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ABSTRACT:

The coastal environment is among the most fragile regions on our planet. Its efficient monitoring is crucial to properly manage
human and natural resources located in this environment where a large portion of our population lives. The objective of this con-
tribution is to design and develop a new set of methods suitable for detecting and tracking the coastline. Synthetic aperture radar
(SAR) technology is chosen because of the characteristic response from water and the acquisition consistency allowed by constant
illumination, day-and-night, and all-weather functioning. The proposed iterative detection method is based on superpixel segment-
ation. The resulting superpixels are filtered and then partitioned in land and water classes based on their median backscattering
with Otsu’s algorithm. The rationale is that the segmentation can follow the coastline before the filtering can degrade the spatial
resolution. A quantitative assessment of the results measures the distance to a manually-detected shoreline for the Lizard Island case
study; the average distance is 12.63 m, with 80% of the sampled points within 20 m. The innovative coastline monitoring process
exploits the consistency of SAR by analyzing a long time series. After a season-wise grouping, the land-water index is introduced
to erase the time oscillation of water backscattering caused by different sea states. The proposed index is modeled in time on a pixel
basis. A visualization technique that exploits the HSV codification of the color space highlights where and when changes happened.
A case study for this technique is carried out over the Reentrancias Maranhenses natural area. A quality assessment shows good
accordance with optical data that depicts the region’s dynamic.

1. INTRODUCTION

The coasts are the highly dynamical areas that define the bound-
ary between land and water, be it an ocean, a sea, or a lake
(Turner et al., 1998). This region hosts crucial infrastructures,
ecosystems, and about 40% of the world’s global human pop-
ulation (Martinez et al., 2007). The task of monitoring and
managing the coastal areas are of considerable social and eco-
nomic importance. The coastline (or shoreline) can be defined
as the physical interface between land and water (Dolan et al.,
1991). Our coasts undergo constant changes as rivers, currents,
waves, and tides move sediments inside, outside, and within
the nearshore zone. The human presence is also a strong foot-
print driver. Planned exploitation of coastal resources and side
effects of other activities result in the deterioration of the lit-
oral environment. Moreover, global warming induces ice melt-
ing that causes sea-level rise. The latter contributes to coastal
erosion, especially in low-lying and flat areas, through a com-
plex morphological adaptation (Mentaschi et al., 2018). Fur-
thermore, shoreline erosion and coastal flooding are among the
gravest effects of climate change according to the Intergovern-
mental Panel on Climate Change (IPCC) (IPCC, 1990).

Many in-situ methods for shore(line) monitoring are adopted,
such as direct measuring of distances (Ferreira et al., 2006) and
laser monitoring, cameras, and aerial photogrammetry. This
kind of high-resolution data helps in the understanding of the
coastal dynamic. However, the drawbacks are the highly local
nature of the monitoring and the consistent costs (in terms of
labor and equipment) if the goal is wide-area monitoring. Satel-
lite remote sensing (RS), thanks to the availability of big data
facilities dedicated to storage and elaboration (Gorelick et al.,
2017) is a resource for coastline monitoring. Optical RS, be-
cause of its high resolution has been and is widely used for
∗ Corresponding author

coastline detection and monitoring (Garcia-Rubio et al., 2015),
(Mentaschi et al., 2018), (Teodoro, 2016), (Toure et al., 2019).

Synthetic Aperture Radar (SAR), however, is an attractive al-
ternative for the studied problem. The coastline detection task
is possible with SAR scenes because of the distinctive response
from water areas. The interaction of transmitted signal and
earth’s surface depends, among others, on the roughness of
the scattering material. Since water in low wind conditions is
smooth, the reflection is mainly specular, therefore the backs-
cattering is very low. Water bodies could then be detected by
simply thresholding the histogram of the amplitude SAR im-
age (Ferrentino et al., 2020), (Spinosa et al., 2018). Satellite-
based SAR also overcomes some typical drawbacks of optical
RS. The illumination is precisely repeated between acquisi-
tions, therefore no problems are present due to different illu-
mination conditions. Moreover, its signal is in the microwave
part of the spectrum and can penetrate the water droplets that
form clouds. Revisit intervals of the European Space Agency
(ESA) constellation Sentinel-1 are between 1 and 3 days de-
pending on the latitude of the scene and therefore suitable for
consistent monitoring.

2. METHODOLOGY

In this section, the proposed algorithms are described. The data
sets are obtained with the Google Earth Engine (GEE) platform.
The products used are Sentinel-1 high definition Ground Range
Detected (GRD) scenes acquired with the Interferometric Wide
(IW) setting. Thermal noise removal, radiometric calibration,
and terrain correction are the preliminary operation that data on
the platform undergoes. Moreover, additional preliminary op-
erations such as image selection and temporal filtering are per-
formed server-side with GEE. Finally, the proposed algorithms
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are implemented locally with a Python Jupyter notebook, and
the final results are displayed with the QGIS software.

2.1 Coastline detection

SAR images are characterized by the so-called speckle: a spa-
tial fluctuation of the amplitude due to the interaction of the
electromagnetic wave with the scatterers on ground. Speckle is
a disturbance for image interpretation and, in particular, for the
recognition of the water-land boundary (Spinosa et al., 2018).
An initial despeckling is required: the pre-processing for the
proposed method consists of multi-temporal median filtering
applied to a stack of 5 subsequent acquisitions. The algorithm’s
input is a single channel image with, for every pixel, the me-
dian value of the pixel intensity in the different acquisitions that
compound the stack. In this case, the VH polarization is chosen
over the co-polarized channel because of the higher distance of
water and land spectral clusters (Ferrentino et al., 2020).

The first step of the developed algorithm for coastline detection
consists in segmenting the image in groups of pixels sharing a
common backscattering signature. A group of pixels is called
superpixel. This convenient and compact representation of im-
ages is appropriate for subsequent computationally demand-
ing problems. Different algorithms for superpixel segmenta-
tion are available in literature, and some of those were tested
like Quickshift (Vedaldi and Soatto, 2008) and Felzenszwalb
(Felzenszwalb and Huttenlocher, 2004), but the best suited for
SAR single-channel scenes is the simple linear iterative clus-
tering (SLIC). This clustering technique can segment an image
in superpixels by adapting the K-means algorithm in a space
that combines color values (proportional to the radar backscat-
ter) and image coordinates (Achanta et al., 2010). The main
parameters for the SLIC algorithm are:

• Number of segments: it defines the number of cluster
seeds at the first step of the SLIC algorithm. However, the
final number of segments will vary because in each itera-
tion some superpixels can be merged or split according to
their size: a superpixel is split if larger than the maximum
size or merged with an adjacent if smaller than the min-
imum size. This parameter is inversely related to the size
of the superpixel. In this paper we will refer to superpixel
size, which is independent of the analyzed area’s size;

• Compactness: this parameter defines the relative weight
between coordinate features and color feature for the space
definition. Large compactness yields to a square-shaped
superpixel because the coordinate features will be more
important than the color feature in the distance computa-
tion between pixels. On the other end, smaller compact-
ness leads to a superpixel that fits better the image edges
because the color feature of the pixel weights more.

In Figure 1 it is possible to appreciate the segmentation with
varying numbers of superpixels and compactness. If the su-
perpixel has a large size, the edge doesn’t follow small fea-
tures, like the small island in the lower right part of the im-
age. For what concerns the compactness, it is possible to note
the squared shape of superpixels on the left part of the image;
while on the right the edges follow objects with lighter contrast.

The superpixels are used as a processing unit for filtering: it is
a special case of spatial adaptive filtering with a very flexible
filter shape that fits the area’s morphology. The goal is to fur-
ther reduce the speckle effect, and at the same time to keep the

Superpix size = 100 pix
Compactness = 6

Superpix size = 100 pix 
Compactness = 2

Superpix size = 625 pix
Compactness = 6

Superpix size = 625 pix
Compactness = 3

Figure 1. SLIC results comparison with different parameters.
The original data is a mediated stack of 5 Sentinel-1 VH band

acquired over the Lizard island, Australia.

spatial details that characterize a coastline. The median value
of all the pixels inside a superpixel is computed and the value
is assigned as a unique value for that specific superpixel. The
median operator is chosen for its robustness against outliers.
Figure 2 shows the result of the filtering. Every spatial filtering
operation induces a loss in spatial resolution. Despite this, if
superpixels can fit accurately the coastline, the resolution of the
final result is not degraded by the filtering.

The final task is to define a suitable threshold that partitions
the classes of water and land based on the single-channel in-
formation of backscattering amplitude. Otsu’s method is a non-
parametric and unsupervised method of automatic threshold se-
lection for picture segmentation (Otsu, 1979). It can efficiently
identify the optimal partition value for a bimodal histogram.
The objective function to be maximized is the inter-class vari-
ance. Note that the goal is the same as the minimization of the
intra-class variance. In Figure 3, the bi-modal histogram of the
Lizard Island segmented with a superpixel size of 625 pixels
and compactness equal to 3 is shown. The red line represents
the threshold obtained with Otsu’s method.

When segmenting an image with the SLIC algorithm, a trade-
off is present. The larger the superpixel the larger the filtering
effect, hence small features (like tiny islands and small water
bodies inside the coast) can be disregarded by the algorithm.
On the other end, the larger the superpixel the worst the edge
will follow the coastline details. To overcome these issues, an
iterative approach can be used. The steps are depicted in Fig-
ure 4. The first four steps perform a rough coastline detection,
while the remaining will refine the result.

1. Large superpixel segmentation: the parameters for the first
segmentation with the SLIC algorithm are:

• Superpixel size: 400 pixels
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Superpix size = 100 pix
Compactness = 6

Superpix size = 100 pix 
Compactness = 2

Superpix size = 625 pix
Compactness = 6

Superpix size = 625 pix
Compactness = 3

Figure 2. Median filtering based on the superpixels region. The
original data is a stack of 5 Sentinel-1 VH band acquired over

the Lizard island, Australia.

• Compactness: 3

• Sigma: 1

2. Median filtering: the superpixels are filtered by assigning
to the whole superpixel the median value of its pixels.

3. Thresholding with the Otsu’s method. In panel 3, the
borders between the obtained land and water classes are
shown. This is a first rough approximation of the detected
shoreline.

4. Coast selection: the superpixels that lie at a maximum dis-
tance of 50m from the borders highlighted in panel 3 are
selected. In Figure 4, on panel 4 the purple area repres-
ents the selected region for the following high-resolution
processing.

Figure 3. The histogram for the Lizard island scene depicted in
the bottom right panel of Figure 2. The result of the Otsu’s

method (in red) is equal to -23.95 dB

5. Small superpixel segmentation: the selected part of the ori-
ginal image is segmented again with the SLIC algorithm.
The superpixel size is decreased to be able to follow the
coastline with greater accuracy. The parameters are:

• Superpixel size: 60 pixels

• Compactness: 1.5

• Sigma: 1

6. The filtering is performed again with the median oper-
ator: the median value of each superpixel is assigned to
the pixels in the group. In this step, the selected areas are
finely filtered. However, in panel 6 also larger superpixels
are shown in the not-selected region. It is possible to see
how the smaller superpixel has a smaller filtering power.

7. Thresholding with the Otsu’s method. The input of this
step is the histogram of the selected part of the scene
after segmentation and filtering. The final result is shown
against the original data. Analysis of the results are carried
out in the next Section.

0

1. LARGE SUPERPIX 
SEGMENTATION
2. MEDIAN FILTERING
3. THRESHOLDING
4. COAST SELECTION
5. SMALL SUPERPIX 
SEGMENTATION
6. MEDIAN FILTERING
7. FINAL RESULT

1 2

3 4 5

6 7

Figure 4. Pictorial representation of the algorithm steps. In
general the first 4 steps are a rough selection of the coastline, in

the subsequent steps the refinement is carried out.

This algorithm’s parameters are manually tuned with the visual
inspection of the intermediate results. In many case studies two
iteration were enough to capture the details of the coastline and
avoid the presence of false islands or water bodies. In the next
Section, the results of this algorithm are compared to optical
imagery.

2.2 Coastline monitoring

The proposed coastline monitoring approach exploits a long
time series of Sentinel-1 acquisitions to extract information
about the coastline shift in time. The proposed approach can
detect erosion and accretion phenomena by selecting the pixels
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that change in land cover during the studied period. In the
following we list the pre-processing operations operated with
GEE:

1. The acquisitions are grouped by season for a total of 16
seasons. The season with the least number of scenes has
seven measurements. Hence, this number of acquisitions
is selected for each season.

2. For every selected acquisition the product of the cross- and
co-polarized channels is computed and adopted as metric:

r = σvv · σvh (1)

3. A pixel-wise temporal filter on the 7 images stack is ap-
plied through the average operator.

The r metric is chosen because it empirically shows to max-
imize the land-sea contrast. When the average operator is ap-
plied, the reduction in the speckle presence is proportional to
the number of considered scenes. Hence an equal number of ac-
quisitions for each season should be considered because every
season should have the same reduction factor. The unit period
of a season is a trade-off between the need of a large number
of acquisitions to obtain enough despeckling and the need of a
sufficient number of data points in the time-series of four years.

The averaging also permits speckle reduction and erasing of
temporary effects due to extreme events. SAR systems provide
a great opportunity for monitoring because of the orbit repe-
tition and constant illumination. The backscattering from the
land areas presents stability when no changes occur. However,
sea backscattering is not constant in time since it varies with the
wave height (Tajima et al., 2019). The result is an oscillation of
the sea backscattering value in the seasonal time series obtained
with the pre-processing as Figure 5 shows. The left part of the
histograms, with low r values, has a variation in time depending
on the average sea state and wave height of the season.

Figure 5. Comparison of histograms for three scenes. Each
scene represent a 3 month period and is the pixel-wise average

of 7 scenes.

In this work we propose the introduction of the normalized land
water index (NLWI). This index normalizes the effect of sea-
state within the season scene. For the NLWI computation, the
estimation of the Gaussian mixtures for each seasonal scene is
required. A mixture model is a probabilistic model for repres-
enting sub-populations presence within an overall population.
For the problem of a SAR scene of a coastal region, the prior

hypothesis is the existence of two groups of pixels, represent-
ing the sea and land pixels modeled with a Gaussian density
function. The NLWI can then be computed as:

NLWIi,j =
ri,j − Ti

µl
i − µs

i

(2)

The required parameters for the computation are the mean of
the two sub-populations µl

i and µl
i, and the threshold Ti com-

puted as the intersection of the two Gaussian distributions. The
index i represents the season, while the index j is the pixel po-
sition in the image. The estimation of these parameters for the
Spring 2019 scene – which is the 10th season of the analysis –
is depicted in Figure 6.

Figure 6. Gaussian mixture estimation for the parameters
involved in the NLWI metric for the Spring 2019 scene.
µl
10 = −23.3 dB; T10 = −39.9 dB; µs

10 = −53.3 dB

Through NLWI, inter-temporal comparison of pixel values is
possible. This index has a particular histogram with positive
values assigned to land-pixels backscattering and negative val-
ues assigned to sea-pixels. Moreover, the two clusters will be
centered in ±1. This is a soft classification that is not meant to
define two clusters in each time series, but to describe the relat-
ive position of the pixel in the land-sea backscattering spectrum.

The NLWI time series of a single pixel can be modelled with
a simple linear relation. Two parameters – angular coefficient
and intercept – are estimated on a pixel basis. If the backscatter
decreases in time it means that the pixel is being covered with
water. Many pixels will present a variation in time, but the mon-
itoring task requires detecting areas that change the cover in the
monitored period. The eroded pixels are selected if the model
intercepts the horizontal axis and has a negative angular coef-
ficient. Another map is produced for the accretion areas: the
pixels are selected if the model intercepts the horizontal axis
and has a positive angular coefficient. Besides, the date when
the change happened (the time instant of the zero-crossing) is
an important parameter that is estimated.

Figure 7 shows the model fitting to data belonging to pixels
with different behavior. The two upper squares represent pixels
that are stable in their land-covering. They are characterized
by a very low angular coefficient and no intersection with the
land-sea border. The lower squares represent pixels that change
the land use in the analyzed period. The left one depicts a pixel
that transformed from sea to land. The right one represents an
erosion phenomenon: at the beginning, the pixel was classi-
fied as land, while from spring 2017 the pixel is sea. In this
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pixel, note that the model can estimate a change-date close to
the boundary of the time series. The angular coefficient can be
considered the velocity of accretion or erosion of a certain area.

Stable Land

Beach accretion Eroded Land

Stable Sea

Figure 7. Linear regression for single pixels belonging to
different groups. Each point in the time series is the NLWI

resuming the pixel state for a whole season. In the two squares
above represent stable areas. The lower squares represent two

dynamic pixels that mutates the land-cover.

The model, combined with the preprocessing and the NLWI, can
extract information from the large SAR data-set. However, an
appropriate visualization of the change date is necessary to al-
low for a proper interpretation. When dealing with spatial data
a map is the best option. The focus here is on the visualization
of the change date.

The hue, saturation, value (HSV) color space is adopted. It was
developed to align with how human perceive color-making at-
tributes. Figure 8 depicts the HSV color space as a cylinder.
The hue represents the color angle on the cylinder. This at-
tribute carries the most important information: the change date
that is computed as the horizontal intercept of the estimated lin-
ear model. The value of each pixel depends on the average
post-change NLWI. A color with 0% value is pure black, while
a color with 100% value has no black mixed. The closer the
NLWI to the new class (land or water: ±1) the higher the value.

The saturation of each pixel depends on its residual mean
squared error (RMSE) of the fitting. The saturation controls
the amount of color used: a color fully saturated will be the
purest color possible, while no saturation yields a greyscale
color. The smaller the RMSE the larger the saturation. Finally,
every pixel whose model presents a horizontal intercept in the
analyzed period is plotted according to the previous rules. The
result is showed in Figure 12.

3. CASE STUDIES

In this Section, the results of the two proposed algorithms are
analyzed. For the coastline detection algorithm, a quantitative
analysis is carried out, while for the monitoring approach the
lack of proper ground truth data allowed us just a visual com-
parison of the results with optical imagery.

3.1 Coastline detection results

The results for the proposed iterative routine are analyzed. The
implementation details are explained in Section 2.1.

Figure 8. HSV representation of color space. From Wikipedia:
SharkD / CC-BY-SA-3.0

Figure 9 shows the detected coastline in green and Planet
SkySat imagery with a 0.8 m pixel spacing. In pink, there is
also the manually digitized coastline with the optical data as a
reference. In general, it is possible to state that there are no

Figure 9. The SAR based detected coastline (in green) extracted
with the process explained in Section 2.1 is compared to the
manually digitized coastline (in green) based on the optical

imagery Planet SkySat (0.8 m pixel spacing), by ©Planet Labs
Inc. On the right there is an enlarged view to appreciate finer

details.

apparent georeferencing problems, as there is not a systematic
direction of the error. In the western part of the island, the de-
tected coastline is – in many sections – so close to the manual
digitized one that the two lines overlap. In the enlarged part,
on the right, it seems that the detected coastline follows bet-
ter the background reference in the sandy beach. On the other
end, the detection is worse where the coast is high. Where the
terrain morphology presents cliffs or sloppy areas, mechanisms
like layover, foreshortening or shadowing could make the re-
cognition of the coastline less accurate.

On the manually digitized coastline, points are selected with
a 50 m spacing. For each vertex, the minimum distance from
the detected shoreline is computed. Figure 10 depicts the dis-
tribution of the computed distances grouped by the pixel size
of 10 m. Each point for which the distance is lower than ten
meters (the pixel spacing) will fall in the first bin. The vast ma-
jority of the selected vertexes lie closer than two pixels from
the digitized counterpart. The average distance is 12.63 m. To
contextualize this number it is crucial to note that the pixel spa-
cing is ten meters but the resolution for the GRD product used
for the computation varies between 20.4 · 22.5 m2 and 20.5
· 22.6 m2 (range · azimuth) depending on the incident angle.
The resolution is defined as the minimum distance between two
objects that a measurement instrument can distinguish. A res-
ult with an average distance closer than half of the resolution

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-327-2021 | © Author(s) 2021. CC BY 4.0 License.

 
331



Figure 10. The graph depicts the distribution of the distance
between the manually digitized coastline and the detected

coastline. To compute it, about 360 points were selected on the
digitized coastline with a 50 m spacing and the minimum

distance to the detected coastline is computed.

with input limited to SAR data and an unsupervised approach
is considered out of reach.

Figure 11 depicts the cumulative distribution. It is possible to
appreciate that for 80% of the points, the distance is less or
equal to 20 m. For 95% of the points, the distance is smaller
than 30 m.

Figure 11. The graph depicts the cumulative distribution of the
distance between points 363 points equally spaced by 50 m on
the manually digitized coastline visible in Figure 9 and their

closest point on the coastline detected by the proposed
algorithm.

3.2 Coastline monitoring results

In this part, the results of the monitoring approach applied in
the natural area of the Reentrâncias Maranhenses are analyzed.
Here, accretion and erosion phenomena are attributed to strong
oceanic waves and tidal currents that can move large quantities
of sand (Magris and Barreto, 2010).

Figure 12 depicts a large erosion that occurs for a coastal length
of nearly 700 m. The depth of phenomenon (in the direction
perpendicular to the coastline) is around 70 m. The erosion is
gradual: a slice of about 20 m is lost every year. This phe-
nomenon can well be captured by the map on the upper panel
with the hue-based visualization of the change date. The right

Figure 12. On the panel above: visualization of an eroded beach
with the change-date used as hue. More details about the

visualization can be found in Section 2.1. The background is the
average r value for each pixel over the 4 years of analysis. On

the panel below, the estimated model for the points A,B,C,D on
the transect visible on the upper image. The color of the data and

the corresponding linear model matches the color of the pixel.

panel depicts the NLWI behavior over time and confirms the
previous analysis.

Four points are selected on the interesting transect. Point D
is on the coast in the first season, and – gradually in time –
the NLWI decreases. The date of covering by water is estim-
ated with the linear model. According to the proposed model,
for point D the covering happens between Spring and Summer
2017. For point C the switch happens later as well as for point
B. Point A is very close to the coastline at the time of the last
acquisitions, but the general behavior makes it likely that the
correct change date is at the end of 2020. A very simple linear
model avoids over-fitting the very complex behavior of coastal
traits that don’t have a clear dynamic. In the following para-
graph, the comparison with optical data provided by the com-
mercial company Planet is carried out.
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Figure 13 depicts the eroded area in the analyzed years. Four
optical acquisitions are compared. The search is focused on
the first quarter of each year. The best image in that period is
chosen, but for the years 2017 and 2020, the best cloud-free
acquisition of the area is only in late March. This demonstrates
the difficulty to obtain consistent data in the tropic climate.

The four optical acquisitions do not present the same tidal
height. However, the coastal position comparison with the
graduated transect confirms the algorithmic results. The veget-
ated area shrunk year by year. The disappearance date (accord-
ing to the monitoring method) for the four investigated points is
from outer to inner: 2nd quarter of 2017, 4th quarter of 2017,
beginning of 2019, 3rd quarter of 2020.

29/03/2017 15/01/2018 06/01/2019 23/03/2020

Figure 13. The optical acquisitions operated by ©Planet Labs
Inc. Each acquisition shows the state of the coast at each year,
but tidal level could be different for each panel. However, it is
possible to appreciate the regression of the vegetated area. The
black transect with the gridded bar is the same one that was on

Figure 12, so that a comparison with the SAR analysis is
possible.

With optical imagery, the shoreline detection is not trivial be-
cause of the similar color between dry sand, wet sand, and shal-
low waters that is the object of the optical measurement sys-
tems. In contrast, SAR-based systems investigate a different
physical parameter: the roughness of the interacting object. The
surface might be smooth for both wet sand and shallow water,
but for dry sand and vegetation, the roughness is substantially
different. Hence the backscattered signal presents more pecu-
liarity that makes the coastline detection easier. Besides that,
the ability to acquire measurements consistently allows for tem-
poral filtering that can erase the tidal effect that would negat-
ively influence the long-term analysis.

4. CONCLUSIONS

SAR imaging is a suitable method for the tasks of coastline de-
tection and its monitoring in time. The distinctive water re-
sponse, in addition to the ability to work day-and-night and in
all weather conditions make this technology preferable to op-
tical system if the goal is frequent and consistent monitoring.

Coastal detection is tackled in literature with a variety of meth-
ods that span from simple pixel-wise, amplitude-based pro-
cessing to very sophisticated deep learning algorithms. The ap-
proach that this contribution proposes can be described as an
unsupervised approach, taking the definition from the machine
learning field. A new iterative coastline detection algorithm has
been developed with the adoption of processes related to im-
age segmentation – like SLIC – and statistical analysis, like
the Gaussian mixtures model or Otsu’s histogram threshold-
ing method. The validation is carried out by comparing the
method’s results over the Lizard Island with a manually detec-
ted shore with optical imagery. The average distance between

the detected and digitize coastline is 12.63 m and 80% of the
two lines are separated by less than 20 m.

We propose also an innovative approach for shoreline monit-
oring that exploits the consistent acquisitions of the Sentinel-1
mission. A long-term data-set allows erasing the tidal level vari-
ation by averaging on a seasonal basis. Moreover, the proposed
NLWI index overcomes issues in comparing images with dif-
ferent sea or wind states. The map visualization of the change-
date – estimated through a linear model of NLWI with time
– proved to be an effective information carrier. The fact that
SAR has a constant illumination source enables temporal aver-
aging and makes the technology suitable for long term monit-
oring. The possibility to compare a large number of measure-
ments acquired consistently over time makes the individuation
of trends possible and worth to investigate for the understanding
of coastal dynamics. Future developments include the valida-
tion with proper ground truth data and the adoption of a more
complex NLWI-time model to describe different dynamics.
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