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Abstract. Online learning algorithms often have the issue of exhibiting
poor performance during the initial stages of the optimization procedure,
which in practical applications might dissuade potential users from de-
ploying such solutions. In this paper, we study a novel setting, namely
conservative online convex optimization, in which we are optimizing a
sequence of convex loss functions under the constraint that we have to
perform at least as well as a known default strategy throughout the entire
learning process, a.k.a. conservativeness constraint. To address this prob-
lem we design a meta-algorithm, namely Conservative Projection (CP),
that converts any no-regret algorithm for online convex optimization
into one that, at the same time, satisfies the conservativeness constraint
and maintains the same regret order. Finally, we run an extensive ex-
perimental campaign, comparing and analyzing the performance of our
meta-algorithm with that of state-of-the-art algorithms.

Keywords: online learning ·

1 Introduction

In the classic Empirical Risk Minimization (ERM) framework [38], the objective
is to solve a stochastic optimization problem by minimizing the empirical loss
function over a given set of training examples drawn from the unknown distribu-
tion. However, using the ERM approach in production exposes the learner to the
issue of concept drift [37], i.e., the risk that the distribution producing a training
dataset may differ from the one observed during the operational life of the model.
A solution to this issue is offered by techniques deriving from the Online Convex
Optimization (OCO) field [32], which aim at minimizing a sequence of convex loss
functions w.r.t. to the best-fixed strategy in hindsight. Nonetheless, even if they
ensure convergence to the optimal solution, OCO techniques notoriously have
poor empirical performance during the early stages of the learning process [29],
which might dissuade potential users from deploying such solutions. To model
this issue, we define a novel Conservative Online Convex Optimization (COCO)
framework in which the learner has to perform online asymptotically as well as
the best-fixed decision in hindsight while satisfying a conservativeness constraint,
i.e., during the operational life of the system it has to perform no worse than a
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given fixed strategy. Furthermore, we propose the Conservative Projection (CP)
algorithm, a newly-designed online learning meta-algorithm, applicable to any
OCO algorithms, that exploits the strengths of both ERM and OCO solutions.

Learning an optimal strategy while satisfying a conservativeness constraint
during the exploration phase is of paramount importance in multiple domains.
For instance, an intuitive example can be found in automatic spam filters [6].
Generally, companies optimize offline models on historical data, e.g., past e-
mails, until such classifiers perform satisfactorily given the collected dataset.
When deploying this product, the company would like to maintain at least the
above-mentioned performance while continually optimizing the model, integrating
newly collected data, and possibly adapting to data distribution changes. Another
field that benefits from being conservative is the financial field, e.g., the asset
management sector [7]. In this context, the goal of portfolio managers is to beat
a specific market index (a weighted average of a set of stocks), i.e., to perform
better than the chosen index and, concurrently, maximize the collected wealth.

The idea of learning while guaranteeing the performance of a fixed and known
policy has also been studied in the fields of Reinforcement Learning (RL) [13]
and Multi-Armed Bandits (MAB) [40]. To the best of our knowledge, no work
explicitly tackles the problem of conservativeness in the OCO framework as
defined in this paper. To solve this problem, we extend the techniques from the
OCO literature, and propose a meta-algorithm, namely CP, which extends any
online learning algorithm to satisfy the requirements of the COCO framework.
Thanks to the use of a pseudo-loss and a projection in a so-called conservative
ball, the proposed CP algorithm provides anytime guarantees w.r.t. a fixed default
strategy. Specifically, the contributions of this work are:

– the definition of the novel COCO framework, where the objective is to obtain
sub-linear regret while performing better than the default strategy during
the entire learning process;

– the CP algorithm, which provides a solution to the above-mentioned problem
for any OCO algorithm. Furthermore, we provide theoretical evidence that
CP performs at least as well as the default strategy and that its regret is of
the same order as that of the original OCO algorithm considered;

– an in-depth empirical evaluation of the CP algorithm in terms of regret and
conservativeness on both simulated and real-world problems, comparing it
with state-of-the-art algorithms from the OCO literature.

2 Background

Problems closely related to those of conservativeness have been commonly ad-
dressed by safe RL techniques. In [15], the authors provide a comprehensive
overview of the different definitions of safety in RL. The most common assump-
tion is to have access to a safe policy, and the goal is to improve that policy
monotonically throughout the learning process. The seminal paper for this setting
in [18], which proposes a conservative policy iteration algorithm with monotonic
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improvement guarantees for mixtures of greedy policies. This approach is gen-
eralized to stationary and stochastic policies in [28,31]. Building on the former,
in [25,27,26] the authors have designed monotonically improving policy gradient
algorithms for Gaussian, Lipschitz, and, recently, smoothing policies. This setting
differs substantially from ours as the underlying environment is assumed to be
stochastic.

In the bandit setting, the authors of [23] analyzed the same problem, charac-
terizing the Pareto regret frontier in the stochastic case, i.e., a surface determined
by the admissible regret bounds for each arm. Following these seminal works, the
interest of the MAB community in conservative exploration has grown in recent
years, starting with the work presented in [40], where the authors modified the
well-known UCB algorithm [2,3] to guarantee the safety constraint. Later, the
idea was applied to contextual linear bandits in [19] and later improved in [14],
as wells as to GPUCB, as presented in [35,34]. We inherit the concept of safety
as conservatism from these works on stochastic bandit feedback and apply it to
the context of adversarial full-information feedback.

In the Expert Learning literature, a work similar to ours is [30]. In this
work, the authors design a strategy, named (A,B)-prod, that provides regret
guarantees w.r.t. the regret of two generic strategies A, and B. However, their
conservativeness definition is not comparable to ours, since it does not hold
anytime. The question of bounding the regret not only to the best action but
also to other strategies is addressed in [17,21], in which the authors proved, for
the full information setting, that there exists an algorithm that guarantees a
regret of O(

√
T ), with a specific constant for each expert. In particular, the main

focus of the paper is to characterise the admissible vectors {rk}k∈K guaranteeing
a regret RkT ≤ rk w.r.t. each expert k. Even if these works cover a more general
theoretical framework than ours, i.e., multi-objective regret minimization, the
algorithms therein do not guarantee that their loss is strictly smaller than that
of a given expert, and, therefore, their results cannot be compared with ours.

3 Problem Formulation

Let us build on the standard Online Convex Optimization framework [32] in
which a learning agent, at each round t, has to select a parameter θt ∈ Θ,
representing a strategy, where Θ ⊂ Rd is a closed and convex set of a finite d
dimensional Euclidean space. At each round t, the agent receives a loss ft(θt)
where ft : Θ → [εl, εu] is a convex and differentiable function, where εl, εu are the
minimum and maximum value of the function ft(·), respectively, and 0 ≤ εl < εu.
The objective of the learning agent U is to minimize the regret RT (U) over a given
time horizon T ∈ N, i.e., the difference between the loss suffered by the algorithm
U and the one suffered from the best fixed decision in hindsight, formally defined
as:

RT (U) := LT − L̄T ,
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where LT :=
T∑
t=1

ft(θt) and L̄T :=
T∑
t=1

ft(θ̄) are the loss accumulated by the

running algorithm U and the smallest loss obtainable by a clairvoyant selection

of the parameters, i.e., θ̄ := arg inf
θ∈Θ

T∑
t=1

ft(θ), respectively.

In the COCO setting, we are interested in those algorithms U for which the
regret RT (U) is bounded by a sub-linear function of the time horizon T , and,
at the same time, perform throughout the optimization at least as well as an
established default parameter θ̃ ∈ Θ, selected at the beginning of the learning
process. While the former requirement represents the so-called no-regret property
of an algorithm [9], the latter one is formally defined as follows:

Definition 1. An online algorithm U is said to be conservative if it satisfies the
following conservativeness constraint for each t ∈ [T ]:

Lt ≤ (1 + α)L̃t, (1)

where α > 0 is the conservativeness level required by the problem, and L̃t :=
t∑

k=1

fk(θ̃) is the cumulative loss of the default parameter θ̃ over t rounds.1,2

From now on, we will refer to the quantity Zt(U) := (1 +α)L̃t −Lt as the budget
of the algorithm U, i.e., the advantage in terms of loss accumulated by U over
time w.r.t. the one provided by a constant choice of the default parameter θ̃.
We also assume that there exists µ > εl s.t. L̃t ≥ µt, which imply that the fixed
strategy θ̃ is sub-optimal.

We remark that, in this work, we require the constraint in Equation (1)
to be satisfied at each round t ∈ [T ]. Indeed, any online learning algorithm U
providing a regret of Rt(U) ≤ ξ

√
t is guaranteed to satisfy the above constraint

for t >
(
ξ
αµ

)2
, instead we require that it holds for each t ∈ [T ].3 Therefore,

satisfying the condition imposed by our constraint requires the design of ad-hoc
algorithms. Conversely, the design of algorithms which have a higher grade of
conservativeness, i.e., α ≤ 0 is not a viable option due to the following:

Theorem 1. In the OCO setting, there is no algorithm U which obtains Lt ≤ L̃t,
unless θt = θ̃ for all t ∈ [T ].

Proof. Let k be the first round in which the algorithm U plays θk 6= θ̃. If the
loss function is fk(x) := fk(θ̃) + ||θ̃ − x||2, then, by the convexity of the space
Θ, we can find c ∈ (0, 1) and z ∈ Θ s.t. θk = cθ̃ + (1 − c)z. This implies that
fk(θk) = fk(θ̃) + (1− c)||θ̃ − z||2 > fk(θ̃), showing that Lt > L̃t.

1 The conservativeness constraint in Equation (1) is expressed in terms of losses, as
commonly done in the OCO framework. Its reformulation in terms of rewards, as
commonly done in the RL and MAB fields, is straightforward.

2 We denote with [T ] the set {1, . . . , T}.
3 This comes from the fact that Lt − L̃t ≤ Rt(U) and ξ

√
t ≤ αµt holds for t >

(
ξ
αµ

)2

.
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In other words, it is impossible to guarantee that an algorithm does strictly
better than or equal to a given default parameter θ̃ over the entire time horizon
T , unless one always plays the default parameter.

4 The Conservative Projection Algorithm

We begin this section by characterizing a set of parameters in the parameter
space Θ which guarantees that their choice implies the conservativeness of an
algorithm at round t. Then, we select a specific parameter from this set, thus
defining the CP algorithm, and, subsequently, we show it is conservative and it
has sub-linear bounds for the regret.

4.1 The Conservative Ball

Let us define the following:

Definition 2. A conservative ball B(θ̃, rt) ∈ Rd is a d-dimensional ball centered
in θ̃ with radius:

rt :=

1−
(
Lt−1− (1 + α)L̃t−1− αεl

DG
+ 1

)+
D, (2)

where D := sup
x,y∈Θ

||x− y||2 is a bound on the diameter of the parameter space Θ,

G := sup
x∈Θ
||∇ft(x)||2 is the upper bound on the norm of the gradient of the loss

ft(·), || · ||2 denotes the L2 norm of a vector, and (a)+ denotes the maximum
between the quantity a and zero.

From now on, we refer to this ball as the conservative ball since this choice of rt
implies that playing any of the parameters θ ∈ B(θ̃, rt) at round t guarantees
that the accrued budget Zt(U) does not become negative. Formally:

Theorem 2. Let B(θ̃, rt) be the conservative ball defined in Equation (2) and
assume that Equation (1) is satisfied at round t − 1. Then, each parameter
θ ∈ B(θ̃, rt) ∩Θ satisfies Equation (1) at round t.

Proof. Given θ ∈ B(θ̃, rt) ∩Θ we have:

ft(θ)− (1 + α)ft(θ̃) ≤ 〈∇ft(θ), θ − θ̃〉 − αft(θ̃) ≤ Grt − αεl, (3)

where the first inequality is given by the convexity of ft(·), and the second
inequality is given by the Cauchy-Schwarz inequality and by the fact that θ ∈
B(θ̃, rt) implies ||θ̃ − θ||2 ≤ rt. Let us consider two cases: rt < D, and rt = D.

Case rt < D: In this case, the value of the radius is rt = (1+α)L̃t−1−Lt−1+αεl
G .

By substituting it in Equation (3), we conclude that:

ft(θ)− (1 + α)ft(θ̃t) ≤ (1 + α)L̃t−1 + Lt−1. (4)
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Fig. 1: Visual representation of CP. In green the conservative ball B(θ̃, rt), and
in red the parameter set Θ. The CP algorithm selects the parameter θt for round
t by projecting the parameter zt, selected by A, on the conservative ball.

Case rt = D: From the fact that rt ≥ 0 and using Equation (2), we obtain
that:

Lt−1 − (1 + α)L̃t−1 − αεl
GD

+ 1 ≤ 0 (5)

GD − αεl ≤ (1 + α)L̃t−1 + Lt−1. (6)

Combining the above result with the inequality in Equation (3), provides the
same result presented in Equation (4).

The proof is concluded by rearranging the terms of Equation (4).

Notice that the projection of a generic parameter zt on the ball B(θ̃, rt) can
be computed analytically and efficiently. Indeed, the projection operation on the
conservative ball satisfies the following:

θt = ΠB(θ̃,rt)
(zt) = βtθ̃ + (1− βt)zt, (7)

where

βt =

{
1− rt

||zt−θ̃||2
zt /∈ B(θ̃, rt)

0 zt ∈ B(θ̃, rt)
. (8)

In what follows, we choose zt as the parameter provided by a generic OCO
algorithm at round t.

4.2 Description of the CP Algorithm

Theorem 2 provides a way to choose a sequence of parameters over time, for
which the conservativeness constraint is satisfied. The CP algorithm uses this
result by choosing, at each round t, the parameter θt in the ball B(θ̃, rt) as close
as possible to the prediction zt provided by the OCO algorithm fed using the
pseudo-loss function gt−1(zt−1) := (1− βt−1)ft−1(zt−1), i.e., it selects a convex
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Algorithm 1 CP

Require: Online learning algorithm A, conservativeness level α > 0, default parameter
θ̃ ∈ Θ

1: Set L̃0 ← 0, L0 ← 0, and β0 ← 1
2: for t ∈ [T ] do
3: Get point zt from A applied to loss gt−1(zt−1)
4: Compute rt as in Equation (2)
5: Select θt = ΠB(θ̃,rt)

(zt)
6: Suffer loss ft(θt)
7: Observe ft(zt) and ft(θ̃)
8: Set gt(zt)← (1− βt)ft(zt)
9: end for

combination of the default parameter θ̃ and zt. The intuition behind this choice
is that we want to choose θt as close as possible to the no-regret prediction zt of
the OCO algorithm, that is guaranteed to have sub-linear regret. Furthermore,
we show that this algorithm increases the radius rt over time, and therefore,
in finite-time, the conservative ball includes the parameter zt, allowing CP to
have a sub-linear regret. Finally, we remark that the CP algorithm is designed
so that the more the default parameter θ̃ is distant from the optimal one, the
more the value of the radius rt increases, which, in its turn, decreases the cost of
guaranteeing conservativeness.

The pseudo-code of the CP algorithm is presented in Algorithm 1, and its
visual representation is depicted in Figure 1. The algorithm requires as input
a generic online learning algorithm A, which selects the parameter zt to play
at each round t, a conservativeness level α > 0, and the default parameter
θ̃ ∈ Θ. At first, we set the initial value of the cumulative losses L0 = 0, that
of the default parameter L̃0 = 0 (Line 1), and we set the parameter β0 = 1.
Afterwards, at each round t, zt is chosen by the algorithm A by considering the
pseudo-loss gt(x) (Line 3). Thanks to a projection operation (Line 5), which
projects zt into the conservative ball B(θ̃, rt), the resulting parameter θt satisfies
the conservativeness constraint in Equation (1). Finally, the algorithm suffers
the loss ft(θt), and observes ft(zt) and ft(θ̃), i.e., the loss of the algorithm A
and the default parameter θ̃, respectively (Lines 7-8).

Notice that, from a computational point of view, the CP algorithm has a small
computational overhead w.r.t. the original online learning algorithm A, i.e., an
overhead proportional to d, due to the additional projection on the conservative
ball and the evaluation of the losses ft(θt), and ft(θ̃).

4.3 Analysis of the CP Algorithm

In this section, we prove that CP has the desired conservativeness property
and maintains the sub-linear regret of the subroutine algorithm A. Since the
CP algorithm selects a parameter θt inside the conservative ball B(θ̃, rt), a
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straightforward corollary of Theorem 2 guarantees that the conservativeness
constraint is satisfied. Formally:

Corollary 3. The CP algorithm applied to a generic online learning algorithm
A is conservative.

Once we established the conservativeness of our approach, we need to prove
that the CP algorithm has sub-linear regret. Intuitively, we need to show that
the radius rt grows over time, and eventually includes the entire space Θ, so that
from a specific round we are allowed to follow the no-regret choice zt. Formally,
we show the following:

Theorem 3. Consider any OCO algorithm A which guarantees a regret of
RT (A) ≤ ξ

√
T . The CP algorithm using A as subroutine has the following regret

bound:
RT (CP ) ≤ ξ

√
T + τDG, (9)

for any T > τ , where:

τ :=
2αµ(DG+ αµ) + ξ

(√
ξ2 + 4αµ(DG+ αµ) + ξ

)
2α2µ2

. (10)

Proof. Using the convexity of the loss functions on the regret and the definition
of θt in Equation (7), we have:

LT − L̃T ≤
T∑
t=1

[βtft(θ̃) + (1− βt)ft(zt)− ft(θ̃)]

=

T∑
t=1

(1− βt)[ft(zt)− ft(θ̃)] (11)

≤ sup
θ∈Θ

(
T∑
t=1

(1− βt)[ft(zt)− ft(θ)]
)
≤ ξ
√
T . (12)

This shows that the CP algorithm has sub-linear regret w.r.t. an algorithm
that always chooses the default parameter θ̃ over the entire time horizon T .

Combining Equation (8) and (2), we have:

βt ≤ 1− rt

||zt − θ̃||2
≤ 1 +

Lt−1 − (1 + α)L̃t−1 − αεl
DG

(13)

≤ 1 +
ξ
√
t− (t− 1)µα

DG
, (14)

where we used the bound in Equation (12), the fact that the space Θ has radius
D, and that θ̃ is not a no-regret strategy, and, hence, there exists a µ > εl > 0
s.t. L̃t−1 > µ(t− 1).

On the other hand, we assumed that A is a no-regret strategy and, therefore,
the regret of the algorithm A is sub-linear, this means that there exists a round
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τ > 0 s.t. Equation (14) is negative, and, consequently, for t > τ , defined in
Equation (10) we have βt = 0. The value of τ is provided by the solution of the

following equation 1 + ξ
√
τ−τµα
DG = 0.

What we showed above also proves that the CP algorithm for t > τ eventually
plays the same parameter as A since for all t > τ the pseudo-losses gt(·) and the
true losses ft(·) coincide. Indeed, the regret of the CP algorithm can be written
as:

RT (CP ) ≤
τ∑
t=1

[
βtft(θ̃) + (1− βt)ft(zt)− ft(θ̄)

]
+

T∑
t=τ+1

(ft(zt)− ft(θ̄)) (15)

≤
τ∑
t=1

βt

[
ft(θ̃)− ft(zt)

]
+

T∑
t=1

[ft(zt)− ft(θ̄)] (16)

≤
τ∑
t=1

βt〈∇ft(θ̃), θ̃ − zt〉+

T∑
t=1

[ft(zt)− ft(θ̄)] (17)

≤ τDG+ ξ
√
T , (18)

where the inequality in Equation (15) uses the convexity of ft(·). Equation (16)
comes from the extension of the time horizon from {τ, . . . , T} to {1, . . . , T}. Equa-
tion (17) follows from the convexity of ft(·) and the inequality in Equation (18)
follows from the Cauchy-Schwarz inequality on the first term while the second
term is the regret of the used no-regret algorithm A.

A regret of order O(
√
T ) is tight in general OCO problems [1], but there

exists specific settings in which a O(log T ) regret can be achieved, e.g., in the
case of H-strongly convex losses or in the case of exp-concave losses [16]. In
such settings, the CP algorithm guarantees O(log T ) regret together with the
conservative constraint, formally:

Theorem 4. Consider any OCO algorithm A which guarantees a regret of
RT (A) ≤ ρ log(T ). The CP algorithm using A as subroutine has the following
regret bound:

RT (CP ) ≤ ρ log(T ) + τDG, (19)

for any T > τ , where:

τ :=
αe2µ(DG+ αµ) + 2ρ

(√
αe2µ(DG+ αµ) + ρ2 + ρ

)
e2α2µ2

. (20)

Proof. The proof is similar to that of Theorem 4, we only report the steps that
are significantly different from it. From Equation (12), which holds also in this
setting, we obtain:

LT − L̃T ≤ ρ log(T ). (21)

This shows that the regret w.r.t. an algorithm which always chooses the default
parameter θ̃ is of the order O(log(T )). Following the same steps used to derive
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Equation (14), we have that βt ≤ 1 + ρ log(t)−tµα
DG . Therefore, βt is zero after τ

rounds, where τ is defined in Equation (20).4 Finally, using the same argument
used to derive Equation (18), we obtain the bound present in the theorem.

Notice that for Theorem 3 and 4 we have that τ ∝ 1/µ, meaning that for
default parameters θ̃ with smaller accrued losses w.r.t. the optimum θ̄ (and
hence smaller µ), the CP algorithm is required to wait longer to play the action
prescribed by the no-regret strategy A. Moreover, the bound shows a dependence
τ ∝ 1/α, meaning that a tighter conservative constraint makes the problem more
challenging for the CP algorithm.5

5 Experiments

This section provides the experimental study of the proposed algorithm for the
COCO setting, where we use OGD [41] as subroutine. We evaluate the perfor-
mance of the CP-OGD in three settings: a synthetically generated regression
problem, and two real-world classification scenarios. We compare our perfor-
mances to OGD [41], the non-conservative version of the proposed algorithm,
AdaGrad [12], a state-of-the-art algorithm of online optimization which has
theoretical guarantees on the regret, the Conservative Switching (CS) algorithm,
a naive conservative baseline, and the Constrained Reward Doubling Guess
(CRDG). CS is a budget-first algorithm we designed. This algorithm plays the
fixed default action until enough budget has been accrued, then it plays the
no regret strategy. We described it and provide its theoretical properties in
Appendix B.1. As for CP, in CS we consider OGD as subroutine and, thus, will
refer to it as CS-OGD. CRDG is a conservative baseline obtained by combining
the Reward Doubling Guess algorithm [33], originally designed for unconstrained
online optimization setting, with the Constraint Set Reduction procedure pre-
sented in [10]. We provide the its detailed pseudo-code and a discussion on its
theoretical properties in Appendix B.2.

For CP-OGD, CS-OGD, and OGD we initialize the learning rate ηt = K√
t
,

where K = D
G
√
2

is chosen to minimize the theoretical regret bound of OGD, while

for AdaGrad we initialize the parameter αt = 1√
t
, as prescribed in [20]. For the

CRDG algorithm we set ε = µα/2 to guarantee the conservativeness constraint
in Definition 1 with level α (as CP-ODG and CS-ODG do). We evaluate the
algorithms in terms of regret Rt(U), and budget Zt(U). The code to run the
experiments is available at: https://github.com/martinobdl/safe OCO.

5.1 Synthetic Regression Dataset

We analyze a synthetic online linear regression environment, where the agent is
presented with a vector xt ∼ U([0, 1]d) ⊂ Rd, i.e., a d dimensional vector drawn

4 The derivation of τ is provided in Lemma 4, reported in Appendix A for space
reasons.

5 In Appendix D.3 we performed experiments to explore the relationship between the
conservativeness and performance of the CP algorithm.
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Fig. 2: Results on the synthetically generated regression dataset: (a) regret RT (U);
(b) magnification of the budget Zt(U) over the first 103 samples. θ̃ has been
chosen so that D̃ = 0.5.

uniformly from [0, 1]d, and the target value is generated as yt = 〈xt, θ̄〉 + γt,
where θ̄ ∈ Θ = [−1, 1]d is the unknown optimal parameter, and γt is a noise term
that we considered i.i.d. with zero mean. Each algorithm provides a prediction
ŷt = 〈xt, θt〉, where θt is the chosen parameter for round t, and suffers a loss
ft(θt) := (〈xt, θt − θ̄〉 − γt)2.

We set d = 40, γt from a truncated Gaussian distribution N (0, 0.152) with
values in [−1, 1], T = 104, and we fix θ̄ := [0, . . . , 0]. The conservativeness level is
set to α = 0.01. In this setting, the bound on the gradient is G = 2(

√
2d+ 1)

√
d,

the minimum and maximum loss are εl = 0 and εu =
√

2d + 1, respectively,
and the bound on the diameter of the decision space is D =

√
2d. We ran the

experiment 30 times and averaged the results. The confidence intervals on the
mean, represented in the figures as semi-transparent areas, are the 95% confidence
intervals computed by statistical bootstrap. Multiple default parameters θ̃ have
been considered in this setting so that D̃ := ||θ̃ − θ̄||2 ∈ {0.5, 1, . . . , 3, 3.5}.

Results Figure 2 shows the results for experiments where the default parameter
has a distance from the optimum of D̃ = 0.5. Figure 2a shows that all the
algorithms, but CRDG, on average converge to the optimal solution since the
regret RT (U) is asymptotically approaching a constant value. In particular,
AdaGrad and CP-OGD perform comparably in terms of regret, OGD has slightly
worse performance, and CRDG and CS-OGD provide a regret more than 3
times larger than the other algorithms over the analyzed time horizon T . The
magnification of the budget Zt(U) over the first 1, 000 rounds, provided in
Figure 2b, shows that OGD and AdaGrad have a negative budget during the first
≈ 900 and ≈ 300 rounds, respectively, while CP-OGD, CS-OGD, and CRDG
guarantee the conservativeness constraint at each round, i.e., they have Zt(U) > 0,
for all t ∈ [T ]. These results suggest that the proposed CP-OGD is the only
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Fig. 3: Regret RT (U) at the end of the time horizon T as the distance from the
optimum D̃ varies for the synthetic dataset.

algorithm, among the tested ones, capable of maintaining a small regret while,
at the same time, being conservative.

Figure 3 presents the behaviour of the regret RT (U) as the distance D̃ between
the optimum and the default parameter varies. For values of the distance D̃ < 2.5,
i.e., default parameters which are close to the optimum one, CP-OGD provides a
smaller regret than that of all the other algorithms on average. Instead, if D̃ ≥ 3,
the fact that it is constrained to maintain a positive budget penalizes CP-OGD
in terms of regret. In such a situation, OGD and AdaGrad provide a smaller
regret than CP-OGD. This suggests that the proposed approach might provide a
large regret if the default parameter θ̃ is far from the optimum one θ̄.

5.2 Online Classification: the IMDB Dataset

The second set of experiments has been run on the IMDB dataset [24], consisting
of 50, 000 reviews of movies and labels classifying the reviews as positive or
negative. Data has been preprocessed as done by [20]. The general setup for
the online logistic regression model is as follows: the algorithm processes a
single feature vector xt ∈ {0, 1}d with d = 104, predicts the probability of
belonging to the positive class as ŷt ∈ [0, 1] as ŷt = σ(〈xt, θt〉), where θt ∈
Θ = [−2, 2]d and suffers a loss given by the binary cross entropy defined as
ft(θt) = −[yt log(ŷt) + (1− yt) log(1− ŷt)], where yt ∈ {0, 1} is the true sample
class.6 In this setting the gradient is bounded by G =

√
d, the diameter by

D = 2
√
d and we set α = 0.01. To bound the maximum and minimum loss

needed by the CS algorithm, we clipped the loss between εl = 1e−4 and εu = 10.
The default parameter θ̃ has been generated by training a batch logistic regression
using 1, 000 samples at random from the dataset. Notice that the IMDB dataset

6 σ(x) := 1/(1 + exp(−x)) is the sigmoid function.
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Fig. 4: Results for the IMDB movie dataset: (a) regret, (b) budget for the first
2.5× 105 samples.

is known to be a challenging setting for OGD [20] due to the sparse nature of its
input, setting for which an adaptive step size algorithm, like AdaGrad, generally
performs better in terms of regret than the single-pass ones. We could not run
the CRDG algorithm on the IMDB dataset since its computational requirements
in this setting were too demanding due to the large number of features.

Results Figure 4a shows the regret Rt(U) for the analyzed algorithms. Both
CP-OGD and CS-OGD outperform AdaGrad and OGD in terms of regret. This
happens because AdaGrad and OGD surpass the performance of the default
parameter only after many rounds. In fact, this specific setting is challenging
for OGD [20], while CP-OGD and CS-OGD exploit successfully the information
provided by θ̃. The results suggest that conservative algorithms might also
outperform their non-conservative counterparts in some specific challenging
optimization problems. Furthermore, Figure 4b shows that, even in this setting,
the budget of the OGD and AdaGrad algorithms is negative for the first ≈ 100, 000
and ≈ 200, 000 rounds, respectively, while the budget of the CP-OGD and CS-
OGD is positive for all t ∈ [T ], which is in line with the theoretical analysis we
provided before.

5.3 Online Classification: the SpamBase Dataset

The SpamBase dataset is taken from the UCI repository and contains 4, 601
emails labeled as spam or ham [11]. The dataset has been normalized so that the
input vector xt ∈ [0, 1]d, with d = 57. The safe parameter θ̃ has been generated
by training a batch logistic regression on 100 samples chosen at random from the
dataset. The values for the parameters not explicitly defined in this section are
the same as those used in the IMDB experiment.
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Fig. 5: Results for the SpamBase dataset: (a) regret, (b) budget for the first
4× 104 samples.

Results Figure 5a shows the regret suffered by the algorithms on the SpamBase
dataset. Even in this case, CP-OGD outperforms all the others, and, by looking at
Figure 5b, we see that also in this experiment the budget of OGD and AdaGrad
is negative for ≈ 10, 000 and ≈ 30, 000 rounds, respectively. Finally, the CRDG
algorithm satisfies the budget constrain during the entire learning time horizon
but accumulates a large regret over the time horizon.

6 Conclusions

The focus of this paper is to solve the problem of conservative optimization in an
online setting with adversarial environments, in which we require an algorithm
to provide sub-linear regret while performing at least as well as a given fixed
strategy. To solve this problem, we proposed the CP algorithm, showed that it
satisfies the conservativeness constraint, and proved that it maintains the same
regret order the OCO algorithm it uses as a subroutine. Furthermore, we ran
an extensive experimental campaign on synthetic and real-wolrd data, showing
that the CP algorithm is competitive in terms of regret with OGD, AdaGrad,
CS, and CRDG while also behaving conservatively.

An interesting direction is whether the assumption that the default strategy
θ̃ is fixed can be relaxed to include specific classes of time-varying strategies.
Another line of research that might be promising is the use of the definition
of the conservative ball to design algorithms also for the unconstrained online
optimization setting.
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Supplementary Material for Paper “Conservative Online
Convex Optimization”

A Proofs and Additional Lemmas

In this section we provide the full proofs of the theorems we deferred in the main
paper. Moreover, we add some remarks on the online-to-batch conversion of the
proposed method, and its corresponding guarantees.

Lemma 4. Consider any OCO algorithm A which guarantees a regret of RT (A) ≤
ρ log(T ). The last time the CP algorithm using A as subroutine plays the default
parameter θ̃, i.e., βt > 0, is upper-bounded by τ , defined as:

τ :=
αe2µ(DG+ αµ) + 2ρ

(√
αe2µ(DG+ αµ) + ρ2 + ρ

)
e2α2µ2

.

Proof. The CP algorithm plays at each time: θt = βtθ̃ + (1− βt)zt, where βt =
1− rt

||zt−θ̃||2
, and zt is generated by a no-regret algorithm A. From Equation (2)

we know that:
Lt−1 − (1 + α)L̃t−1 − αεl

GD
+ 1 ≥ βt.

By using Equation (21) we have that eventually there is a time t for which:

1

GD
[ρ log(t)− αµ(t− 1)] + 1 = 0, (22)

as the left hand side goes to zero for t sufficiently large.
Finding the τ for which βt becomes zero is equivalent to solving an equation of

the type A log t = Bt−C with A,B,C > 0, which has no analytical roots. Thanks
to the fact that the logarithm is concave, upper-bounding it in Equation (22)
results in an equation whose result gives an upper bound on the solution of the

original equation. Using that log x < 2
√
x
e , holding for each x > 0, the upper

bound on the solution is of Equation (22) is provided by:

1

GD

[
ρ

2
√
t

e
− αµ(t− 1)

]
+ 1 = 0,

whose solution concludes the proof.

B Baseline approaches

In what follows we present the CS and CRDG algorithms, which will be used as
baseline for our experiments.
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Algorithm 2 CS

Require: Online learning algorithm A, conservativeness level α > 0, default parameter
θ̃ ∈ Θ

1: Set L̃0 ← 0, L0 ← 0
2: for t ∈ [T ] do
3: if Lt−1 + εu − (1 + α)εl ≤ L̃t−1(1 + α) then
4: zt ← A(ft−1(zt−1))
5: Select θt ← zt
6: else
7: zt ← zt−1

8: Select θt ← θ̃
9: end if

10: Suffer loss ft(θt)
11: Observe feedback ft(zt) and ft(θ̃)
12: end for

B.1 The Conservative Switching Algorithm

In this section, we design a more immediate approach to solve the COCO
problem, which will be compared with the CP algorithm in the experimental
section. The algorithm follows the idea by [40], and adapts it to the OCO setting:
play the action zt only if the conservativeness constraint is satisfied at round t
and the current budget is big enough to sustain any loss at the next iteration;
otherwise, play the default parameter θ̃. The complete pseudo-code implementing
this approach in the COCO setting, namely Conservative Switching (CS), is
presented in Algorithm 2. The algorithm works as follows: at each round t, the
algorithm computes its budget (Algorithm 2, Line 5). If the current budget is
large enough to ensure the conservative constraint is satisfied even after suffering
the loss at round t (Line 3), CS queries the action zt from the no-regret algorithm
A (Line 5). Otherwise, CS plays the default action θ̃ (Line 8) keeping fixed the
optimistic action zt.

In what follows, we prove that the CS algorithm satisfies the conservativeness
constraint in Equation (1) and has sublinear regret bound of the same order of
the underlying algorithm A.

Theorem 5. The CS algorithm applied to a generic online learning algorithm
A is conservative.

Proof. Let k be a time in which we played the optimistic action zt given by
algorithm A, otherwise the constraint is trivially verified by the fact that the
default parameter is inside the conservative ball. In this specific case we have
that the following condition (Line 3 in Algorithm 2) is satisfied:

Lk−1 + εu − (1 + α)εl ≤ L̃k−1(1 + α)

Lk−1 ≤ L̃k−1(1 + α) + (1 + α)εl − εu. (23)
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Moreover, we have that, due to the fact that the loss function is bounded
from below by εl, we have:

L̃k−1(1 + α) + (1 + α)εl ≤ L̃k−1(1 + α) + fk(θ̃)(1 + α) = L̃k(1 + α). (24)

The loss of the CS algorithm becomes:

Lk = Lk−1 + fk(zk)

≤ L̃k−1(1 + α) + (1 + α)εl︸ ︷︷ ︸
≤L̃k(1+α)

−εu + fk(zk)︸ ︷︷ ︸
≤0

(25)

≤ L̃k(1 + α), (26)

where Equation (25) follows from the fact that we played the A algorithm for the
round k, thus the condition in Equation (23) holds, and Equation (26) is derived
using Equation (24) and from the fact that the loss function is bounded from
below by εl. This concludes the proof.

Theorem 6. Consider any OCO algorithm A which guarantees a regret of
RT (A) ≤ ξ

√
T . The CS algorithm using A as subroutine has the following regret

bound:
RT (CS) ≤ ξ

√
T + τDG,

where:

τ :=
ξ2 − 2αµ(εu − εl)

2α2µ2
+

1

2

√
ξ4 + 4αξ2µ(εu − εl)

α4µ4
.

Proof. Let us define Cα := εu − (1 + α)εl and let k ≥ 1 be a time in which we
played the default strategy and define S and R as the set of rounds in which the
CS algorithm played the default parameter and the parameter chosen by A up
to time k, respectively. Formally:

S = {t ≤ k s.t. (1 + α)L̃t−1 − Lt−1 ≤ Cα},
V = {t < k s.t. (1 + α)L̃t−1 − Lt−1 > Cα}.

By definition of the cumulative loss Lk−1 and since S ∪ V = [k − 1], we have:∑
t∈V

ft(zt) = Lk−1 −
∑

t∈S\{k}
ft(θ̃)

≥ (1 + α)L̃k−1 − Cα −
∑

t∈S\{k}
ft(θ̃)

= (1 + α)L̃k−1 − Cα−
∑

t∈S\{k}
ft(θ̃)−

∑
t∈V

ft(θ̃)︸ ︷︷ ︸
=−L̃k−1

+
∑
t∈V

ft(θ̃)

= αL̃k−1 − Cα +
∑
t∈V

ft(θ̃),
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where the first inequality follows from the fact that k ∈ S̃ and, therefore, Lk−1 ≥
(1 + α)L̃k−1 − Cα. Finally, using that L̃k > µk, since the default parameter θ̃ is
not a no-regret strategy we get:∑

t∈V
ft(zt) ≤ αL̃k−1 − Cα +

∑
t∈V

ft(θ̃) (27)∑
t∈V

[ft(zt)− ft(θ̃)] ≥ kαµ− (εu − εl). (28)

Since the algorithm A has been run only on the set V , the left hand side is
bounded by the regret of A on the set V , and, consequently, also on the entire
time horizon k. Taking the limit k → +∞, there will be a time τ in which
Equation (28) is not verified anymore, proving that the last time the algorithm
plays the default parameter satisfies t0 ≤ τ < +∞.

Solving for τ the following equation:

ξ
√
τ = ατεl − (εu − εl),

we get:

τ :=
ξ2 − 2αµ(εu − εl)

2α2µ2
+

1

2

√
ξ4 + 4αξ2µ(εu − εl)

α4µ4
.

With this result we can bound the regret of the CS algorithm as follows:

RT (CS) ≤ ξ
√
T + τDG.

Theorem 7. Consider any OCO algorithm A which guarantees a regret of
RT (A) ≤ ρ log(T ). The CS algorithm using A as subroutine has the following
regret bound:

RT (CS) ≤ ρ log(T ) + τDG,

where:

τ :=
2ρ2 + αe2µ(εu − εl)

α2e2µ2
+ 2

√
ρ4 + αe2ρ2µ(εu − εl)

α4e4µ4
.

Proof. The proof follows the same steps as the one of Theorem 6 up to Equa-
tion (28).

Now the left hand side can be bounded by ρ log(k) that, on its turn, is

bounded as ρ log k ≤ ρ 2
√
k
e , which holds for k > 1. Thanks to this inequality the

value of an upper bound τ on the value of the last instant CS plays the default
parameter θ̃ is provided by the analytical solution to the following equation:

ρ
2
√
τ

e
= ατεl − (εu − εl).
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Algorithm 3 RD-1D

Require: Learning rate η1, upper bound H̄, initial parameter θ0
1: Set i← 1, Q1 ← 0
2: for t ∈ [T ] do
3: Play θt and suffer loss ft(θ)
4: Qi ← Qi − ft(θt)
5: if Qi < ηiH̄ then
6: θt+1 ← θt − η1∇ft(θt)
7: else
8: i← i+ 1
9: Qi ← 0

10: ηi ← 2ηi−1

11: θt = θ0 − η1∇ft(θt)
12: end if
13: end for

With the above result we can bound the regret of the CP algorithm as follows:

RT (CS) ≤ ρ log T + τDG,

which concludes the proof.

Even if from these results it is not possible to state that CP attains a
strictly better regret than CS, we will show through an experimental campaign
that CP achieves a better empirical performance. The intuition behind this
superior performance is that during the first phase of the optimization, i.e.,
rt < D, we are less constrained using the CP algorithm since we are allowed to
select the parameter for the next round on the conservative ball B(θ̃, rt) border.
Conversely, the CS algorithm plays the default parameter θ̃ until enough budget
is collected. Concerning the computational cost of the CS algorithm, it has a
constant computational overhead w.r.t. the original algorithm A due to the
evaluation of the losses ft(θt), and ft(θ̃).

B.2 The Constrained Reward Doubling Guess Algorithm

In this section we provide the description of the Conservative Reward Dou-
bling Guess (CRDG). The pseudo-code of the CRDG algorithm is provided in
Algorithms 3-6.

In particular, the RD-1D algorithm, presented in Algorithm 3, performs a
search, using a gradient descend approach, on the space R (Lines 6 and 11), and
restarts from the point θ0 (Line 11) every times it collects enough wealth, formally,
if Qi ≥ ηiH̄. At every restart, it doubles its learning rate (Line 10). Notice that
the RD-1D algorithm requires the knowledge of an upper bound on the variance
of the loss gradients H̄ ≥∑T

t=1(∇ft)2. Conversely, if the quantity H̄ is unknown,
one can resort to the RD-1D-Guess algorithm, presented in Algorithm 4. This
algorithm performs the doubling trick [5] on the quantity H̄, using the RD-1D
algorithm as a subroutine.
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Algorithm 4 RD-1D-Guess

Require: Learning rate ε, initial parameter θ0
1: Set i← 1, Hi = 1, ηi = ε, H = 0
2: while t ∈ [T ] do
3: A = RD-1D(ηi, Hi, θ0)
4: while H ≤ Hi do
5: Play θt from algorithm A and suffer loss ft(θt)
6: H ← H +∇ft(θt)2
7: t← t+ 1
8: end while
9: i← i+ 1

10: H = 0
11: Hi = 2Hi−1

12: ηi = ηi−1/4
13: end while

Algorithm 5 RD-ND-Guess

Require: Learning rate ε, initial parameter θ0
1: for k ∈ [d] do
2: Set Ak = RD-1D-Guess(ε/k, θ0,k)
3: end for
4: while t ∈ [T ] do
5: for k ∈ [d] do
6: Get θt,k from Ak
7: Play θt and suffer loss ft(θt)
8: end for
9: end while

Algorithm 6 CRDG

Require: Learning rate ε, initial parameter θ0, parameter set Θ
1: Set A = RD-ND-Guess(ε, θ0)
2: for t ∈ [T ] do
3: Get zt from A
4: Play θt = ΠΘ(zt) and suffer loss ft(θ)
5: Observe the gradient of the loss ∇ft(θt)
6: Update A using ∇gt(θt)
7: end for

The extension of the RD-1D-Guess algorithm to parameter spaces Θ ⊆ Rd,
with d > 1, is provided by RD-ND-Guess, which uses an instance RD-1D-Guess
as subroutine, applying it to each one of the d coordinates separately. The pseudo-
code of the RD-ND-Guess is presented in Algorithm 6, which, at the beginning,
sets d instances {A1, . . . ,AD} of the RD-1D-Guess algorithm, and at round t,
selects the k-th component θt,k of the parameter θt querying the algorithm Ak.
Each Algorithm Ak is run by providing it with the k-th coordinate of the gradient
of the loss ∇ft(θt,k).
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The aforementioned algorithms have been designed to work in unconstrained
domains. However, they can be adapted to work in a convex parameter space Θ, by
utilizing the Constrained Set Reduction (CSR) Algorithm described in [10]. The
CRDG algorithm, presented in Algorithm 6, describes the CSR meta-algorithm
applied to Algorithm 6. It works by projecting the parameter predicted by the
CRDG algorithm into the set Θ (Line 3). Moreover, it requires that the losses
fed to the CRDG algorithm are redefined to penalize parameter outside the
parameter space Θ using the following pseudo-loss function:

gt(x) :=
1

2
[〈x,∇ft(θt)〉+ ||∇ft(θt)||2SΘ(x)] ,

where SΘ(x) := arg inf
y∈Θ
||x−y||2 is the distance between x and the set Θ. Finally,

the gradient of such a function is used to update the subroutine (Line 6).
The Reward Doubling Guess (RDG) algorithm has been proposed by [33]

to solve instance of the Unconstrained Online Optimization problem. In this
framework the guarantees are given w.r.t. a so called comparator parameter
θ̊ ∈ Rd. When the algorithm starts from the origin of Rd, the RDG algorithm
provides a regret bound of:

RT (θ̊) ≤ ||̊θ||2
√
T log

[
d(1 + ||̊θ||2)T

ε

]
, (29)

where ε > 0 is the learning rate of the procedure. Without loss of generality the
algorithm can start from a generic point in Rd, and restate the bound in terms
of the distance from the starting point and the general comparator parameter θ̊.
In the case the comparator parameter is the starting point of the algorithm the
RDG algorithm, it guarantees a regret of:

RT (θ̊) ≤ ε.

The use of the RDG algorithm in a constrained setting, i.e., over a convex
parameter set Θ ⊂ Rd, requires to use a conversion provided by the Constraint Set
Reduction algorithm described by [10]. We named Constraint Reward Doubling
Guess (CRDG) the combination of this algorithm together with the RDG algo-
rithm. Thanks to the reduction algorithm we project onto the set Θ, and convert
any algorithm with regret RT in the unconstrained setting to an algorithm that
guarantees 2RT in the constrained one. Overall, the resulting algorithm provides
the following guarantee:

RT (θ̊) ≤ 2||̊θ||2
√
T log

[
d(1 + ||̊θ||2)T

ε

]
, ∀θ̊ ∈ Θ, (30)

and
RT (θ̃) ≤ 2ε.

for a specific known parameter θ̃ ∈ Θ.
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To guarantee the budget constraint of Equation (1) as required by the COCO
framework, we need to set ε = µα/2 in the CRDG algorithm. Two main difference
emerge from this analysis. First, setting such ε requires the a priori knowledge of
the parameter µ, which conversely is not necessary to run either the CP or the
CS algorithms. Second, the regret bound in Equation (30) has an extra term of
log(T ) compared with ones provided by the CP and CS algorithms. Moreover,
the choice of the learning rate as ε = µα/2 is too conservative to provide a
performing algorithm in practice, as showed in experiments of Section 5.

C Online to batch conversion for COCO

In this section, we present the results implied by a low regret and conservative
algorithm in the COCO setting in the case i.i.d. examples drawn from a fixed
distribution. In particular, we are concerned with minimizing the expected error
e(hθ) = Ex,y∼D[l(hθ(x), y)], where x ∈ X , y ∈ Y are examples drawn from

a joint distribution D over the space X × Y, hθ : X → Ŷ is the prediction
function parameterized by θ, and l : Ŷ × Y → R is a loss function convex in
the first argument. If we run an online algorithm over the samples (xt, yt) with
ft(θt) = l(hθt(xt), yt), it has been shown that: [8] Any online algorithm U that
attains regret RT (U) satisfies, with probability at least 1− δ:

e(h〈θ〉T )− inf
θ∈Θ

e(hθ) ≤
RT (U)

T
+ 2

√
2 log(2/δ)

T
,

where 〈θ〉T := 1
T

T∑
t=1

θt, and θt are the parameters predicted by the online

algorithm U.
In the COCO setting, it is not sufficient that this conversion maintains the

regret guarantees since we are also concerned with the conservativeness constraint.
It is possible to show that the expected error of the strategy running CP is close
to that of the chosen default strategy θ̃:

An algorithm U that observes the conservativeness constraint, satisfies, with
probability at least 1− δ:

e(h〈θ〉T )− (1 + α)e(θ̃) ≤ 2(1 + α)

√
2 log(1/δ)

T
.

Proof. From the proof of Proposition 1 by [8] it is known that, with probability
at least 1− δ, the following holds:

e(h〈θ〉T ) ≤ 1

T
LT +

√
2 log (1/δ)

T
. (31)

On the other hand, let us define Ut :=
t∑

k=1

[l(hθ̃(xk), yk)− e(hθ̃)], and notice

that Ut is a martingale with respect to the natural filtration of the sequence of ran-
dom variables (x1, y1), . . . , (xt, yt). Applying the Hoeffding-Azuma inequality [4]
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on Ut, we get that, with probability at least 1− δ, we have:

1

T
L̃T − e(hθ̃) ≤

√
2 log(1/δ)

T
. (32)

By combining Equation (31) and Equation (32) we conclude that, with
probability at least 1− δ, we have:

e(h〈θ〉T )− (1 + α)e(hθ̃)

≤ 1

T
[LT − (1− α)L̃T ] + (1 + α)

√
2 log (1/δ)

T

≤ (1 + α)

√
2 log (1/δ)

T
,

where the last inequality follows from the fact that the algorithm U satisfies the
conservativeness constraint.
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D Experiments: Technical Details and Additional Results

In this section we present the technical details on the results presented in
Section 5, and additional results on the synthetically generated setting presented
in the experimental section, and add an experiment on a portfolio optimization
application.

D.1 Technical Details

The code has been run on a Intel(R) Xeon(R) CPU E5-4610 v2 @ 2.30GHz CPU
with 256 GiB of system memory. The operating system was Ubuntu 16.04.4 LTS,
and the experiments have been run on Python 3.5.2. The libraries used in the
experiments, with the corresponding version were:

– bootstrapped==0.0.2

– certifi==2020.12.5

– chardet==4.0.0

– cycler==0.10.0

– idna==2.10

– kiwisolver==1.3.1

– matplotlib==3.3.4

– numpy==1.20.1

– pandas==1.2.2

– Pillow==8.1.0

– pyparsing==2.4.7

– python-dateutil==2.8.1

– pytz==2021.1

– PyYAML==5.4.1

– requests==2.25.1

– scipy==1.6.0

– six==1.15.0

– tqdm==4.56.1

– urllib3==1.26.3

In addition we used GNU parallel [36] to parallelize the experiments.

D.2 CO2 Emissions

Experiments were conducted using a private infrastructure, which has a carbon
efficiency of 0.35 kgCO2 eq/kWh. A cumulative of 15 hours of computation was
performed on hardware of type Intel Xeon E5-2699 (TDP of 145W) to perform
the code corresponding to the experiments presented in Section 5. Total emissions
are estimated to be 0.76 kgCO2eq of which 0% were directly offset. Carbon
footprint estimations have been conducted using the Machine Learning Impact
calculator at https://mlco2.github.io/impact#compute presented in [22].
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Fig. 6: Evolution of the conservative ball radius rt: (a) CP-OGD algorithm, (b)
CS-OGD algorithm. The confidence intervals on the mean, represented in the
figures as semi-transparent areas, represents the 95% confidence intervals and
are computed by statistical bootstrap.

D.3 Additional Results on the Synthetic Regression Dataset

We analysed the behaviour of the conservative ball radius rt over the rounds t,
as the value of D̃ varies in the setting of the synthetic regression dataset. Recall
that a value of rt = D implies that the conservative ball includes the parameter
space Θ and, therefore, CP-OGD is playing the same parameter vector as OGD.
The results are presented in Figure 6, in which the t axis have been represented
in logarithmic scale. We reported the results only for D̃ ≤ 2, as for D̃ > 2 the
results were not significantly different than those of D̃ = 2. Figure 6a shows that
the CP-OGD, generally, has a conservative ball radius rt ≈ D =

√
2d before

CS-OGD. This suggests that the ability of CP-OGD being able to increase the
radius provides an advantage in terms of regret w.r.t. CS-OGD.

D.4 Online Portfolio Optimization

In what follows we discuss the adoption of the COCO framework in the specific
application of portfolio optimization.

Problem Formulation Online Portfolio Optimization (OPO) [39] can be mod-
elled as a sequential decision problem of an investor that, at each time t, has to
allocate its wealth among d stocks. The allocation is represented by the vector
θt ∈ ∆d−1 ⊂ Rd. Subsequently, the market chooses the vector of the rewards for
the stocks rt ∈ [l, u]d, where l = e−εl and u = e−εu , and the investor suffer a loss
ft(θt) = − log(〈θt, rt〉). With this choice of loss, we get that the wealth Wt(U) at
time t of an algorithm U is defined as:

Wt(U) = e−Lt ,
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Fig. 7: Results on the financial environment: (a) wealth Wt(U), (b) wealth budget
Pt(U).

where we recall that Lt =
t∑

h=1

fh(θh) is the cumulative loss suffered by the

algorithm U. The default parameter θ̃ ∈ ∆d−1 represents the index that an
investor wants to outperform over the entire time horizon T .

In the financial context, portfolios are generally compared in terms of wealth.
This translates in a different formulation of the conservativeness constraint defined
as follows:

Wt(U) ≥ (1− κ)W̃t ∀t ∈ [T ], (33)

where W̃t the wealth gained by playing θ̃ over t steps, and κ ∈ (0, 1) represents
the conservativeness level in this context. It is easy to show the above constraint
is implied by the one in Equation (33) using α = 1−κ

εlT
.

Notice that the log-loss used in the OPO case is not positive, therefore, the
use of the CP-OGD and CS-OGD algorithms requires to shift the loss to positive
values, i.e., using the following loss function:

ft(θt) = − log(〈θt, rt〉) + εl. (34)

Experimental Results We used a public dataset of 502 stocks collected with
minute frequency over from 2017/9/11 to 2018/02/16 for a total of 43, 148 days.7

Among the stocks that had a one-time step return of ±4%, we selected 100 random
stocks, and chose uniformly from them the default strategy θ̃. The conservative
level κ has been set to κ = 0.2, the diameter in this setting is D =

√
2 and the

gradient is bounded by G = εu
εl

, where εl = 0 and εu = log(u)− log(l) since we

used the shifted loss defined in Equation (34). As for the previous experiments,

7 https://www.kaggle.com/nickdl/snp-500-intraday-data.
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we used ηt = K√
t
, with K = D√

2G
, as learning rate for all the analysed algorithms.

This choice for K minimizes the theoretical bound on the regret of the OGD
algorithm.

We evaluated the algorithms in terms of wealth W (U) and in term of wealth
budged, defined as:

Pt(U) = Wt(U)− (1− κ)W̃t.

Results The results of the experiment are presented in Figure 7. In Figure 7(a)
we can see that wealth of the portfolios generated by the CP-OGD and CS-OGD
algorithm outperforms the OGD algorithm. This suggests that in some cases the
information given by the default strategy can greatly help the performance in
a difficult domain such as the financial one. Moreover, the budget of the OGD
algorithm, presented in Figure 7(b), does not satisfy the budget constraint of
Equation (33), while the CP-OGD and CS-OGD satisfy the constraint at all
t ∈ [T ]. This confirms the theoretical results provided above, stating that the
conservativeness is still assured by CP-OGD and CS-OGD with a specific choice
of the parameter α.


