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Modélisation Mathématique et Analyse Numérique

A HYBRID HIGH-ORDER METHOD FOR CREEPING FLOWS OF
NON-NEWTONIAN FLUIDS

MicHELE BoTTi!, DANIEL CASTANON QUIROZ?2, DANIELE A. D1 PIETRO? AND ANDRE
HARNIST?

Abstract. In this paper, we design and analyze a Hybrid High-Order discretization method for the
steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities.
The proposed method has several appealing features including the support of general meshes and
high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for
scalar Leray—Lions problems. A complete well-posedness and convergence analysis of the method is
carried out under new, general assumptions on the strain rate-shear stress law, which encompass several
common examples such as the power-law and Carreau—Yasuda models. Numerical examples complete
the exposition.

Résumé. Dans cet article, nous développons et analysons une méthode de discrétisation Hybride
d’Ordre Elevé pour I’écoulement stationnaire de fluides incompressibles non-newtoniens régis par les
équations de Stokes pour des petites vitesses. La méthode proposée présente plusieurs caractéristiques
intéressantes, notamment la prise en charge de maillages généraux et d’une stabilité inf-sup d’ordre
élevé et inconditionnelle, ainsi que des ordres de convergence qui correspondent & ceux obtenus pour
les problemes scalaires de Leray-Lions. Une analyse complete de ’adéquation et de la convergence de
la méthode est effectuée sous de nouvelles hypothéses générales sur la loi de vitesse de déformation-
contrainte de cisaillement, qui englobe plusieurs exemples courants tels que la loi en puissance et les
modeles de Carreau—Yasuda. Des exemples numériques compléetent ’exposition.
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INTRODUCTION

In this paper, we design and analyze a Hybrid High-Order (HHO) discretization method for the steady
motion of a non-Newtonian, incompressible fluid in the Stokes approximation of small velocities. Notable
applications include ice sheet dynamics [32], mantle convection [44], chemical engineering [34], and biological
fluids rheology [28,37]. We focus on fluids with shear-rate-dependent viscosity, whose behavior is characterized
by a nonlinear strain rate-shear stress function. Physical interpretations and discussions of non-Newtonian fluid
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models can be found, e.g., in [8|40]. Typical examples that are frequently used in the applications include the
power-law and Carreau—Yasuda model, covered by the present analysis.

The earliest investigations of fluids with shear-dependent viscosity date back to the pioneering work of
Ladyzhenskaya [36]. For a detailed mathematical study of the well-posedness and regularity of the continuous
problem, see also [3(7}/24139,/41] and references therein. Early results on the numerical analysis of non-Newtonian
fluid flow problems were given in [2,/30,42]. Later, these results were improved in [6] and [31] by proving error
estimates that are optimal for fluids with shear thinning behavior (described by a power-law exponent r < 2).
In [6], the authors considered a conforming inf-sup stable finite element discretization, while in [31] a low-
order scheme with local projection stabilization was proposed. In both works, the use of Orlicz functions is
instrumental to unify the treatment of the shear thinning and shear thickening cases (also called pseudoplastic
and dilatant, respectively; cf. Example . More recently, a finite element method based on a four-field
formulation of the nonlinear Stokes equations has been analyzed in [43]. Other notable contributions on the
numerical approximation of generalized Stokes problems include [25]32}33},35].

The main issues to be accounted for in the numerical solution of non-Newtonian fluid flow problems are the
presence of local features emerging from the nonlinear strain rate-shear stress relation, the incompressibility
condition leading to indefinite systems, the roughly varying model coefficients, and, possibly, complex geometries
requiring unstructured and highly-adapted meshes. The HHO method provides several advantages to deal
with the complex nature of the problem, such as the support of general polygonal or polyhedral meshes, the
possibility to select the approximation order, and unconditional inf-sup stability. Moreover, HHO schemes can
be efficiently implemented thanks to the possibility of statically condensing a large subset of the unknowns
for linearized versions of the problem encountered, e.g., when solving the nonlinear system by the Newton
method. Hybrid High-Order methods have been successfully applied to the simulation of incompressible flows
of Newtonian fluids governed by the Stokes |1] and Navier-Stokes equations [12,23], possibly driven by large
irrotational volumetric forces [15}22]. Works related to the problem of creeping flows of non-Newtonian fluids
are |13] and [17,|1§], respectively dealing with nonlinear elasticity and Leray—Lions problems. Going from
nonlinear coercive elliptic equations to the nonlinear Stokes system involves additional difficulties arising from
the pressure and the divergence constraint. Finally, we mention that HHO methods are members of a wider
family of polytopal methods that also includes, e.g., Virtual Element methods (cf., e.g., [4}5] for their application
to Newtonian incompressible flows) and can fit within general frameworks for the approximation of nonlinear
problems such as the one provided by the Gradient Discretisation Method (see [21}26]).

The HHO discretization presented in this paper hinges on discontinuous polynomial unknowns on the mesh
and on its skeleton, from which discrete differential operators are reconstructed. These operators are used to
formulate discrete counterparts of the viscous and pressure-velocity coupling terms. For the former, stability
is ensured by a cleverly designed stabilization contribution involving the penalization of boundary differences.
We carry out a complete analysis of the proposed method. In particular, under general assumptions on the
strain rate-shear stress function, we derive error estimates for the velocity and pressure approximations. The
energy-norm error estimate for the velocity given in Theorem yields the same convergence orders established
in [18, Theorem 3.2] for the scalar Leray—Lions elliptic problem. A key tool in our analysis is provided by Lemma
in which we prove a generalization of the discrete Korn inequality of |12, Lemma 1] to the non-Hilbertian
case. The other main contributions are a novel formulation of the requirements on the strain rate-shear stress
function allowing a unified treatment of pseudoplastic and dilatant fluids and the identification of a set of general
assumptions on the nonlinear stabilization function ensuring the desired consistency properties along with the
well-posedness of the discrete problem.

The rest of the paper is organized as follows. In Section [I| we introduce the strong and weak formulations
of the nonlinear Stokes problem and present the assumptions on the strain rate-shear stress function. The
discrete setting is established in Section [2 including the definition of the discrete spaces for the velocity and
the pressure. The HHO scheme along with the main theoretical results are stated in Section[3] and a numerical
validation is provided in Section In Section [5] we prove the discrete counterpart of the Korn inequality
needed in the analysis of the method. Section |§| contains the proof of the main results (well-posedness and
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error estimates). Finally, in Appendix [A] we provide a sufficient condition for the strain rate-shear stress law
to fulfil the assumptions presented in Section [I] The paper is structured so as to offer two levels of reading. In
particular, the reader mainly interested in the formulation of the method and its numerical performance can
focus on Section [T}l The remaining sections cover technical aspects of the analysis, and can be skipped at first
reading.

1. CONTINUOUS SETTING

Let Q CR% d € {2,3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary 9). We
consider a possibly non-Newtonian fluid occupying € and subjected to a volumetric force field f : Q — R?. Its
flow is governed by the generalized Stokes problem, which consists in finding the velocity field u : Q — R¢ and
the pressure field p : 2 — R such that

—Vo(,Vu)+Vp=f in £, (1a)
Vau=0  inQ (1b)
u=20 on 01, (1c)

/ p(x)dz =0, (1d)
Q

where V- denotes the divergence operator applied to vector or tensor fields, Vy is the symmetric part of the
gradient operator V applied to vector fields, and, denoting by RZ*? the set of square, symmetric, real-valued
d x d matrices, o : Q x R¥*? — RI*4 ig the strain rate-shear stress law. In what follows, we formulate
assumptions on o that encompass common models for non-Newtonian fluids and state a weak formulation for
problem that will be used as a starting point for its discretization.

1.1. Strain rate-shear stress law

We define the Frobenius inner product such that, for all 7 = (7i;)1<ij<a and 7 = (9ij)1<ij<a in R¥*,
T:1Mm = Zg)jzl Ti;Nij, and we denote by |T|4xq == /T : T the corresponding norm.

Assumption 1.1 (Strain rate-shear stress law). Let a real number r € (1,00) be fixed, denote by 7' := 15 €
(1,00) the conjugate exponent of r, and define the singular exponent of r by

7 :=min(r, 2) € (1,2]. (2)

The strain rate-shear stress law satisfies
o(xz,0) = 0 for almost every x € €, (3a)
o Q x R4 R¥X is measurable. (3b)

Moreover, there exist real numbers o4, € [0,00) and o, Tsm € (0,00) such that, for all 7,17 € R?*? and almost
every x € (2, we have the Holder continuity property

r—7

o (2, 7) = (@, M)l gea < One (0he + [Tlixa + Mlia) ™ 17— nli5a: (3¢)

and the strong monotonicity property

(o(z,7) —o(a,n) : (T 1) (04 + |Tlixa + Mlaxa) ~ > osmlT —nlZa " (3d)

Some remarks are in order.
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Remark 1.2 (Residual shear stress). Assumption can be relaxed by taking o(-,0) € L" (€, R%*?). This
modification requires only minor changes in the analysis, not detailed for the sake of conciseness.

Remark 1.3 (Singular exponent). Inequalities f can be proved starting from the following assumptions,
which correspond to the conditions below characterizing an r-power-framed function: For all 7,1 € R4*4
with 7 # 1 and almost every € ,

7-;2
o(@,7) — o (@.0)laxa < One (e + [Tlaxa + Mlaxa) ™ |7 = Nlaxa,

(0’(:13,7’) - U(w>"7)) : (T - 77) > Osm (Uge + ‘T|2><d + |77|Zl-><ol)T ‘T - n‘glxd‘

These relations are reminiscent of the ones used in [18] in the context of scalar Leray—Lions problems. The
advantage of assumptions — , expressed in terms of the singular index 7, is that they enable a unified
treatment of the cases r < 2 and r > 2 in the proofs of Lemma [6.3] Theorem [3.6] Lemma [6.5] and Theorem [3.7]
below.

Remark 1.4 (Relations between the Holder and monotonicity constants). Inequalities and give
Osm S Ohc- (4)

Indeed, let 7 € RY*? be such that |T|sxq > 0. Using the strong monotonicity (with m = 0), the Cauchy—
Schwarz inequality, and the Holder continuity (again with 17 = 0), we infer that

Oem (0he + [ Tlixa) ~ Tl <o(m) 7 <|o(,7)|axalTlaxa < one (0he + [ Tlixa) 7~ |Tlixa
Ir—2|

. Letting |7]gxa — 0o gives ().

almost everywhere in ). Hence, Zam < (m)
The I xa
Example 1.5 (Carreau—Yasuda fluids). (u,d,a,r)-Carreau—Yasuda fluids, introduced in [46] and later gener-

alized in |31, Eq. (1.2)], are fluids for which it holds, for almost every & € 2 and all T € RZ*4,

r—2

o(x,7)=p(z) (5“(“3) +|r Z(de)) a(@) - 5

where p: Q — [p_, p4] is a measurable function with p_, py € (0, 00) corresponding to the local flow consistency
index, ¢ € [0,00) is the degeneracy parameter, a : Q — [a_,a4] is a measurable function with a_, a1 € (0, 00)
expressing the local transition flow behavior index, and r € (1,00) is the flow behavior index. The Carreau—
Yasuda law is a generalization of the Carreau law (corresponding to a_ = a4 = 2) that takes into account
the different local levels of flow behavior in the fluid. The degenerate case 6 = 0 corresponds to the power-
law model. Non-Newtonian fluids described by constitutive laws with a (u, d, a, r)-structure exhibit a different
behavior according to the value of r. If r > 2/ then the fluid shows shear thickening behavior and is called
dilatant. Examples of dilatant fluids are wet sand and oobleck. The case r < 2, on the other hand, corresponds to
pseudoplastic fluids having shear thinning behavior, such as blood. Finally, if » = 2, then the fluid is Newtonian
and becomes the classical (linear) Stokes problem. We show in Appendix that the strain rate-shear stress
(&)

law is an r-power-framed function with oge = 0,
o a1\ %,_
. ;‘%12[7(&7"%) -1 tr<2, o Jnlr- 1P L Gt M BT,
T 1 1)%_ s (1) 1|21
u+(r—1)2(“— 0D s T“;lz[ (- }( e s,
where £9 = max(0,¢) and £° := —min(0,&) denote, respectively, the positive and negative parts of a real

number £. As a consequence, it matches Assumption [1.1
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1.2. Weak formulation

From this point on, we omit both the integration variable and the measure from integrals, as they can be in
all cases inferred from the context. We define the following velocity and pressure spaces embedding, respectively,
the homogeneous boundary condition and the zero-average constraint:

Ui={ve W (@QR") : v,,=0}, P=L(QR) ={qel’(QR) : [;a=0}.
Assuming f € L™ (2, R%), the weak formulation of problem reads: Find (u,p) € U x P such that

a(u,v) +b(v,p) = /Qf v Yv e U, (6a)
—b(u,q) =0 Vg € P, (6b)

where the function a : U x U — R and the bilinear form b : U x L™ (Q,R) — R are defined such that, for all
v,we U and all g € L’",(Q,R)7

a(w,v) = /Qa'(~,VSw) : Vv, b(v,q) = —/Q(Vm)q. (7)

Remark 1.6 (Mass equation). The test space in can be extended to L (©,R) since, for all v € U, the
divergence theorem and the fact that vy, = 0 yield b(v,1) = — [, V-v = — [, v-naq = 0, with ngg denoting
the unit vector normal to 92 and pointing out of 2.

Remark 1.7 (Well-posedness and a priori estimates). It can be checked that, under Assumption the
continuous problem (@ admits a unique solution (u,p) € U x P; see, e.g., [31, Section 2.4], where slightly
stronger assumptions are considered. For future use, we also note the following a priori bound on the velocity:

2—7 _ ﬁ 2—7 2-7 s TFi—7
[ulwir@pn < (27 Cxomll flr@en) + (27 Ol ool @r) )

where Ck > 0 comes from the Korn inequality given at below. To prove (8], use the strong-monotonicity

of o, sum written for v = u to written for ¢ = p, and use the Hoélder inequality together with
the Korn inequality to write

=2 -
" ||VSU| r+2—7

LT'(Q,RdX d)

T (1204 + 1|Vl v < a(u,u)

= [ £ < Ol sl Vsl mo,

where ||y is the measure of €2, that is,

72
p

r+1—7

IVeully i ey < Cromt 1l - (9)

N i= (190405, + IV sullf o oxa))

27

) < 25" max (||Vsu||zr(97Rdxd),|Q\dage> " N, we obtain, enumerating the

Observing that ||Vu| ﬁg&%dxd

cases for the maximum and summing the corresponding bounds,

IV sul

—7 —7 2=7 = e
L‘r'(Q’RdXd) S (2277./\/) "'11 + (22T ‘Q|dT 0'(21ng) i .

Combining this inequality with @ gives .
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2. DISCRETE SETTING

2.1. Mesh and notation for inequalities up to a multiplicative constant

We define a mesh as a couple My, == (Ty,, Fp), where T}, is a finite collection of polyhedral elements T' such
that A = maxypec7, hr with A7 denoting the diameter of T', while F}, is a finite collection of planar faces F' with
diameter hp. Notice that, here and in what follows, we use the three-dimensional nomenclature also when d = 2,
i.e., we speak of polyhedra and faces rather than polygons and edges. It is assumed henceforth that the mesh
M}, matches the geometrical requirements detailed in [19, Definition 1.7]. In order to have the boundedness
property for the interpolator, we additionally assume that the mesh elements are star-shaped with respect
to every point of a ball of radius uniformly comparable to the element diameter; see |19, Lemma 7.12] for the
Hilbertian case. Boundary faces lying on 99 and internal faces contained in © are collected in the sets F and

1, respectively. For every mesh element T' € Tp,, we denote by Fr the subset of F}, containing the faces that
lie on the boundary 0T of T. For every face F' € F},, we denote by Tr the subset of T;, containing the one (if
F € FP) or two (if F € F}) elements on whose boundary F lies. Finally, for each mesh element T € T, and
face F' € Fp, npp denotes the (constant) unit vector normal to F' pointing out of 7.

Our focus is on the h-convergence analysis, so we consider a sequence of refined meshes that is regular in the
sense of |19, Definition 1.9] with regularity parameter uniformly bounded away from zero. The mesh regularity
assumption implies, in particular, that the diameter of a mesh element and those of its faces are comparable
uniformly in h and that the number of faces of one element is bounded above by an integer independent of h.

To avoid the proliferation of generic constants, we write henceforth @ < b (resp., a = b) for the inequality
a < Cb (resp., a > Cb) with real number C > 0 independent of h, of the constants oqe, Ohc, Osm in Assumption
and, for local inequalities, of the mesh element or face on which the inequality holds. We also write a ~ b
to mean a < b and b < a. The dependencies of the hidden constants are further specified when needed.

2.2. Projectors and broken spaces

Given X € T, U F,, and | € N, we denote by P!(X,R) the space spanned by the restriction to X of scalar-
valued, d-variate polynomials of total degree < I. The local L2-orthogonal projector 7l : L*(X,R) — P!(X,R)
is defined such that, for all v € L1 (X, R),

/ (rhev —v)w =0 vw € PY(X,R). (10)
X

When applied to vector-valued fields in L' (X, R) (resp., tensor-valued fields in L' (X, R?*%)), the L2-orthogonal
projector mapping on P!(X, R?) (resp., P'(X, R?*9)) acts component-wise and is denoted in boldface font. Let
T € Tn, n € [0, + 1] and m € [0,n]. The following (n,r, m)-approximation properties of 7k hold: For any
v e Wmn(T,R),

|’U — 7Té—v’U|Wm,r(T7]R) S h?—v_’m|U|Wn,r(T7R). (11&)

The above property will also be used in what follows with r replaced by its conjugate exponent 7. If, additionally,
n > 1, we have the following (n,r’)-trace approximation property:

n—%
v — Wé“U“LT'(ST,R) Shr T olwer () (11b)

The hidden constants in are independent of A and T, but possibly depend on d, the mesh regularity
parameter, [, n, and r. The approximation properties are proved for integer n and m in [17, Appendix A.2]
(see also [19, Theorem 1.45]), and can be extended to non-integer values using standard interpolation techniques
(see, e.g., [38, Theorem 5.1]).

At the global level, for a given integer [ > 0, we define the broken polynomial space P!(7;,R) spanned by
functions in L(, R) whose restriction to each mesh element 7' € T}, lies in P!(T,R), and we define the global
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L*-orthogonal projector 7} : LY(€2,R) — P!(Tj,R) such that, for all v € L}(,R) and all T € Ty,

(WLU)‘T = Wépvh.
Broken polynomial spaces are subspaces of the broken Sobolev spaces
W™ (Th,R) == {v e L"(QR) : v, €e W (T,R) VT €Tp}.

We define the broken gradient operator Vj, : WH(T;,, R) — LY(Q,R?) such that, for all v € W1 (T, R) and
all T € Tn, (Vpv)|, == Vu|,.. We define similarly the broken gradient acting on vector fields along with its

I
symmetric part Vs, as well as the broken divergence operator V- acting on tensor fields. The global L2
orthogonal projector ﬂ'ﬁL mapping vector-valued fields in L'(£2,R%) (resp., tensor-valued fields in L*($2, R%*))
on P!(Tp,, RY) (resp., P!(Ty, R?*?)) is obtained applying 7}, component-wise.

2.3. Discrete spaces and norms

Let an integer £ > 1 be fixed. The HHO space of discrete velocity unknowns is
Uj = {v, = (vr)reT,, (VF)rer,) : vr €PY(T,RY) YT €T, and vp € P*(F,RY) VF e F,}.

The interpolation operator I : Wh1(Q,R%) — U¥ maps a function v € W1(Q,R%) on the vector of discrete
unknowns I} v defined as follows:

k...
Iv = ((W]%WT)TETM (ﬂ’]fwvu)Fefh)

For all T' € T, we denote by Q’% and I ’% the restrictions of Qﬁ and I f to T', respectively and, for all v, € Q,’i,
we let vy = (vr, (VF)per,) € Uk denote the vector collecting the discrete unknowns attached to T’ and its
faces. Furthermore, for all v, € Qz, we define the broken polynomial field v;, € P*(T;,,R?) obtained patching
element unknowns, that is,

('Uh)\T =vr VT € Ty. (12)

We define on U} the W17 (Q, RY)-like strain seminorm ||-||,.5 such that, for all v, € UF,

;,T) (13a)

rh = (Z vy

vy,
T€7_h
with |yl = <||VS'UT||TLT(T,]R’“”’) + Z hy "llor — ”T”TLT(F,W)) for all T € 7. (13b)
FeFr

The following boundedness property for I ]% can be proved adapting the arguments of |19, Proposition 6.24] and
requires the star-shaped assumption on the mesh elements: For all T € T;, and all v € W17 (T, R%),

||lkf”“r,T S [vlwr (r,reys (14)

where the hidden constant depends only on d, the mesh regularity parameter, r, and k.
The discrete velocity and pressure are sought in the following spaces, which embed, respectively, the homo-
geneous boundary condition for the velocity and the zero-average constraint for the pressure:

U,y = {gh = (vr)rer,, (vp)per,) €U : vp=0 VFe f};f}, PF = PF(T;,,R) N P.
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By the discrete Korn inequality proved in Lemma below, ||||»,» is a norm on Q’Z’O (the proof is obtained
reasoning as in [19, Corollary 2.16]).

3. HHO SCHEME

In this section, after introducing the discrete counterparts of the viscous and pressure-velocity coupling terms,
we state the discrete problem along with the main results.

3.1. Viscous term

3.1.1. Local symmetric gradient reconstruction

For all T' € T, we define the local symmetric gradient reconstruction G:T UL — PH(T,RE*4) such that,
for all v, € U%.,

/ Gf,TgT T = / Vsor: T+ Z / (vp —vr) - (Tnrr) V7 € PR(T,R3*9), (15)
T T FeFr’F

This symmetric gradient reconstruction, originally introduced in [13, Section 4.2], is designed so that the fol-
lowing relation holds (see, e.g., [14, Proposition 5] or [19, Section 7.2.5]): For all v € WH(T,R9),

GLr(Liw) = (V). (16)

The global symmetric gradient reconstruction G: B Uy — PR(T;,, R2X?) is obtained patching the local contri-
butions, that is, for all v;, € QZ, we set

(Gf,hﬂh)lT = GE,TQT VT € Th. (17)
3.1.2. Discrete viscous function
The discrete counterpart of the function a defined by is ay, : QZ X QZ — R such that, for all v;,w,, € Q’fm

an(wy, vy) = /QU(" Gf,hﬁh) : Gf,hﬁh +sn(wy, vy,)- (18)

In the above definition, recalling , v is a stabilization parameter such that
Y S [O—smvo—hc}v (19)

while the stabilization function sy, : QZ X Qﬁ — R is such that, for all v;,w;, € QZ’,

Sh(ﬂhayh) = Z ST(QTaQT)a (20)
TEeTh

where the local contributions are assumed to satisfy the following assumption.

Assumption 3.1 (Local stabilization function). For all T' € 7y, the local stabilization function sy : U x U%. —

R is linear in its second argument and satisfies the following properties, with hidden constants independent of
both h and T

(1) Stability and boundedness. Recalling the definition (T3B) of the local ||-||,. 7-seminorm, for all v, € U%
it holds:

k
||Gs,TﬂTH2r(T,1Rdxd) +sr(vp,vr) = |lvpll; o (21)
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(2) Polynomial consistency. For all w € P*1(T,R%) and all v, € U%,
sr(Thw,v,) = 0. (22)

(3) Hélder continuity. For all wp, vy, wy € Uk, it holds, setting e = wy — wy,

r—7

o1 1
sT(ur, v1) — sr(wr, vr)| S (57(wr, ur) +sr(wp,wy)) * sr(er,er) ™ sr(vp,vr)r. (23)

4) Strong monotonicity. For all wy, w, € Qk , it holds, setting again e, = up — W,
7 W T T T T

2—7 r+2—7#

(st(ur, er) —sr(wy, er)) (st(ur, uy) +sr(wr, wr)) = Zsrler,er) = . (24)

Remark 3.2 (Comparison with the linear case). If r = 2, sy can be any symmetric bilinear form satisfying
7. Indeed, property coincides in this case with the Cauchy—Schwarz inequality, while, by linearity
of st, property holds with the equal sign.

3.1.3. An example of viscous stabilization function

Taking inspiration from the scalar case (cf., e.g., [17, Eq. (4.11¢)]), a local stabilization function that matches
Assumption can be obtained setting, for all v, wy € Ql%,

st(wy, vr) = /6T |Abrwr| 2 Abrw, - Ay, (25)

where, denoting by P*(Fr,R?) the space of vector-valued broken polynomials of total degree < k on Fr, the
boundary residual operator A?,T : Ql% — P*(Fr,R9) is such that, for all v, € Q?,

1
(AgTQT)\F =hp " (7"%(1'§+12T —vFp) — W’%(rI%HQT - 'UT)) VF € Fr,

with velocity reconstruction ri! : Uk — P*1(T,R?) such that
/ (Verhiop — GEpvp) : Vaw =0 vw € PMTHT,RY),
T

1
/r?lﬂT:/vT, and/VssrlfrHET:’ Z /(UF@nTF—nTF@DF)'
T T T 2 £

FeFr

Above, Vg denotes the skew-symmetric part of the gradient operator V applied to vector fields and ® is the
tensor product such that, for all = (2;)1<i<q and ¥y = (¥i)1<i<a in R, x @y = (xiyj)i<ij<d € Rdxd,

Lemma 3.3 (Stabilization function ) The local stabilization function defined by satisfies Assumption
31

Proof. The proof of for r = 2 is given in [13, Eq. (25)]. The result can be generalized to r # 2 using the
same arguments of |17, Lemma 5.2]. Property is an immediate consequence of the fact that A%, (Ixw) =0
for any w € P*+1(T,R9), which can be proved reasoning as in |19, Proposition 2.6].

Let us prove . First, we remark that, since the function a — "2 verifies the conditions in below,
we can apply Theorem M to infer that the function R? > & + |x|"~2x satisfies for all z,y € R?,

r—7
T |

|l 22— [y["Py| < (=" + [yl") 7 e -yl (26a)

2-7 ~
(lz[" 22 — [y %y) - (x —y)(J=]" + |y|") ~ 2 |e -y (26b)
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Recalling 7 we can write

_ k 2 Ak k
st (wr, vr) — sr(wy, vr)| S/ “AE)TUTl 2Az)TUT_|AaTQT|7 2A6TMT |AGrur|

k k =k Fo1) Ak
S /({)T (|A8T@T|r + \ASTMTV) |AGrer| M AGrvr|

r—7

%\H

< (sr(ug ug) + sr(wp,wy) ™ srlep,er) T sr(vp,vp)7,

where we have used ) to pass to the second line and the (1; ==, === r)-Holder inequality to conclude.

7r 7 r—1)

Moving to , and the (1; 7+2 r 7+2 27 _Helder inequality yield

sr(er,er)

k k
= /aT |Ajrur — Agrwy|”

2—7 T
k k r+2-r k — k k _ k k 27
< /a:r <|A6THT\T + |A6TMT|T> [(|A6TET|T 2A3T2T — |[Agrwy|” 2A6TQT) ) AGTQT}

2—7 T
< (sr(up, ur) + sr(wy, wr)) 277 (s7(ur, er) - sr(wr, €))7 . O

3.2. Pressure-velocity coupling

For all T € Ty, we define the local divergence reconstruction D, : U — P*¥(T,R) by setting, for all v, € U’
DEw, = tr(vaTgT). We have the following characterization of D%: For all v, € U,

/DTqu—/(VvT ) g+ Z / VF —UT) NTF g Vq € PH(T,R), (27)

FeFr

as can be checked writing for 7 = ¢l;. Taking the trace of , it is inferred that, for all T' € T} and
all v € WHY(T,RY), DE(Iv) = 75 (V-v). The pressure-velocity coupling is realized by the bilinear form
by, : U x P*(T;,,R) — R such that, for all (v,,,qn) € UF x P*(T5,,R), setting gp = (qn)|, for all T € T,

br(vy, qn) =~ /DTvT qr- (28)
TETh

3.3. Discrete problem and main results

The discrete problem reads: Find (w;,,pn) € U 270 x PF such that

an(wy,vy,) + br(vy,,pn) = / foon Vv, €U, (29a)
Q

—bn(uy,qn) =0 Vai, € Py. (29b)

Remark 3.4 (Discrete mass equation). The space of test functions in (29b]) can be extended to P*(7j,R)
since, for all v, € QZ,O? the divergence theorem together with the fact that vy = 0 for all F € Fp and
Yorery Jpvr -nrp=0forall F e Fi, yield

by (v, 1 Z Z /UF nrp = — Z Z/UF nrp = 0.

TeT, FeFr FeFi TeTr
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Remark 3.5 (Efficient implementation). When solving the system of nonlinear algebraic equations correspond-
ing to by, e.g., the Newton algorithm, all element-based velocity unknowns and all but one pressure unknown
per element can be locally eliminated at each iteration by static condensation. As all the computations are local,
this procedure is an embarrassingly parallel task which can fully benefit from multi-thread and multi-processor
architectures. This implementation strategy has been described for the linear Stokes problem in [22] Section
6.2]. After further eliminating the boundary unknowns by strongly enforcing the boundary condition 7 we
end up solving, at each iteration of the nonlinear solver, a linear system of size dcard(]-'}b)(k+d 1) + card(ﬂl)
Concerning the interplay between the static condensation strategy and the performance of p-multilevel linear
solvers, we refer to [11].

In what follows, we state the main results for the HHO scheme . The proofs are postponed to Section @

Theorem 3.6 (Well-posedness). There exists a unique solution (w,,pn) € Q’fw X P}lf to the discrete problem
. Additionally, the following a priori bounds hold:

1 1
_ T—1 THi—7
lnlivn S (omal Fllr@zn) " + (0% omll Flr zny) (30a)
7—1
r—2[(r—1 — THI-F
||Ph||Lr/(Q,1R) < One ( sm||f||Lr (@Rrd) T ‘7‘ = (Jsrr}”fHLT/(Q,]R'i)) ) : (30b)
Proof. See Section O

Theorem 3.7 (Error estimate). Let (u,p) € U x P and (u;,pr) € Uﬁ 0 X P} solve (6) and (29), respectively.
Assume the additional regularity w € W2 (T, RY), (-, Vu) € WL Q RdXd N WD E=1.r" (7 Rdxdy,
and p € Wl’T'(Q,R) W (k+1)(F=1),r' (Th,R). Then, under Assumptzons 1.1 (md

1
(k+1)(F=1) . e
Iy, = Ll S 0 HT (0 NF " Non) T (31a)
(et (F—1)2 —2|(F-1) /_— =L
||ph — ﬂhp‘ e (QR) S < h(k-‘rl)(?“ 1)N )um h o7 O-hCNJL’I‘ [(7—1) (st&Na,u,p) 1 , (31b>

where we have set, for the sake of brevity,

No’,u,p ‘= Ohc (Uge + |uH;V1vT(Q,Rd)) ' ‘u|;7k1+2’r(Th,Rd)

+ ‘0'('7 Vsu)‘W(kJrl)(i—l),r’('Th’Rdxd) + |p|W(k+1)(%—1)m’(7’h’]R),

1 1
_ —1 _F _ THI-F
Nf ‘= 0de + (o—srr]{”f”L’"/(Q,Rd)) + (0—39 To—sn}”f”L’"/(Q,Rd)> :

Proof. See Section O
Remark 3.8 (Orders of convergence). From ( ., neglecting higher-order terms, we infer asymptotic conver-
gence rates of OF | = (kﬁi# for the velocity and Oprc = % for the pressure, that is,

(32)

Ok (k+1)(r—1) ifr<2, and OF — (k+1)(r—1)% ifr<2,
T ifr>2, N = ifr>2.
Notice that, owing to the presence of higher-order terms in the right-hand sides of , higher convergence rates
may be observed before attaining the asymptotic ones; see Section 4} The asymptotic order of convergence for
the velocity coincides with the one proved in [18, Theorem 3.2] for HHO discretizations of scalar Leray—Lions
problems. We refer to [20] for recent improvements on these estimates depending on the degeneracy of the
problem.
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FiGUrRE 1. Coarsest Cartesian, distorted triangular, and distorted Cartesian meshes used in
Section @

4. NUMERICAL EXAMPLES

In this section, we evaluate the numerical performance of the HHO method on a complete panel of numerical
test cases. We focus on the (4,0, 1,r)-Carreau—Yasuda law (corresponding to the power-law model) with
values of the exponent r ranging from 1.25 to 2.75. Our implementation relies on the SpaFEDTe library (cf.
https://spafedte.github.io).

4.1. Trigonometric solution

We begin by considering a manufactured solution to problem in order to assess the convergence of the

method. We take Q = (0,1)? and exact velocity w and pressure p given by, respectively,
u(zy,22) = (sin (gxl) cos (%372) , — COS (%ml) sin (%.’172)) ,  p(x1,22) =sin (gxl) sin (%.’I}Q) — %.

The volumetric load f and the Dirichlet boundary condition are inferred from the exact solution. Considering
pw=1andr € {1.5/1.75,...,2.75}, this solution matches the assumptions required in Theorem for k =1,
except the case r = 1.5 for which o'(-, Vu) ¢ WL (Q, R9*4). We consider the HHO scheme for k = 1 on three
mesh families, namely Cartesian orthogonal, distorted triangular, and distorted Cartesian; see Figure[I} Overall,
the results are in agreement with the theoretical predictions, and in some cases the expected asymptotic orders
of convergence are exceeded. Specifically, for r # 2, the convergence rates computed on the last refinement
surpass in some cases the theoretical ones. As noticed in Remark this suggests that the asymptotic order
is still not attained. A similar phenomenon has been observed on certain meshes for the p-Laplace problem:;
see |18, Section 3.5.2] and [21], Section 3.7]. In some cases, we observe a better convergence for the velocity on
distorted triangular meshes than on Cartesian meshes. This phenomenon possibly results from the combination
of two factors: on one hand, the improved robustness of HHO methods with respect to elongated elements when
compared to classical discretization methods; on the other hand, the fact that unstructured triangular meshes
have more elements than Cartesian meshes for a given meshsize and lack privileged directions, which reduces
mesh bias. Further investigation is postponed to a future work.

4.2. Lid-driven cavity flow

We next consider the lid-driven cavity flow, a well-known problem in fluid mechanics. The domain is the unit
square 2 = (0,1)2, and we enforce a unit tangential velocity u = (1,0) on the top edge (of equation x5 = 1) and
wall boundary conditions on the other edges. This boundary condition is incompatible with the formulation
@, even generalized to non-homogeneous boundary conditions, since u ¢ W17 (Q, R?). However, this is a very
classical test that demonstrates the quality of the method. We consider a low Reynolds number Re = % =1.
For r € {1.25,2,2.75}, we solve the discrete problem on Cartesian and distorted triangular meshes (cf. Figure
of approximate size 128 x 128 for k = 1, and 16 x 16 for £ = 5. This choice is meant to compare the low-order
version of the method on a fine mesh with the high-order version on a very coarse one. The corresponding total
number of degrees of freedom is: 130048 for the fine Cartesian mesh with k = 1; 5760 for the coarse Cartesian


https://spafedte.github.io
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——r=15a7r=17—-e1r=2

13

FIGURE 2. Numerical results for the test case of Section The slopes indicate the order
of convergence expected from Theorem ie. Oly =2(r—1)and O, = 2(r — 1)? for
re{1.5,1.75,2}.

mesh with k£ = 5; 298676 for the fine triangular mesh with & = 1; and 14196 for the coarse triangular mesh
with k£ = 5. In the left column of Figure |4 we display the velocity magnitude, while in the right column we plot
the horizontal component u; of the velocity along the vertical centreline z; = % (resp., vertical component usg
along the horizontal centreline z; = %). The lines corresponding to k& = 1 on the fine mesh and to k = 5 on the
coarse mesh are perfectly superimposed, regardless of the mesh family and of the value of r. This shows that,
despite the lack of regularity of the exact solution, high-order versions of the scheme on very coarse meshes
deliver similar results as low-order versions on very fine grids. Furthermore, we observe significant differences in
the behavior of the flow according to r, coherent with the expected physical behavior. In particular, the viscous
effects increase with r, as reflected by the size of the central vortex.

5. DISCRETE KORN INEQUALITY

We prove in this section a discrete counterpart of the following Korn inequality (see Theorem 1]) that
will be needed in the analysis: There is Cx > 0 depending only on €2 and r such that for all v € U,
[vllwirore) < Cxl|VsvlLr @ raxdy- (33)

We start by recalling the following preliminary result concerning the node-averaging interpolator (sometimes

called Oswald interpolator). Let ¥ be a matching simplicial submesh of My, in the sense of Definition 1.8].
The node-averaging operator Igv)h : PE(Th, RY) — PR(T,, RONWET(Q,RY) is such that, for all v;, € P*(T;,,R%)
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vel pre

and all Lagrange node V of ¥}, denoting by Ty the set of simplices sharing V',

(15 o) (V) o= | ey Doy val (V) 3V EQ
avih 0 it vV eon.

For all F € F}, denote by T1, T € Ty, the elements sharing F', taken in an arbitrary but fixed order. We define
the jump operator such that, for any function v € Wh(T;,R9), [v]r = (V2 )r — (V|5 )|- This definition is
extended to boundary faces F' € F} by setting [v]p = V-

Proposition 5.1 (Boundedness of the node-averaging operator). For all v;, € P*(T;,,R%), it holds

k _
on =I5, onliyrr i mey S O hi " lllvnlFl
FeFy

Lr(FRY)" (34)

Proof. Combining Eq. (4.13)] (which corresponds to for r = 2) with the local Lebesgue embeddings
of Lemma 1.25] (see also Lemma 5.1]) gives, for any T € Ty,

lon = Ik, yonllie ey S Y. helllonlelli g, (35)
FeFyv r
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where Fy, 1 collects the faces whose closure has non-empty intersection with 7. Using the local inverse inequality
of |19, Lemma 1.28] (see also |17, Eq. (A.1)]), we can write

k . &
lon — Iav,h'UhV{/VM(ﬂL,Rd) S Z hy"[lon — Iav,h'uhHET(T,]Rd)
TETh

S Z Z h%;r”['vh]FHTI;T(F,Rd)

TeTh FE]'—\;,T

S Z Z h};rmvh]FHZr(F,Rd)

FeFn, TETv,F

< max card LT v
< max (%,F)Feth r vnlF|

T
LT (FR4)

where we have used the fact that h;" < h" along with inequality to pass to the second line, and we
have exchanged the sums after setting 7y p = {T ETh:FNT # @} for all F' € F}, to pass to the third line.
Observing that maxper, card(Ty ) S 1 (since, for any F € Fj,, card(Ty ) is bounded by the left-hand side
of [19, Eq. (4.23)] written for any T € T, to which F belongs), follows. O

The following inequalities between sums of powers will be often used in what follows without necessarily
recalling this fact explicitly each time. Let an integer n > 1 and a real number m € (0, 00) be given. Then, for
all a1,...,a, € (0,00), we have

n= 0 3 g < (Z ) < nm=1® 3 g, (36)
=1

i=1 i=1

If m = 1, then holds with the equal sign. If m < 1, [45, Egs. (5) and (3)] with « = 1 and 8 = m give
nmIS e < (Yr a)™ <300 a™. If, on the other hand, m > 1, [45, Eqgs. (3) and (5)] with a = m and
B=1give }i ;a™ < (3r a;)" <n™ 1Y " a. Gathering the above cases yields (36).

Lemma 5.2. (Discrete Korn inequality) We have, for all v, € Q’;,o; recalling the notation ,
[onllzr @ ray + 1VRlwr (7, vy S 2R 1158 (37)

Proof. Let v;, € Qﬁ’o. Using a triangle inequality followed by , we can write

k k
|vh|’;[/'1v7“(7—h,Rd) s |Iav7hvh"[’;vl,r(7’;’”Rd) + |vh — IaV,hvhH;Vlm(’T],“]Rd)
k k
S ||VS(Iav,hvh)”ET(Q,RdXd) + |vn — Iav,hthI;VlvT(Th,Rd)
S ||Vs,hvh||2r(Q’Rd><d) + vn — I];V,hvh|rwl,r(7’}”Rd)

S ”VsﬁvthT(QRdXd) + Z h}r_r||["’h]F||£r(F,Rd)a
FeFy,

where we have used the continuous Korn inequality to pass to the second line, we have inserted £V v,
into the first norm and used a triangle inequality followed by to pass to the third line, and we have invoked
the bound to conclude. Observing that, for any F' € Fy, |[vn]r| < Y rcq, [vr—vr| by a triangle inequality,
and using , we can continue writing

Onliy e zey S NVsnvrllieqracay + Y, D b lvr = vrlheppay = [04ll7 4,
FE]:;L TETF
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where we have exchanged the sums over faces and elements and recalled definition (|13al) to conclude. This
proves the bound for the second term in the left-hand side of . Combining this result with the global
discrete Sobolev embeddings of [17, Proposition 5.4] yields the bound for the first term in (37). O

6. WELL-POSEDNESS AND CONVERGENCE ANALYSIS
In this section, after studying the stabilization function sj, we prove the main results stated in Section

6.1. Properties of the stabilization function

Lemma 6.1 (Consistency of st). For any T € T;, and any st satisfying Assumption it holds, for all
w € WH2r(T,RY) and all v, € UL,

1< h(k+1) - 1)|

|ST(l§“w’QT) Wl T(T Re) |w|Wk+2 (T ’Rd)HQTHT,Tv (38)

where the hidden constant is independent of h, T, and w.

Proof. The proof adapts the arguments of [19, Propositon 2.14]. Using the polynomial consistency property

, we can write

|ST(l§“waQT)| = |ST(I§F'w vr) — ST(IT(WI%H'LU) vr)|

l
<ST(ITU’ ITU’) ” ST(IT(“’ ”IJC“H'U’) lT(w 7"?_1'“’)) r ST('UTa”T)
k
SNl I (w — bt w) |77 o e
k+1

|w|W1r(TRd)‘w_77 w‘er(T]Rd)H’UTHT,T

< h(k‘+l (r 1)| F—1

Wl T(T Rd |w Wk+2’T(T,Rd) ||QT||T,T7
where we have used the Holder continuity and observed that, by the polynomial consistency property ,
sp(Lh(mh ), Ih(wk aw)) = 0 to pass to the second line, we have used the boundedness property (21)) to

pass to the third line, the boundedness of l? to pass to the fourth line, and the (k + 2, r, 1)-approximation
property (11a) of 71"'73+1 to conclude. O

In what follows, we will need generalized versions of the continuous and discrete Holder inequalities, recalled
hereafter for the sake of convenience. Let X C R? be measurable, n € N*, and let ¢,p,...,p, € (0, o0] be such

that Y7, p = 1. The continuous (¢; p1, . . ., pn)-Holder inequality reads: For any (f1,..., f,) € Xj—; LP (X, R),

< JTIfillzre - (39)

L*(X,R) =1

Let m € N*. For all f: {1,...,m} — R and all ¢ € [1,00), setting || f|lq = ity |f(i )|q)%, and || flleo =
maxi<;<m |f(4)], the discrete (t D1, .., pn)-Holder inequality reads: For any f1,..., fn: {1,...,m} = R,

< T Ifllp.- (40)
=1

Proposition 6.2 (Properties of s3). Let sp, be given by with, for allT € Ty, st satisfying Assumption .
Then it holds, for all v, € QZ,

IGE ol (@.raxay T Sn(Vy, v) 2 (o]l - (41a)
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Furthermore, for all u,,v;,,w,; € QZ it holds, setting e; = u;, — w,,,

r=f ol 1
IS (wp,, vy) — sh(wy, v,)| S (Sh(wp, wy) + sh(wy,, wy,)) ™ su(ey.e,) ™ sn(vy, )7, (41b)
2-7 r+2—7
(sn(up,epn) —sn(wy,, ep)) (sn(upy, wp) +sp(wy,, wy)) ™ Zsulen,e,) © - (41c)

Finally, for any w € U N W 27 (T, RY), it holds

k k+1)(7—1 -7 r—1
sup sn(Lhw,vy,) S BEDC Vw7 o b w0l o gy (42)
Eh,egﬁyovllﬂhl‘ﬂ",h:l

Above, the hidden constants are independent of h and of the arguments of sy,.

Proof. For the sake of conciseness, we only sketch the proof and leave the details to the reader. Summing
over T' € Tp, immediately yields (41a]). The Holder continuity property (41b)) follows applying to the quantity
in the left-hand side triangle inequalities, using (23), and concluding with a discrete (1; L=, =", r)-Hélder

P r—7 F—1)

inequality. Moving to (41c), starting from |sp (e, e,)|, we use and apply a discrete (1; %, #)—

s

Holder inequality to conclude. Finally, to prove we start from s, (I Zw, v},), expand this quantity according
to , use, for all T € Tp, the local consistency property together with hp < h, invoke the discrete

(1; ==, =5, r)-Holder inequality, and pass to the supremum to conclude. O

6.2. Well-posedness

In this section, after proving Holder continuity and strong monotonicity properties for the discrete viscous
function a; and the inf-sup stability of the pressure-velocity coupling bilinear form by, we prove Theorem

6.2.1. Hélder continuity and strong monotonicity of the viscous function

Lemma 6.3 (Holder continuity and strong monotonicity of ap). For all w;,, v, w;, € Qlfb, setting e, == w;, —wy,,
it holds

lan (wp,, vy,) — an(wp,, vy,)| S One (O—ge + [l |75 + ||Qh||:h)7 HQh”i,_thQh”T,m (43a)

2-7 .
(an(wy. €,) — an(wy,, €;,)) (04 + llwpllyp + [|wy, :,h) T2 UsmHQhH:,J}rLZ " (43b)

Proof. (i) Holder continuity. Using a Cauchy—Schwarz inequality followed by the Holder continuity of o,
we can write

‘/ﬂ (U('7 Gs,hﬂh) —o(, Gs,hﬂh)) : Gf,hﬂh

k k =k o1k
< th/ﬂ (Uge +|Gg pwplaxa + |Gs,hwh|gxd) ’ |Gs,h§h|2><<1i|Gs,hgh|dXd

e (44)

T

< Ohe (|Q|d05e + ||G§,hﬂh|

k
Lr(rixay T [Gg pwp| 27'(Q,Rd><d))

k F— k
X HGs,th||27~(191Rd><d)”Gs,th”LT(Q,RdXd)
S e (0he + gl n + llwnllnn) ™ lenlint ol

where we have used the (1; "=, ﬁ,r)—Hélder inequality in the second bound and the global seminorm

equivalence (41a)) together with the fact that [Q]; < 1 (since Q is bounded) to conclude. For the stabilization
term, combining the Holder continuity (41b]) of s, and the seminorm equivalence (41a)) readily gives

r—7

sk (wy,,vy) = sh(wy,, v,)] < (08 + llu ., + HMhH:,h) ”Qh”:;Lluyh”r,h, (45)
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where we have additionally noticed that o, > 0 to add this term to the quantity inside parentheses. Using the

definition of ay, a triangle inequality followed by and , and recalling that v < op. (cf. ), (43al)
follows.

(ii) Strong monotonicity. Using the strong monotonicity of o and the (1; =527, 2=T)-Holder inequality

([39), we get

Fe=r | vk
Osm” ||Gs,h§h|27'(Q,Rd><d)
27 r
k k r+2—7 k k r+2—7
< [ (o4 168l + 1Gh i lia) T (oG — oG wy)  Gley )
2—7

k k r4+2—7

S (Uge + ||Gs,h@h||2r(Q,Rdxd) + HGs,hwhHET(Q,]RdXd)) (46)

k k k R
X (/Q (U('a Gopuy) — ol Gs,hwh)> : Gs,heh>
< r r r % k k . k T+57F
S (e + latnlr s + N1y 70) [ (oGl ~ o Glywy)  Glien )

where the conclusion follows from the global seminorm equivalence (41a)). Additionally, using the strong mono-
tonicity (41c)) of sj, together with the fact that ogy, < v (cf. ) and invoking again the seminorm equivalence
(41a)), we readily obtain

~ T7’1 o ‘ o 27;' = =3
o’ sn(en,en) S (0he + llwp I + ||Mh||:~h) T (ysn(up, e5) — vsn(wy,, €))L (47)

Finally, combining again the norm equivalence (41al) with and (47), and using yields

_r _2-7 .
o el (0 + awa i+ awa 17) 77 (o () — (2w, ) 7757
Raising this inequality to the power T*fff yields (43b)). O

6.2.2. Stability of the pressure-velocity coupling
Lemma 6.4 (Inf-sup stability of by,). It holds, for all g, € PF,

||Qh||LT'(Q,]R) 5 sup bh(gha Qh)v (48)

Qhegl}i,o’llﬂh,”hhzl

with hidden constant depending only on d, k, r, , and the mesh reqularity parameter.

Proof. The proof follows the classical Fortin argument (cf., e.g., |9, Section 8.4]), adapted here to the non-
Hilbertian setting.

(i) Fortin operator. We need to prove that the following properties hold for any v € W (Q, R?):

ILvllrn S [Vl w1 (@ra), (49a)

bu(Lyv,qn) = b(v,qn) Vg € P*(Ty, R). (49Db)

Property (49a)) is obtained by raising both sides of (14)) to the power r, summing over T' € Ty, then taking the
rth root of the resulting inequality. The proof of (49b)) is given, e.g., in [19, Lemma 8.12].

(ii) Inf-sup condition on by. Let qp, € P,ff and set ¢j, = fQ |qh\7"l_2qh. Using the triangle and Holder inequalities,
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we get

Nanl"~2an — enllzr@umy < lanllyrly g + lenllf] < (14 190a) lanllyor o gy < lanlrtyzy: (50)
r'—1

L™ (R
fact that |Qs < 1 to conclude. Thus, using the surjectivity of the continuous divergence operator V- : U —
Ly (L, R) = {q eL"(R): [q= 0}, (c.f. |27] and also |10, Theorem 1]), we infer that there exists v,, € U

such that

1
where we have used the fact that || < ||qn]] )|Q|§' along with 1 + L =1 in the second bound and the

-V, = |61h| gn —cn and  |vg, lwir@rs S lllanl” "2an — enllirm)- (51)
Denote by $ the supremum in . Using the fact that g; has zero mean value over {2, the equality in
together with the definition @ of b, and the second Fortin property (49b)), we have

|‘qh||2r/(Q7R):/§2 (|Qh|r 72qh - Ch)qh = b(vq}mqh) = bh(llfivq}nqh) S $||lZth ||7"7h S $||qh‘ 27'7(19,]]{)’
where, to conclude, we have used (49a]) followed by and (50). Simplifying yields (48). O

6.2.3. Proof of Theorem
Proof of Theorem@ ) Ezistence. Denote by P,"* the dual space of PF and let B, : UZ,O — P;f’* be such
that, for all v, € tho,

(Brvy, qn) = —bu(vy.qn)  Vau € Py
Here and in what follows, (-,) denotes the appropriate duality pairing as inferred from its arguments. Define
the following subspace of QZ@ spanned by vectors of discrete unknowns with zero discrete divergence:

W} = Ker(Bn) = {vy, € Uk i bu(vy.a0) =0 Van € Py }, (52)
and consider the following problem: Find u, € W such that

an(uy, vp) = /Q foon va, e W (53)

Existence of a solution to this problem for a fixed h can be proved adapting the arguments of |17, Theorem 4.5].
Specifically, equip W¥ with an inner product (-, )wn (which need not be further specified), denote by ||-||w »
the induced norm, and let ®, : W — Wh be such that, for all w,;, € Wh, (®n(wy,), vy)w,n = ap(wy,v;,) for
all v, € Eh. The strong monotonicity (43b)) of ay yields, for any v, € Eh such that ||vy,|lrn > 0de,

(@n(©n), v)won > Tom (e + [wa170) T 104 l252 2 umllwnll7n > C7oam vy 1,

where C' denotes the constant (possibly depending on h) in the equivalence of the norms ||-||,, and ||-||lwn
(which holds since W is finite-dimensional). This shows that @), is coercive hence, by [16, Theorem 3.3],
surjective. Let now w,, € EIE be such that (w,,, v,)w.n = fQ f-op forall v, € EIZ By the surjectivity of ®y,
there exists u;, € EIZ such that ®p,(u;,) = w;, which, by definition of w,, and ®}, is a solution to the discrete

problem .

The proof of existence now continues as in the linear case; see, e.g., |9, Theorem 4.2.1]. Denote by QZS the

dual space of U 2)0 and consider the linear mapping ¢, € Q’Z:B such that, for all v, € Q’,;O,

h,v,) = / f-vn —an(uy,vy).
Q
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Thanks to , {1, vanishes identically for every v,, € Eﬁ, that is to say, £ lies in the polar space of Eﬁ which,
denoting by B; : PF — QZS the adjoint operator of By, coincides in our case with Im(B;,) (see, e.g., [9, Theorem
4.14]). Hence, ¢), € Im(B;), and there exists therefore a p;, € PF such that B}pj, = £),. This means that, for all

vy, GQ]}CL707
bn(vy,,pn) = (Bipn, vy) = (bh,v),) = /Qf-vh —an(uy,vy),

i.e., the (uy,,pn) satisfies the discrete momentum equation (29a). On the other hand, since u;, € WF, we also
have, by the definition of EZ, by (wy,, qn) = 0 for all g, € P,f7 which shows that the discrete mass equation
(29Db) is also verified. In conclusion, (wy,,pn) € QZ,O x PF solves (29).

(i) Uniqueness. We start by proving uniqueness for the velocity. Let (wuy,pn), (u},,p},) € QQO x PF be two
solutions of (29). Making v, = w;, — u), in (29a)) written first for (w,,,ps) then for (u},p},), then taking the
difference and observing that by, (w;, — u},,pr) = bp(u, — u},, pj,) = 0 by (29b)), we infer that

an(wy,, wy, —wy,) — an(wy,, w, —uy,) = 0.

Thus, the strong monotonicity (43b)) of aj; yields ||u;, — u}||»» = 0, which implies w;, = uj, since |||, is a
norm on Qﬁo. Moreover, using the inf-sup stability of by, and (29a)) written first for w, then for u}, we
get

Ipr = Pl r) S sup by (W, P — Ph)
QhEQﬁ,O,HQh”r,hil

= sup (ap(up, vy,) — an(uy, v,)) =0,
QhEQZ‘OaHEh ”r,hzl

hence pj, = pj,.

(iii) A priori estimates. Using the strong monotonicity (43b)) of a;, (with w,, = 0), equation (29a)) together with
(29b)), and the Holder inequality together with the discrete Korn inequality , we obtain

=2 =
s (0l + lwnllin) 7 7527 S an(wy, w,) = /Q Foun SN rallwnllrn (54)

We then conclude as in the continuous case to infer (30al) (see Remark [1.7). To prove the bound (30b)) on the
pressure, we use the inf-sup stability of by, to write

Iprll L or) < sup by (vy,, pn)

v, €U [lv, lrn=1

= sup (/ Jron— ah(“m’”h))
Ehegﬁyov”ﬂhuﬂhzl Q

S IS

7—1
_ —2|(F—1 _ e
< ohe (asn%||f||L~m,Rd) + o 0 (o F L ) )

rr i
L (@rd) T Ohe(0ge + [[2pllrn) ™ g 17

where we have used the discrete momentum equation (29al) to pass to the second line, the Holder and discrete
Korn (37) inequalities together with the Holder continuity (43a)) of a;, to pass to the third line, and the a priori
bound (30a]) on the velocity together with 2= > 1 (see (4))) to conclude. O

6.3. Error estimate

In this section, after studying the consistency of the viscous and pressure-velocity coupling terms, we prove
Theorem [3.71
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6.3.1. Consistency of the viscous function

Lemma 6.5 (Consistency of ay). Let w € U N W 27 (T, RY) be such that o(-, Vow) € WL (Q,R¥*4) N
WEHDE=Dr" (7 RIXD) - Define the viscous consistency error linear form Ean(w;-) - UF — R such that, for
all v, € UY,

Eunwivy) = [ (Vo Fuw)) - vn + (L, (5)
Q
Then, under Assumptions[I.1] and[3.1], we have

r—r

k+1)(7—1 "
sup Ean(w; ) S AEHDED [Uhc (USC + |w|§vl~*(sz,Rd)> Wiy, (Th,RY)
Eh,egﬁyownyhl‘hh,:l

+|U(',sz)|W(k+1)(i‘—1),r’(7’h’Rdxd) . (56)

Proof. Let w), =TI ’,ﬁw and v, € Qﬁ,@ Expanding aj, according to its definition in the expression of

Ea,h, inserting + (fﬂ o(-, Vsw) : Gf’hgh + [omho(, Viw) : G:hyh), and rearranging, we obtain

Ean(wivy,) =

| (ot v o |

Ta

+ / (o GEptby) = (-, Vow)) : GE vy + sy v), - (57)

T2 Ts

where have used the definition of ¥ together with the fact that Gfﬁ wOp € PE(T,, R¥*4) in the cancellation.
We proceed to estimate the terms in the right-hand side. For the first term, we start by noticing that

Z Z /'UF VS'LU)TLTF):O (58)

TeT, FeFr

as a consequence of the continuity of the normal trace of o (-, Vsw) together with the single-valuedness of v g
across each interface F' € F; and of the fact that vp = 0 for every boundary face F' € Fb Using an element

by element integration by parts on the first term of 77 along with the definitions of G 1, and (15)) of Grb o
we can write

7= [ (who. Van —at=Viw)) : Voo,
+T;M; (/ (vr —vr) - (7ho(., Vw))nTF‘F/F'UT'(U('avsw)nTF))
=> > / vp —vr) - (7ho (-, Vaw) — o(-, Vaw)) nrp,
TeT, FeFr

where we have used the definition of w¥ together with the fact that V pvj, € P=1(T;,, R*?) C P*(T,,, RI*4)
to cancel the term in the first line, and we have inserted and rearranged to conclude. Therefore, applying
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the Holder inequality together with the bound hr < hp, we infer

ITh] < (Z hrllo (-, Viw) — wifro(~7sz)nz’w(aT,Rdxd)) (Z > hpllvr — vzl

LT'(F,Rd)>
TeTh TeTy, FEFT (59)

< AEADED g (. Vow)ly s i-n. (7, gaxay |0 lr.n,

where the conclusion follows using the ((k+1)(7 —1),7’)-trace approximation properties (T1b) of 7% along with
hr < h for the first factor and the definition of the ||||»,n-norm for the second.
For the second term, using the Holder inequality and again (41al), we get

72| < llo(-, G paby,) — o (-, Vsw)|| o g gaxay |l p- (60)
We estimate the first factor as follows:

o (-, Gf,h@h) —o(, sz)HLT'(Q,RdXd)

r—7

S Ohc

(he +1GE ks fa + [Vswlina) T 1GE iy, — Vw2

L™ (2,R)

’V‘
koo .
< Ohe (050 + HGs,hwhHTLr(Q,Rdxd) + HVSw”Eﬂ‘(Q,RdXd ) HGS p Wy —V w”LT(Q Raxd)

r—7

. v k
< Ohe (Ugc + HwhH:«,h + |w‘€/Vlvr(Q,]Rd)) [mh (Vsw) =V U’||U (Q,RIxd)

'rfw'“

Ohe (05(3 + |w|¥/vl,'r(Q7Rd)> ‘wlwk+2 7 (Th R4

< pE+DE-1)

where we have used the Holder continuity (3¢ of o in the first bound, the (r'; ==, =5 )-Holder inequality
in the second, the boundedness of 2 along with (| and the commutation property of Gf’ 5, in the third,
and we have concluded invoking the (k + 1,7, O)—approximation property of wk.. Plugging this estimate
into , we get,

72| £ RN g (Uge + |w|7{/V1,T(Q,]Rd)) |w‘Wk+2 T (Th Rd)HQh”T,h- (61)

Finally, using the fact that v < oy together with the consistency of sj, and the norm equivalence (41a),
we obtain for the third term

T3] < R+ E=1) g |w|W1 (@, Rd)|w|Wk+2 (T R4 llopllr - (62)
Plug the bounds , , and into and pass to the supremum to conclude. O

6.3.2. Consistency of the pressure-velocity coupling bilinear form

Lemma 6.6 (Consistency of by). Let ¢ € Wh' (Q,R) N WHEDT=D7"(T0 RY. Let &, 5(q;-) : UF — R be the
pressure consistency error linear form such that, for all v, € Q’f“

Ennlq;vy) = / Vq - vy, — by(vy,, 7). (63)
Q

Then, we have that i
sup Eon(gv,) < h(kH)(r_l)|q\W(k+1)(;71>,7~/(7-h”R). (64)

Eheg;‘iyo’”ﬂh”hhzl
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Proof. Let v, € Qﬁo. Integrating by parts element by element, we can reformulate the first term in the
right-hand side of as follows:

/QVQ'UhZ—Z

TeTh

(/T q(V-vp) + Z q(vp —vr) 'nTF> ) (65)

FeFr F

where the introduction of vp in the boundary term is justified by the fact that the jumps of ¢ vanish across
interfaces by the assumed regularity and that vp = 0 on every boundary face ' € FP. On the other hand,
expanding, for each T € Ty, D% according to its definition (27), we get

— bu (v, Tha) = Z (/T g (V-or) + Z /Fﬁgq (vp —vr) ‘nTF> . (66)

TETh FeFr

Summing and and observing that the first terms in parentheses cancel out by the definition of
7wk since V-vp € PF=1(T R) C P*(T,R) for all T € Ty, we can write

Eonlgvy) = 3 (j;¢;g7ﬂﬂxf5¥5+ 3 /kw%q—qqu—nn»~nTF)
TET F

FeFr
1

1 1
(zhm%q—q||zw<m) (z > h;-fnw—wnsz,Rd))

TET, TeT, FEFT
< 1) (F-1

IN

)\Q|W<k+1><f—1),r'(Th7R) lvpllrn

where we have used the Holder inequality along with hp > hp whenever F' € Fr in the second line and the
((k+1)(F — 1), r')-trace approximation property (11b)) of 7% together with the bound hr < h and the definition
of the |||/ ,-norm to conclude. Passing to the supremum yields (64)). O

6.3.3. Proof of Theorem[3.7
Proof of Theorem[37 Let (e, €) = (w), — @y, pp — Pn) € QZ,O x P where 4, .= Ifu € Qﬁ,o and py, == 7rp €
Pk

Step 1. Consistency error. Let &y, : Qﬁ’o — R be the consistency error linear form such that, for all v,;, € Qﬁ)o,

&@m:érmﬁ%@wm—M@mm (67)

Using in the above expression the fact that f = — V.o (-, Vsu) + Vp almost everywhere in €2 to write &, (v;,) =
Ean(u;vy) + &b n(p;vy,), and invoking the consistency properties of a; and of by, we obtain

$:= sup En(vy) S h(k'*'l)(F_l)Ng%p. (68)

Qhegﬁ,()’”gh‘lr,hzl
Step 2. Error estimate for the velocity. Using the strong monotonicity (43b)) of a, we get

N ‘ 2 )
||§hH:,J1227T S oo (0he + Ny 17+ @ llnn) ™ (an(wy, e,) — an(@y,, e))
(69)

S Js_rr}NJ%J (an(uy, 1) — an(@y, €p))

where we have used the a priori bound (30al) on the discrete solution along with the boundedness (49al) of the
global interpolator and the a priori bound (8 on the continuous solution to conclude. Using then the discrete
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mass equation (29b)) along with (49b) (written for v = w) and the continuous mass equation (6bf) to write
br(LFu, qn) = b(u, qn) = 0, we get by(ep, qn) = 0 for all g, € Pf. Hence, combining this result with and
the discrete momentum equation (29a)) (with v, = e;,), we obtain

an(wy,, e,) — an(ty,, e,) = / I en—an(ly, e,) —M: Enlep). (70)
Q
Plugging (70)) into , we get

lenllyh> " < ogu NG Sllen .
Simplifying, using 7 and taking the (r + 1 — 7)th root of the resulting inequality yields (31al).
Step 3. Error estimate for the pressure. Using the Holder continuity (43a) of ap, we have, for all v, € QZ,O,

|an (@, vy,) — an(wy, v,)| S one (04 + ||y, lrn + Iy, :h)T ||§h||i;11||gh”7‘7h (71)
S oneNF el e,
where the first factor is estimated as in . Thus, using the inf-sup condition , we can write
ll€nl L™ (R) S sup by (vy,, €n)
EhGQﬁ,O»HQthhil
= sup (En(vy) + an (@, vy) — an(uy, vy))
EhEQ'ﬁ)mHEthh:l (72)

S S+ oneNG el
< h(k+1)(F_1)Na,u,p " h(k—&-l)(i«'_l)?ahcj\/—}r—m(F—l) (O'S_n}-/\[a,u,p)% 7

where we have used the definition of the consistency error together with equation (29a)) to pass to the
second line, to pass to the third line (recall that $ denotes here the supremum in the left-hand side of ),
and the bounds and (31a) (proved in Step 2) to conclude. O

APPENDIX A. POWER-FRAMED FUNCTIONS

In the following theorem, we introduce the notion of power-framed function and discuss sufficient conditions
for this property to hold.

Theorem A.1 (Power-framed function). Let U be a measurable subset of R™ with n > 1, (W, (-,-)w) an inner
product space, and o : U x W — W. Assume that there exists a Carathéodory function ¢ : U x [0,00) = R such
that, for all T € W and almost every x € U,

o, 7) =< |rw)T, (73a)

where ||-||w is the norm induced by (-,-)w. Additionally assume that, for almost every x € U, ¢(x,-) is
differentiable on (0,00) and there exist ¢ge € [0,00) and Gsm,she € (0,00) independent of & such that, for all
a € (0,00),

r—2 0 x, - R
gsm(gge +ar) < M < (hc(gde + a ) LA (73b)

Oa

Then, o is an r-power-framed function, i.e., for all (7,m) € W? with T # m and almost every x € U, the
function o verifies the Holder continuity property

r—2
lo(@,7) —a(@,n)llw < one (7ge + [ITlw + Inllw) ™ I7 —nllw, (74a)
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and the strong monotonicity property
r—2
(o(2,7) = a(@,n), T — My = o (0 + Tl + Inliy) ™ 7 —nliy, (74b)

with 0de = Sdes Ohe ‘= 92—74r ! [2-7] (F—1)"Yene, and ogm = gi—r=[r=1r=7)] (r+1—7)"tem, where ¥ is given
by and [-] is the ceiling function.

Remark A.2 (Notation). The boldface notation for the elements of W is reminiscent of the fact that Theorem
is used with W = RZ*4 in Corollary to characterize the Carreau-Yasuda law as an r-power-framed
function and in Lemma with W = R? to study the local stabilization function sy.

Proof of Theorem[A-]l Let & € U be such that holds, and 7, € W. By symmetry of inequalities
and the fact that o is continuous, we can assume, without loss of generality, that || 7|w > [|n|lw > 0.

(i) Strong monotonicity. Let 8 € (0,00) and let g : [5,00) — R be such that, for all « € [3, 00),

r—2 27“‘—7‘

g(a) = as(x,a) — Bs(x, B) — Com(sge + " + ") 7 (a =), with Con = Z5—5%m-
Differentiating g and using the first inequality in (73b]), we obtain, for all « € |8, ),

d ro | pyI=2
%g(a) > Gm(Sqe +0") 7

— Com ((r =2l + 07 +87) 7 F (= B)a™ '+ (cf +a" + 1) T

r—2 r—2
T

> Gm(sie +a") 7 —(r+1—=7)Csm(sie + " + 57)
> 2T (h F "+ B) T — (r+ 1 — 7)Cam(sh. + " + B7)

r—2
T

:O’

where, to pass to the second line, we have removed negative contributions if r < 2 and used the fact that
(@ —B)a""! < ¢ +a" + 7 if r > 2, to pass to the third line we have used the fact that ¢t — "2 is non-
increasing if r < 2, and the fact that § < « otherwise, while the conclusion follows from the definition of Cygy,.
This shows that ¢ is non-decreasing. Hence, for all a € [, 00), g(a) > g(8) =0, i.e.

r—2

as(@, a) = fs(x, f) = Can(sge + " + 87) 7 (= B). (75)

Moreover, for all «, 5 € (0, 00), using (with 8 = 0) along with the fact that t — ¢"~2 is decreasing if r < 2
and inequality if r > 2, we infer that

r—2 r—r

S(z,0) +<(, 5) = Com ((cée +a") 7+ (e + 6’“)’%2) > Con2 T (e, + 07 + 87)

r—2
-

(76)

We conclude that o verifies (74b)) by using and with a = ||7||lw and 8 = ||n||lw as follows:

(o(x,7) —o(x,n), T —Mw
= (rs(@, [I[Tw) = ns(@, [nllw), 7 —mw
= [7livs@@, Ilw) + Il Inlw) = (T m)w s |17lw) + (@ [nllw)]
= [[Illws (@, [Tllw) = [Inllws (@, [nllw)] (7w = [nlw)
+ (@, |7lw) + s(, [Inllw)] (ITllwlnllw — (7. m)w)
> Con2 15 (e + Il + i)

= Con2 (G + Il + )

r—2
r

[l lw = Imllw)? + 20 llw [nllw — (7. m)w)]

r—2
3

I =l
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(ii) Holder continuity. Now, setting Cp. = 25 and reasoning in a similar way as for the proof of to

T

leverage the second inequality in (73b]), we have, for all « € 3, c0),

r—2

as(z,a) — Bs(x, B) < Che (she + " +87) 7 (a—B). (77)

First, let r > 2. Using (with 8 = 0) and the fact that ¢ — ¢"~2 is non-decreasing, we have, for all
a, B € (0,00),

r—272
™

r—2 r—2 2
(@, 0)s(®,8) < Ol (h +0") T (he + BT < [Che(She+ 0" +87) 7 | (78)
Thus, using inequalities and with a = ||7|lw and 8 = ||n||w, we infer

lo (2, 7) — oz, n)|iy
= (rs(@; [I7llw) = ns(@, [nllw), 7s (@, [|T]lw) — ns(, [nlw))w
= Irllws(, Illw) = Inllws(e, |nllw))
+ 25, [|7llw)s (@, [nllw) [Ilwlnllw — (7. m)w] (79)

r—2

< [Che 6+ Il + 1) =] [Airllw — mllw)? + 2007l Il — ()]

o2 2
= [Che (e + Il + Imlli) 7 i = mllw]

hence o verifies (74a)) for r > 2. Assume now r < 2. Using a triangle inequality followed by and the left
inequality in , it is inferred that

lo@, ™) = @ mlw < @ lw)l7llw + <@, [nllw)limlw
r e T roy=t
< Che (i I7l15) 7 + (e + mlli) )

1
< 27 Che(25ge + Il + [Imlly

T
T

r—=2 1
T

w
= 27 Cne (24 + Il + lImllw) ™ (2se + 17l + [mllw) ™

1 r—2
< 27 Che(She + Il + ) ™ (26ae + I7llw + lInllw),

where the last line follows from the fact that ¢ — ¢"~2 is decreasing and again [36)). If 2cqe + ||7||w + |n]lw <
22="||7 — n|lw, from the previous bound we directly get the conclusion, i.e. (74a) with ohe = 22777 Che.
Otherwise, using and a triangle inequality yields

1
pe

T ro\L -2
(e + Imllw)™ =277 (sae + [I7[[w) (Sae + [|mllw)

Y 2 2
= 2720 (24 + |l + Inllw)* = (Illw = Imllw)?]

(e + lI7llw)

> 2724 [(20c + |7l + lnllw)? = i = il | (50)

> 272G 4D (1 — 4772) (2640 + |||l + [0llw)?
2

2 ___9
2207977 (e + 7 llw + [mllw)

where we concluded with together with the fact that 220+ (1 — 4“2) > 9772, Finally, raising
both sides of to the power r — 2, we get a relation analogous to ([78]). Hence, proceeding as in , we infer
(74al). O
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Corollary A.3 (Carreau—Yasuda). The strain rate-shear stress law of the (u,d,a,r)-Carreau—Yasuda fluid
defined in Example is an r-power-framed function.

Proof. Let €  and ¢ : (0,00) — R be such that, for all « € (0, ),

gla) = . [au(m) (5a(m) + a“(w)> 2(;;} = p(x) ((5“(m) + Oz“(m)) i ! ((W(m) +(r— 1)a“(w)> .

We have for all « € (0, 00),

po(F—1) (5a(m) + aa(m))m < gla) < pp(r+1—7) (5a(m) + aa(m))m ,

and we conclude using together with Theorem [A.1 O
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