
Aequat. Math. 95 (2021), 941–952
c© The Author(s) 2021
0001-9054/21/050941-12
published online January 28, 2021
https://doi.org/10.1007/s00010-020-00771-w Aequationes Mathematicae

Generalization of Heron’s and Brahmagupta’s equalities to any
cyclic polygon

Paolo Dulio and Enrico Laeng

Abstract. It is well known that Heron’s equality provides an explicit formula for the area
of a triangle, as a symmetric function of the lengths of its edges. It has been extended by
Brahmagupta to quadrilaterals inscribed in a circle (cyclic quadrilaterals). A natural problem
is trying to further generalize the result to cyclic polygons with a larger number of edges.
Surprisingly, this has proved to be far from simple, and no explicit solutions exist for cyclic
polygons having n > 4 edges. In this paper we investigate such a problem by following a new
and elementary approach, based on the idea that the simple geometry underlying Heron’s
and Brahmagupta’s equalities hides the real players of the game. In details, we propose to
focus on the dissection of the edges determined by the incircles of a suitable triangulation of
the cyclic polygon, showing that this approach leads to an explicit formula for the area as
a symmetric function of the lengths of these segments. We also show that such a symmetry
can be rediscovered in Heron’s and Brahmagupta’s results, which consequently represent
special cases of the provided general equality.
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1. Introduction

A natural and largely considered question in convex geometry is the deter-
mination of the area A of a convex polygon as a symmetric function of the
lengths of its edges. The problem goes back to Heron of Alexandria, who was
able to solve the problem in the case of a triangle. If a, b, c are the lengths of
the edges, and p denotes the semiperimeter, then

A2 = p(p − a)(p − b)(p − c). (1)

Later, in the seventh century, Brahmagupta extended the result to cyclic
quadrilaterals, namely to quadrilaterals inscribed in a circle (see for instance
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[1]), proving that
A2 = (p − a)(p − b)(p − c)(p − d), (2)

where a, b, c, d are the lenghts of the edges of the quadrilateral.
Several results concerning the geometry of cyclic polygons have been

obtained in different areas of research (see [2–4,6,11]), which points to a gen-
eral interest in such geometric objects. It is therefore natural to try to further
extend to cyclic polygons with a larger number of edges the nice and ancient
formulae by Heron and Brahmagupta. Surprisingly, this has proved to be far
from simple. In [8,9] an algebraic formulation of the problem led D.P. Robbins
to find symmetric formulae for cyclic pentagons and cyclic hexagons. It was
observed that Heron and Brahmagupta’s formulae can be restated in a form
where 16A2 represents a monic polynomial whose coefficients are symmetric
polynomials in the squares of the edges. This generalizes to cyclic pentagons
and hexagons, where polynomials of degree 7 and 38 respectively appear, but
the formulae, even if they hold in the non convex case as well, do not provide
explicit forms for the area (see also [7] for interesting comments and remarks).
Symmetric formulae of the same kind have been conjectured [8], and later
proved [5], even for heptagons and octagons, also illuminating some mysteri-
ous features of Robbin’s results for the areas of cyclic pentagons and hexagons
(see also [10] for further details on Robbin’s conjectures). The resulting formu-
lae are interesting, but very complex and only hold for cyclic polygons having
very few edges, so these do not seem to provide a general picture that could
be easily generalized to polygons with an arbitrarily large number of edges.

Moving from the above remarks, we propose here a different approach,
based on the idea that the role of the edges in the simple geometric cases of
Heron and Brahmagupta’s equalities in fact hides the real players of the game.
After giving in Sect. 2 the main notations and preliminaries, in Sects. 3 and 4
we show that the classical results for triangles and cyclic quadrilaterals can
be rediscovered by using the lengths of the segments determined on the edges
by the tangent points of suitable incircles, and arise from a simple symmetric
formula concerning the area of a right triangle. As a consequence, the leitmotif
of our paper is that instead of looking for the area as a symmetric function of
the edges, the original problem should be tackled by means of segments cut
on the edges by the incircles of the triangles of a triangulation of the cyclic
polygon. Indeed, in Sect. 5, we prove a symmetric coordinate free equality that
holds true for any cyclic polygon, and includes Heron’s and Brahmagupta’s
results as special cases.

2. Notations and preliminaries

A convex cyclic polygon is a convex polygon inscribed in a circle. We denote
by Pn a convex cyclic polygon having n + 2 edges, and by A(n) its area. In
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Figure 1. A right triangle ABC

case when the role of the vertices must be emphasized, we also denote the area
by writing the vertices between vertical bars. For instance, |ABC|, means the
area of a triangle ABC. In case several triangles T1, . . . , Tm must be considered
simultaneously, then we denote by Aj the area of Tj , j ∈ {1, . . . , m}.

In view of a clearer presentation of the new proposed approach, we recall
Pytagoras’ theorem, as well as Heron and Brahmagupta’s results concerning
the area as a symmetric function of the lengths of the edges.

Theorem 1. (Pythagoras) In a right triangle the area of the square whose edge
is the hypotenuse is equal to the sum of the areas of the squares whose edges
are the two legs.

Theorem 2. (Heron’s equality for triangles) The area of a triangle is equal
to

√
p(p − a)(p − b)(p − c), where a, b, c are the lengths of its edges (taken in

any order) and p = (a + b + c)/2 is its half perimeter.

Theorem 3. (Brahmagupta’s equality for cyclic quadrilaterals) The area of a
cyclic quadrilateral is equal to

√
(p − a)(p − b)(p − c)(p − d), where a, b, c, d

are the lengths of its edges (taken in any order) and p = (a + b + c + d)/2 is
its half perimeter.

Our main result is Theorem 8, where we prove a general symmetric formula
for the area of a cyclic polygon having n ≥ 3 edges, which includes Theorem
2 and Theorem 3 as particular cases.

3. Heron’s equality

Let ABC be a right triangle and let I be its incenter (see Fig. 1). Since B̂
is a right angle and since the incircle is tangent perpendicularly to the three
edges of ABC, we have r = IJ = IK = IH = BJ = BK, where r is the
inradius. The internal bisectors of ABC are concurrent in I and this implies
AJ = AH = s and CH = CK = t.

We have |ABC| = |AIB| + |BIC| + |CIA|. The half-perimeter of ABC is
p = r + s + t while the three triangles on the r.h.s. of the above equality have
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altitude r with respect to their edges AB, BC, and AC. Therefore, it results

|ABC| = r(r + s + t). (3)

Remark 4. In case ABC is not a right triangle, Formula (3) generalizes to

|ABC| = R(r + s + t), (4)

where R is the incircle of ABC, meaning that |ABC| is a symmetric function
in r, s, t.

Lemma 5. The area of a right triangle ABC is equal to the area of the rectangle
of edges s = AH and t = CH, where H is the point where the incircle is tangent
to the hypotenuse AC.

Proof. Clearly |ABC| =
1
2
(s + r)(t + r), and by (3) we get

st + rs + rt + r2 = 2(r2 + rs + rt)

which we simplify into st = r2 + rs + rt = r(r + s + t) = |ABC|. �

A new proof of Theorem 2 for right triangles. Using the same notation (as in
Fig. 1) we need to show that |ABC|2 = str(r + s + t), but this is immediate,
since |ABC| = st by Lemma 5, and also |ABC| = r(r + s + t) by (3). �

The above proof shows that, in any right triangles, Heron’s equality can be
rediscovered by starting from the symmetric formula provided by Lemma 5.
We wish now to extend such a result to any triangle.

A new proof of Theorem 1. We have r(r + s + t) = st. Multiplying by 2 and
adding s2 + t2 to both sides we get s2 + t2 + 2r2 + 2rs + 2rt = s2 + t2 + 2st,
and consequently (s + r)2 + (r + t)2 = (s + t)2. �

The above proof shows that Pythagoras’ Theorem can be rediscovered as
a consequence of Heron’s equality in right triangles. Now, thanks to Pythago-
ras’ Theorem, we can easily extend Heron’s equality to any triangle, which
consequently follows from Heron’s equality for right triangles.

For this, let ABC be a generic triangle, and let CH be the altitude on its
edge AB (see Fig. 2), where we assume H between A and B (in any triangle
there surely exists an altitude with this property).

Let p = r + s + t be the semiperimeter of ABC, and let

ϕ =
√

rst(r + s + t) =
√

p(p − a)(p − b)(p − c).

By Pythagoras’ Theorem in AHC and CHB, we have

c2 = (AH + HB)2 = AH2 + BH2 + 2(AH)(HB)
= a2 + b2 − 2CH2 + 2(AH)(HB)

= a2 + b2 − 2CH2 + 2
√

(a2 − CH2)(b2 − CH2)
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Figure 2. A generic triangle ABC
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Figure 3. Incircle of a generic triangle ABC

and, solving for CH we get

CH =

√
4a2b2 − (c2 − a2 − b2)2

2c
=

2
√

p(p − a)(p − b)(p − c)
c

=
2
c
ϕ.

Therefore, from 2|ABC| = cCH, Heron’s equality for ABC follows.

Remark 6. By (4) and Heron’s equality written in the form |ABC| =√
rst(r + s + t) we can obtain the incircle R of any triangle as a symmet-

ric function of r, s, t as follows (see Fig. 3).

R =
√

rst

p
(5)

since p = r + s + t is the half perimeter of ABC.

4. Brahmagupta’s equality

We wish now to show how Brahmagupta’s equality can be rediscovered by
exploiting the same idea of symmetry considered in the previous section. First
of all, we prove the following result.

Theorem 7. Let ABC and ADC be two triangles inscribed in the same circle.
If s1, t1 and s2, t2 are the lengths of the two segments split on the common edge
AC by the respective incircles, then

|ABC||ACD| = s1s2t1t2.
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Figure 4. A general cyclic quadrilateral ABCD

Proof. In the cyclic quadrilateral ABCD the halves of AB̂C and AD̂C are
complementary angles. Therefore the shaded right triangles in Fig. 4 are simi-
lar, and consequently R1

r1
= r2

R2
, that is R1R2 = r1r2.

By (5) we have p1R
2
1 = r1s1t1 and p2R

2
2 = r2s2t2, since p1, p2 is the half

perimeter of ABC and ADC respectively, so that

(p1R1p2R2)2 = p1(r1s1t1)p2(r2s2t2) = p1p2(R1R2)(s1t1s2t2),

and consequently |ABC||ACD| = p1R1p2R2 = s1t1s2t2.

Remark 8. Since R1R2 = r1r2 we have also |ABC||ACD| = p1R1p2R2 =
p1p2r1r2.

A new proof of Theorem 3. Let the cyclic quadrilateral of vertices A,B,C,D
be split into ABC and ACD, as in Fig. 4, and assume a = s1 + r1 = AB, b =
t1 + r1 = BC, c = t2 + r2 = CD, d = s2 + r2 = AD, so that p = r1 + r2 +
(s1 + t1) = r1 + r2 +(s2 + t2). Starting from |ABCD|2 = (|ABC|+ |ACD|)2 =
|ABC|2 + |ACD|2 + 2|ABC||ACD|, we use the previous theorem, and the
Remark, to write 2|ABC||ACD| = s1t1s2t2 + p1p2r1r2, where p1, p2 are the
half perimeters of ABC and ACD, respectively. Moreover, by Heron’s formula,
|ABC|2 = (r1 + s1 + t1)r1s1t1, and |ACD|2 = (r2 + s2 + t2)r2s2t2. Then, also
using s1 + t1 = s2 + t2, we get

|ABCD|2 = (r1 + s1 + t1)r1s1t1 + (r2 + s2 + t2)r2s2t2
+s1t1s2t2 + r1r2(r1 + s1 + t1)(r2 + s2 + t2)

= r1(r1 + s1 + t1)(r2(r2 + s2 + t2) + s1t1)
+s2t2(r2(r2 + s2 + t2) + s1t1)

= (r2(r2 + s2 + t2) + s1t1)(r1(r1 + s1 + t1) + s2t2)
= (r2(r2 + s1 + t1) + s1t1)(r1(r1 + s2 + t2) + s2t2)
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Figure 5. Triangulation of a cyclic polygon

= (r2 + t1)(r2 + s1)(r1 + s2)(r1 + t2)
= (p − a)(p − b)(p − c)(p − d).

�

5. The area of a circular polygon having an arbitrary number of edges

In this section we generalize the previous results to a cyclic polygon Pn, having
n + 2 edges for any n ≥ 1. Let us observe that Heron’s equality has been
extended to Brahmagupta’s equality by considering a cyclic quadrilateral Q
as the union of two triangles, Q = T1 ∪ T2, and then focusing on the segments
r1, s1, t1 and r2, s2, t2 determined, respectively, on the edges of T1 and T2 by
the tangent points of the corresponding incircles. This provides the square
of the area of Q as a polynomial function, symmetric under the exchange of
r1, s1, t1 with r2, s2, t2.

As a consequence we are inspired to investigate the square of the area A(n)
of a generic cyclic polygon Pn by looking at the partitions of the edges of
Pn determined by the tangent points of the incircles of some triangulation.
For this, let us first observe that Pn can always be assumed as the union of
n consecutive triangles T1, T2, . . . , Tn, all having a common vertex. For i =
1, . . . , n − 1, denote by Li,i+1 the common edge between the two consecutive
triangles Ti, Ti+1. Let pj , Aj , Rj be, respectively, the semiperimeter, the area
and the radius of the incircle of Tj , j = 1, . . . , n. Also, let rj , sj , tj be the
segments cut on the edges of Tj by its incircle, where Li,i+1 = si + ti =
si+1 + ri+1, i = 1, . . . , n − 1 (see Fig. 5).

For the sake of brevity, and in order to avoid heavy notations, in the fol-
lowing theorems we assume all the meaningless products to be equal to 1.



948 P. Dulio, E. Laeng AEM

Theorem 9. Let Pn be a cyclic polygon consisting of n + 2 edges, n ≥ 1. Then

AhAk = shthskrk

k−1∏

i=h+1

si
pi

= phrhpktk

k−1∏

i=h+1

pi
si

, for 1 ≤ h < k ≤ n. (6)

Proof. In order to prove the first equality in (6) we apply Theorem 7 iteratively,
so that

AhAh+1 = shthsh+1rh+1

Ah+1Ah+2 = sh+1th+1sh+2rh+2

. . .
Ak−1Ak = sk−1tk−1skrk.

By multiplying on both sides we get

Ah(Ah+1Ah+2 . . . Ak−1)2Ak = shth

(
k−1∏

i=h+1

ris
2
i ti

)

skrk.

By Heron’s equality applied to Th+1, Th+2, . . . , Tk−1 we have

AhAk =
shth

(∏k−1
i=h+1 ris

2
i ti

)
skrk

∏k−1
i=h+1 risitipi

= shthskrk

k−1∏

i=h+1

si
pi

,

and the first equality in (6) is obtained. For the proof of the second equality,

let us observe that, by similitude, we have
Ri

ri
=

ti+1

Ri+1
, for all i = 1, . . . , n− 1.

Therefore we get

RhRh+1 = rhth+1

Rh+1Rh+2 = rh+1th+2

. . .
Rk−1Rk = rk−1tk.

By multiplying on both sides, we obtain

Rh(Rh+1Rh+2 . . . Rk−1)2Rk = RhRk

k−1∏

i=h+1

R2
i = rhtk

k−1∏

i=h+1

riti,

and applying (5) to all R2
i we have

RhRk =
rhtk

∏k−1
i=h+1 riti

∏k−1
i=h+1

risiti
pi

,

and consequently

RhRk = rhtk

k−1∏

i=h+1

pi
si

for 1 ≤ h < k ≤ n. (7)
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The second equality in (6) follows immediately from (7), since AhAk =
phRhpkRk. �

Assuming Pn = T1 ∪T2 ∪· · ·∪Tn as in Fig. 5, and using the same notations
as above we can now prove a general formula for the area of a cyclic polygon
with any number of edges.

Theorem 10. Let Pn be a cyclic polygon with n + 2 edges, n ≥ 1, and let A(n)
be its area. Then

A(n)2 =

(

p1r1 +
n∑

q=2

rqsq

q−1∏

m=2

sm
pm

) (

s1t1 +
n∑

q=2

pqtq

q−1∏

m=2

pm
sm

)

. (8)

Proof. Since Pn is the union of T1, . . . , Tn, by Heron’s equality, and using both
equalities in (6), we have

A2 = (A1 + A2 + · · · + An)2

=
n∑

j=1

A2
j + 2

∑

1≤h<k≤n

AhAk

=
n∑

j=1

pjrjsjtj +
∑

1≤h<k≤n

shthskrk

k−1∏

i=h+1

si
pi

+
∑

1≤h<k≤n

phrhpktk

k−1∏

i=h+1

pi
si

.

Let’s rearrange as follows (where each one of the three terms appearing in
each bracket comes from the corresponding sum)

A2 = p1r1

(

s1t1 + 0 +
∑

k>1

pktk

k−1∏

i=2

pi

si

)

+ r2s2

(

p2t2 + s1t1 +
p2

s2

∑

k>2

pktk

k−1∏

i=3

pi

si

)

+ r3s3
s2

p2

(
p2

s2
p3t3 + (s1t1 + p2t2) +

p2

s2

p3

s3

∑

k>3

pktk

k−1∏

i=4

pi

si

)

+ r4s4
s2

p2

s3

p3

(
p2

s2

p3

s3
p4t4 + (s1t1 + p2t2 +

p2

s2
p3t3) +

p2

s2

p3

s3

p4

s4

∑

k>4

pktk

k−1∏

i=5

pi

si

)

+ · · · +

+ rnsn
s2

p2

s3

p3
. . .

sn−1

pn−1

(
p2

s2

p3

s3
. . .

pn−1

sn−1
pntn

+

(
s1t1 + p2t2 + p3t3

p2

s2
+ · · · + pn−1tn−1

p2

s2

p3

s3
. . .

pn−2

sn−2

)
+ 0

)

=

(

p1r1 +

n∑

q=2

rqsq

q−1∏

m=2

sm

pm

) (

s1t1 +

n∑

q=2

pqtq

q−1∏

m=2

pm

sm

)

.

�
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Remark 11. We emphasize that the formula obtained for A(n)2 is symmetric
under mutually exchanging rj with tj , and sj with pj , for all j ∈ {1, . . . , n}.
We also note that only the terms concerning the partitions of the edges of the
polygon Pn are in fact necessary. Indeed, p1 = r1 + s1 + t1 can be immediately
computed once we know the terms r1, s1, t1 determined on the edges of Pn

by the incircle of T1. For 1 < q < n − 1, due to consecutiveness, we have
sq = sq−1 + tq−1 − rq, so that, by recursion, we get

sq = s1 +
q−1∑

h=1

th −
q∑

k=2

rk, (9)

pq = rq + sq + tq =
{

s1 + t1 + t2 if q = 2
s1 +

∑q
h=1 th − ∑q−1

k=2 rk if 2 < q < n − 1.
(10)

Consequently, all terms appearing in A(n)2 can be computed once s1, sn, rj , tj
are known.

Examples We can easily rediscover Heron’s and Brahmagupta’s results from
the provided symmetric function.
• n = 1

A(1)2 = (p1r1 + 0) (s1t1 + 0) = p1r1s1t1

Heron’s equality.
• n = 2

A(2)2 = (p1r1 + r2s2)(s1t1 + p2t2)
= ((r1 + s1 + t1)r1 + r2s2)(s1t1 + (r2 + s2 + t2)t2)
= ((r1 + s2 + r2)r1 + r2s2)(s1t1 + (s1 + t1 + t2)t2)
= (r1 + s2)(r1 + r2)(t2 + s1)(t2 + t1).

It is 2p = s1 + t1 + 2r1 + r2 + s2 + 2t2, so, from s1 + t1 = s2 + r2 we get
p = r1 + r2 + s2 + t2 = r1 + s1 + t1 + t2. From Fig. 5, since n = 2, we can
assume the edges to be a = s2 + t2, b = r2 + t2, c = r1 + t1 and d = r1 + s1,
then

A(2)2 = (r1 + r2)(r1 + s2)(t2 + s1)(t1 + t2) = (p − a)(p − b)(p − c)(p − d)

Brahmagupta’s equality.
• n = 3. Generalization of Brahmagupta’s equality to cyclic pentagons

A(3)2 =
(

p1r1 + r2s2 + r3s3
s2
p2

)(
s1t1 + p2t2 + p3t3

p2
s2

)
.

• n = 4. Generalization of Brahmagupta’s equality to cyclic hexagons

A(4)2 =
(

p1r1 + r2s2 + r3s3
s2
p2

+ r4s4
s2
p2

s3
p3

)
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(
s1t1 + p2t2 + p3t3

p2
s2

+ p4t4
p2
s2

p3
s3

)
.

We can even extend the formula to n = 0 by assuming A(0) = 0, where P0

is a polygon degenerated in a segment, which can be obtained by progressively
removing an edge from a starting polygon Pn having n + 2 edges.

6. Conclusion and remarks

We have shown that Heron’s and Brahmagupta’s equalities can be extended
to a formula that provides the square of the area of any convex cyclic polygon
as a symmetric polynomial of the lengths of the segments determined on the
edges by the incircles of a suitable triangulation. We remark that the formula
is coordinate-free as one should expect from the intrinsic geometric nature of
the problem. Otherwise, using for instance Green’s theorem, it would be quite
easy to provide a coordinate dependent result.

In our opinion the obtained formula is the natural generalization of what
happens for triangles and cyclic quadrilaterals, where the lengths of the edges
explicitly appear in the computation of the area. This is just because the
number of involved edges is small, so that the segments determined by the
edge partitions induced by the incircles can be easily related to the original
lengths of the edges of the polygon. We also remark that the incircles can be
constructed in an elementary way, so that the provided formula also determines
an elementary computation of the square of the area of any convex cyclic
polygon.

Some related open problems also arise, which would be worth considering
in later possible works. For instance, it would be interesting to investigate
the functional dependence of the assumed parameters rq, sq, tq on the original
edge lengths. Presumably, such functions are not simple, which could explain
why an explicit formula for the area as a symmetric function of the edges
has not been obtained in the literature. Also, the extension of the result to
non-convex cyclic polygons seems to be an appealing and challenging task. A
further analysis could be devoted to equality (8) in case it is obtained by using
different triangulations of the same polygon, or to its possible simplification
in suitable subclasses of cyclic polygons
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