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Abstract: In recent years, digitalization has taken an important role in the manufacturing industry. 

Digital twins (DT) are one of the key enabling technologies that are leading the digital transformation. 

Integrating DT with IoT and artificial intelligence enables the development of more accurate models to 

improve scheduling tasks, production performance indices, optimization and decision-making. This work 

proposes a distributed DT framework to improve decision making at local level in manufacturing 

processes. A decision-making module supported on an adaptive threshold procedure is designed and 

implemented. Finally, the proposed framework is evaluated on a pilot line, highlighting the behavior of 

the decision-making module for detecting possible faults, alerting the operator and notifying the 

manufacturing execution system to trigger actions of reconfiguration and scheduling. 
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1. INTRODUCTION 

Nowadays, digitalization has taken an important role in the 

manufacturing industry. New paradigms such as the Internet 

of Things (IoT) and Cyber-Physical Systems (CPS) have 

contributed to achieving smart-factory solutions based on 

real-time communications, data exchange between all the 

production system elements, fault detection and prediction 

and knowledge-based decision making (Cattaneo et al. 2018).  

CPS bridge the gap between the virtual and physical worlds, 

thanks to their computing and communication capabilities 

(Wolf 2009; F. Castaño et al. 2019). In this sense the Digital 

Twin (DT) plays a very important role due to the ability to 

replicate an existing physical twin, by emulating the 

behaviour in the informational space and offering a 

connection between the physical system and virtual 

counterpart (Michael Grieves 2015). Moreover, it is 

persistent although the corresponding physical twin may not 

always be connected or online (Borangiu et al. 2020). Thus, it 

is possible to mirror in the virtual world what is happening in 

the physical world through synchronization of the simulation 

model parameters with the physical values in real time 

(Negri, Fumagalli, and Macchi 2017). By integrating DT 

with IoT and artificial intelligence (AI) it is possible to run, 

in the cyber space of CPS, living simulation models that 

continuously learn and update from their interaction with the 

physical world. Moreover, the DT has the potential to be the 

beating heart of certain types of decision making in 

manufacturing, when full implementation of DT allows a bi-

directional communication (Kritzinger et al. 2018); this, in 

fact, enables the possibility both to monitor and control the 

production equipment, when properly connected to the 

control system (Cimino, Negri, and Fumagalli 2019). 

The application of Manufacturing Execution Systems (MES)  

on shop floors is a popular solution to monitor and track the 

production progress and to orchestrate visualization, planning 

and control tasks in several industrial scenarios (Ramis Ferrer 

and Martinez Lastra 2018; Mohammed et al. 2017). MES 

provides many functionalities to the current industry (Arica 

and Powell 2017). Integrating DT models with MES may 

improve many of those functionalities, such as the execution 

of real-time monitoring, resources scheduling, management, 

maintenance and performance analysis on the shop floor. In 

particular, one of the most promising approaches to exploit 

the DT is to monitor specific sensor data to elaborate them in 

order to make predictions in the realms of safety, energy 

consumption and reliability of the production system (Negri, 

et al. 2019). In order to carry out this task, several approaches 

have been proposed based on statistical and machine learning 

models (Cattaneo and Macchi 2019; Beruvides et al. 2018). 

In order to yield better predictive models for condition-based 

monitoring, fault detection and predictive maintenance, DT 

play a fundamental role because through simulations it is 

possible to enrich the existing knowledge databases relevant 

for the prediction. Improved predictive models, then, provide 

capabilities to perform optimal decision making and 

reconfiguration actions in order to improve the shop floor 

production performances (Villalonga et al. 2018; La Fé-

Perdomo et al. 2019).  

The use of distributed architectures in manufacturing also 

allows an increase in efficiency and reliability (Ferrer et al. 

2018; Iarovyi et al. 2015; Haber et al. 2015). Scalability 

provides robustness against failures, allowing reconfiguration 

actions without affecting the production. Besides, distributed 

frameworks based on DT allows to exploit the computational 

capabilities of CPS for local decisions, through the local DT-

based monitoring (e.g. component wear monitoring). Only 

the locally generated data that are needed for a systemic 

decision making (e.g. scheduling or system optimization) are 

then passed on from the local DT (at workstations, single 
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equipment pieces) to the global DT level (at production 

system level) (Haber et al. 2017; Beruvides et al. 2017).  

Embedding DT in local controllers offers other advantages 

when enriched with improved predictive models for 

condition-based maintenance, as well as with an efficient 

local decision making to detect faults and aid operators. 

Therefore, the design and deployment of a distributed DT 

framework with embedded DT in the local nodes, by using a 

decision-making procedure supported on adaptive thresholds 

techniques and local simulations is expected to improve the 

operation management and to carry out more efficient 

scheduling tasks. The following research presents a 

distributed DT framework for manufacturing processes to 

carry out condition monitoring and decision making at 

equipment level.  

The paper is structured as follows. Section 2 presents the 

research design. The review of the state of the art of DT in 

manufacturing is presented in Section 3. Section 4 describes 

the proposed distributed DT framework and the decision-

making algorithm. Following, section 5 introduces the case 

study and framework validation. Finally, the conclusions are 

presented in section 6.  

2. RESEARCH DESIGN 

This paper aims at proposing a framework for distributed 

decision making based on a DT simulation synchronized with 

the field. The role of local and global decision-making and 

the relative interaction with the DT of the production 

equipment, and of the production system as a whole, will be 

pointed out. The DT simulation is run on MatLab/Simulink 

(www.mathworks.org) following the simulation software 

selection methodology by (Fumagalli et al. 2019). The 

distributed framework is then validated in the Industry 4.0 

LAB at the School of Management of Politecnico di Milano. 

The DT simulation model has been created starting from the 

work reported in the literature (Negri, et al. 2019). 

3. RELATED WORKS 

DTs are one of the key enabling technologies that are leading 

the digital transformation. They were not initially conceived 

in the manufacturing sector: the first DT were developed in 

the aerospace sector to replicate the crack and fatigue 

behavior of the air vehicles in order to improve their safety 

and maintenance policies (Shafto et al. 2012); in some cases 

the DT were used for the design and the system engineering 

of the air vehicles (Ríos et al. 2016). It is with this system 

thinking and lifecycle perspective that this concept has 

migrated also to the manufacturing sector, initially as a 

virtual replica of robot systems (Schluse and Rossmann 2016; 

Grinshpun et al. 2016) and later to improve the lifecycle of 

products and production systems starting from the design 

phase (Gabor et al. 2016; Guerra et al. 2019). This is to grant 

a higher reuse and sharing of information generated during a 

phase of the system lifecycle and valuable for another phase. 

Literature reports many examples of information continuity 

and data management along product lifecycle through DT 

(Rosen et al. 2015; Abramovici, Gobel, and Dang 2016). 

Powered by the IoT, CPS capabilities, fog and cloud 

computing and AI (F Castaño et al. 2018; Fernando Castaño 

et al. 2017), DT supports new intelligent services to connect 

and interact with physical objects. These capabilities allow to 

realise various functions, spanning from simple monitoring 

(Schroeder et al. 2016) to data elaboration to predict and 

optimize future asset behaviour (Gabor et al. 2016). 

Moreover, by connecting and synchronizing with the physical 

world, DT empowers real-time human-machine collaboration 

improving cognitive services, proactive guidance, etc. (Wang 

et al. 2019). It is this double nature of data modelling and 

elaboration that allows the decision making support for asset 

lifecycle management according to (Macchi et al. 2018).  

Literature does not provide a unique vision of DT-based 

decision making. An interesting work by (Kritzinger et al. 

2018) classifies the DT proposals in literature according to 

their communication properties for decision making. The 

three situations are: (i) “Digital Model”,  if the digital replica 

does not connect to the physical word but it is a separated 

modelling of the real system; (ii) “Digital Shadow”, if the 

digital replica is synchronized by communicating and 

connecting physical and the digital worlds; (iii) “Digital 

Twin”, if the communication is bidirectional, from the 

physical system to the digital world and vice versa. It is clear 

therefore that in order to have automated support of decision 

making is necessary to have a “Digital Twin” in this latter 

meaning, being able to communicate decisions and trigger 

actions to the control system of a production equipment. 

On one side, it is clear why research on DT is investigating 

their role inside the changes in the control hierarchies brought 

forward by the digitalization: e.g. in view of the adaptations 

of the automation pyramid and, in particular, of the MES in 

CPS-based production systems (Cimino, Negri, and 

Fumagalli 2019). On the other side, other research works 

investigate which decisions are made in detail. In fact, DT 

may be digital replicas of a single equipment, of a single 

production process or of the overall production system and 

decisions may also involve only single equipment or 

processes or the whole production system. From this 

viewpoint, some works are focused on two strategies. Firstly, 

based on the fact that the decision supporting AI does not lay 

in the DT itself but is a connected layer that offers the rules 

and the capability to identify the best alternative (Raileanu et 

al. 2020; Cardin et al. 2020). Secondly, the possibility to 

distribute the decision making by triggering the DT of single 

equipment as modules of the overall production system 

digital replica (Valckenaers 2019). Different architectures to 

aggregate the DT modules of single equipment into a unique 

DT of the production system have been proposed on the basis 

of these two strategies (Redelinghuys, Kruger, and Basson 

2020; Micheal Grieves and Vickers 2016).  
Theoretical foundations of this work are inspired in the 

strategy considering that, through DT, it is possible to 

leverage local and global control capabilities (Borangiu et al. 

2020). The former ones are related to decisions that are made 

following local parameters and impact on local actions. For 

example, health monitoring of a single equipment piece, 

following one or few parameters gathered through local 

sensors, and the decision to stop the machine or send an alert 

to the workstation by operator screen. The latter are related to 

decisions that are made following a number of information 

gattered from different system sources and impact on the 

system as a whole, such as multi-objective optimization or 

scheduling (Beruvides, Quiza, and Haber 2016). 
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4. DIGITAL TWIN-BASED DISTRIBUTED 

FRAMEWORK 

The DT modelling can be classified into three main detail 

levels: (1) local, (2) system and (3) global, according to the 

system that it represents. At the local level, DT represent the 

dynamics of the equipment pieces that compose the different 

production systems. At system level, the interaction between 

the equipment pieces that make up a production line. Finally, 

at global they replicate the behaviour of the entire shop floor 

production. Depending on the DT level, different actions can 

be carried out aimed to optimise the production, perform 

predictive maintenance, scheduling, reconfiguration and, 

generally speaking, decision making to assist the operators, 

as shown in the Section 3. 

Implementing distributed DT frameworks provides the ability 

to carry out actions at each level to increase management 

efficiency. This may hold true at all levels, from the single 

equipment pieces to the overall shop floor management: the 

behaviors are simulated and decisions can be made according 

to alternative scenarios trials and what-if analysis, reaching a 

higher efficiency not only at a global level but also at a local 

level. Figure 1 shows the proposed framework. It is centred 

on promoting local decision-making, as an example for 

improving maintenance actions on a single equipment, 

through the DT module. The framework implements the local 

and global levels.  

 

Fig. 1. Distributed Framework diagram. 

Two main modules compose local nodes: the DT of 

manufacturing equipment and the decision-making 

procedure. Moreover, a predictive model based on machine 

learning algorithms is embedded in the local DT module. 

This model interacts with the DT and the process in order to 

detect and predict the current and future state of the asset, 

thus enabling to improve the decision making process. In 

particular, to implement condition-based maintenance with 

some predictive capabilities, different tools can be adopted, 

either based on statistical approaches, AI approaches or 

model-based approaches, in order to assist the operator in the 

fault detection, and also to predict the asset behavior up to the 

failure (Guillén et al. 2016; Jardine, Lin, and Banjevic 2006). 

Thus, the local DT, also enhanced with machine learning 

algorithms, may enable to support the development of the 

whole prognostics and health management (Guillén et al. 

2016). 

In the global node, a DT of the shop floor collects the 

information from local DTs, which include part of the sensors 

data and the relevant information of the local decision-

making. It also interacts with the MES to get additional 

information to improve the accuracy of the digital replica in 

order to guarantee a better scheduling and global 

optimization. The scheduling and the global optimisation 

modules are responsible to carry out actions of 

reconfiguration and optimization based on the information 

collected from the global DT, the MES, the performance 

indices and other parameters and variables defined by the 

operators.  

4.1 Local decision making 

The decision making about the process condition or state is 

conducted by analyzing residuals (difference between the 

actual output and the output estimated by the model). 

Diagnosis techniques establish a threshold that determines the 

residuals limits, which correspond to normal operating 

conditions. The threshold value is decisive since an 

excessively low value would generate too many false alarms 

and high thresholds would increase the not detected existing 

faults probability. Setting the critical value of the residuals to 

identify a fault becomes a hard task. The threshold is set 

based on different statistical criteria (variance, standard 

deviation, mean), deterministic criteria (based on distance 

measurements in vector spaces) or using methods based on 

AI techniques (Zhang et al. 2019; Matía et al. 2019). 

The evaluation of the residuals and the decision making about 

the condition or state of the process are two stages closely 

linked and essential for the proper functioning of the whole 

system. One of the simplest strategies is the method of the 

weighted sum of the square of the residuals (WSSR) (Hatami 

2018). The WSSR method is based on the sequence of 

residuals ( Me ): 

( ) ( ) ( )ˆ
Me t y t y t= −      (1) 

where ( )y t  is the output of the real process, and 
^

( )y t is the 

estimated output. 

Under ideal operating conditions, the process is theoretically 

considered with white noise and zero mean with a covariance 

matrix ( )tVR . The deviation of a certain variable (η) is used 

to detect faults based on a threshold (ε ), empirically 

calculated, and using a time window length [t-NT -1: t] (Eq. 

2). A simple approach to establish threshold levels is to 

observe the residuals in the fault-free cases and set the 

appropriate level to obtain activation in the real cases. 
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Improving the system fault detection robustness is necessary 

for the decision making stage. Most of these techniques are 

based on the use of an adaptive threshold in the decision 

making module. Different adaptive strategies can be used 

based on heuristic criteria or using exact mathematical 

functions (Beruvides et al. 2013). The direct relationships 

between the occurrence of failures and the infinite and 

Euclidean norms of the residuals vectors and their derivative 

can be established. Thus, the threshold value can be 

dynamically updated. In the local decision making, two main 

functions were considered  by combining the influence of the 

residuals vector and its derivative on setting the adaptive 

threshold (Eq. 3-4). Thus, the information of the residuals 

vector and its derivative is used, not only to evaluate the 
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4. DIGITAL TWIN-BASED DISTRIBUTED 

FRAMEWORK 

The DT modelling can be classified into three main detail 

levels: (1) local, (2) system and (3) global, according to the 

system that it represents. At the local level, DT represent the 
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production systems. At system level, the interaction between 

the equipment pieces that make up a production line. Finally, 

at global they replicate the behaviour of the entire shop floor 
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predictive maintenance, scheduling, reconfiguration and, 

generally speaking, decision making to assist the operators, 

as shown in the Section 3. 
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higher efficiency not only at a global level but also at a local 

level. Figure 1 shows the proposed framework. It is centred 

on promoting local decision-making, as an example for 

improving maintenance actions on a single equipment, 

through the DT module. The framework implements the local 

and global levels.  

 

Fig. 1. Distributed Framework diagram. 

Two main modules compose local nodes: the DT of 
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procedure. Moreover, a predictive model based on machine 
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detect and predict the current and future state of the asset, 

thus enabling to improve the decision making process. In 
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failure (Guillén et al. 2016; Jardine, Lin, and Banjevic 2006). 

Thus, the local DT, also enhanced with machine learning 

algorithms, may enable to support the development of the 

whole prognostics and health management (Guillén et al. 

2016). 

In the global node, a DT of the shop floor collects the 

information from local DTs, which include part of the sensors 

data and the relevant information of the local decision-

making. It also interacts with the MES to get additional 

information to improve the accuracy of the digital replica in 

order to guarantee a better scheduling and global 

optimization. The scheduling and the global optimisation 

modules are responsible to carry out actions of 

reconfiguration and optimization based on the information 

collected from the global DT, the MES, the performance 

indices and other parameters and variables defined by the 

operators.  

4.1 Local decision making 

The decision making about the process condition or state is 

conducted by analyzing residuals (difference between the 

actual output and the output estimated by the model). 

Diagnosis techniques establish a threshold that determines the 

residuals limits, which correspond to normal operating 

conditions. The threshold value is decisive since an 

excessively low value would generate too many false alarms 

and high thresholds would increase the not detected existing 

faults probability. Setting the critical value of the residuals to 

identify a fault becomes a hard task. The threshold is set 

based on different statistical criteria (variance, standard 

deviation, mean), deterministic criteria (based on distance 

measurements in vector spaces) or using methods based on 

AI techniques (Zhang et al. 2019; Matía et al. 2019). 

The evaluation of the residuals and the decision making about 

the condition or state of the process are two stages closely 

linked and essential for the proper functioning of the whole 

system. One of the simplest strategies is the method of the 

weighted sum of the square of the residuals (WSSR) (Hatami 

2018). The WSSR method is based on the sequence of 

residuals ( Me ): 

( ) ( ) ( )ˆ
Me t y t y t= −      (1) 

where ( )y t  is the output of the real process, and 
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( )y t is the 

estimated output. 

Under ideal operating conditions, the process is theoretically 

considered with white noise and zero mean with a covariance 

matrix ( )tVR . The deviation of a certain variable (η) is used 

to detect faults based on a threshold (ε ), empirically 

calculated, and using a time window length [t-NT -1: t] (Eq. 

2). A simple approach to establish threshold levels is to 

observe the residuals in the fault-free cases and set the 

appropriate level to obtain activation in the real cases. 
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Improving the system fault detection robustness is necessary 

for the decision making stage. Most of these techniques are 

based on the use of an adaptive threshold in the decision 

making module. Different adaptive strategies can be used 

based on heuristic criteria or using exact mathematical 

functions (Beruvides et al. 2013). The direct relationships 

between the occurrence of failures and the infinite and 

Euclidean norms of the residuals vectors and their derivative 

can be established. Thus, the threshold value can be 

dynamically updated. In the local decision making, two main 

functions were considered  by combining the influence of the 

residuals vector and its derivative on setting the adaptive 

threshold (Eq. 3-4). Thus, the information of the residuals 

vector and its derivative is used, not only to evaluate the 

 

 

     

 

degree of process-model matching, but also to use the trend 

in the residuals vector to check the process state. 
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where   
∞

⋅ and
2

  ⋅ are the infinite norm and the Euclidean 

norm respectively; Me and Me are the residuals vector and its 

derivative in the window [t-NT –1, t]. 

5.  CASE STUDY 

The validation of the proposed framework was conducted on 

an assembly pilot line at the Industry 4.0 Laboratory at the 

School of Management of Politecnico di Milano. The system 

consists on a simplified mobile phone prototype assembly 

line. The route of each product can be tracked through a 

RFID-tagged chip embedded on the pallets that carry the 

product. The production line is fully equipped with sensors. 

The measured value from each sensor can be read via OPC 

UA protocol from all elements in the local network (i.e. 

MES, edges). The line is composed of seven workstations, 

each one dedicated to one or more assembly tasks.  

 
Fig. 2. Pilot line schema. 

Figure 2 presents the configuration of the pilot line. The first 

station “Manual” (1) is the starting point and where the 

loading/unloading takes place. The “Front Cover” station (2) 

is in charge of the positioning of the front cover on the pallet. 

The “Drilling” station (3) is where cover drilling is 

performed. In the “Robot Assembly” station (4), the Printed 

Circuit Board (PCB) and the fuses are placed inside the front 

cover. The “Camera Inspection” station (5) controls the 

different components positioned in the inside of the cover. In 

the “Back Cover” station (6) the back cover is placed over the 

front cover. The “Press” station (7) presses the two covers to 

close the piece. At the end, the piece returns to the initial 

station where it is unloaded by the operator. The position 

number 8 in Figure 2 represents a bridge that switches the 

production flow either to the robotic cell or to the camera 

station, depending on the assembly route of the current piece. 

5.1 Results 

In industrial production systems it is important to maintain 

the operational parameters into the established limits since 

failures cause unexpected stops in the production process or 

breakdowns in some of the main components. Sometimes 

failures are hard to detect just in time by the operators, and 

usually a complex analysis of the signals is needed. The 

proposed framework improves the decision making process 

in local stations. Through the DT simulations at local level 

and the signals acquired from the process, the decision 

making module either directly sends commands to the MES 

to solve automatically the issues or sends to the operator 

screens assists the information for an early stage fault 

detection resulting in a better maintenance scheduling and 

increasing the asset useful life. The validation of the 

framework was carried out through a real-time analysis of the 

pressure signal in the station 2. During the process, 41 

operations were considered. In each operation, 10 samples of 

the pressure were measured, with a sampling frequency of 1 

Hz, obtaining a total of 410 samples. A DT of the station 2 

was developed in MatLab, and the decision making 

algorithms were embedded in the station 2 local edge. 

 
Fig. 3. Process signals and DT output. 

In order to measure the system capability to identify the 

occurrence of anomalous situations and to trigger the 

decision making process, a leak was simulated by opening an 

exhaust valve while the operation 27 (samples from 270 to 

280) was carried out. The valve opening was increasing 

gradually to exceed the process operational limits. The DT 

was able to reproduce the process behavior in normal 

conditions and even during the leak start stage, through the 

DT re-parametrization process. When the pressure presents a 

higher decrease rate, a deviation arises between the pressure 

signal from process and the output of the DT, the model 

parameters update process is not able to fallow the dynamics. 

Although as the trend of the leak stabilizes DT was able to 

follow the dynamics of the process. Figure 3 presents the 

pressure signal and the output from the DT simulation during 

the operations. Based on adaptive threshold algorithms, the 

residuals, obtained from process signals and the output of the 

DT, are analysed in a window of time. In the current process 

the number of samples within a window was set to 10 to 

cover an entire operation. Since the window covers an entire 

operation, the alarm value was set differently in each 

operation based on the value of the calculated threshold. 

While the process is in normal conditions, the alarm value, 

calculated from the threshold, keeps in a narrow strip because 

the residuals trend was very similar in each operation. When 

the leak starts, the alarm is still set in normal state since the 

pressure signal still shows a normal tendency. In operation 28 
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(samples from 280 to 290) when the leak drops the pressure 

with an accelerated rate, the algorithm detects the change in 

the residuals and sets the system in alarm mode to alert the 

operator and triggers the global decision making. Figure 4 

presents process pressure signal and the value of the alarm set 

in each operation. The change on the actual value trend of 

pressure causes a deviation in the residuals, which is detected 

by the system, allowing an early detection of abnormalities. 

In general, the DT and the local decision making module 

provide the system with the capability to detect abnormal 

conditions in operation and either trigger actions on the MES 

or warn operators. Moreover, it also serves to notify the MES 

that the station is operating out of parameters and to trigger a 

general decision making process to reschedule the production 

line and maintain the target productivity. 

 
Fig. 4. Process signal and alarm value during the operations 

6. CONCLUSIONS 

This paper presents a distributed DT framework that enables 

a clear improvement in decision making about abnormal 

situations at local level. The framework is composed by 

several local DT, to simulate every equipment of a 

production line, and by a global DT that replicates overall 

system behaviours. Within this framework, the local decision 

making module was implemented using an adaptive threshold 

procedure. Finally, the framework is tested and validated on 

an Industry 4.0 pilot line. The decision making module was 

able to detect a possible fault in the pressure line through the 

analysis of the pressure signal of the real process and the 

outputs of the local DT. The implemented framework is able 

to alert the operator and to notify the MES about the 

occurrences of anomaly conditions in order to re-schedule 

and carry out corrective actions and to adapt the production 

schedule accordingly. The results contribute to research on 

DT by demonstrating their effectiveness in operations and 

asset management, pointing out the variant scenario of 

decision making, supported by synchronized simulation, data 

management and data conditioning to monitor, predict and 

optimize the behaviour of manufacturing systems. Future 

works will focus on exploring the industrial impact of the 

decision making support system and will expand the 

application areas to other operations such as quality control 

and safety issues. 
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outputs of the local DT. The implemented framework is able 

to alert the operator and to notify the MES about the 

occurrences of anomaly conditions in order to re-schedule 
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schedule accordingly. The results contribute to research on 

DT by demonstrating their effectiveness in operations and 

asset management, pointing out the variant scenario of 
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