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Abstract: This work proposes a data-driven methodology for identifying critical components in
Complex Technical Infrastructures (CTIs), for which the functional logic and/or the system structure
functions are not known due the CTI’s complexity and evolving nature. The methodology uses large
amounts of CTI monitoring data acquired over long periods of time and under different operating
conditions. The critical components are identified as those for which the condition monitoring signals
permit the optimal classification of the CTI functioning or failed state. The methodology includes
two stages: in the first stage, a feature selection filter method based on the Relief technique is used
to rank the monitoring signals according to their importance with respect to the CTI functioning or
failed state; the second stage identifies the subset of signals among those highlighted by the Relief
technique that are most informative with respect to the CTI state. This identification is performed
on the basis of evaluating the performance of a Cost-Sensitive Support Vector Machine (CS-SVM)
classifier trained with several subsets of the candidate signals. The capabilities of the methodology
proposed are assessed through its application to different benchmarks of highly imbalanced datasets,
showing performances that are competitive to those obtained by other methods presented in the
literature. The methodology is finally applied to the monitoring signals of the Large Hadron Collider
(LHC) of the European Organization for Nuclear Research (CERN), a CTI for experiments of physics; the
criticality of the identified components has been confirmed by CERN experts.

Keywords: complex technical infrastructure; critical components; functional logic; feature ranking;
Relief technique; filter methods; classification; support vectors machines; CERN; Large Hadron
Collider

1. Introduction

The identification of components critical for the functionalities of industrial and man-
ufacturing systems is of essential importance to detect bottlenecks to which consolidation
efforts must be directed, aiming at reducing the probability of abnormal conditions, number
of shutdowns and recovery time [1,2]. When the structure function of the system and the re-
liabilities of its components are known, components critical for the successful functionality
of the system can be identified by traditional reliability and risk analysis methods by calcu-
lating the so-called component importance measures [3,4]. However, this is unattainable for
CTIs, which are large-scale systems of systems composed of thousands of interdependent
and interconnected components executing diverse functions and using distinct technolo-
gies, e.g., hydraulics, mechanics, and electronics [5,6]. Due to their topological complexity,
their spatial distribution, and the distinctions in their functionalities and technologies, the
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systems of a CTI are designed and constructed independently, and then assembled relying
on the direct physical interfaces and considering functional dependencies that only take
into account the theoretical scenarios of operation [2,7]. Throughout the life of a CTI, its
systems evolve over time to maintain their operation, improve their performance, expand
their functions, etc. [7]. This evolution modifies the physical interconnections between
the systems of the CTI, which consequently alters the functional dependencies among the
components and, therefore, their criticalities [1,8,9].

For two decades, there has been a growing interest from academy, industry and
governments in investigating novel and alternative methods for identifying criticalities in
different types of CTIs. Hausken [10] proposed a methodology combining defense–attack
models and risk analysis, which analytically identifies critical interdependencies among
complex infrastructures, and applied it to identify economically critical interdependencies
among different industrial sectors in the USA. Wu et al. [11] developed a method relying
on network theory for identifying potential geographical and physical interdependencies
triggering cascading failures among different infrastructures in situations of touristic
attacks. Chopra and Khanna [12] proposed a method based on network and graph theories
for the identification of interdependencies among different infrastructures that could
magnify the effects of natural disasters on the resilience of the US national economy.
Zio and Ferrario [13] developed a system-of-systems modeling framework for analyzing
the risk of accidents caused by external events (specifically earthquakes) in a nuclear
power plant. Their proposed framework made it possible to consider the interdependent
infrastructures in which the plant was embedded (e.g., power and water distribution
networks), through the use of Muir Web and Monte Carlo simulation for the quantitative
evaluation. Genge et al. [14] presented a sensitivity analysis-based method that required
knowledge of the system dynamics in order to highlight the critical control variables
regarding cyber-attacks on infrastructures. Patterson and Apostolakis [15] developed a
method, combining network theory and Monte Carlo simulation, for identifying critical
geographical sectors in dependent infrastructures.

These methods, however, face serious challenges hindering their practical application
to CTIs, which requires detailed knowledge of the CTI structure function, architecture
and/or dynamics, which is not attainable for complex and evolving systems [1].

Recently, two data-driven approaches have been developed for the analysis of com-
ponents criticality in CTIs. A wrapper feature selection method based on the use of a
differential evolution algorithm for the identification of the subset of monitoring signals
that optimizes the performance of a Support Vector Machine model classifying the CTI
functioning/failed state was proposed in Baraldi et al. [16]. Although the method was
successfully applied to a dataset involving 200 monitoring signals of a real CTI, the compu-
tational cost associated with the wrapper feature selection algorithm represents a practical
limitation on the size of the CTI to which the method can be applied. Lu et al. [17] developed
a data-driven method for the estimation of the importance measures of CTI components
based on the use of a random forest model for classifying the CTI functioning/failed state
as a function of the individual components’ states. The method relies on the assumption
that the functioning/failed state of each individual component is known, which is not
possible for many real CTIs.

To tackle these challenges, this work presents a contribution in the form of a novel
data-driven methodology for the identification of components critical for CTI production
availability, based on the processing of a large amount of monitoring data of the CTI. These
data include the values of hundreds of signals registered over long periods of time and
under several operational conditions of the CTI. The methodology relies on the selection
of the subset of signals most relevant and informative with respect to the CTI state, i.e.,
functioning or failed. Then, the critical components are identified as those whose states are
monitored by the selected subset of signals.

The identification of the subset of relevant/informative signals is accomplished via a
two-stage methodology. The first stage is formulated as a feature selection problem, i.e.,
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the identification of the subset of monitoring signals that allows the development of the
best-performing model for the classification of the CTI functioning/failed state [18,19].
Most feature selection methods can be categorized as either filter or wrapper methods [20].
Filter methods are based on computation, directly from the data and independently of the
specific model used for classification, of a numerical evaluation index, which is used to
score individual features or features subsets according to their importance or relevance
with respect to the classification output [18,20]. On the contrary, wrapper feature selection
methods select an optimal subset of features for developing the classification model itself,
i.e., the classification model is wrapped within a search algorithm (i.e., optimizer), which
aims to identify the feature subset that provides the best classification performance [16,21].

In this work, wrapper feature selection methods are not considered because of the
scale of the system, which is characterized by a very large number of monitoring signals.
This makes the application of wrapper methods to the whole CTI infeasible, due to the
computational effort required for training and testing a dedicated classifier for each of the
candidate subsets of features explored by the optimization algorithm [22,23]. Therefore,
a filter method based on the Relief ranking technique is employed to identify potential
candidate signals related to the CTI state [18,19]. The Relief feature ranking algorithm has
been chosen in this work due to its relatively low computational requirements, tolerance to
noise, and robustness to feature interactions [24]. The Relief ranking algorithm assigns a
proxy statistic, or a score, to each individual feature: low scores are assigned to features
that have different values for neighboring instances belonging to the same class, and
high scores are assigned to features that have different values for neighboring instances
belonging to different classes. The scores assigned by Relief express the relative importance,
or relevance, of each feature with respect to the output (i.e., the binary CTI state in our
case of interest). These scores range from −1 (worst) to +1 (best), and provide valuable
knowledge of the system [18].

The second stage involves a procedure for identifying the subset of most informative
signals for the CTI state, among those top-ranked by Relief. This subset is searched by
maximizing the performance of a CS-SVM classifier [25,26] of the CTI state on a set of data
different from that used for the previous stage of Relief feature ranking. The procedure
evaluates the performance of CS-SVM classifiers sequentially built by adding, each iteration,
the next top-ranked signal (feature). Therefore, in the first step, only the first-top feature
is included in the feature subset, in the second iterating, the second-top feature is added
to the feature subset, and the procedure is repeated as long as the performance increases.
Then, the components referred to by the chosen subset of top-ranked features are identified
as critical.

The main novelties of this work are:

(i) the development of a method for the identification of critical components in CTIs that
relies fully on data and, thus, unlike most of the existing methods of CTI analysis, it
does not require detailed knowledge of the CTI;

(ii) the application of the method to the real and complex CTI of the CERN LHC, on the
basis of a large amount of monitoring data collected over one year of operation, in
contrast to most existing methods of CTI analysis, which investigate simplified and
theoretical cases of CTIs.

A two-stage procedure has been adopted for the validation of the proposed method: (i)
the individual steps of the proposed method, i.e., the classification using the CS-SVM, the
feature ranking provided by the Relief algorithm, and the method for the quantification of
the information content of a subset of features have been verified considering 15 benchmark
labeled datasets from the Knowledge Extraction based on Evolutionary Learning (KEEL)
repository [25,27]; (ii) the identification of the critical components in CTIs has been vali-
dated by means of a real case study involving 260 monitoring signals of the LHC particle
accelerator of CERN, which is a large-scale and complex system of systems, in which the
failure of individual components/units directly influences the accelerator performance and
its total availability for physics experiments [28,29]. Since the ground-truth importance
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ranking of the CTI components is not available, the obtained results have been directly
validated by expert judgment of CERN operators knowledgeable of the CTI behavior and
its malfunctioning.

The remainder of this paper is structured as follows. The problem of the identification
of critical components in CTIs is formulated in Section 2. The proposed methodology based
on the Relief feature ranking algorithm is described in Section 3. The performance of the
proposed method is validated on the basis of different benchmark datasets in Section 4.
The application of the proposed methodology for the identification of the components
critical in the CTI of the CERN LHC is shown in Section 5. Finally, the work is concluded
in Section 6.

2. Problem Statement

This work addresses a CTI composed of a large number, M, of components whose
individual states (functioning or failed) are unknown. The CTI functioning or failed state
at time t is denoted using a binary variable:

xCTI(t) =
{

1 i f the CTI is f ailed
0 i f the CTI is f unctioning

The CTI functioning or failed state xCTI(t) is assumed to be known to the plant
operators. Additionally, the CTI is monitored by a number of N > M sensors, measuring a
set of N physical quantities of the CTI components, y(t) = (y1(t), y2(t), . . . , yn, . . . , yN(t)),
such as pressures, temperatures and electrical signals, which implicitly contain real-time
information about the CTI individual component states. Figure 1 shows a schematic
representation of the information collected by monitoring the CTI components.

Figure 1. Schematic representation of CTI monitoring.

The goal of this study is to identify the set of components critical for the state of the
CTI, c∗ =

(
c∗1 , c∗2 , . . . , c∗` , . . . , c∗q

)
, with q < M and c∗` ∈ {c1, . . . , cM} for any ` = 1, . . . , q.

To achieve this goal, this work exploits the information content of a dataset D involving a
history of instances

(
y(k), xCTI(k)

)
, k = 1, . . . K, where y(k) is the vector of signal values

collected at past time instant k and xCTI(k) ∈ {0, 1} represents the associated state of the
CTI (0 refers to failed state and 1 to functioning state). Henceforth, we denote the patterns
with failed state as positive and belonging to the minority class, while we denote those with
functioning state as negative and belonging to the majority class. In fact, since CTI failure
is a rare event, the number of positive patterns K+ is considerably smaller than that of
negative patterns K−, i.e., K+ � K−.

In this work, the principal hypothesis is the existence of an unknown function
G : xCTI(t) = G(y(t)), representing a relation between the values of the monitoring
signals y(t) and the state of the system xCTI(t). The conjecture is that if a data-driven
classifier xCTI(t) = G∗(y(t)) can be developed with acceptable classification performance,
the hypothesis of the existence of the function xCTI(t) = G(y(t)) can be verified.
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Hence, the problem of the identification of the set of components c∗ critical for the
CTI state is linked to that of identifying the subset of signals y∗ =

(
y∗1 , y∗2 , . . . , y∗r , . . . , y∗R

)
with r < N and y∗r ∈ {y1, y2, . . . , yi, . . . , yN}, which are most relevant for determining the
CTI state xCTI . A subset of signals y1 is assumed to be more relevant to the CTI state, xCTI ,
than a subset of signals y2 if the performance of a classifier G∗1(y1) : xCTI = G∗1(y1),
developed using the instances

(
y1(k), xCTI(k)

)
, k = 1, . . . K, is superior to the performance

of a classifier G∗2(y2) : xCTI = G∗2(y2), developed using the instances
(
y2(k), xCTI(k)

)
,

k = 1, . . . K. This, then, leads to the definition of the problem of selecting the subset of
signals y∗ that permits the development of the best data-driven classifier G∗ of the CTI
state. In other words, searching for the best subset of signals y∗ is led by the performance
of the classifier G∗ developed using y∗. Eventually, the critical components c∗ are identified
as those whose operating states are monitored by the optimal subset of signals y∗.

It is worth mentioning that with respect to the quality of the monitoring data collected
from industrial systems, the performance of the classification method could be reduced
by: (i) missing measurements resulting from the failure to collect or store signal values at
few time instances [30] and (ii) gross errors due to sensor faults, such as freezing, drifting
and miscalibration [31,32]. To address these problems, missing data imputation and data
reconciliation methods have been developed and successfully applied for improving the
quality of the data collected from industrial systems. Interested readers can refer to [33,34].

3. Methodology

To identify the optimal subset of monitoring signals y∗ that allows the best classifica-
tion of the CTI state (i.e., function or failed), this work proposes a methodology based on
the following steps (Figure 2):

• sorting the monitoring signals according to their importance/relevance to the CTI
state using the Relief-based feature ranking algorithm (Section 3.1);

• identifying the best performing features subset, y∗, by the quantification of the infor-
mation content (Section 3.2);

• identifying as critical components those whose states are monitored by the best feature
subset y∗.

3.1. Relief-Based Feature Ranking

The Relief algorithm is a supervised filter method for feature selection that provides a
proxy statistic for each feature (also called feature weight), which acts as a measure of the
relevance of the feature with respect to a target concept [24]. It was originally designed
for application to binary classification problems with discrete or continuous features, and
was then generalized to handle multi-class classification and regression problems [18]. The
Relief algorithm is also able to rank features of different types, such as continuous, discrete,
binary, categorical and textual.

Relief assigns low scores to features that have different values for neighboring in-
stances belonging to the same class and high scores to features that have different values
for neighboring instances belonging to different classes [24]. Consider a dataset D contain-
ing instances

[
y(k), xCTI(k)

]
, k = 1, . . . , K, where the k− th instance records the features

values, y(k) = (y1(k), y2(k), . . . , yn(k), . . . , yN(k)), and the corresponding CTI function-
ing/failed state, xCTI(k) = 0/1. The Relief algorithm first initializes the weights of the
features to zero, W =

[
w1, w2, . . . , wj, . . . , wN

]
= 0. Then, the weights are updated over V

iterations corresponding to V instances, V ≤ K, randomly selected without replacement.
In the v − th iteration, v = 1, 2, . . . V , the features weights are updated on the basis of
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the difference between their values at this instance, yv, and their values at the Q nearest
neighbour instances, yv

q , q = 1, 2, . . . , Q, of each class:

Wv = Wv−1−
Q
∑

q = 1
xCTI(yv

q) = xCTI( yv)

di f f
(

yv ,yv
q

)
V .Q

+ ∑
xCTI(yv

q) 6=xCTI( yv)

[
p(xCTI(yv

q))
1−p(xCTI( yv))

. ∑Q
q=1 di f f

(
yv ,yv

q

)]
V .Q

(1)

di f f
(

yv, yv
q

)
=

∣∣∣yv − yv
q

∣∣∣
max(y)−min(y)

where p
(

xCTI
(

yv
q

))
and p

(
xCTI( yv)

)
are the prior probabilities of the class (i.e., CTI state

0/1) to which the instances yv
q and yv belong, respectively, which can be estimated from

the training data. Notice that the larger the difference of the feature values for instances
of the same class, the smaller the assigned weights (second term of Equation (1)) and the
larger the difference of the feature values for instances of different class, the larger the
assigned weight (third term of Equation (1)). The obtained weights are normalized between
−1 and +1, and the normalized weight vector, W = [w1, w2, . . . , wN ], is used to rank the
N features according to their informativeness or relevance. Finally, the ranked signals
yrnk =

(
y1, y2, . . . , y‖, . . . , yN

)
are obtained, where y‖ is the ‖ − th most important feature

with respect to the CTI state, xCTI , among all the N features. For further details on the
Relief algorithm, the reader is invited to consult [18].

Figure 2. Schematic representation of the proposed methodology.
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3.2. Quantification of the Information Content of the Top-Ranked Feature Subsets

The feature ranking information provided by the Relief technique is used to select
the subset of input signals for building a classification model [18]. Commonly adopted
practical solutions include directly choosing a predefined maximum number of top-ranked
features or selecting a subset of top-ranked features for which the importance weights are
higher than a certain threshold.

Assuming that the subset of the top-ranked features most informative of the CTI state
is the one that allows to obtain the best classification of the CTI functioning or failed state,
the following iterative procedure has been adopted in this work. At the first iteration, an
empirical classifier is built to receive in input the first top-ranked feature y1 and provide as
output the CTI state xCTI , and its performance is evaluated. Improved classifiers are then
obtained by iteratively adding the next top-ranked feature in the input. In other words,
at the generic i-th iteration, the empirical classifier, G∗i

(
yrnksb

i

)
: xCTI = G∗i

(
yrnksb

i

)
,

yrnksb

i = yrnk
{

y1 : y‖=i
}

, receiving as input the top-ranked features up to the i-th one,
is developed and its classification performance is evaluated. The procedure stops when
adding the next top-ranked feature to the inputs produces a classifier that has a performance
that does not improve upon that of the previous classifiers.

With respect to the choice of the proper metric to be used for assessing the classification
performance, the Gmean and Fmeasure metrics are typically considered in the case of highly
imbalanced datasets [25]:

Gmean =
√

Recall × Speci f icity (2)

Fmeasure =
2× Recall × Precision

Recall + Precision
(3)

Recall =
TP

TP + FN
, Speci f icity =

TN
TN + FP

, Precision =
TP

TP + FP
where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives
and false negatives, respectively. The two metrics can take any value within the range [0,1],
with 0 indicating the worst performance and 1 the best.

The recall metric greatly rewards the accurate classification of the rare positive in-
stances, specificity slightly penalizes the wrong classification of the relatively large number
of negative instances and precision heavily penalizes large number of FP predictions [25].
Since the Gmean is the geometric mean of recall and specificity, its values can be large even
if the false alarm rate value is high [25], which is harmful in industrial practice. Therefore,
the additional consideration of the Fmeasure, which is the harmonic mean of sensitivity and
precision, is necessary to consider false alarms. In this work, as a compromise between the
two measures, we also consider the following utility function to assess the performance of
the classifiers:

U = (η Fmeasure + (1− η)Gmean) (4)

where η ∈ [0, 1] is a weighting parameter that balances the importance of the Fmeasure
and the Gmean: lower values of η result in a performance measure, U, that gives more
importance to triggering true alarms than avoiding false alarms, and vice versa. In this
work, the same importance is given to the two metrics Fmeasure and Gmean, i.e., η is set equal
to 0.5.

3.3. Classifier

Different types of classification methods, such as artificial neural networks [35,36],
SVMs [37], random forest [17], decision trees [38] and k-nearest neighbors [39], can be
used to classify the CTI functioning/failed state from monitoring signals. In this work,
SVM classifiers have been adopted, since they offer high classification performance,
low computational cost, and ability to handle imbalanced datasets by using its Cost-
Sensitive adjustment [26,40].
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Given a set of input–output training data, SVM maps the input-data original space
into a high-dimensional feature space through a basis or kernel function that can be of
different types, e.g., linear, polynomial, Gaussian, etc. [41]. Then, the problem becomes the
determination of a linear decision boundary separating the training instances of the differ-
ent classes. The identification of the optimal decision boundary implies the maximization
of a distance, also called margin, from the decision boundary to its nearest positive and
negative training instances, which are referred to as the support vectors [41].

Given the typical high reliability of CTIs, most of the instances of monitoring signals
are recorded while the CTI is operating in the functioning state (majority class), while very
few instances correspond to CTI failure events (minority class). To efficiently handle such
imbalanced datasets, the Cost-Sensitive setting of the SVM is considered [25]. CS-SVM
assigns a greater cost to the incorrect classification of minority class instances than to that
of majority class instances. Specifically, the cost value associated with a class is set to be
equal to the inverse of the number of available instances belonging to the class.

The CS-SVM hyperparameters, such as the kernel scale, are optimized using a grid
search procedure. We also considered the Gaussian kernel type, since it has shown very
satisfactory results in several different applications [26,40]. The implementation of CS-SVM
classifiers is accomplished via the “fitcsvm” algorithm included in the statistics and machine
learning toolbox of Matlab [42].

4. Validation of Proposed Method on Benchmark Datasets

In this section, the performance of the proposed method is validated using 15 benchmarks
classification datasets taken from the Knowledge Extraction based on Evolutionary Learning
(KEEL) repository, which are characterized by high imbalance ratios [27]. Table 1 shows the
main characteristics of these benchmark datasets. The validation of the method is based
on the following steps: (1) the evaluation of the performance of the CS-SVM model in the
classification of highly imbalanced datasets (Section 4.1), (2) the evaluation of the capability
of the Relief algorithm of ranking the importance of the signals (Section 4.2); (3) the analysis
of the robustness of the developed feature selection method with respect to the presence
of noisy measurements and a large number of irrelevant features (Section 4.3) and (4) the
quantification of the information content in the selected features (Section 4.4).

Table 1. Characteristics of the considered benchmark datasets.

Dataset Number of Signals (N) Number of Instances (K)
Number of Minority
Class Instances (K+)

Imbalance Ratio
(K−/K+)

glass1 9 214 76 1.82
Haberman 3 306 81 2.78

newthyroid1 5 215 35 5.14
yeast3 8 1484 163 8.1
ecoli3 7 336 35 8.6

ecoli067vs5 6 220 20 10
yeast1vs7 7 459 30 14.3

ecoli4 7 336 20 15.8
abalone9vs18 8 731 42 16.4
shuttle6vs23 9 230 10 22

yeast4 8 1484 51 28.1
yeast5 8 1484 44 32.73

poker89vs5 10 2075 25 82
poker8vs6 10 1477 17 85.88
abalone19 8 4174 32 129.44

All the performances were obtained by applying a 10-fold cross-validation procedure and
using a grid search for setting the parameters of the Gaussian kernel scale (see Section 3.2) of
the CS-SVM. Note that the Relief method uses the same training data as the CS-SVM (i.e.,
nine folds of data).
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4.1. Validation of the CS-SVM Classifier

This analysis involves a comparison between the classification performance of a
CS-SVM that receives in input all the features and two other SVM-based approaches
developed by Liu et al. [25] for imbalanced datasets, which are based on Random Under
Sampling (RUS) and Synthetic Minority Over-sampling Technique (SMOTE). The work of
Liu et al. [25] has been selected as benchmark, since it is the most recent work using filter
feature selection, SVM classification and dealing with highly imbalanced datasets. Other
methods based on wrapper feature selection approaches are not considered here, since
they are not applicable to systems where hundreds of signals are measured, due to their
unaffordable computational cost.

According to the results shown in Figure 3, the CS-SVM classifier outperforms two
of the techniques (RUS and SMOTE) most commonly used in the literature for handling
imbalanced datasets in binary classification, over at least 11 out of 15 datasets. Therefore,
it can be concluded that the CS-SVM can be used for the classification of CTI datasets
containing a large proportion of negative (functioning state) patterns.

Figure 3. Comparison between the classification performances of the CS-SVM, SVM based on RUS
and SVM based on SMOTE.

4.2. Validation of the Relief Feature Ranking

The CS-SVM classifier is used in combination with the proposed Relief-based feature
ranking method, considering as input for the classifier all the features with importance
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weight greater than or equal to half of the weight value associated to the first-ranked
feature. Figure 4 compares the classification performance of the CS-SVM receiving as input
the feature subset chosen by the Relief feature ranking method with that of the CS-SVM
receiving as input all of the features, and with that of the method proposed in [25]. This
latter method combines (i) a filter-based feature selection technique that calculates an
index measuring the Between-Class Separability (B-CS) for each individual feature, (ii) an
instance selection technique that considers the B-CS and a variable Local Fitness (LF) index,
and (iii) a classification model, based on cost-sensitive least square SVM, which is built
using only the features and the instances selected in steps (i) and (ii).

Figure 4. Comparison between the classification performances of the three methods: CS-SVM,
CS-SVM + Relief and Liu et al.’s method [25].

Figure 4 shows that the classifiers, trained using only the features identified by the
Relief algorithm (i.e., CS-SVM + Relief, represented by red crosses), provide better per-
formances than the classifiers trained using all the input features (blue circles), over the
majority of the datasets. Additionally, the proposed method (CS-SVM + Relief) outper-
forms the method developed by Liu et al., 2017 [25] on seven datasets considering the
F−measure, ten datasets considering the G−mean and eight datasets considering U. In
the datasets in which the proposed method does not outperform the method in [25], it still
achieves very competitive performance.
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4.3. Analysis of the Relief Robustness

To further verify the robustness of the Relief technique with respect to measurement
noise and irrelevant features, the following test is carried out. A modified version of
the dataset “poker8vs6” is artificially generated. It includes: (i) the original 10 signals,
which will be referred to as A, B, C, D, E, F, G, H, I, J, (ii) 50 artificial signals obtained by
adding Gaussian noise to a fraction, Pr%, of the instances of the original signals, assuming
five different combinations of σ and Pr for each original signal (see Table 2), and (iii) 60
pure Gaussian noise signals. Notice that the dataset “poker8vs6” has been chosen for this
analysis because it is one of the considered datasets characterized by the largest imbalance
ratios and the smallest number of positive instances (Table 1).

Table 2. Values of the five different conditions (σ and Pr %) applied to each original signal.

Combination i ii iii iv vi

σ * 0.1 0.2 0.3 0.4 0.5
Pr% 20 30 40 50 60

* Noise is added to the values of the signals scaled between 0 and 1.

The dataset is randomly divided into two subtests with similar imbalance ratios: the
first subset includes 90% of the instances and is used for feature ranking by the Relief
method, whereas the second subset contains 10% of the instances and is used for the
quantification of the information content. Figure 5 shows the ranking obtained using
the Relief algorithm for the 120 features of the modified dataset and their corresponding
weights, and Table 3 reports the obtained 20 top-ranked features and their corresponding
weights. The notation “C_0.3_0.2”, for example, refers to the artificial signal generated
from the original signal C by adding a Gaussian noise of standard deviation equal to 0.3 to
20% of the instances.

Figure 5. Relief weights and ranking for the features of the modified poker8vs6 dataset.

The robustness of the Relief feature selection against noisy measurements and ir-
relevant features is effectively proven by the obtained results, since the Relief is able to
efficiently reject a large number of irrelevant features and to properly rank the relevant
features with respect to the amount of noise affecting their measurements. This can be
confirmed by the observation that: (1) the artificial signals always follow in the ranking the
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corresponding original ones (e.g., signal “C_0.2_0.1”) is ranked after signal “C”, (2) when
artificial signals generated from the same original signal are considered, the larger the noise
(σ) and the fraction of disturbed instances (Pr%), the lower the signal ranking (e.g., signal
“A_0.2_0.1” is ranked before “A_0.3_0.2”), which is coherent with the fact that the addition
of noise degrades the signal importance with respect to the true binary output, and (3) all
the artificial signals present in the 20 top-ranked signals are generated from the five top-
ranked signals. Additionally, the first appearance of a pure noise signal in the ranking is in
position 46 out of 120, and the last 60 signals in the ranging include 45 pure noise signals,
which, again, supports the ability of Relief to rank the irrelevant/non-informative signals.

Table 3. Twenty top-ranked features of the modified “poker8vs6” dataset.

Rank Signal Weight

1 A 0.215
2 G 0.210
3 C 0.207
4 E 0.200
5 I 0.189
6 G_0.2_0.1 0.144
7 A_0.2_0.1 0.134
8 E_0.2_0.1 0.133
9 I_0.2_0.1 0.132
10 C_0.2_0.1 0.129
11 C_0.3_0.2 0.105
12 G_0.4_0.3 0.101
13 B 0.096
14 I_0.3_0.2 0.092
15 A_0.3_0.2 0.091
16 E_0.3_0.2 0.090
17 F 0.087
18 G_0.3_0.2 0.086
19 H 0.085
20 J 0.084

4.4. Validation of the Information Content Quantification Procedure

Finally, the procedure proposed in Section 3.2 for selecting a proper subset of the
most relevant, informative features is applied to the same modified data “poker8vs6”. A
CS-SVM classifier is trained and tested 120 times, where, each time, the next top-ranked
feature is added to the input of the classifier. The classifiers are trained using the same data
previously used in the features ranking stage (90% of the total set), and the classification
performance metrics are calculated considering the test set composed of data not used
in the feature ranking stage (10% of the total set). Figure 6 shows the performances of
the classifiers over the first 35 iterations, since the remaining are not providing improved
performances. Note that the increase of the size of the optimal signal subset complicates
the engineering interpretations, and, as expected, reduces the classification accuracy due to
the curse of dimensionality. The most satisfactory performances with the lowest number
of signals are achieved using the three top-ranked features (Fmeasure = 1, Gmean = 1 and
U = 1). Notice that the procedure of the quantification of the information content is shown
to be able to identify a small set of features providing the best performance, which cannot
be improved by adding other features. Additionally, these results show the capability
of the proposed methodology as a whole (Relief + CS-SVM + information quantification
procedure) of handling noisy measurements and irrelevant features in the data.
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Figure 6. Performances, on the test set, of the CS-SVM classifiers built with different subsets of the
Relief top-ranked features.

5. Case Study: The CERN LHC Electrical Network

The LHC of CERN is a technical infrastructure that provides the services required for
the operation of its particle accelerators and experimental areas [43]. Since components
malfunctioning, failures or external events can directly influence the performance of the
accelerators and total availability for the physics experiments, CERN’s technical infrastruc-
ture is considered to be critical [44–46]. The analysis of the LHC’s operation during 2016
revealed that a large amount of the total LHC downtime was caused by electrical distur-
bances, which led to interruption of the experiments and dumping of the accelerated beams
of particles [29]. Therefore, it is of significant importance to identify those components
that are responsible for the electrical disturbances propagation to the circulating beam and,
therefore, are critical with respect to the CTI availability (because they are responsible of
the beam dump in case of electrical disturbances).

For this reason, the case study concerns the propagation of electrical disturbances in
the CERN’s electrical network [47], which is responsible for distributing electrical power
on CERN’s campus that extends over a 27 km circumference across the French–Swiss
borders, through a hierarchical structure of power lines or levels starting from the top-
hierarchy, 400 kV line, to the bottom, 400 V line. Electrical disturbances are caused by surges
or short circuits that can be generated inside or outside CERN’s electrical network and
propagate in different ways depending on the operational state and conditions of the CERN
CTI components (e.g., healthy, degraded, faulty, under maintenance, etc.). When these
disturbances reach critical components, such as power converters, the stability required for
controlling the superconducting magnets current is not guaranteed, and consequently, the
LHC beams are preventively stopped (an operation called beam dump in technical jargon)
to avoid any possible damage to the LHC components.

The LHC electrical network is geographically decomposed into eight zones, which are
referred to as LHC Points 1, 2, 3, 4, 5, 6, 7 and 8, and is functionally decomposed into the
LHC lines at 400 kV, 66 kV, 18 kV, 3.3 kV and 400 V. Starting from the top-hierarchy, 400 kV
line, to the bottom-hierarchy, 400 V line, the number of components/units and parameters
to be monitored explodes exponentially from hundreds to tens of thousands. At first, we
considered perturbations coming from upper-level hierarchy components to be the most
likely to distribute external and internal disturbances due to the hierarchical organization
of the network.

As a result, we consider a dataset, D, including a number of N = 260 monitoring
signals, whose values were collected during the year 2016 by sensors installed on distri-
bution switchboards and breaker units at the 66 kV and 18 kV lines of the LHC electrical
network. The dataset contains K = 3670 instances collected during the occurrence time of
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an electrical disturbance, which was detected by oscilloscopes installed in specific locations.
Since among these instances (electrical disturbances events) only 48 (K+) of them have led
to the beam dump (xCTI = 1), the dataset is characterized by a very large imbalance ratio
of 75.46.

Given the limited number of missing values in the dataset and the high quality of both
the instrumentation used to monitor the CTI and its calibration plan, the application of
missing data imputation and data reconciliation methods is not required in this case study.

5.1. Feature Selection and Informativeness Quantification

The dataset is randomly split into two subsets of similar imbalance ratios: the set used
for feature ranking by the Relief method includes 90% of the instances and the set used for
the quantification of the information content contains 10% of the instances. The Matlab [42]
function “relieff ”, considering all the instances V = K for the weights updating and Q = 6
nearest-neighborhood parameter, has been employed.

Figure 7 shows the obtained ranking and the associated weights of the 260 signals of
the considered dataset, where the signals of each line (66 kV and 18 kV) are highlighted by
a different color. Notice that most of the top-ranked features are from the 18 kV line. In
particular, only one feature from the 66 kV line is present among the 10 top-ranked features
and three among the 20 top-ranked features. This indicates that signals from the LHC
66 kV line are less informative with respect to the LHC state than those from the 18 kV
line. This is in accordance with the fact that the 66 kV line is higher in the hierarchy of the
electrical network, and it is further away from the sensitive components connected to the
LHC. In contrast, the 18 kV line is at the bottom of the network hierarchy and directly feeds
components critically affecting the LHC operation, such as power converters.

Figure 7. Relief weights and ranking for the LHC 66 kV and 18 kV monitoring signals.

As previously discussed, the Relief algorithm returns only the ranking/weights of
the signals, without directly selecting a proper subset of the most relevant or informative
signals. This task has been performed by applying the procedure proposed in Section 3.2.
In practice, the first classifier is built using the first top-ranked feature, the second classifier
is built using the first two top-ranked features, and the procedure is repeated until no clear
improvement in the performance is obtained. The classifiers are trained using the same
data previously used in the features ranking stage (90% of the total set), whereas, in order
to avoid overfitting and to achieve a fair comparison among different feature subsets, the
performance indices of the classification have been calculated using a test set formed by
data not used during the feature ranking stage (10% of the total).

Figure 8 shows the performances of the developed classifiers over the first 35 iterations.
The subset of the top-ranked features formed by 24 signals, which provide the maximum
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U function value, is selected. It includes 19 signals from the 18 kV line and 5 signals from
the 66 kV line. Table 4 shows the details of the identified 24 critical signals.

Figure 8. Performances, on the test set, of the CS-SVM classifiers built with different subsets of the
Relief top-ranked features.

Table 4. List of the 24 top-ranked signals by Relief.

Signal Rank Signal
Tag

Relief
Weight

Network
Line

Signal
Type

Component
Number

LHC Geographic
Zone

1 EMD205_SLASH_5E_PM10_STAR_ 0.249 18 kV power 205 Point 5
2 EMD212_SLASH_5E_PM10_STAR_ 0.233 18 kV power 212 Point 5
3 EHD100_SLASH_4E_Q10_DASH_ 0.227 66 kV power 100 Point 4
4 EMD302_SLASH_1E_PM10_STAR_ 0.224 18 kV power 302 Point 1
5 EMD203_SLASH_1E_PM10_STAR_ 0.222 18 kV power 203 Point 1
6 EMD213_SLASH_5E_PM10_STAR_ 0.209 18 kV power 213 Point 5
7 EMD101_SLASH_4E_PM10_STAR_ 0.205 18 kV power 101 Point 4
8 EMD213_SLASH_5E_Q_STAR_ 0.203 18 kV power 213 Point5
9 EMD205_SLASH_1E_PM10_STAR_ 0.202 18 kV power 205 Point 1
10 EMD203_SLASH_1E_Q_STAR_ 0.189 18 kV power 203 Point 1
11 EMD205_SLASH_6E_S_STAR_ 0.188 18 kV current 205 Point 6
12 EMD206_SLASH_4E_EA+ 0.184 18 kV power 206 Point 4
13 EMD206_SLASH_2E_PM10_STAR_ 0.180 18 kV power 206 Point 2
14 EMD101_SLASH_2E_PM10_STAR_ 0.163 18 kV power 101 Point 2
15 EHD100_SLASH_6E_P10+ 0.160 66 kV power 100 Point 6
16 EHD100_SLASH_6E_MPD 0.158 66 kV current 100 Point 6
17 EMD103_SLASH_2E_QM 0.157 18 kV power 103 Point 2
18 EMD102_SLASH_2E_PM10_STAR_ 0.157 18 kV power 102 Point 2
19 EMD103_SLASH_2E_PMAX+ 0.157 18 kV power 103 Point 2
20 EMD207_SLASH_1E_Q_STAR_ 0.156 18 kV power 207 Point 1
21 EHD100_SLASH_4E_MQD 0.156 66 kV current 100 Point 4
22 EMD201_SLASH_4E_Q_STAR_ 0.154 18 kV power 201 Point 4
23 EMD301_SLASH_5E_PM 0.150 18 kV power 301 Point 5
24 EHD100_SLASH_6E_P 0.141 66 kV power 100 Point 6

5.2. Engineering Analysis of the Best Features Subset

In this section, the 24 top-ranked features selected by the proposed method have been
analyzed, revealing that 12 components from the LHC 18 kV line and one component from
the 66 kV line can be identified as critical, among tens of components related to all the
260 signals collected from both the 18 kV and 66 kV lines. The analysis of the geographic
distribution of the identified critical components over the CERN CTI area is illustrated in
Figure 9a. According to the obtained results, the most critical components are situated in
the areas of the CTI corresponding to points 1, 2, 4, 5, and 6, which indicates the criticality
of these geographical sections with respect to other sections, such as 3, 7 and 8. A third
analysis performed on of the selected signals (see Figure 9b) reflected that all selected
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critical features were power signals. Finally, an analysis was performed to explore the
distribution of the identified signals over the critical components (Figure 10). Notice that
component number 100 of the 66 kV line and component number 205 of the 18 kV line
have the maximum number of signals among the 24 top-ranked signals subset.

Figure 9. Location of the identified critical components (a) and type of selected signals (b).

Figure 10. Number of critical signals associated with each identified type of component.

The criticality of the 13 identified components (mostly power converters) has been
confirmed by CERN operators, who support these results by the fact that these specific
components belong to the 18 kV power distribution level, which is the most sensitive to
perturbations, since it directly feeds the power converters that supply current to the
superconducting magnet system. Furthermore, the identified geographical areas are
characterized by the presence of old-generation power converters.

5.3. Discussion

The results of the analysis, i.e., the identified critical components, can be used to
optimize maintenance, monitoring, control, design retrofit and update plans for improving
the CTI’s reliability and availability.

For example, maintenance can be optimized by following intensive inspection and
preventive policies of the identified critical components, while ensuring a minimum avail-
ability level of spares. Additionally, the monitoring system of the CTI can be improved by
enhancing the sensors installed on the critical components and prioritizing their monitoring
signals to supervise the overall state of the CTI. Operation and control of the CTI can benefit
from the identification of critical components through the definition of safe operational
scenarios able to minimize failure risks, robust control regimes able to immunize the critical
components against disturbances, and efficient failure recovery procedures able to quickly
retrieve the states of critical components to their normal conditions. In the case study here
considered, the obtained results suggest that priority should be given to upgrading the old
power converters of the 18 kV line zones.
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The expected bottlenecks of the proposed method for critical components identifica-
tion in CTIs are, by nature, the same ones faced by most data-driven approaches. They
mainly include: (a) the quality of data, (b) their information content, and (c) the need for
expert knowledge to interpret/validate the obtained results. With respect to (a), missing
values, sensor failure and gross errors are expected to reduce the performance of the rank-
ing provided by relief, and, therefore, affect the identification of the critical components.
In such situations, missing data imputation [30] and reconciliation techniques [31] can be
used to enhance data quality. With respect to (b), the main criticality is that data collected
when the CTI is in a failed state, which, given the high reliability of CTIs, can be insufficient
for analysis. In this work, we have tackled this challenge by considering data collected
over a long period of time (a whole year of operation) and developing a method properly
tailored to deal with imbalanced datasets. With respect to (c), benchmark datasets that
mimic the complexity of real-world problems have been employed for the verification of
the proposed method (see Section 4). It is the opinion of the authors that a validation of the
obtained results, when the ground-truth criticality of the components is not known, as in
most real situations, requires the contributions of expert judgment to confirm the outcomes.

6. Conclusions

This work proposes a novel data-driven methodology for the identification of critical
components in CTIs, based on the analysis of hundreds of monitoring signals recorded over
long periods of time and under different operational conditions of the CTI. The problem
has been addressed as a feature selection one with the objective of identifying the subset of
signals allowing the best classification of the CTI functioning or failed state.

A filter approach for feature selection based on the Relief technique is used to rank the
monitoring signal with respect to the CTI state. The informativeness of different subsets of
the top-ranked features are quantified by assessing the performances of a CS-SVM classifier
built using the different subsets. The CTI critical components are identified as those
associated with the subset of the top-ranked signals that achieves the best classification of
the CTI state by means of a CS-SVM.

The performance of the methodology has been verified using literature benchmarks
characterized by highly imbalanced datasets. The performance of the CS-SVM built with
the subset of the top-ranked features identified by the Relief algorithm shows high compet-
itiveness to those obtained by other methods in the literature.

Finally, the methodology has been applied to the monitoring signals of the CERN’s
electrical network, leading to the identification of specific components, LHC areas (points
1, 2, 4, 5 and 6), type of signals (power) and even hierarchical levels (18 kV), for which the
criticality has been confirmed by the equipment experts and operators.

Future research lines will include: (i) analyzing the robustness and sensitivity of the
method performance with respect to uncertainties, such as the quality of the data that may
include missing values, noise and/or gross errors, and (ii) testing different techniques that
can perform the same function, i.e., different filter feature ranking methods and different
classification models.
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