  

Figure 13 (a) Macroscopic strength domains and (b) elastic domains  at different orientations 
() of the maximum principal stress to the bed joints (see online version for colours) 

  

(a)     (b) 
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Unfortunately, the validation of the numerical model cannot be done by comparison with 
experimental data, because of their unavailability in the current literature. A qualitative 
assessment of the model can be done referring to the data of tests on single-wythe 
masonry. Figure 14(a) shows the bounds of the experimental biaxial strength of running 
bond masonry subjected to biaxial tests assuming the macroscopic principal stresses to be 
parallel to the bed and head joints, reported by Drougkas et al. (2016). For comparison, 
also the theoretical strength domain numerically obtained by these authors is shown. 
Figure 14b shows the strength envelope obtained by the proposed numerical model at  
θ = 0°. Experimental and numerical results are in qualitative good agreement, although a 
quantitative comparison cannot be done. In Figure 14(b), also the elastic domain of FBB 
at θ = 0° is shown. 

Figure 14 Biaxial stresses acting parallel to the bed and head joints (θ = 0°), (a) experimental 
strength domain of running bond masonry, compared with the theoretical predictions 
of Drougkas et al. (2016) (b) numerical strength domain and elastic domain of FBB 

  

(a)     (b) 

Another possibility to qualitatively assess the numerical results is to compare the failure 
mechanisms of FBB predicted by the FE model with those reported by other authors for 
single-wythe masonry. Figure 15 summarises the numerical failure mechanisms, as 
suggested by the ultimate contours of the damage variables, at different combinations of 
the macroscopic and orientations of the macroscopic principal stresses. All of these 
mechanisms are in good agreement with those reported by Dhanasekar et al. (1985) for 
stretcher bond brickwork: readers are referred to the original paper for additional details. 
Note that under biaxial compression failure is invariably associated with splitting at the 
wall mid-plane, both for stretcher bond and Flemish bond masonry. For FBB, this is 
shown in Figure 16, where the contours of the tensile damage variable at the last 
increment of the analyses are shown under biaxial compression at  = 45° for a selected 
ratio of the principal stresses. Apparently, damage is localised in the collar joints, 
whereas the remaining joints are undamaged. Similar remarks apply to FBB with weak 
units. 
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Figure 15 Numerically identified failure mechanisms of FBB under different stress 
combinations (see online version for colours) 
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Figure 16 Ultimate contours of tensile damage at failure in biaxial compression (θ= 45°)  
(see online version for colours) 

 

The difference in ultimate behaviour explains the difference in macroscopic strength as 
the orientation of the principal stresses varies. Figure 17 shows the contours of the tensile 
damage variable at the last increment of the numerical analyses under vertical tension  
(θ = 90°); basically, only the bed joints are damaged. The macroscopic strength is  
0.4 N/mm2 approximately. Comparing this picture to Figure 7(c), which refers to 
horizontal tension (θ= 0°), it is easy to understand why the macroscopic tensile strength is 
much higher in the latter case (0.7 N/mm2 approximately). This result is in agreement 
with the experimental findings obtained by Johnson and Thompson (1969) and by Page 
(1982). For FBB with weak units, anisotropy in terms of macroscopic tensile strength is 
significantly lower. 

Figure 17 Contours of tensile damage at failure in uniaxial vertical tension (θ = 90°) (see online 
version for colours) 

 

It was already remarked that a lateral confinement increases the compressive strength 
with respect to the uniaxial compressive strength. The increase is particularly significant 
at θ = 67.5° [see Figure 13(a). Figure 18 shows the contours of the tensile damage at 
failure under uniaxial compression [Figure 18(a)[ and biaxial compression [Figure 18(b)]. 
Damage is much more widespread under uniaxial compression, as also the bed joints and 
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parts of the units are damaged. Under biaxial compression, damage is basically confined 
within the collar joint (see also Figure 16). Similar remarks apply at any θ. 

Figure 18 Contours of the tensile damage at failure at θ = 67.5°, (a) uniaxial compression  
(b) biaxial compression (see online version for colours) 

 

(a) 

 

(b) 

5 Concluding remarks 

The proposed numerical model allows the macroscopic strength properties of FBB to be 
predicted and compared with those of other bonds (i.e. header or stretcher bond) in which 
no collar joint exists. Also, the influence of the microscopic mechanical properties on the 
homogenised nonlinear properties can be investigated. 

Flemish bond and header bond exhibit similar macroscopic behaviour under vertical 
compression (33 < 0), in-plane shear (13), and vertical transverse shear (23 < 0). Under 
horizontal tension (11 > 0), the two bonds behave similarly if units are weak. Increasing 
the tensile strength of the units, the macroscopic tensile strength increases only for FBB, 
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as the failure mechanism of header bond in horizontal tension affects only the mortar 
joints. 

The two bonds behave quite differently under horizontal transverse shear (12). FBB 
has a strength higher than header bond owing to the presence of headers and stretchers in 
the same course. For both bonds, an increase in tensile strength of the units is matched by 
an increase in macroscopic shear strength. 

Table 3 summarises the results of the numerical tests in terms of macroscopic 
strength under elementary stresses. 

Table 3 Macroscopic strength (in N/mm2) under elementary stresses for Flemish and header 
bond brickwork with weak and strong units 

Unit strength Bond type Σ11 (>0) Σ33 (<0) Σ33 (<0) Σ33 (<0) Σ33 (<0) 

Weak Units HBB 0.445 14.25 0.379 0.398 0.53 

FBB 0.443 14.03 0.357 0.389 0.441 

Strong Units HBB 0.445 28.01 0.374 0.398 0.662 

FBB 0.695 26.99 0.355 0.396 0.718 

Under biaxial compression, damage is localised in the collar joint, so that the 
macroscopic strength is nearly unaffected by the tensile strength of the units. This failure 
mechanism is similar to that reported by Page (1981) from tests on running bond 
brickwork. 

The effectiveness of the numerical model needs to be validated by experimental tests. 
Unfortunately, in the available literature no results of tests on FBB specimens are 
reported. An extensive experimental program aimed at investigating the behaviour of 
FBB under different stress conditions is highly desirable to fill the existing knowledge 
gap on this very common type of masonry. It will probably take years to be carried out, 
and involve multiple research laboratories. Thus, the presented work is meant to be an 
initial, but certainly not exhaustive step, for a better understanding of the influence of the 
mechanical properties of mortar and units on the global behaviour of FBB. 
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