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A HYBRID HIGH-ORDER METHOD FOR CREEPING FLOWS OF

NON-NEWTONIAN FLUIDS

Michele Botti1, Daniel Castanon Quiroz2, Daniele A. Di Pietro2 and André
Harnist2

Abstract. In this paper, we design and analyze a Hybrid High-Order discretization method for the
steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities.
The proposed method has several appealing features including the support of general meshes and
high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for
scalar Leray–Lions problems. A complete well-posedness and convergence analysis of the method is
carried out under new, general assumptions on the strain rate-shear stress law, which encompass several
common examples such as the power-law and Carreau–Yasuda models. Numerical examples complete
the exposition.

Résumé. Dans cet article, nous développons et analysons une méthode de discrétisation Hybride

d’Ordre Élevé pour l’écoulement stationnaire de fluides incompressibles non-newtoniens régis par les
équations de Stokes pour des petites vitesses. La méthode proposée présente plusieurs caractéristiques
intéressantes, notamment la prise en charge de maillages généraux et d’une stabilité inf-sup d’ordre
élevé et inconditionnelle, ainsi que des ordres de convergence qui correspondent à ceux obtenus pour
les problèmes scalaires de Leray–Lions. Une analyse complète de l’adéquation et de la convergence de
la méthode est effectuée sous de nouvelles hypothèses générales sur la loi de vitesse de déformation-
contrainte de cisaillement, qui englobe plusieurs exemples courants tels que la loi en puissance et les
modèles de Carreau–Yasuda. Des exemples numériques complètent l’exposition.
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Introduction

In this paper, we design and analyze a Hybrid High-Order (HHO) discretization method for the steady
motion of a non-Newtonian, incompressible fluid in the Stokes approximation of small velocities. Notable
applications include ice sheet dynamics [32], mantle convection [44], chemical engineering [34], and biological
fluids rheology [28,37]. We focus on fluids with shear-rate-dependent viscosity, whose behavior is characterized
by a nonlinear strain rate-shear stress function. Physical interpretations and discussions of non-Newtonian fluid
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models can be found, e.g., in [8, 40]. Typical examples that are frequently used in the applications include the
power-law and Carreau–Yasuda model, covered by the present analysis.

The earliest investigations of fluids with shear-dependent viscosity date back to the pioneering work of
Ladyzhenskaya [36]. For a detailed mathematical study of the well-posedness and regularity of the continuous
problem, see also [3,7,24,39,41] and references therein. Early results on the numerical analysis of non-Newtonian
fluid flow problems were given in [2, 30, 42]. Later, these results were improved in [6] and [31] by proving error
estimates that are optimal for fluids with shear thinning behavior (described by a power-law exponent r ≤ 2).
In [6], the authors considered a conforming inf-sup stable finite element discretization, while in [31] a low-
order scheme with local projection stabilization was proposed. In both works, the use of Orlicz functions is
instrumental to unify the treatment of the shear thinning and shear thickening cases (also called pseudoplastic
and dilatant, respectively; cf. Example 1.5). More recently, a finite element method based on a four-field
formulation of the nonlinear Stokes equations has been analyzed in [43]. Other notable contributions on the
numerical approximation of generalized Stokes problems include [25,32,33,35].

The main issues to be accounted for in the numerical solution of non-Newtonian fluid flow problems are the
presence of local features emerging from the nonlinear strain rate-shear stress relation, the incompressibility
condition leading to indefinite systems, the roughly varying model coefficients, and, possibly, complex geometries
requiring unstructured and highly-adapted meshes. The HHO method provides several advantages to deal
with the complex nature of the problem, such as the support of general polygonal or polyhedral meshes, the
possibility to select the approximation order, and unconditional inf-sup stability. Moreover, HHO schemes can
be efficiently implemented thanks to the possibility of statically condensing a large subset of the unknowns
for linearized versions of the problem encountered, e.g., when solving the nonlinear system by the Newton
method. Hybrid High-Order methods have been successfully applied to the simulation of incompressible flows
of Newtonian fluids governed by the Stokes [1] and Navier–Stokes equations [12, 23], possibly driven by large
irrotational volumetric forces [15, 22]. Works related to the problem of creeping flows of non-Newtonian fluids
are [13] and [17, 18], respectively dealing with nonlinear elasticity and Leray–Lions problems. Going from
nonlinear coercive elliptic equations to the nonlinear Stokes system involves additional difficulties arising from
the pressure and the divergence constraint. Finally, we mention that HHO methods are members of a wider
family of polytopal methods that also includes, e.g., Virtual Element methods (cf., e.g., [4,5] for their application
to Newtonian incompressible flows) and can fit within general frameworks for the approximation of nonlinear
problems such as the one provided by the Gradient Discretisation Method (see [21,26]).

The HHO discretization presented in this paper hinges on discontinuous polynomial unknowns on the mesh
and on its skeleton, from which discrete differential operators are reconstructed. These operators are used to
formulate discrete counterparts of the viscous and pressure-velocity coupling terms. For the former, stability
is ensured by a cleverly designed stabilization contribution involving the penalization of boundary differences.
We carry out a complete analysis of the proposed method. In particular, under general assumptions on the
strain rate-shear stress function, we derive error estimates for the velocity and pressure approximations. The
energy-norm error estimate for the velocity given in Theorem 3.7 yields the same convergence orders established
in [18, Theorem 3.2] for the scalar Leray–Lions elliptic problem. A key tool in our analysis is provided by Lemma
5.2, in which we prove a generalization of the discrete Korn inequality of [12, Lemma 1] to the non-Hilbertian
case. The other main contributions are a novel formulation of the requirements on the strain rate-shear stress
function allowing a unified treatment of pseudoplastic and dilatant fluids and the identification of a set of general
assumptions on the nonlinear stabilization function ensuring the desired consistency properties along with the
well-posedness of the discrete problem.

The rest of the paper is organized as follows. In Section 1 we introduce the strong and weak formulations
of the nonlinear Stokes problem and present the assumptions on the strain rate-shear stress function. The
discrete setting is established in Section 2, including the definition of the discrete spaces for the velocity and
the pressure. The HHO scheme along with the main theoretical results are stated in Section 3, and a numerical
validation is provided in Section 4. In Section 5 we prove the discrete counterpart of the Korn inequality
needed in the analysis of the method. Section 6 contains the proof of the main results (well-posedness and
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error estimates). Finally, in Appendix A we provide a sufficient condition for the strain rate-shear stress law
to fulfil the assumptions presented in Section 1. The paper is structured so as to offer two levels of reading. In
particular, the reader mainly interested in the formulation of the method and its numerical performance can
focus on Section 1–4. The remaining sections cover technical aspects of the analysis, and can be skipped at first
reading.

1. Continuous setting

Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary ∂Ω. We
consider a possibly non-Newtonian fluid occupying Ω and subjected to a volumetric force field f : Ω→ Rd. Its
flow is governed by the generalized Stokes problem, which consists in finding the velocity field u : Ω→ Rd and
the pressure field p : Ω→ R such that

−∇·σ(·,∇su) + ∇p = f in Ω, (1a)

∇·u = 0 in Ω, (1b)

u = 0 on ∂Ω, (1c)∫
Ω

p(x) dx = 0, (1d)

where ∇· denotes the divergence operator applied to vector or tensor fields, ∇s is the symmetric part of the
gradient operator ∇ applied to vector fields, and, denoting by Rd×ds the set of square, symmetric, real-valued
d × d matrices, σ : Ω × Rd×ds → Rd×ds is the strain rate-shear stress law. In what follows, we formulate
assumptions on σ that encompass common models for non-Newtonian fluids and state a weak formulation for
problem (1) that will be used as a starting point for its discretization.

1.1. Strain rate-shear stress law

We define the Frobenius inner product such that, for all τ = (τij)1≤i,j≤d and η = (ηij)1≤i,j≤d in Rd×d,
τ : η :=

∑d
i,j=1 τijηij , and we denote by |τ |d×d :=

√
τ : τ the corresponding norm.

Assumption 1.1 (Strain rate-shear stress law). Let a real number r ∈ (1,∞) be fixed, denote by r′ := r
r−1 ∈

(1,∞) the conjugate exponent of r, and define the singular exponent of r by

r̃ := min(r, 2) ∈ (1, 2]. (2)

The strain rate-shear stress law satisfies

σ(x,0) = 0 for almost every x ∈ Ω, (3a)

σ : Ω× Rd×ds → Rd×ds is measurable. (3b)

Moreover, there exist real numbers σde ∈ [0,∞) and σhc, σsm ∈ (0,∞) such that, for all τ ,η ∈ Rd×ds and almost
every x ∈ Ω, we have the Hölder continuity property

|σ(x, τ )− σ(x,η)|d×d ≤ σhc

(
σrde + |τ |rd×d + |η|rd×d

) r−r̃
r |τ − η|r̃−1

d×d, (3c)

and the strong monotonicity property

(σ(x, τ )− σ(x,η)) : (τ − η)
(
σrde + |τ |rd×d + |η|rd×d

) 2−r̃
r ≥ σsm|τ − η|r+2−r̃

d×d . (3d)

Some remarks are in order.
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Remark 1.2 (Residual shear stress). Assumption (3a) can be relaxed by taking σ(·,0) ∈ Lr′(Ω,Rd×ds ). This
modification requires only minor changes in the analysis, not detailed for the sake of conciseness.

Remark 1.3 (Singular exponent). Inequalities (3c)–(3d) can be proved starting from the following assumptions,
which correspond to the conditions (74) below characterizing an r-power-framed function: For all τ ,η ∈ Rd×ds

with τ 6= η and almost every x ∈ Ω,

|σ(x, τ )− σ(x,η)|d×d ≤ σhc

(
σrde + |τ |rd×d + |η|rd×d

) r−2
r |τ − η|d×d,

(σ(x, τ )− σ(x,η)) : (τ − η) ≥ σsm

(
σrde + |τ |rd×d + |η|rd×d

) r−2
r |τ − η|2d×d.

These relations are reminiscent of the ones used in [18] in the context of scalar Leray–Lions problems. The
advantage of assumptions (3c)-(3d), expressed in terms of the singular index r̃, is that they enable a unified
treatment of the cases r < 2 and r ≥ 2 in the proofs of Lemma 6.3, Theorem 3.6, Lemma 6.5, and Theorem 3.7
below.

Remark 1.4 (Relations between the Hölder and monotonicity constants). Inequalities (3c) and (3d) give

σsm ≤ σhc. (4)

Indeed, let τ ∈ Rd×ds be such that |τ |d×d > 0. Using the strong monotonicity (3d) (with η = 0), the Cauchy–
Schwarz inequality, and the Hölder continuity (3c) (again with η = 0), we infer that

σsm

(
σrde + |τ |rd×d

) r̃−2
r |τ |r+2−r̃

d×d ≤ σ(·, τ ) : τ ≤ |σ(·, τ )|d×d|τ |d×d ≤ σhc

(
σrde + |τ |rd×d

) r−r̃
r |τ |r̃d×d

almost everywhere in Ω. Hence, σsm

σhc
≤
(
σr

de+|τ |rd×d

|τ |rd×d

) |r−2|
r

. Letting |τ |d×d →∞ gives (4).

Example 1.5 (Carreau–Yasuda fluids). (µ, δ, a, r)-Carreau–Yasuda fluids, introduced in [46] and later gener-
alized in [31, Eq. (1.2)], are fluids for which it holds, for almost every x ∈ Ω and all τ ∈ Rd×ds ,

σ(x, τ ) = µ(x)
(
δa(x) + |τ |a(x)

d×d

) r−2
a(x)

τ , (5)

where µ : Ω→ [µ−, µ+] is a measurable function with µ−, µ+ ∈ (0,∞) corresponding to the local flow consistency
index, δ ∈ [0,∞) is the degeneracy parameter, a : Ω → [a−, a+] is a measurable function with a−, a+ ∈ (0,∞)
expressing the local transition flow behavior index, and r ∈ (1,∞) is the flow behavior index. The Carreau–
Yasuda law is a generalization of the Carreau law (corresponding to a− = a+ = 2) that takes into account
the different local levels of flow behavior in the fluid. The degenerate case δ = 0 corresponds to the power-
law model. Non-Newtonian fluids described by constitutive laws with a (µ, δ, a, r)-structure exhibit a different
behavior according to the value of r. If r > 2, then the fluid shows shear thickening behavior and is called
dilatant. Examples of dilatant fluids are wet sand and oobleck. The case r < 2, on the other hand, corresponds to
pseudoplastic fluids having shear thinning behavior, such as blood. Finally, if r = 2, then the fluid is Newtonian
and (1) becomes the classical (linear) Stokes problem. We show in Appendix A that the strain rate-shear stress
law (5) is an r-power-framed function with σde = δ,

σhc =


µ+

r−12

[
−
(

1
a+
− 1

r

)	
−1

]
(r−2)+ 1

r
if r < 2,

µ+(r − 1)2

(
1

a−
− 1

r

)⊕
(r−2)

if r ≥ 2,

and σsm =

µ−(r − 1)2

(
1

a−
− 1

r

)⊕
(r−2)

if r ≤ 2,

µ−
r−12

[
−
(

1
a+
− 1

r

)	
−1

]
(r−2)−1

if r > 2,

where ξ⊕ := max(0, ξ) and ξ	 := −min(0, ξ) denote, respectively, the positive and negative parts of a real
number ξ. As a consequence, it matches Assumption 1.1.
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1.2. Weak formulation

From this point on, we omit both the integration variable and the measure from integrals, as they can be in
all cases inferred from the context. We define the following velocity and pressure spaces embedding, respectively,
the homogeneous boundary condition and the zero-average constraint:

U :=
{
v ∈W 1,r(Ω,Rd) : v|∂Ω

= 0
}
, P := Lr

′

0 (Ω,R) :=
{
q ∈ Lr

′
(Ω,R) :

∫
Ω
q = 0

}
.

Assuming f ∈ Lr′(Ω,Rd), the weak formulation of problem (1) reads: Find (u, p) ∈ U × P such that

a(u,v) + b(v, p) =

∫
Ω

f · v ∀v ∈ U , (6a)

−b(u, q) = 0 ∀q ∈ P, (6b)

where the function a : U ×U → R and the bilinear form b : U × Lr′(Ω,R) → R are defined such that, for all

v,w ∈ U and all q ∈ Lr′(Ω,R),

a(w,v) :=

∫
Ω

σ(·,∇sw) : ∇sv, b(v, q) := −
∫

Ω

(∇·v)q. (7)

Remark 1.6 (Mass equation). The test space in (6b) can be extended to Lr
′
(Ω,R) since, for all v ∈ U , the

divergence theorem and the fact that v|∂Ω
= 0 yield b(v, 1) = −

∫
Ω
∇·v = −

∫
∂Ω
v ·n∂Ω = 0, with n∂Ω denoting

the unit vector normal to ∂Ω and pointing out of Ω.

Remark 1.7 (Well-posedness and a priori estimates). It can be checked that, under Assumption 1.1, the
continuous problem (6) admits a unique solution (u, p) ∈ U × P ; see, e.g., [31, Section 2.4], where slightly
stronger assumptions are considered. For future use, we also note the following a priori bound on the velocity:

|u|W 1,r(Ω,Rd) ≤
(

2
2−r̃
r CKσ

−1
sm‖f‖Lr′ (Ω,Rd)

) 1
r−1

+
(

2
2−r̃
r CK|Ω|

2−r̃
r

d σ2−r̃
de σ−1

sm‖f‖Lr′ (Ω,Rd)

) 1
r+1−r̃

, (8)

where CK > 0 comes from the Korn inequality given at (33) below. To prove (8), use the strong-monotonicity
(3d) of σ, sum (6a) written for v = u to (6b) written for q = p, and use the Hölder inequality together with
the Korn inequality (33) to write

σsm

(
|Ω|dσrde + ‖∇su‖rLr(Ω,Rd×d)

) r̃−2
r ‖∇su‖r+2−r̃

Lr(Ω,Rd×d)
≤ a(u,u)

=

∫
Ω

f · u ≤ CK‖f‖Lr′ (Ω,Rd)‖∇su‖Lr(Ω,Rd×d),

where |Ω|d is the measure of Ω, that is,

N :=
(
|Ω|dσrde + ‖∇su‖rLr(Ω,Rd×d)

) r̃−2
r ‖∇su‖r+1−r̃

Lr(Ω,Rd×d)
≤ CKσ

−1
sm‖f‖Lr′ (Ω,Rd). (9)

Observing that ‖∇su‖r+1−r̃
Lr(Ω,Rd×d)

≤ 2
2−r̃
r max

(
‖∇su‖rLr(Ω,Rd×d), |Ω|dσ

r
de

) 2−r̃
r N , we obtain, enumerating the

cases for the maximum and summing the corresponding bounds,

‖∇su‖Lr(Ω,Rd×d) ≤ (2
2−r̃
r N )

1
r−1 +

(
2

2−r̃
r |Ω|

2−r̃
r

d σ2−r̃
de N

) 1
r+1−r̃

.

Combining this inequality with (9) gives (8).
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2. Discrete setting

2.1. Mesh and notation for inequalities up to a multiplicative constant

We define a mesh as a couple Mh := (Th,Fh), where Th is a finite collection of polyhedral elements T such
that h = maxT∈Th hT with hT denoting the diameter of T , while Fh is a finite collection of planar faces F with
diameter hF . Notice that, here and in what follows, we use the three-dimensional nomenclature also when d = 2,
i.e., we speak of polyhedra and faces rather than polygons and edges. It is assumed henceforth that the mesh
Mh matches the geometrical requirements detailed in [19, Definition 1.7]. In order to have the boundedness
property (14) for the interpolator, we additionally assume that the mesh elements are star-shaped with respect
to every point of a ball of radius uniformly comparable to the element diameter; see [19, Lemma 7.12] for the
Hilbertian case. Boundary faces lying on ∂Ω and internal faces contained in Ω are collected in the sets Fb

h and
F i
h, respectively. For every mesh element T ∈ Th, we denote by FT the subset of Fh containing the faces that

lie on the boundary ∂T of T . For every face F ∈ Fh, we denote by TF the subset of Th containing the one (if
F ∈ Fb

h ) or two (if F ∈ F i
h) elements on whose boundary F lies. Finally, for each mesh element T ∈ Th and

face F ∈ FT , nTF denotes the (constant) unit vector normal to F pointing out of T .
Our focus is on the h-convergence analysis, so we consider a sequence of refined meshes that is regular in the

sense of [19, Definition 1.9] with regularity parameter uniformly bounded away from zero. The mesh regularity
assumption implies, in particular, that the diameter of a mesh element and those of its faces are comparable
uniformly in h and that the number of faces of one element is bounded above by an integer independent of h.

To avoid the proliferation of generic constants, we write henceforth a . b (resp., a & b) for the inequality
a ≤ Cb (resp., a ≥ Cb) with real number C > 0 independent of h, of the constants σde, σhc, σsm in Assumption
1.1, and, for local inequalities, of the mesh element or face on which the inequality holds. We also write a ' b
to mean a . b and b . a. The dependencies of the hidden constants are further specified when needed.

2.2. Projectors and broken spaces

Given X ∈ Th ∪ Fh and l ∈ N, we denote by Pl(X,R) the space spanned by the restriction to X of scalar-
valued, d-variate polynomials of total degree ≤ l. The local L2-orthogonal projector πlX : L1(X,R)→ Pl(X,R)
is defined such that, for all v ∈ L1(X,R),∫

X

(πlXv − v)w = 0 ∀w ∈ Pl(X,R). (10)

When applied to vector-valued fields in L1(X,Rd) (resp., tensor-valued fields in L1(X,Rd×d)), the L2-orthogonal
projector mapping on Pl(X,Rd) (resp., Pl(X,Rd×d)) acts component-wise and is denoted in boldface font. Let
T ∈ Th, n ∈ [0, l + 1] and m ∈ [0, n]. The following (n, r,m)-approximation properties of πlT hold: For any
v ∈Wn,r(T,R),

|v − πlT v|Wm,r(T,R) . h
n−m
T |v|Wn,r(T,R). (11a)

The above property will also be used in what follows with r replaced by its conjugate exponent r′. If, additionally,
n ≥ 1, we have the following (n, r′)-trace approximation property:

‖v − πlT v‖Lr′ (∂T,R) . h
n− 1

r′
T |v|Wn,r′ (T,R). (11b)

The hidden constants in (11) are independent of h and T , but possibly depend on d, the mesh regularity
parameter, l, n, and r. The approximation properties (11) are proved for integer n and m in [17, Appendix A.2]
(see also [19, Theorem 1.45]), and can be extended to non-integer values using standard interpolation techniques
(see, e.g., [38, Theorem 5.1]).

At the global level, for a given integer l ≥ 0, we define the broken polynomial space Pl(Th,R) spanned by
functions in L1(Ω,R) whose restriction to each mesh element T ∈ Th lies in Pl(T,R), and we define the global
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L2-orthogonal projector πlh : L1(Ω,R)→ Pl(Th,R) such that, for all v ∈ L1(Ω,R) and all T ∈ Th,

(πlhv)|T := πlT v|T .

Broken polynomial spaces are subspaces of the broken Sobolev spaces

Wn,r(Th,R) :=
{
v ∈ Lr(Ω,R) : v|T ∈W

n,r(T,R) ∀T ∈ Th
}
.

We define the broken gradient operator ∇h : W 1,1(Th,R) → L1(Ω,Rd) such that, for all v ∈ W 1,1(Th,R) and
all T ∈ Th, (∇hv)|T := ∇v |T . We define similarly the broken gradient acting on vector fields along with its

symmetric part ∇s,h, as well as the broken divergence operator ∇h· acting on tensor fields. The global L2-
orthogonal projector πlh mapping vector-valued fields in L1(Ω,Rd) (resp., tensor-valued fields in L1(Ω,Rd×d))
on Pl(Th,Rd) (resp., Pl(Th,Rd×d)) is obtained applying πlh component-wise.

2.3. Discrete spaces and norms

Let an integer k ≥ 1 be fixed. The HHO space of discrete velocity unknowns is

Uk
h :=

{
vh = ((vT )T∈Th , (vF )F∈Fh

) : vT ∈ Pk(T,Rd) ∀T ∈ Th and vF ∈ Pk(F,Rd) ∀F ∈ Fh
}
.

The interpolation operator Ikh : W 1,1(Ω,Rd) → Uk
h maps a function v ∈ W 1,1(Ω,Rd) on the vector of discrete

unknowns Ikhv defined as follows:

Ikhv := ((πkTv|T )T∈Th , (π
k
Fv|F )F∈Fh

).

For all T ∈ Th, we denote by Uk
T and IkT the restrictions of Uk

h and Ikh to T , respectively and, for all vh ∈ U
k
h,

we let vT := (vT , (vF )F∈FT
) ∈ Uk

T denote the vector collecting the discrete unknowns attached to T and its

faces. Furthermore, for all vh ∈ U
k
h, we define the broken polynomial field vh ∈ Pk(Th,Rd) obtained patching

element unknowns, that is,

(vh)|T := vT ∀T ∈ Th. (12)

We define on Uk
h the W 1,r(Ω,Rd)-like strain seminorm ‖·‖r,h such that, for all vh ∈ U

k
h,

‖vh‖r,h :=

(∑
T∈Th

‖vT ‖rr,T

) 1
r

(13a)

with ‖vT ‖r,T :=

(
‖∇svT ‖rLr(T,Rd×d) +

∑
F∈FT

h1−r
F ‖vF − vT ‖rLr(F,Rd)

) 1
r

for all T ∈ Th. (13b)

The following boundedness property for IkT can be proved adapting the arguments of [19, Proposition 6.24] and
requires the star-shaped assumption on the mesh elements: For all T ∈ Th and all v ∈W 1,r(T,Rd),

‖IkTv‖r,T . |v|W 1,r(T,Rd), (14)

where the hidden constant depends only on d, the mesh regularity parameter, r, and k.
The discrete velocity and pressure are sought in the following spaces, which embed, respectively, the homo-

geneous boundary condition for the velocity and the zero-average constraint for the pressure:

Uk
h,0 :=

{
vh = ((vT )T∈Th , (vF )F∈Fh

) ∈ Uk
h : vF = 0 ∀F ∈ Fb

h

}
, P kh := Pk(Th,R) ∩ P.
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By the discrete Korn inequality proved in Lemma 5.2 below, ‖·‖r,h is a norm on Uk
h,0 (the proof is obtained

reasoning as in [19, Corollary 2.16]).

3. HHO scheme

In this section, after introducing the discrete counterparts of the viscous and pressure-velocity coupling terms,
we state the discrete problem along with the main results.

3.1. Viscous term

3.1.1. Local symmetric gradient reconstruction

For all T ∈ Th, we define the local symmetric gradient reconstruction Gk
s,T : Uk

T → Pk(T,Rd×ds ) such that,

for all vT ∈ U
k
T ,∫
T

Gk
s,TvT : τ =

∫
T

∇svT : τ +
∑
F∈FT

∫
F

(vF − vT ) · (τnTF ) ∀τ ∈ Pk(T,Rd×ds ). (15)

This symmetric gradient reconstruction, originally introduced in [13, Section 4.2], is designed so that the fol-
lowing relation holds (see, e.g., [14, Proposition 5] or [19, Section 7.2.5]): For all v ∈W 1,1(T,Rd),

Gk
s,T (IkTv) = πkT (∇sv). (16)

The global symmetric gradient reconstruction Gk
s,h : Uk

h → Pk(Th,Rd×ds ) is obtained patching the local contri-

butions, that is, for all vh ∈ U
k
h, we set

(Gk
s,hvh)|T := Gk

s,TvT ∀T ∈ Th. (17)

3.1.2. Discrete viscous function

The discrete counterpart of the function a defined by (7) is ah : Uk
h×U

k
h → R such that, for all vh,wh ∈ U

k
h,

ah(wh,vh) :=

∫
Ω

σ(·,Gk
s,hwh) : Gk

s,hvh + γsh(wh,vh). (18)

In the above definition, recalling (4), γ is a stabilization parameter such that

γ ∈ [σsm, σhc], (19)

while the stabilization function sh : Uk
h ×U

k
h → R is such that, for all vh,wh ∈ U

k
h,

sh(wh,vh) :=
∑
T∈Th

sT (wT ,vT ), (20)

where the local contributions are assumed to satisfy the following assumption.

Assumption 3.1 (Local stabilization function). For all T ∈ Th, the local stabilization function sT : Uk
T×U

k
T →

R is linear in its second argument and satisfies the following properties, with hidden constants independent of
both h and T :

(1) Stability and boundedness. Recalling the definition (13b) of the local ‖·‖r,T -seminorm, for all vT ∈ U
k
T

it holds:

‖Gk
s,TvT ‖rLr(T,Rd×d) + sT (vT ,vT ) ' ‖vT ‖rr,T . (21)
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(2) Polynomial consistency. For all w ∈ Pk+1(T,Rd) and all vT ∈ U
k
T ,

sT (IkTw,vT ) = 0. (22)

(3) Hölder continuity. For all uT ,vT ,wT ∈ U
k
T , it holds, setting eT := uT −wT ,

|sT (uT ,vT )− sT (wT ,vT )| . (sT (uT ,uT ) + sT (wT ,wT ))
r−r̃
r sT (eT , eT )

r̃−1
r sT (vT ,vT )

1
r . (23)

(4) Strong monotonicity. For all uT ,wT ∈ U
k
T , it holds, setting again eT := uT −wT ,

(sT (uT , eT )− sT (wT , eT )) (sT (uT ,uT ) + sT (wT ,wT ))
2−r̃
r & sT (eT , eT )

r+2−r̃
r . (24)

Remark 3.2 (Comparison with the linear case). If r = 2, sT can be any symmetric bilinear form satisfying
(21)–(22). Indeed, property (23) coincides in this case with the Cauchy–Schwarz inequality, while, by linearity
of sT , property (24) holds with the equal sign.

3.1.3. An example of viscous stabilization function

Taking inspiration from the scalar case (cf., e.g., [17, Eq. (4.11c)]), a local stabilization function that matches

Assumption 3.1 can be obtained setting, for all vT ,wT ∈ U
k
T ,

sT (wT ,vT ) :=

∫
∂T

|∆k
∂TwT |r−2∆k

∂TwT ·∆
k
∂TvT , (25)

where, denoting by Pk(FT ,Rd) the space of vector-valued broken polynomials of total degree ≤ k on FT , the

boundary residual operator ∆k
∂T : Uk

T → Pk(FT ,Rd) is such that, for all vT ∈ U
k
T ,

(∆k
∂TvT )|F := h

− 1
r′

F

(
πkF (rk+1

T vT − vF )− πkT (rk+1
T vT − vT )

)
∀F ∈ FT ,

with velocity reconstruction rk+1
T : Uk

T → Pk+1(T,Rd) such that∫
T

(∇sr
k+1
T vT −Gk

s,TvT ) : ∇sw = 0 ∀w ∈ Pk+1(T,Rd),∫
T

rk+1
T vT =

∫
T

vT , and

∫
T

∇ssr
k+1
T vT =

1

2

∑
F∈FT

∫
F

(vF ⊗ nTF − nTF ⊗ vF ).

Above, ∇ss denotes the skew-symmetric part of the gradient operator ∇ applied to vector fields and ⊗ is the
tensor product such that, for all x = (xi)1≤i≤d and y = (yi)1≤i≤d in Rd, x⊗ y := (xiyj)1≤i,j≤d ∈ Rd×d.

Lemma 3.3 (Stabilization function (25)). The local stabilization function defined by (25) satisfies Assumption
3.1.

Proof. The proof of (21) for r = 2 is given in [13, Eq. (25)]. The result can be generalized to r 6= 2 using the

same arguments of [17, Lemma 5.2]. Property (22) is an immediate consequence of the fact that ∆k
∂T (IkTw) = 0

for any w ∈ Pk+1(T,Rd), which can be proved reasoning as in [19, Proposition 2.6].
Let us prove (23). First, we remark that, since the function α 7→ αr−2 verifies the conditions in (73b) below,

we can apply Theorem A.1 to infer that the function Rd 3 x 7→ |x|r−2x satisfies for all x,y ∈ Rd,∣∣|x|r−2x− |y|r−2y
∣∣ . (|x|r + |y|r

) r−r̃
r |x− y|r̃−1, (26a)(

|x|r−2x− |y|r−2y
)
· (x− y)

(
|x|r + |y|r

) 2−r̃
r & |x− y|r+2−r̃. (26b)
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Recalling (25), we can write

|sT (uT ,vT )− sT (wT ,vT )| ≤
∫
∂T

∣∣∣|∆k
∂TuT |r−2∆k

∂TuT − |∆
k
∂TwT |r−2∆k

∂TwT

∣∣∣ |∆k
∂TvT |

.
∫
∂T

(
|∆k

∂TuT |r + |∆k
∂TwT |r

) r−r̃
r |∆k

∂TeT |r̃−1|∆k
∂TvT |

≤ (sT (uT ,uT ) + sT (wT ,wT ))
r−r̃
r sT (eT , eT )

r̃−1
r sT (vT ,vT )

1
r ,

where we have used (26a) to pass to the second line and the (1; r
r−r̃ ,

r
r̃−1 , r)-Hölder inequality to conclude.

Moving to (24), (26b) and the (1; r+2−r̃
2−r̃ , r+2−r̃

r )-Hölder inequality yield

sT (eT , eT )

=

∫
∂T

|∆k
∂TuT −∆k

∂TwT |r

.
∫
∂T

(
|∆k

∂TuT |r + |∆k
∂TwT |r

) 2−r̃
r+2−r̃

[(
|∆k

∂TuT |r−2∆k
∂TuT − |∆

k
∂TwT |r−2∆k

∂TwT

)
·∆k

∂TeT

] r
r+2−r̃

≤ (sT (uT ,uT ) + sT (wT ,wT ))
2−r̃

r+2−r̃ (sT (uT , eT )− sT (wT , eT ))
r

r+2−r̃ . �

3.2. Pressure-velocity coupling

For all T ∈ Th, we define the local divergence reconstruction Dk
T : Uk

T → Pk(T,R) by setting, for all vT ∈ U
k
T ,

Dk
TvT := tr(Gk

s,TvT ). We have the following characterization of Dk
T : For all vT ∈ U

k
T ,∫

T

Dk
TvT q =

∫
T

(∇·vT ) q +
∑
F∈FT

∫
F

(vF − vT ) · nTF q ∀q ∈ Pk(T,R), (27)

as can be checked writing (15) for τ = qId. Taking the trace of (16), it is inferred that, for all T ∈ Th and

all v ∈ W 1,1(T,Rd), Dk
T (IkTv) = πkT (∇·v). The pressure-velocity coupling is realized by the bilinear form

bh : Uk
h × Pk(Th,R)→ R such that, for all (vh, qh) ∈ Uk

h × Pk(Th,R), setting qT := (qh)|T for all T ∈ Th,

bh(vh, qh) := −
∑
T∈Th

∫
T

Dk
TvT qT . (28)

3.3. Discrete problem and main results

The discrete problem reads: Find (uh, ph) ∈ Uk
h,0 × P kh such that

ah(uh,vh) + bh(vh, ph) =

∫
Ω

f · vh ∀vh ∈ U
k
h,0, (29a)

−bh(uh, qh) = 0 ∀qh ∈ P kh . (29b)

Remark 3.4 (Discrete mass equation). The space of test functions in (29b) can be extended to Pk(Th,R)

since, for all vh ∈ U
k
h,0, the divergence theorem together with the fact that vF = 0 for all F ∈ Fb

h and∑
T∈TF

∫
F
vF · nTF = 0 for all F ∈ F i

h, yield

bh(vh, 1) = −
∑
T∈Th

∑
F∈FT

∫
F

vF · nTF = −
∑
F∈F i

h

∑
T∈TF

∫
F

vF · nTF = 0.
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Remark 3.5 (Efficient implementation). When solving the system of nonlinear algebraic equations correspond-
ing to (29) by, e.g., the Newton algorithm, all element-based velocity unknowns and all but one pressure unknown
per element can be locally eliminated at each iteration by static condensation. As all the computations are local,
this procedure is an embarrassingly parallel task which can fully benefit from multi-thread and multi-processor
architectures. This implementation strategy has been described for the linear Stokes problem in [22, Section
6.2]. After further eliminating the boundary unknowns by strongly enforcing the boundary condition (1c), we

end up solving, at each iteration of the nonlinear solver, a linear system of size dcard(F i
h)
(
k+d−1
d−1

)
+ card(Th).

Concerning the interplay between the static condensation strategy and the performance of p-multilevel linear
solvers, we refer to [11].

In what follows, we state the main results for the HHO scheme (29). The proofs are postponed to Section 6.

Theorem 3.6 (Well-posedness). There exists a unique solution (uh, ph) ∈ Uk
h,0 × P kh to the discrete problem

(29). Additionally, the following a priori bounds hold:

‖uh‖r,h .
(
σ−1

sm‖f‖Lr′ (Ω,Rd)

) 1
r−1

+
(
σ2−r̃

de σ−1
sm‖f‖Lr′ (Ω,Rd)

) 1
r+1−r̃

, (30a)

‖ph‖Lr′ (Ω,R) . σhc

(
σ−1

sm‖f‖Lr′ (Ω,Rd) + σ
|r−2|(r̃−1)
de

(
σ−1

sm‖f‖Lr′ (Ω,Rd)

) r̃−1
r+1−r̃

)
. (30b)

Proof. See Section 6.2. �

Theorem 3.7 (Error estimate). Let (u, p) ∈ U ×P and (uh, ph) ∈ Uk
h,0 ×P kh solve (6) and (29), respectively.

Assume the additional regularity u ∈ W k+2,r(Th,Rd), σ(·,∇su) ∈ W 1,r′(Ω,Rd×ds ) ∩W (k+1)(r̃−1),r′(Th,Rd×ds ),

and p ∈W 1,r′(Ω,R) ∩W (k+1)(r̃−1),r′(Th,R). Then, under Assumptions 1.1 and 3.1,

‖uh − I
k
hu‖r,h . h

(k+1)(r̃−1)
r+1−r̃

(
σ−1

smN 2−r̃
f Nσ,u,p

) 1
r+1−r̃

, (31a)

‖ph − πkhp‖Lr′ (Ω,R) . h
(k+1)(r̃−1)Nσ,u,p + h

(k+1)(r̃−1)2

r+1−r̃ σhcN |r−2|(r̃−1)
f

(
σ−1

smNσ,u,p
) r̃−1

r+1−r̃ , (31b)

where we have set, for the sake of brevity,

Nσ,u,p := σhc

(
σrde + |u|rW 1,r(Ω,Rd)

) r−r̃
r |u|r̃−1

Wk+2,r(Th,Rd)

+ |σ(·,∇su)|W (k+1)(r̃−1),r′ (Th,Rd×d) + |p|W (k+1)(r̃−1),r′ (Th,R),

Nf := σde +
(
σ−1

sm‖f‖Lr′ (Ω,Rd)

) 1
r−1

+
(
σ2−r̃

de σ−1
sm‖f‖Lr′ (Ω,Rd)

) 1
r+1−r̃

.

Proof. See Section 6.3. �

Remark 3.8 (Orders of convergence). From (31), neglecting higher-order terms, we infer asymptotic conver-

gence rates of Okvel := (k+1)(r̃−1)
r+1−r̃ for the velocity and Okpre := (k+1)(r̃−1)2

r+1−r̃ for the pressure, that is,

Okvel =

{
(k + 1)(r − 1) if r < 2,
k+1
r−1 if r ≥ 2,

and Okpre =

{
(k + 1)(r − 1)2 if r < 2,
k+1
r−1 if r ≥ 2.

(32)

Notice that, owing to the presence of higher-order terms in the right-hand sides of (31), higher convergence rates
may be observed before attaining the asymptotic ones; see Section 4. The asymptotic order of convergence for
the velocity coincides with the one proved in [18, Theorem 3.2] for HHO discretizations of scalar Leray–Lions
problems. We refer to [20] for recent improvements on these estimates depending on the degeneracy of the
problem.
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Figure 1. Coarsest Cartesian, distorted triangular, and distorted Cartesian meshes used in
Section 4.

4. Numerical examples

In this section, we evaluate the numerical performance of the HHO method on a complete panel of numerical
test cases. We focus on the (µ, 0, 1, r)-Carreau–Yasuda law (5) (corresponding to the power-law model) with
values of the exponent r ranging from 1.25 to 2.75. Our implementation relies on the SpaFEDTe library (cf.
https://spafedte.github.io).

4.1. Trigonometric solution

We begin by considering a manufactured solution to problem (1) in order to assess the convergence of the
method. We take Ω = (0, 1)2 and exact velocity u and pressure p given by, respectively,

u(x1, x2) =
(
sin
(
π
2x1

)
cos
(
π
2x2

)
,− cos

(
π
2x1

)
sin
(
π
2x2

))
, p(x1, x2) = sin

(
π
2x1

)
sin
(
π
2x2

)
− 4

π2 .

The volumetric load f and the Dirichlet boundary condition are inferred from the exact solution. Considering
µ = 1 and r ∈ {1.5, 1.75, . . . , 2.75}, this solution matches the assumptions required in Theorem 3.7 for k = 1,

except the case r = 1.5 for which σ(·,∇su) /∈W 1,r′(Ω,Rd×ds ). We consider the HHO scheme for k = 1 on three
mesh families, namely Cartesian orthogonal, distorted triangular, and distorted Cartesian; see Figure 1. Overall,
the results are in agreement with the theoretical predictions, and in some cases the expected asymptotic orders
of convergence are exceeded. Specifically, for r 6= 2, the convergence rates computed on the last refinement
surpass in some cases the theoretical ones. As noticed in Remark 3.8, this suggests that the asymptotic order
is still not attained. A similar phenomenon has been observed on certain meshes for the p-Laplace problem;
see [18, Section 3.5.2] and [21, Section 3.7]. In some cases, we observe a better convergence for the velocity on
distorted triangular meshes than on Cartesian meshes. This phenomenon possibly results from the combination
of two factors: on one hand, the improved robustness of HHO methods with respect to elongated elements when
compared to classical discretization methods; on the other hand, the fact that unstructured triangular meshes
have more elements than Cartesian meshes for a given meshsize and lack privileged directions, which reduces
mesh bias. Further investigation is postponed to a future work.

4.2. Lid-driven cavity flow

We next consider the lid-driven cavity flow, a well-known problem in fluid mechanics. The domain is the unit
square Ω = (0, 1)2, and we enforce a unit tangential velocity u = (1, 0) on the top edge (of equation x2 = 1) and
wall boundary conditions on the other edges. This boundary condition is incompatible with the formulation
(6), even generalized to non-homogeneous boundary conditions, since u /∈W 1,r(Ω,Rd). However, this is a very
classical test that demonstrates the quality of the method. We consider a low Reynolds number Re := 2

µ = 1.

For r ∈ {1.25, 2, 2.75}, we solve the discrete problem on Cartesian and distorted triangular meshes (cf. Figure
1) of approximate size 128×128 for k = 1, and 16×16 for k = 5. This choice is meant to compare the low-order
version of the method on a fine mesh with the high-order version on a very coarse one. The corresponding total
number of degrees of freedom is: 130048 for the fine Cartesian mesh with k = 1; 5760 for the coarse Cartesian

https://spafedte.github.io
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Figure 2. Numerical results for the test case of Section 4. The slopes indicate the order
of convergence expected from Theorem 3.7, i.e. O1

vel = 2(r − 1) and O1
pre = 2(r − 1)2 for

r ∈ {1.5, 1.75, 2}.

mesh with k = 5; 298676 for the fine triangular mesh with k = 1; and 14196 for the coarse triangular mesh
with k = 5. In the left column of Figure 4 we display the velocity magnitude, while in the right column we plot
the horizontal component u1 of the velocity along the vertical centreline x1 = 1

2 (resp., vertical component u2

along the horizontal centreline x2 = 1
2 ). The lines corresponding to k = 1 on the fine mesh and to k = 5 on the

coarse mesh are perfectly superimposed, regardless of the mesh family and of the value of r. This shows that,
despite the lack of regularity of the exact solution, high-order versions of the scheme on very coarse meshes
deliver similar results as low-order versions on very fine grids. Furthermore, we observe significant differences in
the behavior of the flow according to r, coherent with the expected physical behavior. In particular, the viscous
effects increase with r, as reflected by the size of the central vortex.

5. Discrete Korn inequality

We prove in this section a discrete counterpart of the following Korn inequality (see [29, Theorem 1]) that
will be needed in the analysis: There is CK > 0 depending only on Ω and r such that for all v ∈ U ,

‖v‖W 1,r(Ω,Rd) ≤ CK‖∇sv‖Lr(Ω,Rd×d). (33)

We start by recalling the following preliminary result concerning the node-averaging interpolator (sometimes
called Oswald interpolator). Let Th be a matching simplicial submesh ofMh in the sense of [19, Definition 1.8].

The node-averaging operator Ikav,h : Pk(Th,Rd)→ Pk(Th,Rd)∩W 1,r(Ω,Rd) is such that, for all vh ∈ Pk(Th,Rd)



14 TITLE WILL BE SET BY THE PUBLISHER

‖u
h
−
I
k h
u
‖ r
,h

10−2 10−1

10−4

10−3

10−2

10−1

1

8/5

1

4/3

1

8/7

10−3 10−2 10−1

10−4

10−3

10−2

10−1

1

8/5

1

4/3

1

8/7

r = 2.25 r = 2.5 r = 2.75

10−2 10−1

10−4

10−3

10−2

10−1

1

8/5

1

4/3

1

8/7

‖p
h
−
π
k h
p
‖ L

r
′ (

Ω
,R

)

10−2 10−1

10−5

10−4

10−3

10−2

10−1

1

8/5

1

4/3

1

8/7

Cartesian

10−3 10−2 10−1

10−5

10−4

10−3

10−2

1

8/5

1

4/3

1

8/7

Distorted triangular

10−2 10−1

10−5

10−4

10−3

10−2

10−1

1

8/5

1

4/3

1

8/7

Distorted Cartesian

Figure 3. Numerical results for the test case of Section 4.1. The slopes indicate the order of
convergence expected from Theorem 3.7, i.e. O1

vel = O1
pre = 2

r−1 for r ∈ {2.25, 2.5, 2.75}.

and all Lagrange node V of Th, denoting by TV the set of simplices sharing V ,

(Ikav,hvh)(V ) :=

{
1

card(TV)

∑
τ∈TV

vh|τ (V ) if V ∈ Ω,

0 if V ∈ ∂Ω.

For all F ∈ F i
h, denote by T1, T2 ∈ Th the elements sharing F , taken in an arbitrary but fixed order. We define

the jump operator such that, for any function v ∈ W 1,1(Th,Rd), [v]F := (v|T1
)|F − (v|T2

)|F . This definition is

extended to boundary faces F ∈ Fb
h by setting [v]F := v|F .

Proposition 5.1 (Boundedness of the node-averaging operator). For all vh ∈ Pk(Th,Rd), it holds

|vh − Ikav,hvh|rW 1,r(Th,Rd) .
∑
F∈Fh

h1−r
F ‖[vh]F ‖rLr(F,Rd). (34)

Proof. Combining [19, Eq. (4.13)] (which corresponds to (34) for r = 2) with the local Lebesgue embeddings
of [19, Lemma 1.25] (see also [17, Lemma 5.1]) gives, for any T ∈ Th,

‖vh − Ikav,hvh‖rLr(T,Rd) .
∑

F∈FV,T

hF ‖[vh]F ‖rLr(F,Rd), (35)
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Figure 4. Numerical results for the test case of Section 4.2. Left: velocity magnitude contours
(15 equispaced values in the range [0, 1]). Computations on a Cartesian mesh of size 128× 128
with k = 5. Right: horizontal component u1 of the velocity along the vertical centreline x1 = 1

2

and vertical component u2 of the velocity along the horizontal centreline x2 = 1
2 .
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where FV,T collects the faces whose closure has non-empty intersection with T . Using the local inverse inequality
of [19, Lemma 1.28] (see also [17, Eq. (A.1)]), we can write

|vh − Ikav,hvh|rW 1,r(Th,Rd) .
∑
T∈Th

h−rT ‖vh − I
k
av,hvh‖rLr(T,Rd)

.
∑
T∈Th

∑
F∈FV,T

h1−r
F ‖[vh]F ‖rLr(F,Rd)

.
∑
F∈Fh

∑
T∈TV,F

h1−r
F ‖[vh]F ‖rLr(F,Rd)

≤ max
F∈Fh

card(TV,F )
∑
F∈Fh

h1−r
F ‖[vh]F ‖rLr(F,Rd),

where we have used the fact that h−rT ≤ h−rF along with inequality (35) to pass to the second line, and we

have exchanged the sums after setting TV,F :=
{
T ∈ Th : F ∩ T 6= ∅

}
for all F ∈ Fh to pass to the third line.

Observing that maxF∈Fh
card(TV,F ) . 1 (since, for any F ∈ Fh, card(TV,F ) is bounded by the left-hand side

of [19, Eq. (4.23)] written for any T ∈ Th to which F belongs), (34) follows. �

The following inequalities between sums of powers will be often used in what follows without necessarily
recalling this fact explicitly each time. Let an integer n ≥ 1 and a real number m ∈ (0,∞) be given. Then, for
all a1, . . . , an ∈ (0,∞), we have

n−(m−1)	
n∑
i=1

ami ≤

(
n∑
i=1

ai

)m
≤ n(m−1)⊕

n∑
i=1

ami . (36)

If m = 1, then (36) holds with the equal sign. If m < 1, [45, Eqs. (5) and (3)] with α = 1 and β = m give
nm−1

∑n
i=1 a

m
i ≤ (

∑n
i=1 ai)

m ≤
∑n
i=1 a

m
i . If, on the other hand, m > 1, [45, Eqs. (3) and (5)] with α = m and

β = 1 give
∑n
i=1 a

m
i ≤ (

∑n
i=1 ai)

m ≤ nm−1
∑n
i=1 a

m
i . Gathering the above cases yields (36).

Lemma 5.2. (Discrete Korn inequality) We have, for all vh ∈ U
k
h,0, recalling the notation (12),

‖vh‖rLr(Ω,Rd) + |vh|rW 1,r(Th,Rd) . ‖vh‖
r
r,h. (37)

Proof. Let vh ∈ U
k
h,0. Using a triangle inequality followed by (36), we can write

|vh|rW 1,r(Th,Rd) . |I
k
av,hvh|rW 1,r(Th,Rd) + |vh − Ikav,hvh|rW 1,r(Th,Rd)

. ‖∇s(I
k
av,hvh)‖rLr(Ω,Rd×d) + |vh − Ikav,hvh|rW 1,r(Th,Rd)

. ‖∇s,hvh‖rLr(Ω,Rd×d) + |vh − Ikav,hvh|rW 1,r(Th,Rd)

. ‖∇s,hvh‖rLr(Ω,Rd×d) +
∑
F∈Fh

h1−r
F ‖[vh]F ‖rLr(F,Rd),

where we have used the continuous Korn inequality (33) to pass to the second line, we have inserted ±∇s,hvh
into the first norm and used a triangle inequality followed by (36) to pass to the third line, and we have invoked
the bound (34) to conclude. Observing that, for any F ∈ Fh, |[vh]F | ≤

∑
T∈TF |vF−vT | by a triangle inequality,

and using (36), we can continue writing

|vh|rW 1,r(Th,Rd) . ‖∇s,hvh‖rLr(Ω,Rd×d) +
∑
F∈Fh

∑
T∈TF

h1−r
F ‖vF − vT ‖rLr(F,Rd) = ‖vh‖rr,h,



TITLE WILL BE SET BY THE PUBLISHER 17

where we have exchanged the sums over faces and elements and recalled definition (13a) to conclude. This
proves the bound for the second term in the left-hand side of (37). Combining this result with the global
discrete Sobolev embeddings of [17, Proposition 5.4] yields the bound for the first term in (37). �

6. Well-posedness and convergence analysis

In this section, after studying the stabilization function sh, we prove the main results stated in Section 3.3.

6.1. Properties of the stabilization function

Lemma 6.1 (Consistency of sT ). For any T ∈ Th and any sT satisfying Assumption 3.1, it holds, for all

w ∈W k+2,r(T,Rd) and all vT ∈ U
k
T ,

|sT (IkTw,vT )| . h(k+1)(r̃−1)
T |w|r−r̃

W 1,r(T,Rd)
|w|r̃−1

Wk+2,r(T,Rd)
‖vT ‖r,T , (38)

where the hidden constant is independent of h, T , and w.

Proof. The proof adapts the arguments of [19, Propositon 2.14]. Using the polynomial consistency property
(22), we can write

|sT (IkTw,vT )| = |sT (IkTw,vT )− sT (IkT (πk+1
T w),vT )|

. sT (IkTw, I
k
Tw)

r−r̃
r sT (IkT (w − πk+1

T w), IkT (w − πk+1
T w))

r̃−1
r sT (vT ,vT )

1
r

. ‖IkTw‖r−r̃r,T ‖I
k
T (w − πk+1

T w)‖r̃−1
r,T ‖vT ‖r,T

. |w|r−r̃
W 1,r(T,Rd)

|w − πk+1
T w|r̃−1

W 1,r(T,Rd)
‖vT ‖r,T

. h(k+1)(r̃−1)
T |w|r−r̃

W 1,r(T,Rd)
|w|r̃−1

Wk+2,r(T,Rd)
‖vT ‖r,T ,

where we have used the Hölder continuity (23) and observed that, by the polynomial consistency property (22),

sT (IkT (πk+1
T w), IkT (πk+1

T w)) = 0 to pass to the second line, we have used the boundedness property (21) to

pass to the third line, the boundedness (14) of IkT to pass to the fourth line, and the (k+ 2, r, 1)-approximation

property (11a) of πk+1
T to conclude. �

In what follows, we will need generalized versions of the continuous and discrete Hölder inequalities, recalled
hereafter for the sake of convenience. Let X ⊂ Rd be measurable, n ∈ N∗, and let t, p1, . . . , pn ∈ (0,∞] be such
that

∑n
i=1

1
pi

= 1
t . The continuous (t; p1, . . . , pn)-Hölder inequality reads: For any (f1, . . . , fn) ∈×ni=1 L

pi(X,R),∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
Lt(X,R)

≤
n∏
i=1

‖fi‖Lpi (X,R). (39)

Let m ∈ N∗. For all f : {1, . . . ,m} → R and all q ∈ [1,∞), setting ‖f‖q := (
∑m
i=1 |f(i)|q)

1
q , and ‖f‖∞ :=

max1≤i≤m |f(i)|, the discrete (t; p1, . . . , pn)-Hölder inequality reads: For any f1, . . . , fn : {1, . . . ,m} → R,∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
t

≤
n∏
i=1

‖fi‖pi . (40)

Proposition 6.2 (Properties of sh). Let sh be given by (20) with, for all T ∈ Th, sT satisfying Assumption 3.1.

Then it holds, for all vh ∈ U
k
h,

‖Gk
s,hvh‖rLr(Ω,Rd×d) + sh(vh,vh) ' ‖vh‖rr,h. (41a)
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Furthermore, for all uh,vh,wh ∈ U
k
h it holds, setting eh := uh −wh,

|sh(uh,vh)− sh(wh,vh)| . (sh(uh,uh) + sh(wh,wh))
r−r̃
r sh(eh, eh)

r̃−1
r sh(vh,vh)

1
r , (41b)

(sh(uh, eh)− sh(wh, eh)) (sh(uh,uh) + sh(wh,wh))
2−r̃
r & sh(eh, eh)

r+2−r̃
r . (41c)

Finally, for any w ∈ U ∩W k+2,r(Th,Rd), it holds

sup
vh∈Uk

h,0,‖vh‖r,h=1

sh(Ikhw,vh) . h(k+1)(r̃−1)|w|r−r̃
W 1,r(Ω,Rd)

|w|r̃−1
Wk+2,r(Th,Rd)

. (42)

Above, the hidden constants are independent of h and of the arguments of sh.

Proof. For the sake of conciseness, we only sketch the proof and leave the details to the reader. Summing (21)
over T ∈ Th immediately yields (41a). The Hölder continuity property (41b) follows applying to the quantity
in the left-hand side triangle inequalities, using (23), and concluding with a discrete (1; r

r−r̃ ,
r
r̃−1 , r)-Hölder

inequality. Moving to (41c), starting from |sh(eh, eh)|, we use (24) and apply a discrete (1; r+2−r̃
2−r̃ , r+2−r̃

r )-

Hölder inequality to conclude. Finally, to prove (42) we start from sh(Ikhw,vh), expand this quantity according
to (20), use, for all T ∈ Th, the local consistency property (38) together with hT ≤ h, invoke the discrete
(1; r

r−r̃ ,
r
r̃−1 , r)-Hölder inequality, and pass to the supremum to conclude. �

6.2. Well-posedness

In this section, after proving Hölder continuity and strong monotonicity properties for the discrete viscous
function ah and the inf-sup stability of the pressure-velocity coupling bilinear form bh, we prove Theorem 3.6.

6.2.1. Hölder continuity and strong monotonicity of the viscous function

Lemma 6.3 (Hölder continuity and strong monotonicity of ah). For all uh,vh,wh ∈ U
k
h, setting eh := uh−wh,

it holds

|ah(uh,vh)− ah(wh,vh)| . σhc

(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) r−r̃
r ‖eh‖r̃−1

r,h ‖vh‖r,h, (43a)

(ah(uh, eh)− ah(wh, eh))
(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) 2−r̃
r & σsm‖eh‖r+2−r̃

r,h . (43b)

Proof. (i) Hölder continuity. Using a Cauchy–Schwarz inequality followed by the Hölder continuity (3c) of σ,
we can write ∣∣∣∣∫

Ω

(
σ(·,Gk

s,huh)− σ(·,Gk
s,hwh)

)
: Gk

s,hvh

∣∣∣∣
≤ σhc

∫
Ω

(
σrde + |Gk

s,huh|rd×d + |Gk
s,hwh|rd×d

) r−r̃
r |Gk

s,heh|r̃−1
d×d|G

k
s,hvh|d×d

. σhc

(
|Ω|dσrde + ‖Gk

s,huh‖rLr(Ω,Rd×d) + ‖Gk
s,hwh‖rLr(Ω,Rd×d)

) r−r̃
r

× ‖Gk
s,heh‖r̃−1

Lr(Ω,Rd×d)
‖Gk

s,hvh‖Lr(Ω,Rd×d)

. σhc

(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) r−r̃
r ‖eh‖r̃−1

r,h ‖vh‖r,h,

(44)

where we have used the (1; r
r−r̃ ,

r
r̃−1 , r)-Hölder inequality (39) in the second bound and the global seminorm

equivalence (41a) together with the fact that |Ω|d . 1 (since Ω is bounded) to conclude. For the stabilization
term, combining the Hölder continuity (41b) of sh and the seminorm equivalence (41a) readily gives

|sh(uh,vh)− sh(wh,vh)| .
(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) r−r̃
r ‖eh‖r̃−1

r,h ‖vh‖r,h, (45)
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where we have additionally noticed that σrde ≥ 0 to add this term to the quantity inside parentheses. Using the
definition (18) of ah, a triangle inequality followed by (44) and (45), and recalling that γ ≤ σhc (cf. (19)), (43a)
follows.

(ii) Strong monotonicity. Using the strong monotonicity (3d) of σ and the (1; r+2−r̃
2−r̃ , r+2−r̃

r )-Hölder inequality

(39), we get

σ
r

r+2−r̃
sm ‖Gk

s,heh‖rLr(Ω,Rd×d)

≤
∫

Ω

(
σrde + |Gk

s,huh|rd×d + |Gk
s,hwh|rd×d

) 2−r̃
r+2−r̃

((
σ(·,Gk

s,huh)− σ(·,Gk
s,hwh)

)
: Gk

s,heh

) r
r+2−r̃

.
(
σrde + ‖Gk

s,huh‖rLr(Ω,Rd×d) + ‖Gk
s,hwh‖rLr(Ω,Rd×d)

) 2−r̃
r+2−r̃

×
(∫

Ω

(
σ(·,Gk

s,huh)− σ(·,Gk
s,hwh)

)
: Gk

s,heh

) r
r+2−r̃

.
(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) 2−r̃
r+2−r̃

(∫
Ω

(
σ(·,Gk

s,huh)− σ(·,Gk
s,hwh)

)
: Gk

s,heh

) r
r+2−r̃

,

(46)

where the conclusion follows from the global seminorm equivalence (41a). Additionally, using the strong mono-
tonicity (41c) of sh together with the fact that σsm ≤ γ (cf. (19)) and invoking again the seminorm equivalence
(41a), we readily obtain

σ
r

r+2−r̃
sm sh(eh, eh) .

(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) 2−r̃
r+2−r̃ (γsh(uh, eh)− γsh(wh, eh))

r
r+2−r̃ . (47)

Finally, combining again the norm equivalence (41a) with (46) and (47), and using (36) yields

σ
r

r+2−r̃
sm ‖eh‖rr,h .

(
σrde + ‖uh‖rr,h + ‖wh‖rr,h

) 2−r̃
r+2−r̃ (ah(uh, eh)− ah(wh, eh))

r
r+2−r̃ .

Raising this inequality to the power r−2−r̃
r yields (43b). �

6.2.2. Stability of the pressure-velocity coupling

Lemma 6.4 (Inf-sup stability of bh). It holds, for all qh ∈ P kh ,

‖qh‖Lr′ (Ω,R) . sup
vh∈Uk

h,0,‖vh‖r,h=1

bh(vh, qh), (48)

with hidden constant depending only on d, k, r, Ω, and the mesh regularity parameter.

Proof. The proof follows the classical Fortin argument (cf., e.g., [9, Section 8.4]), adapted here to the non-
Hilbertian setting.

(i) Fortin operator. We need to prove that the following properties hold for any v ∈W 1,r(Ω,Rd):

‖Ikhv‖r,h . |v|W 1,r(Ω,Rd), (49a)

bh(Ikhv, qh) = b(v, qh) ∀qh ∈ Pk(Th,R). (49b)

Property (49a) is obtained by raising both sides of (14) to the power r, summing over T ∈ Th, then taking the
rth root of the resulting inequality. The proof of (49b) is given, e.g., in [19, Lemma 8.12].

(ii) Inf-sup condition on bh. Let qh ∈ P kh and set ch :=
∫

Ω
|qh|r

′−2qh. Using the triangle and Hölder inequalities,
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we get

‖|qh|r
′−2qh − ch‖Lr(Ω,R) ≤ ‖qh‖r

′−1
Lr′ (Ω,R)

+ |ch||Ω|
1
r

d ≤ (1 + |Ω|d) ‖qh‖r
′−1
Lr′ (Ω,R)

. ‖qh‖r
′−1
Lr′ (Ω,R)

, (50)

where we have used the fact that |ch| ≤ ‖qh‖r
′−1
Lr′ (Ω,R)

|Ω|
1
r′
d along with 1

r + 1
r′ = 1 in the second bound and the

fact that |Ω|d . 1 to conclude. Thus, using the surjectivity of the continuous divergence operator ∇· : U →
Lr0(Ω,R) :=

{
q ∈ Lr(Ω,R) :

∫
Ω
q = 0

}
, (c.f. [27] and also [10, Theorem 1]), we infer that there exists vqh ∈ U

such that
−∇·vqh = |qh|r

′−2qh − ch and |vqh |W 1,r(Ω,Rd) . ‖|qh|r
′−2qh − ch‖Lr(Ω,R). (51)

Denote by $ the supremum in (48). Using the fact that qh has zero mean value over Ω, the equality in (51)
together with the definition (7) of b, and the second Fortin property (49b), we have

‖qh‖r
′

Lr′ (Ω,R)
=

∫
Ω

(
|qh|r

′−2qh − ch
)
qh = b(vqh , qh) = bh(Ikhvqh , qh) ≤ $‖Ikhvqh‖r,h . $‖qh‖r

′−1
Lr′ (Ω,R)

,

where, to conclude, we have used (49a) followed by (51) and (50). Simplifying yields (48). �

6.2.3. Proof of Theorem 3.6

Proof of Theorem 3.6. (i) Existence. Denote by P k,∗h the dual space of P kh and let Bh : Uk
h,0 → P k,∗h be such

that, for all vh ∈ U
k
h,0,

〈Bhvh, qh〉 := −bh(vh, qh) ∀qh ∈ P kh .
Here and in what follows, 〈·, ·〉 denotes the appropriate duality pairing as inferred from its arguments. Define

the following subspace of Uk
h,0 spanned by vectors of discrete unknowns with zero discrete divergence:

W k
h := Ker(Bh) =

{
vh ∈ U

k
h,0 : bh(vh, qh) = 0 ∀qh ∈ P kh

}
, (52)

and consider the following problem: Find uh ∈W
k
h such that

ah(uh,vh) =

∫
Ω

f · vh ∀vh ∈W
k
h. (53)

Existence of a solution to this problem for a fixed h can be proved adapting the arguments of [17, Theorem 4.5].

Specifically, equip W k
h with an inner product (·, ·)W ,h (which need not be further specified), denote by ‖·‖W ,h

the induced norm, and let Φh : W k
h →W k

h be such that, for all wh ∈W
k
h, (Φh(wh),vh)W ,h = ah(wh,vh) for

all vh ∈W
k
h. The strong monotonicity (43b) of ah yields, for any vh ∈W

k
h such that ‖vh‖r,h ≥ σde,

(Φh(vh),vh)W ,h ≥ σsm(σrde + ‖vh‖rr,h)
r̃−2
r ‖vh‖r+2−r̃

r,h & σsm‖vh‖rr,h ≥ Crσsm‖vh‖rW ,h,

where C denotes the constant (possibly depending on h) in the equivalence of the norms ‖·‖r,h and ‖·‖W ,h

(which holds since W k
h is finite-dimensional). This shows that Φh is coercive hence, by [16, Theorem 3.3],

surjective. Let now wh ∈W
k
h be such that (wh,vh)W ,h =

∫
Ω
f ·vh for all vh ∈W

k
h. By the surjectivity of Φh,

there exists uh ∈W
k
h such that Φh(uh) = wh which, by definition of wh and Φh, is a solution to the discrete

problem (53).

The proof of existence now continues as in the linear case; see, e.g., [9, Theorem 4.2.1]. Denote by Uk,∗
h,0 the

dual space of Uk
h,0 and consider the linear mapping `h ∈ Uk,∗

h,0 such that, for all vh ∈ U
k
h,0,

〈`h,vh〉 :=

∫
Ω

f · vh − ah(uh,vh).
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Thanks to (53), `h vanishes identically for every vh ∈W
k
h, that is to say, `h lies in the polar space of W k

h which,

denoting by B∗h : P kh → Uk,∗
h,0 the adjoint operator of Bh, coincides in our case with Im(B∗h) (see, e.g., [9, Theorem

4.14]). Hence, `h ∈ Im(B∗h), and there exists therefore a ph ∈ P kh such that B∗hph = `h. This means that, for all

vh ∈ U
k
h,0,

bh(vh, ph) = 〈B∗hph,vh〉 = 〈`h,vh〉 =

∫
Ω

f · vh − ah(uh,vh),

i.e., the (uh, ph) satisfies the discrete momentum equation (29a). On the other hand, since uh ∈W
k
h, we also

have, by the definition (52) of W k
h, bh(uh, qh) = 0 for all qh ∈ P kh , which shows that the discrete mass equation

(29b) is also verified. In conclusion, (uh, ph) ∈ Uk
h,0 × P kh solves (29).

(ii) Uniqueness. We start by proving uniqueness for the velocity. Let (uh, ph), (u′h, p
′
h) ∈ Uk

h,0 × P kh be two
solutions of (29). Making vh = uh − u′h in (29a) written first for (uh, ph) then for (u′h, p

′
h), then taking the

difference and observing that bh(uh − u′h, ph) = bh(uh − u′h, p′h) = 0 by (29b), we infer that

ah(uh,uh − u′h)− ah(u′h,uh − u′h) = 0.

Thus, the strong monotonicity (43b) of ah yields ‖uh − u′h‖r,h = 0, which implies uh = u′h since ‖·‖r,h is a

norm on Uk
h,0. Moreover, using the inf-sup stability (48) of bh and (29a) written first for uh then for u′h, we

get
‖ph − p′h‖Lr′ (Ω,R) . sup

vh∈Uk
h,0,‖vh‖r,h=1

bh(vh, ph − p′h)

= sup
vh∈Uk

h,0,‖vh‖r,h=1

(ah(u′h,vh)− ah(uh,vh)) = 0,

hence ph = p′h.

(iii) A priori estimates. Using the strong monotonicity (43b) of ah (with wh = 0), equation (29a) together with
(29b), and the Hölder inequality together with the discrete Korn inequality (37), we obtain

σsm

(
σrde + ‖uh‖rr,h

) r̃−2
r ‖uh‖r+2−r̃

r,h . ah(uh,uh) =

∫
Ω

f · uh . ‖f‖Lr′ (Ω,Rd)‖uh‖r,h. (54)

We then conclude as in the continuous case to infer (30a) (see Remark 1.7). To prove the bound (30b) on the
pressure, we use the inf-sup stability (48) of bh to write

‖ph‖Lr′ (Ω,R) . sup
vh∈Uk

h,0,‖vh‖r,h=1

bh(vh, ph)

= sup
vh∈Uk

h,0,‖vh‖r,h=1

(∫
Ω

f · vh − ah(uh,vh)

)
. ‖f‖Lr′ (Ω,Rd) + σhc(σrde + ‖uh‖rr,h)

r−r̃
r ‖uh‖r̃−1

r,h

. σhc

(
σ−1

sm‖f‖Lr′ (Ω,Rd) + σ
|r−2|(r̃−1)
de

(
σ−1

sm‖f‖Lr′ (Ω,Rd)

) r̃−1
r+1−r̃

)
,

where we have used the discrete momentum equation (29a) to pass to the second line, the Hölder and discrete
Korn (37) inequalities together with the Hölder continuity (43a) of ah to pass to the third line, and the a priori
bound (30a) on the velocity together with σhc

σsm
≥ 1 (see (4)) to conclude. �

6.3. Error estimate

In this section, after studying the consistency of the viscous and pressure-velocity coupling terms, we prove
Theorem 3.7.
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6.3.1. Consistency of the viscous function

Lemma 6.5 (Consistency of ah). Let w ∈ U ∩W k+2,r(Th,Rd) be such that σ(·,∇sw) ∈ W 1,r′(Ω,Rd×ds ) ∩
W (k+1)(r̃−1),r′(Th,Rd×ds ). Define the viscous consistency error linear form Ea,h(w; ·) : Uk

h → R such that, for

all vh ∈ U
k
h,

Ea,h(w;vh) :=

∫
Ω

(∇·σ(·,∇sw)) · vh + ah(Ikhw,vh). (55)

Then, under Assumptions 1.1 and 3.1, we have

sup
vh∈Uk

h,0,‖vh‖r,h=1

Ea,h(w;vh) . h(k+1)(r̃−1)

[
σhc

(
σrde + |w|rW 1,r(Ω,Rd)

) r−r̃
r |w|r̃−1

Wk+2,r(Th,Rd)

+ |σ(·,∇sw)|W (k+1)(r̃−1),r′ (Th,Rd×d)

]
. (56)

Proof. Let ŵh := Ikhw and vh ∈ U
k
h,0. Expanding ah according to its definition (18) in the expression (55) of

Ea,h, inserting ±
(∫

Ω
σ(·,∇sw) : Gk

s,hvh +
∫

Ω
πkhσ(·,∇sw) : Gk

s,hvh

)
, and rearranging, we obtain

Ea,h(w;vh) =∫
Ω

(∇·σ(·,∇sw)) · vh+

∫
Ω

πkhσ(·,∇sw) : Gk
s,hvh︸ ︷︷ ︸

T1

+
(((

((((
(((

((((
((((∫

Ω

(
σ(·,∇sw)− πkhσ(·,∇sw)

)
: Gk

s,hvh

+

∫
Ω

(
σ(·,Gk

s,hŵh)− σ(·,∇sw)
)

: Gk
s,hvh︸ ︷︷ ︸

T2

+ γsh(ŵh,vh)︸ ︷︷ ︸
T3

, (57)

where have used the definition (10) of πkh together with the fact that Gk
s,hvh ∈ Pk(Th,Rd×ds ) in the cancellation.

We proceed to estimate the terms in the right-hand side. For the first term, we start by noticing that

∑
T∈Th

∑
F∈FT

∫
F

vF · (σ(·,∇sw)nTF ) = 0 (58)

as a consequence of the continuity of the normal trace of σ(·,∇sw) together with the single-valuedness of vF
across each interface F ∈ F i

h and of the fact that vF = 0 for every boundary face F ∈ Fb
h . Using an element

by element integration by parts on the first term of T1 along with the definitions (17) of Gk
s,h and (15) of Gk

s,T ,
we can write

T1 =

(((
((((

(((
((((

((((∫
Ω

(
πkhσ(·,∇sw)− σ(·,∇sw)

)
: ∇s,hvh

+
∑
T∈Th

∑
F∈FT

(∫
F

(vF − vT ) · (πkTσ(·,∇sw))nTF +

∫
F

vT · (σ(·,∇sw)nTF )

)
=
∑
T∈Th

∑
F∈FT

∫
F

(vF − vT ) ·
(
πkTσ(·,∇sw)− σ(·,∇sw)

)
nTF ,

where we have used the definition (10) of πkh together with the fact that ∇s,hvh ∈ Pk−1(Th,Rd×ds ) ⊂ Pk(Th,Rd×ds )
to cancel the term in the first line, and we have inserted (58) and rearranged to conclude. Therefore, applying
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the Hölder inequality together with the bound hF ≤ hT , we infer

|T1| ≤

(∑
T∈Th

hT ‖σ(·,∇sw)− πkTσ(·,∇sw)‖r
′

Lr′ (∂T,Rd×d)

) 1
r′
(∑
T∈Th

∑
F∈FT

h1−r
F ‖vF − vT ‖rLr(F,Rd)

) 1
r

. h(k+1)(r̃−1)|σ(·,∇sw)|W (k+1)(r̃−1),r′ (Th,Rd×d)‖vh‖r,h,

(59)

where the conclusion follows using the ((k+1)(r̃−1), r′)-trace approximation properties (11b) of πkT along with
hT ≤ h for the first factor and the definition (13) of the ‖·‖r,h-norm for the second.

For the second term, using the Hölder inequality and again (41a), we get

|T2| ≤ ‖σ(·,Gk
s,hŵh)− σ(·,∇sw)‖Lr′ (Ω,Rd×d)‖vh‖r,h. (60)

We estimate the first factor as follows:

‖σ(·,Gk
s,hŵh)− σ(·,∇sw)‖Lr′ (Ω,Rd×d)

≤ σhc

∥∥∥∥(σrde + |Gk
s,hŵh|rd×d + |∇sw|rd×d

) r−r̃
r |Gk

s,hŵh −∇sw|r̃−1
d×d

∥∥∥∥
Lr′ (Ω,R)

. σhc

(
σrde + ‖Gk

s,hŵh‖rLr(Ω,Rd×d) + ‖∇sw‖rLr(Ω,Rd×d)

) r−r̃
r ‖Gk

s,hŵh −∇sw‖r̃−1
Lr(Ω,Rd×d)

. σhc

(
σrde + ‖ŵh‖rr,h + |w|rW 1,r(Ω,Rd)

) r−r̃
r ‖πkh(∇sw)−∇sw‖r̃−1

Lr(Ω,Rd×d)

. h(k+1)(r̃−1)σhc

(
σrde + |w|rW 1,r(Ω,Rd)

) r−r̃
r |w|r̃−1

Wk+2,r(Th,Rd)
,

where we have used the Hölder continuity (3c) of σ in the first bound, the (r′; r
r−r̃ ,

r
r̃−1 )-Hölder inequality (39)

in the second, the boundedness of Ω along with (41a) and the commutation property (16) of Gk
s,h in the third,

and we have concluded invoking the (k + 1, r, 0)-approximation property (11a) of πkT . Plugging this estimate
into (60), we get

|T2| . h(k+1)(r̃−1)σhc

(
σrde + |w|rW 1,r(Ω,Rd)

) r−r̃
r |w|r̃−1

Wk+2,r(Th,Rd)
‖vh‖r,h. (61)

Finally, using the fact that γ ≤ σhc together with the consistency (42) of sh and the norm equivalence (41a),
we obtain for the third term

|T3| . h(k+1)(r̃−1)σhc|w|r−r̃W 1,r(Ω,Rd)
|w|r̃−1

Wk+2,r(Th,Rd)
‖vh‖r,h. (62)

Plug the bounds (59), (61), and (62) into (57) and pass to the supremum to conclude. �

6.3.2. Consistency of the pressure-velocity coupling bilinear form

Lemma 6.6 (Consistency of bh). Let q ∈ W 1,r′(Ω,R) ∩W (k+1)(r̃−1),r′(Th,R). Let Eb,h(q; ·) : Uk
h → R be the

pressure consistency error linear form such that, for all vh ∈ U
k
h,

Eb,h(q;vh) :=

∫
Ω

∇q · vh − bh(vh, π
k
hq). (63)

Then, we have that
sup

vh∈Uk
h,0,‖vh‖r,h=1

Eb,h(q;vh) . h(k+1)(r̃−1)|q|W (k+1)(r̃−1),r′ (Th,R). (64)
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Proof. Let vh ∈ U
k
h,0. Integrating by parts element by element, we can reformulate the first term in the

right-hand side of (63) as follows:∫
Ω

∇q · vh = −
∑
T∈Th

(∫
T

q(∇·vT ) +
∑
F∈FT

∫
F

q(vF − vT ) · nTF

)
, (65)

where the introduction of vF in the boundary term is justified by the fact that the jumps of q vanish across
interfaces by the assumed regularity and that vF = 0 on every boundary face F ∈ Fb

h . On the other hand,
expanding, for each T ∈ Th, Dk

T according to its definition (27), we get

− bh(vh, π
k
hq) =

∑
T∈Th

(∫
T

πkT q (∇·vT ) +
∑
F∈FT

∫
F

πkT q (vF − vT ) · nTF

)
. (66)

Summing (65) and (66) and observing that the first terms in parentheses cancel out by the definition (10) of
πkT since ∇·vT ∈ Pk−1(T,R) ⊂ Pk(T,R) for all T ∈ Th, we can write

Eb,h(q;vh) =
∑
T∈Th

(
���

���
���

∫
T

(πkT q − q)(∇·vT ) +
∑
F∈FT

∫
F

(πkT q − q)(vF − vT ) · nTF

)

≤

(∑
T∈Th

hT ‖πkT q − q‖r
′

Lr′ (∂T,R)

) 1
r′
(∑
T∈Th

∑
F∈FT

h1−r
F ‖vF − vT ‖rLr(F,Rd)

) 1
r

. h(k+1)(r̃−1)|q|W (k+1)(r̃−1),r′ (Th,R)‖vh‖r,h,

where we have used the Hölder inequality along with hF ≥ hT whenever F ∈ FT in the second line and the
((k+1)(r̃−1), r′)-trace approximation property (11b) of πkT together with the bound hF ≤ h and the definition
(13) of the ‖·‖r,h-norm to conclude. Passing to the supremum yields (64). �

6.3.3. Proof of Theorem 3.7

Proof of Theorem 3.7. Let (eh, εh) := (uh− ûh, ph− p̂h) ∈ Uk
h,0×P kh where ûh := Ikhu ∈ U

k
h,0 and p̂h := πkhp ∈

P kh .

Step 1. Consistency error. Let Eh : Uk
h,0 → R be the consistency error linear form such that, for all vh ∈ U

k
h,0,

Eh(vh) :=

∫
Ω

f · vh − ah(ûh,vh)− bh(vh, p̂h). (67)

Using in the above expression the fact that f = −∇·σ(·,∇su) +∇p almost everywhere in Ω to write Eh(vh) =
Ea,h(u;vh) + Eb,h(p;vh), and invoking the consistency properties (56) of ah and (64) of bh, we obtain

$ := sup
vh∈Uk

h,0,‖vh‖r,h=1

Eh(vh) . h(k+1)(r̃−1)Nσ,u,p. (68)

Step 2. Error estimate for the velocity. Using the strong monotonicity (43b) of ah, we get

‖eh‖r+2−r̃
r,h . σ−1

sm

(
σrde + ‖uh‖rr,h + ‖ûh‖rr,h

) 2−r̃
r (ah(uh, eh)− ah(ûh, eh))

. σ−1
smN 2−r̃

f (ah(uh, eh)− ah(ûh, eh)) ,
(69)

where we have used the a priori bound (30a) on the discrete solution along with the boundedness (49a) of the
global interpolator and the a priori bound (8) on the continuous solution to conclude. Using then the discrete
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mass equation (29b) along with (49b) (written for v = u) and the continuous mass equation (6b) to write

bh(Ikhu, qh) = b(u, qh) = 0, we get bh(eh, qh) = 0 for all qh ∈ P kh . Hence, combining this result with (67) and
the discrete momentum equation (29a) (with vh = eh), we obtain

ah(uh, eh)− ah(ûh, eh) =

∫
Ω

f · eh − ah(ûh, eh)−���
��bh(eh, ph) = Eh(eh). (70)

Plugging (70) into (69), we get
‖eh‖r+2−r̃

r,h ≤ σ−1
smN 2−r̃

f $‖eh‖r,h.
Simplifying, using (68), and taking the (r + 1− r̃)th root of the resulting inequality yields (31a).

Step 3. Error estimate for the pressure. Using the Hölder continuity (43a) of ah, we have, for all vh ∈ U
k
h,0,

|ah(ûh,vh)− ah(uh,vh)| . σhc

(
σrde + ‖ûh‖rr,h + ‖uh‖rr,h

) r−r̃
r ‖eh‖r̃−1

r,h ‖vh‖r,h
. σhcN r−r̃

f ‖eh‖r̃−1
r,h ‖vh‖r,h,

(71)

where the first factor is estimated as in (69). Thus, using the inf-sup condition (48), we can write

‖εh‖Lr′ (Ω,R) . sup
vh∈Uk

h,0,‖vh‖r,h=1

bh(vh, εh)

= sup
vh∈Uk

h,0,‖vh‖r,h=1

(Eh(vh) + ah(ûh,vh)− ah(uh,vh))

. $ + σhcN r−r̃
f ‖eh‖r̃−1

r,h

. h(k+1)(r̃−1)Nσ,u,p + h(k+1)(r̃−1)2

σhcN |r−2|(r̃−1)
f

(
σ−1

smNσ,u,p
) r̃−1

r+1−r̃ ,

(72)

where we have used the definition (67) of the consistency error together with equation (29a) to pass to the
second line, (71) to pass to the third line (recall that $ denotes here the supremum in the left-hand side of (68)),
and the bounds (68) and (31a) (proved in Step 2) to conclude. �

Appendix A. Power-framed functions

In the following theorem, we introduce the notion of power-framed function and discuss sufficient conditions
for this property to hold.

Theorem A.1 (Power-framed function). Let U be a measurable subset of Rn with n ≥ 1, (W, (·, ·)W ) an inner
product space, and σ : U ×W →W . Assume that there exists a Carathéodory function ς : U × [0,∞)→ R such
that, for all τ ∈W and almost every x ∈ U ,

σ(x, τ ) = ς(x, ‖τ‖W )τ , (73a)

where ‖·‖W is the norm induced by (·, ·)W . Additionally assume that, for almost every x ∈ U , ς(x, ·) is
differentiable on (0,∞) and there exist ςde ∈ [0,∞) and ςsm, ςhc ∈ (0,∞) independent of x such that, for all
α ∈ (0,∞),

ςsm(ςrde + αr)
r−2
r ≤ ∂(ας(x, α))

∂α
≤ ςhc(ςrde + αr)

r−2
r . (73b)

Then, σ is an r-power-framed function, i.e., for all (τ ,η) ∈ W 2 with τ 6= η and almost every x ∈ U , the
function σ verifies the Hölder continuity property

‖σ(x, τ )− σ(x,η)‖W ≤ σhc (σrde + ‖τ‖rW + ‖η‖rW )
r−2
r ‖τ − η‖W , (74a)
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and the strong monotonicity property

(σ(x, τ )− σ(x,η), τ − η)W ≥ σsm (σrde + ‖τ‖rW + ‖η‖rW )
r−2
r ‖τ − η‖2W , (74b)

with σde := ςde, σhc := 22−r̃+r−1d2−r̃e(r̃− 1)−1ςhc, and σsm := 2r̃−r−dr
−1(r−r̃)e(r+ 1− r̃)−1ςsm, where r̃ is given

by (2) and d·e is the ceiling function.

Remark A.2 (Notation). The boldface notation for the elements of W is reminiscent of the fact that Theorem
A.1 is used with W = Rd×ds in Corollary A.3 to characterize the Carreau-Yasuda law as an r-power-framed
function and in Lemma 3.3 with W = Rd to study the local stabilization function sT .

Proof of Theorem A.1. Let x ∈ U be such that (73) holds, and τ ,η ∈ W . By symmetry of inequalities (74)
and the fact that σ is continuous, we can assume, without loss of generality, that ‖τ‖W > ‖η‖W > 0.

(i) Strong monotonicity. Let β ∈ (0,∞) and let g : [β,∞)→ R be such that, for all α ∈ [β,∞),

g(α) := ας(x, α)− βς(x, β)− Csm(ςrde + αr + βr)
r−2
r (α− β), with Csm := 2r̃−r

r+1−r̃ ςsm.

Differentiating g and using the first inequality in (73b), we obtain, for all α ∈ [β,∞),

∂

∂α
g(α) ≥ ςsm(ςrde + αr)

r−2
r − Csm

(
(r − 2)(ςrde + αr + βr)−

2
r (α− β)αr−1 + (ςrde + αr + βr)

r−2
r

)
≥ ςsm(ςrde + αr)

r−2
r − (r + 1− r̃)Csm(ςrde + αr + βr)

r−2
r

≥ ςsm2r̃−r(ςrde + αr + βr)
r−2
r − (r + 1− r̃)Csm(ςrde + αr + βr)

r−2
r = 0,

where, to pass to the second line, we have removed negative contributions if r < 2 and used the fact that
(α − β)αr−1 ≤ ςrde + αr + βr if r ≥ 2, to pass to the third line we have used the fact that t 7→ tr−2 is non-
increasing if r < 2, and the fact that β ≤ α otherwise, while the conclusion follows from the definition of Csm.
This shows that g is non-decreasing. Hence, for all α ∈ [β,∞), g(α) ≥ g(β) = 0, i.e.

ας(x, α)− βς(x, β) ≥ Csm(ςrde + αr + βr)
r−2
r (α− β). (75)

Moreover, for all α, β ∈ (0,∞), using (75) (with β = 0) along with the fact that t 7→ tr−2 is decreasing if r < 2
and inequality (36) if r ≥ 2, we infer that

ς(x, α) + ς(x, β) ≥ Csm

(
(ςrde + αr)

r−2
r + (ςrde + βr)

r−2
r

)
≥ Csm21−d r−r̃

r e(ςrde + αr + βr)
r−2
r . (76)

We conclude that σ verifies (74b) by using (75) and (76) with α = ‖τ‖W and β = ‖η‖W as follows:

(σ(x, τ )− σ(x,η), τ − η)W

= (τ ς(x, ‖τ‖W )− ης(x, ‖η‖W ), τ − η)W

= ‖τ‖2W ς(x, ‖τ‖W ) + ‖η‖2W ς(x, ‖η‖W )− (τ ,η)W [ς(x, ‖τ‖W ) + ς(x, ‖η‖W )]

= [‖τ‖W ς(x, ‖τ‖W )− ‖η‖W ς(x, ‖η‖W )] (‖τ‖W − ‖η‖W )

+ [ς(x, ‖τ‖W ) + ς(x, ‖η‖W )] (‖τ‖W ‖η‖W − (τ ,η)W )

≥ Csm2−d
r−r̃
r e (ςrde + ‖τ‖rW + ‖η‖rW )

r−2
r
[
(‖τ‖W − ‖η‖W )2 + 2(‖τ‖W ‖η‖W − (τ ,η)W )

]
= Csm2−d

r−r̃
r e (ςrde + ‖τ‖rW + ‖η‖rW )

r−2
r ‖τ − η‖2W .
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(ii) Hölder continuity. Now, setting Chc := ςhc

r̃−1 and reasoning in a similar way as for the proof of (75) to

leverage the second inequality in (73b), we have, for all α ∈ [β,∞),

ας(x, α)− βς(x, β) ≤ Chc (ςrde + αr + βr)
r−2
r (α− β). (77)

First, let r ≥ 2. Using (77) (with β = 0) and the fact that t 7→ tr−2 is non-decreasing, we have, for all
α, β ∈ (0,∞),

ς(x, α)ς(x, β) ≤ C2
hc (ςrde + αr)

r−2
r (ςrde + βr)

r−2
r ≤

[
Chc (ςrde + αr + βr)

r−2
r

]2
. (78)

Thus, using inequalities (77) and (78) with α = ‖τ‖W and β = ‖η‖W , we infer

‖σ(x, τ )− σ(x,η)‖2W
= (τ ς(x, ‖τ‖W )− ης(x, ‖η‖W ), τ ς(x, ‖τ‖W )− ης(x, ‖η‖W ))W

= [‖τ‖W ς(x, ‖τ‖W )− ‖η‖W ς(x, ‖η‖W )]
2

+ 2ς(x, ‖τ‖W )ς(x, ‖η‖W ) [‖τ‖W ‖η‖W − (τ ,η)W ]

≤
[
Chc (ςrde + ‖τ‖rW + ‖η‖rW )

r−2
r

]2 [
(‖τ‖W − ‖η‖W )2 + 2(‖τ‖W ‖η‖W − (τ ,η)W )

]
=
[
Chc (ςrde + ‖τ‖rW + ‖η‖rW )

r−2
r ‖τ − η‖W

]2
,

(79)

hence σ verifies (74a) for r ≥ 2. Assume now r < 2. Using a triangle inequality followed by (77) and the left
inequality in (36), it is inferred that

‖σ(x, τ )− σ(x,η)‖W ≤ ς(x, ‖τ‖W )‖τ‖W + ς(x, ‖η‖W )‖η‖W

≤ Chc

(
(ςrde + ‖τ‖rW )

r−1
r + (ςrde + ‖η‖rW )

r−1
r

)
≤ 2

1
rChc(2ςrde + ‖τ‖rW + ‖η‖rW )

r−1
r

= 2
1
rChc(2ςrde + ‖τ‖rW + ‖η‖rW )

r−2
r (2ςrde + ‖τ‖rW + ‖η‖rW )

1
r ,

≤ 2
1
rChc(ςrde + ‖τ‖rW + ‖η‖rW )

r−2
r (2ςde + ‖τ‖W + ‖η‖W ),

where the last line follows from the fact that t 7→ tr−2 is decreasing and again (36). If 2ςde + ‖τ‖W + ‖η‖W ≤
22−r‖τ − η‖W , from the previous bound we directly get the conclusion, i.e. (74a) with σhc = 22−r+ 1

rChc.
Otherwise, using (36) and a triangle inequality yields

(ςrde + ‖τ‖rW )
1
r (ςrde + ‖η‖rW )

1
r ≥ 2−

2
r′ (ςde + ‖τ‖W )(ςde + ‖η‖W )

= 2−2( 1
r′+1)

[
(2ςde + ‖τ‖W + ‖η‖W )

2 − (‖τ‖W − ‖η‖W )
2
]

≥ 2−2( 1
r′+1)

[
(2ςde + ‖τ‖W + ‖η‖W )

2 − ‖τ − η‖2W
]

≥ 2−2( 1
r′+1)(1− 4r−2) (2ςde + ‖τ‖W + ‖η‖W )

2

≥ 2
2

(r−2)r
−2 (ςrde + ‖τ‖rW + ‖η‖rW )

2
r ,

(80)

where we concluded with (36) together with the fact that 2−2( 1
r′+1)

(
1− 4r−2

)
≥ 2

2
(r−2)r

−2. Finally, raising
both sides of (80) to the power r−2, we get a relation analogous to (78). Hence, proceeding as in (79), we infer
(74a). �
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Corollary A.3 (Carreau–Yasuda). The strain rate-shear stress law of the (µ, δ, a, r)-Carreau–Yasuda fluid
defined in Example 1.5 is an r-power-framed function.

Proof. Let x ∈ Ω and g : (0,∞)→ R be such that, for all α ∈ (0,∞),

g(α) :=
∂

∂α

[
αµ(x)

(
δa(x) + αa(x)

) r−2
a(x)

]
= µ(x)

(
δa(x) + αa(x)

) r−2
a(x)
−1 (

δa(x) + (r − 1)αa(x)
)
.

We have for all α ∈ (0,∞),

µ−(r̃ − 1)
(
δa(x) + αa(x)

) r−2
a(x) ≤ g(α) ≤ µ+(r + 1− r̃)

(
δa(x) + αa(x)

) r−2
a(x)

,

and we conclude using (36) together with Theorem A.1. �
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