A review study about energy renovation of building facades with BIPV in urban environment

Authors	Erika Saretta ^{1,2} , Paola Caputo ¹ , Francesco Frontini ²
	1 Department of Architecture, Built environment and Construction
	Engineering, Politecnico di Milano, Italy
	² ISAAC, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Canobbio, Switzerland

Corresponding author	Erika Saretta
E-mail address	erika.saretta@supsi.ch
Full postal address	ISAAC, Department for Environment Constructions and Design University of Applied Sciences and Arts of Southern Switzerland (SUPSI) Campus Trevano, Via Trevano CH-6952 Canobbio Switzerland

A review study about energy renovation of building facades with BIPV in urban environment

Abstract

To support urban energy transition, energy retrofit of building stock plays a key role since the majority of existing buildings have inadequate performances in comparison to current energy regulations. At the same time, the need to increase the building retrofit rate in a sustainable way can find advantageous applications through local renewable energy systems (RES) such as photovoltaics. However, the energy demand of existing buildings (and energy retrofit measures) and the potential RES production have been generally considered as separated disciplinary fields so far. Conversely, a synergic and integrated approach can be more efficient in terms of time and/or costs and can bring to novel urban energy strategies and policies enhancing the energy retrofit rate and the integration of photovoltaic in buildings (BIPV).

Therefore, thanks to systematic analysis of the literature of these two disciplinary fields in terms of approaches, methods, tools and analysed characteristics, this paper aims at identifying their synergies, which can allow to set the basis for an integrated assessment of the urban BIPV retrofit potential for facades. Indeed, differently from other RES, BIPV, as multifunctional element, can both improve the energy performance of building envelopes and produce electricity from solar radiation in urban contexts.

Keywords: urban energy demand, building facade retrofit, solar potential, BIPV

Contents

1 Ir	ntroduction	3
1.1	BIPV retrofit of facades at the building scale	4
1.2	The potential of BIPV retrofit of façades at the urban scale	5
2 N	Aethodology	6
2.1	Literature search	7
2.2	Boundaries for the literature review	8
2.3	Criteria	10
3 R	Results of the review	11
3.1	Buildings energy demand and envelope retrofit potential at the urban scale	11
3.2	BIPV potential of facades at the urban scale	18
4 D	Discussion	24
5 C	Conclusions	26

1 1 Introduction

Among the multiple challenges that cities have to deal with, the sustainable and rational use of energy represents one of the urban priorities, since it is widely recognized that cities are the places where a wide amount of energy is consumed. In order to tackle this issue, both European and Swiss governments recognize the need for policies and strategies for urban energy transition to address energy savings of buildings and decentralized local renewable energy systems (RES).

Indeed, buildings are considered as a high-energy consuming sector, especially when considering the existing building stock. From recent investigations (EU, 2017a; EU, 2017b), about 35% of European buildings are older than 50 years and about 75% of buildings have been estimated to be energy inefficient, involving the need for their energy retrofit to save energy and to reduce CO₂ emissions. Also, the Swiss Energy Strategy envisions the reduction of the energy demand of buildings as a key element to save energy but the annual retrofit rate of buildings corresponds to an amount of 1% (Streicher et al., 2017). Hence, the energy retrofit of existing buildings is still an urgent issue.

14 With regard to local RES that can be used in urban contexts, photovoltaics (PV) seems to have a great potential to provide sustainable electrical energy in the urban environment (Kammer & Sunter, 2016). 15 16 In detail, integrating PV systems in buildings through Building-Integrated Photovoltaics/BIPV (Biyik 17 et al., 2017; Ritzen et al., 2017) can support the energy transition of the construction sector (Shukla 18 et al., 2017a), allowing to: (i) take advantage of existing urban surfaces without requiring additional 19 surfaces or infrastructure, (ii) produce energy where it is required, especially considering the 20 increasing electricity demand of the building sector (Enerdata, 2015), but also for multiple uses (e.g. 21 production of electrical energy and/or thermal energy for heating or cooling) (Scognamiglio & 22 Rostvik, 2013; Allegrini et al., 2015), and (iii) fulfil the building envelope requirements as stated in the EN 50583 and in the IEC-TS 61836. 23

In accordance with the need to pursue building energy saving and produce energy from local RES in urban areas, one of the possible strategies to be adopted in cities and urban districts can be represented by the BIPV retrofit of building facades.

27 1.1 BIPV retrofit of facades at the building scale

28 Façade retrofit represents an effective strategy to reduce building energy demand, as demonstrated 29 by Martinez & Choi (2018) and Wu et al. (2017). Depending on the existing building envelope 30 properties, climate conditions and techno-economic constrains, as well as legislative regulations, 31 different façade retrofit solutions can be designed to improve the energy behaviour of the envelope, 32 the indoor thermal comfort of building users and enhance the architectural quality of the building skin 33 (Ma et al., 2012). Among others, a design option for façade retrofit is represented by the use of 34 multifunctional BIPV elements, thus allowing to reach the above-mentioned goals and, at the same 35 time, produce electricity from solar energy.

From scientific literature and market surveys, it arises that several BIPV products for facades are 36 37 emerging (Shukla et al., 2017b; SUPSI-SEAC, 2017). Realizing BIPV facades is still a challenging 38 task in comparison to roofs due to the presence of mutual shadings of buildings, urban obstacles, 39 openings and other architectural elements, which can significantly affect the BIPV potential (Vulkan 40 et al., 2018). However, the contribution of BIPV facades in retrofit intervention is not entirely 41 negligible. Indeed, renovating the façades of an existing building with multi-functional BIPV 42 elements can have relevant advantages, such as the possibility to achieve plus energy building goals 43 (Frontini et al., 2014; Sorgato et al., 2018), the possibility to spread the energy production throughout 44 the day thanks to different facades orientations (Brito et al., 2013), and their contribution to enhance 45 energy performances of the envelopes (Chiu et al., 2015). Consequently, the BIPV retrofit of facades 46 at the building scale is already considered an "attractive solution for effectively and sustainably 47 retrofitting building envelope" (Martín-Chivelet et al., 2018). This is also proven by the existing 48 scientific literature investigating the techno-economic aspects related to BIPV retrofit (Evola & 49 Margagni, 2016; Aguacil et al., 2017; Scognamiglio, 2017) and the aesthetical/customization aspects

(Attoye et al., 2017; Saretta et al., 2017), which are of particular interest for citizens especially within
urban areas (Naspetti et al., 2016; Sánchez-Pantoja et al., 2018).

52 1.2 The potential of BIPV retrofit of façades at the urban scale

53 If at the building scale the evaluation of the BIPV retrofit potential is achievable thanks to the 54 availability of data about building geometry, urban context, energy demand, building envelope 55 properties and solar irradiation calculation, at the urban scale it is not trivial to determine the urban 56 BIPV retrofit potential of building facades. Indeed, collecting data about the potential of individual 57 buildings for such a purpose is not a suitable method because it is time consuming and costly. Therefore, in this study, determining the urban BIPV retrofit potential of facades means the 58 59 identification of vertical building surfaces at the urban level where both energy-retrofit (to reduce energy demand) and BIPV (to produce required energy) are possible and needed, with an approach 60 61 that moves from the single building evaluation. By this integrated evaluation at the urban level, there 62 is the chance to quantify the urban retrofit potential of facades with multifunctional BIPV elements, thus providing decision-makers with reliable data for supporting urban energy policies aimed at the 63 64 energy transition of the existing building stock.

However, in current urban energy planning studies and practices for existing urban areas, a common approach is to consider the energy demand of the building stock (and, hence, the urban energy retrofit potential) in a separate way from the urban BIPV potential of buildings, except few examples such as in Theodoridou et al. (2012) and Groppi et al. (2018). Furthermore, distinguishing such two disciplinary fields generally involves also the development of two different policies and financial instruments – one for building energy retrofits and one for BIPV installations.

In this paper, with the aim to set the basis for overcoming the inefficient separation among these disciplinary fields, their review in terms of approaches, methods, tools and analysed characteristics is carried out in order to try to answer the following question: "*are there synergies between the two disciplinary fields, which can allow to develop an integrated approach to evaluate the urban potential for BIPV retrofit of facades?*". This has been done thanks to the literature analysis of the two disciplinary fields: on one hand, urban energy demand and envelope retrofit potential of buildings (section 3.1), and, on the other hand, the urban BIPV potential of façade (section 3.2). The former can be defined as the expected energy demand of buildings and the related energy-saving from energy-efficient measures applied on facades at the urban level, while the latter as the available solar energy that hits the facades at the urban level. The methodology for the analysis of the literature is described in section 2.

82 2 Methodology

As this paper is aimed at investigating whether there are synergies for an interdisciplinary assessment 83 84 of the existing building stock to support urban BIPV retrofit of building facades, a preliminary fundamental step is the analysis of the two main disciplinary fields involved in this topic: on one 85 86 hand, the buildings energy demand and envelope retrofit potential at the urban scale, and, on the other hand, the BIPV potential of facades at the urban scale. Indeed, the former allows to understand the 87 88 need for envelope energy retrofit or, at least, which buildings need energy retrofit at the urban scale, and the latter allows to know the potential of solar energy for BIPV installations. In detail, the 89 90 methodology for the review consists of four main phases (Figure 1):

- 91 Phase I: literature search of studies about the two disciplinary fields (section 2.1);
- Phase II: selection of the relevant literature according to the boundaries (section 2.2) and
 definition of the review criteria (section 2.3);
- 94 Phase III: analysis of the selected literature in accordance to the review criteria, as described
 95 in section 3;
- Phase IV: identification of synergies useful to understand if an integrated approach, in terms
 of methods, tools and analysed characteristics, for urban BIPV retrofit of facades is feasible
 (section 4).
- 99

101

100

Figure 1 - Phases of the methodology for the review

102 2.1 Literature search

103 This phase has represented the preliminary step in the process of the literature review, allowing 104 authors to collect several scientific works from the Scopus, Science Direct and Google Scholar 105 databases about the two main disciplinary fields.

106 Specifically, for the studies related to the building energy demand and energy retrofit potential at the 107 urban scale, the literature search has been focused on scientific works published since 2010, because in the last decade, the evaluation of the energy performance of buildings has shown a growth because 108 109 of the development of advanced techniques and methodologies (Aghamolaei et al., 2018). The 110 keywords that have been used to identify building energy demand and renovation potential at the 111 urban scale have been "urban energy demand", "building stock energy demand", "urban energy modeling", "urban energy saving", "building renovation" and "building energy performance" as 112 113 keywords. The total number of papers found was 90. In this disciplinary domains, several studies have been developed focusing on different aspects, such as, among others, multi-scale issues (e.g. 114

Reinhart & Cerezo Davila, 2016), multi-criteria issues (e.g. Wang & Holmberg, 2015), and/or data
retrieving issues (e.g. Cajot et al., 2017; Caputo & Pasetti, 2015).

117 The literature search has been focused on scientific works published from 2010 also for studies related 118 to the urban solar potential for existing urban areas. Indeed, from 2010, Sustainable Energy Action 119 Plans (SEAPs) have been introduced in European countries as a voluntary procedure to develop and 120 adopt actions and measures aimed at reducing CO₂ emissions and energy demand, also thanks to the 121 analysis of the RES potential. Thus, from the need to quantify urban RES potentials, also solar energy 122 potential studies have been developed. In this case, the keywords used in the above-mentioned databases are "urban solar potential", "solar energy estimation", "photovoltaic potential", "solar 123 124 urban planning", "solar maps", "solar potential analysis" and "BIPV potential". The total number of 125 papers found was 85. Several studies have been retrieved and it arises that they have been developed 126 with attention to a plenty of aspects, such as, among others, the influence of the urban morphology 127 (e.g. Sarralde et al., 2015; Chatzipoulka et al., 2016), the data source (e.g. Lukac et al., 2013; Martin et al., 2015), the solar irradiation calculation method (e.g. Martinez-Rubio et al., 2016). 128

129 2.2 Boundaries for the literature review

In order to provide a meaningful review of the two disciplinary domains in accordance with theobjective of this study, some boundaries have been set by authors.

132 2.2.1 Studies about buildings energy demand and envelope retrofit potential at the urban

133 scale

For this disciplinary field, only studies characterized by a bottom-up approach and capable to include building and envelope properties have been included in the analysis. Indeed, in accordance with the classification performed by Swan & Ugursal (2009) and Kavgic et al. (2010), energy demand of the building stock can be calculated by choosing two main approaches: the top-down approach, to obtain energy consumption maps or heat-maps using historical aggregated data about macroeconomic parameters at regional and national levels (e.g. energy price and income) and other parameters related

140 to the city (e.g. population density and urban morphology), and the bottom-up approach that allows 141 to combine disaggregated data of individual buildings to assess the energy consumptions ranging 142 from the community level up to urban levels (Frayssinet et al., 2018). If the former considers the city or the nation as a whole, without accounting for the individual entities (e.g. buildings), the latter relies 143 on building-related data, so that it is particularly advantageous when energy data about buildings are 144 available. Even though this can involve more calculations because of the huge amount of information, 145 146 the bottom-up approach permits to characterize the energy performances of the urban building stock 147 taking into account more specific information about individual elements of the built environment and, 148 for this reason, it is suitable for a more accurate quantification of the urban BIPV retrofit potential of 149 facades. Another emerging approach is represented by the hybrid approach that has been developed in order to analyse the energy performance of neighbourhoods and urban districts by means of the 150 combination of statistical and building physics methods, for instance using both available real data 151 152 about buildings and statistical data when real information are not available. Figure 2 describes 153 different models methods and used for bottom-up approaches.

Figure 2 - Bottom-up approach: models and methods to determine building energy demand at the urban scale

156 2.2.2 Studies about BIPV potential of facades at the urban scale

157 The BIPV potential at the urban scale is generally calculated starting from the solar energy potential

assessment with further technical hypothesis on BIPV. Indeed, as defined by Mainzer et al. (2014),

- 159 PV potential can be classified into four categories:
- Theoretical potential: the total yearly solar irradiation received in a geographical area without
 considering any limitation, such as geographical or technical obstacles,
- Geographical potential: the total yearly solar irradiation integrated over building surfaces,
 suitable for the installation of solar energy systems,
- Technical potential: the generated energy from solar energy systems, calculated starting from
 the geographical potential and taking into account PV module and system efficiency,
- Economical potential: the technical potential that is economically exploitable, considering
 market prices for systems, energy tariffs and the expected system lifetime.
- Considering that the focus of this study is on building facades, only potential studies capable to consider building vertical surfaces are selected, thus involving that the choice of geographical, technical and economical BIPV potential studies about existing facades where approaches, methods, tools and analysed characteristics are reported. For instance, studies about the relations between the urban morphology and the solar potential are not considered in this analysis since they provide information for a preliminary investigation, generally without providing quantitative data about the BIPV potential on building surfaces.

175 2.3 Criteria

The review criteria for the analysis of the literature have been defined by authors with the aim to identify synergies among the two disciplinary fields in terms of approaches, methods, tools and analysed characteristics. In detail, the criteria are the followings:

- scale: the size of the urban area and the number of analysed buildings (if available),

spatial model: the type of model to describe the urban environment used as input for the
calculations,

182 - aim: the specific aim set by authors,

183 - method: the method used and/or developed by authors to achieve the proposed aim,

184 - tools: instruments used for the calculations.

In addition to these, authors included also criteria related to the most investigated characteristics,which have been subdivided into three main levels:

187 - envelope characteristics, such as transmittance, state of conservation, constructive properties,
 188 etc...,

- building characteristics, such as building types, construction year, geometrical features, etc...,

- urban characteristics, such as effects of nearby buildings, vegetation, etc....

In particular, the specific investigated characteristics are not defined *at priori* but they are listed one by one depending on their appearance in the analysed studies. In such a way, every specific characteristic can be included, thus proving a complete overview of the state of the art.

194 3 Results of the review

As a result of the application of the boundary criteria, the selected studies of the two disciplinary fields are in the amount of 18 for the buildings energy demand and envelope retrofit potential, and in the amount of 14 for the urban BIPV potential of facades. These studies are reported and analysed in Tables 1 and 2.

199 3.1 Buildings energy demand and envelope retrofit potential at the urban scale

From the analysis of the selected studies, it arises that the energy demand and the retrofit potential of buildings at the urban scale are evaluated for both urban districts and large cities. The majority of these evaluations ground on 2D georeferenced maps of the building stock, which are generally imported into GIS software. Indeed, thanks to GIS, other information can be added, for instance to obtain 2.5D urban models, or can be managed to carry out analysis of the energy demand. It is 205 interesting to note that, so far, only the study of Chen et al. (2017) relies on the 3D city model that is 206 combined with GIS to include building-related data, which can be visualized by users on a web-tool. 207 Although all the studies assess the energy demand of the building stock by adopting a bottom-up 208 approach, different methods and models are developed and/or implemented by authors: some of them 209 are characterized by statistical models (e.g. Howard et al., 2012; Mastrucci et al., 2013; Evola et al., 210 2014; Mutani et al., 2016; Belussi et al., 2017; Moghadam et al., 2018) and others by engineering 211 models (e.g. Ren et al., 2012; Ascione et al., 2013; Caputo et al., 2013; Braulio-Gonzalo et al., 2016; 212 Österbring et al., 2016; Kazas et al., 2017; Serrano-Jimenez et al., 2017) or hybrid methods (e.g. 213 Fonseca & Schlueter, 2015). Furthermore, some of the analysed studies address also strategies for the 214 building retrofit providing some reference scenarios (e.g. Mastrucci et al., 2013; Delmastro et al., 215 2016; Evola et al., 2016), even though very few consider RES. For instance, Serrano-Jimenez et al. 216 (2017) and Gupta et al. (2018) take into account the option to include RES in the retrofit process but 217 without assessing their urban potential. In addition to the above-mentioned aspects, this analysis 218 shows that the most common tools used in engineering and hybrid methods are building energy 219 simulation tools, such as EnergyPlus and TRNSYS. With regard to the analysed characteristics, it is 220 necessary to highlight that their appearance in the analysed studies depend on the available datasets 221 and on the method chosen by authors. For instance, engineering and hybrid methods are generally 222 capable to include both building characteristics, such as geometrical features, intended use and 223 construction period, and detailed data also about the building envelope characteristics such as thermo-224 physical properties (e.g. Caputo et al., 2013; Fonseca & Schlueter, 2015), whereas statistical methods 225 rely on less detailed data, also at the building cluster scale (e.g. Howard, 2012).

Even though this literature review can be not fully exhaustive, it arises that few studies include the evaluation of the building orientation and the influence of the urban context, as well as the state of conservation and the last building retrofit. Although the state of conservation and the last building retrofit can be omitted in a preliminary study about the energy consumptions of the building stock, they represent fundamental information for the next assessment of envelope energy retrofit potential

- 231 (Dall'O' et al., 2012), that generally represents the following step of urban energy policies aimed at
- a more sustainable built environment.

Year	Author	Scale	Aim	Spatial Model	Method	Envelope characteristics	Building characteristics	Urban characteristics	Tools
2012	Dall'O' et al.	Urban (8005	Estimation of the	2D map of the	Each building is described	Geometrical	Geometrical features:		GIS software to store,
		buildings)	urban retrofit	building stock		features: opaque and	volume and floor area		analyse and visualize
			potential for			transparent surface	Orientation		data
			residential buildings			Material type	Construction Period		
						State of conservation	Heating demand		
						Historical constrains			
		Urban (1	Estimation of	2D geo-rectified	Multiple linear regression		Total building floor area		
	Howard of	million	buildings energy	database	statistical analysis using		per zip code (divided in		
2012		buildings)	end-use intensity for		data depending on ZIP		8 building's typology)		
	aı.		space heating, DHW		codes instead of buildings'				
			and electricity		construction type or age				
		Urban /	Assessment of total	2D housing stock	Building physics model to	Envelope	Geometrical properties		AusZEH tool
		Regional (n.a.)	building energy	model developed	obtain end-use energy	transmittance values	Building type		
			consumption with	using census data	evaluation by the	for opaque and	Construction period		
			hourly resolution		aggregation of hourly	transparent elements	User profile		
2012	D 1		considering building		consumptions for				
2012	Ren et al.		construction and		representative buildings				
			materials,		(288)				
			appliances, local						
			climate and						
			occupancy patterns						
		District (573	Characterization of	2.5D municipal	Energy consumptions are	U-values (opaque	Geometrical properties:	Adjacent	GIS software to store,
		buildings)	the energy	model	calculated for each	and transparent	floor area, perimeter,	buildings and	analyse, visualize
			performance of new		building	elements) defined	volume	specific	data
			and existing			depending on	Building type	orientations	EnergyPlus
2012	Ascione et		buildings			building' types	Construction period		
2015	al.					Contiguities of	Orientation		
						envelopes	Ventilation rate and		
							indoor heat gains defined		
							depending on building'		
							types		

		Urban (≈	Assessment of	2.5D municipal	Statistical model using	Thermo-physical	Geometrical properties:		GIS software to store,
		64.000	buildings' energy	model	building' archetypes	and constructive	floor area, perimeter,		analyse, visualize
		buildings)	consumptions for a			characteristics for	volume		data
2013	Caputo et al.		city or a district and			the defined	Building type		EnergyPlus
			evaluation of the			archetypes	Construction period		
			effects of different				Orientation		
			energy strategies						
		Urban (300.000	Identification of	2D map of the	GIS-based bottom-up		Number of occupants		GIS software to store
		dwellings)	energy consumption	building stock	statistical models using a		and floor area per		and analyse
2014	Mastrucci et		profile and savings		multiple linear regression		dwelling. Electrical		information
2014	al.		potential of large		method		energy and natural gas		
			residential stocks				consumptions per		
							dwelling.		
		Urban (1392	Assessment of	2.5D map geo-	Hybrid approach: data	Geometrical	Geometrical features:	Surrounding	GIS software to store,
		buildings)	spatial	referenced database	from local building	features: window to	area, height	environment	analyse, visualize and
			and temporal	and digital elevation	archetypes	wall ratios	Orientation and urban		disseminate data
2015	Fonseca and		variations of the	model of the area	are used in a novel	Thermo-physical	context		Model for energy
2015	Schlueter		energy demand of		dynamic building energy	properties (opaque	Construction year and		calculation
			buildings		model	and transparent	last renovation		EnergyPlus for
						elements)	Occupancy types		validation
							Generation system		
2016	Braulio-	District / Urban	Assessment of the	2.5D map geo-	GIS-based prediction	U-value for opaque	Orientation and urban	Urban block type	GIS software
	Gonzalo et	(n.a.)	energy demand for	referenced database	method capable to combine	and transparent	context	Street height-	Dynamic building
	al.		heating and cooling		building physics modelling	elements	Building type	width ratio	simulation software
			and indoor thermal		and statistical inference		Year of construction	Specific	
			comfort of				Shape factor (S/V)	orientation	
			residential buildings						
2016	Delmastro et	Urban (5585	Development of a	2D map of the	Thanks to the	Construction	Destination use	Contiguous	GIS software
	al.	buildings)	bottom-up approach	building stock	characterization of the	materials	Construction period	buildings for	
			for investigating the		building stock, reference	Share of transparent	Shape factor (S/V)	RBs	
			socio-economic		buildings (RF) are	envelope surface	Percentage of heated		
			feasibility		identified. Association of		volume		
			and technical		energy performances				
			suitability, from a						

			policy perspective,		to RBs. Definition of urban			
			of different		cost-optimal level of			
			renovation measures		energy performance, socio-			
			at the urban level		economic feasibility			
					factors and scenarios			
2016	Evola et al.	District (458	Definition of the	2D map of the	Statistical model based on	U-value of each	Geometrical	GIS for representation
		buildings)	space heating	building stock	regression methods has	building element	characteristics: buildings	
			demand for		been used to define the		size and shape	
			residential buildings		primary energy		Age of construction	
					consumption			
2016	Mutani et al.	Urban (n.a.)	Assessment of urban	2D map of the	Buildings are classified	Geometrical	Geometrical data from	GIS open source tools
			residential space	building stock	according to their volume,	characteristics	GIS database and Census	and TRNSYS (for
			heating		construction period	(external surface)	database (S/V,	RB)
			consumptions		and to the surface to	Material/structural	construction period)	
					volume ratio. Association	properties		
					of a space heating energy			
					consumption value to the			
					buildings with two			
					different methods:			
					reference buildings (RB)			
					and linear regression (LR)			
2016	Österbring	District (433	Development of a	2.5D GIS model	Engineering model	Envelope area	Geometrical data	GIS software and
	et al.	buildings)	methodology for			U-value based on an	Energy data: type of	EABS model (Energy
			building-stock			age-type	heating, HVAC systems,	Assessment of
			description using			classification	no. of stories, no. of	Building Stocks)
			building-specific				staircases, attachment to	
			data and measured				other buildings and	
			energy use				heated floor area	
							Construction year	
2017	Belussi et al.	District / Urban	Estimation of the	2D map of the	Statistical model to classify		Dimensions (height,	GIS software
		(n.a.)	energy	building stock	buildings into categories		surface and volume)	
			consumptions and		based on standard open-		Intended use	
			performances of		source data		Period of construction	
			buildings					

2017	Chen et al.	District (940	Analysis of the	3D city model	Definition of UBEM based	Envelope insulation	Building footprint	Shading	EnergyPlus and
		buildings)	potential retrofit		on CityBES platform that		Building type,	Neighbourhood	OpenStudio
			energy and cost		allows to select and analyse		Building height	buildings	Simulation Engine
			savings of city		energy retrofit measures for		Construction year	Shared walls	GIS software
			districts through the		each building of the district		Number of stories		
			open web-based				Lighting systems		
			platform CityBES				HVAC systems		
			(City Building				Equipment efficiency		
			Energy Saver)						
2017	Kazas et al.	District (twelve	Definition of		Engineering model based	Air infiltration	Geometrical properties		EnergyPlus
		buildings)	detailed overall		on samples of the		Shadings		
			thermal energy		representative building		Internal loads		
			demand profile						
2017	Serrano-	District (n.a.)	Estimation of the		Reference building	Permeability and	Heating, cooling and		Building energy
	Jimenez et		residential district			thermal	domestic hot water		simulation tool
	al.		retrofit potential			transmittance of	demands		
						walls and windows			
						Permeability of			
						windows			
						Solar factor			
2018	Gupta et al.	Districts (n.a.)	GIS-based approach	2D map of the	Identification of urban	Wall construction	Construction year		GIS-based energy
			that combines	building stock	areas suitable for retrofit	U-values	Geometrical data (S/V)		model with
			available national		and individual building	Transparent area	Roof area and orientation		calculation from other
			and local data on		evaluation for retrofit		Existing solar energy		software (DECoRuM,
			buildings and energy				systems		BREDEM-12 and
			to provide targeted				Estimated energy		SAP 2009)
			low carbon measures				consumption data		
2018	Moghadam	Urban (3600	Estimation of the	2.5D map of the	2D/3D GIS-based approach	U-values for opaque	Geometric data (S/V,		GIS software
	et al.	buildings)	energy	building stock	combined with a multiple	surfaces and	floor area, no. of floors)		
			consumptions of		linear regression	transparent surfaces	Construction period		
			residential buildings				Building type		
			for heating space				Monthly space heating		
							consumptions		

Table 1 - "Bottom-up" studies developed for assessing energy consumptions or for estimating energy retrofit potential in urban areas

233 3.2 BIPV potential of facades at the urban scale

234 Of the 85 studies collected from the literature search, only 14 are related to the geographical, technical and economical BIPV potential of facades at the urban scale. Even though some of them assess also 235 236 the roofs potential, the analysis is focused only on aspects related to the estimation of the BIPV 237 facades potential. All of 14 studies propose methods for predicting the BIPV potential of the existing facades on the district and city scales. Nevertheless, the majority evaluate the BIPV potential in terms 238 of received radiation (geographical potential) and generated energy (technical potential) and only the 239 240 studies of Fath et al. (2015) and Brito et al. (2017) assess also the economic benefits (techno-economic 241 potential).

Even though this review can be not fully exaustive, the approches developed or adopted in the selected studies for the calculation of the BIPV potential on facades are bottom-up and they can be categorized into three main categories, as shown also in Figure 3:

245 1) Approaches based on real/statistical building surface data

The methods that are used for this kind of approach are generally based on real/statistical building surface data and correction factors according to façade/envelope types such as in the study developed by Dias et al. (2015);

249 2) Approaches based on 3D models with solar irradiation simulations

250 Urban environment can be modelled with 3D features (e.g. starting from CAD or CityGML

data) and, thanks to specific software (e.g. Radiance) the solar irradiation can be computed

considering building obstructions by means of detailed models or using correction factors,

- which reduce the total roof/façade area to obtain the suitable area for solar systems. Examples
- of this approach are the works of Caamaño-Martin et al. (2012), Lobaccaro et al. (2012),

Amado and Poggi (2014) and Fath et al. (2015);

256 3) Approaches based on GIS methods

265

Independently from the adopted approach, since solar irradiation is time and weather dependent, an important aspect is related to the temporal fluctuation of energy production that has been taken into account by Redweik et al. (2103), Catita et al. (2014) and Brito et al. (2018). Even though knowledge about hourly production data can be strictly dependent on the calculation method, it can be very useful to assess the energy self-sufficiency of buildings. This is suitable especially for small districts, since for larger urban areas it is difficult to manage hourly data about energy generation and demand. Furthermore, what is interesting to note is that the majority of the studies relies on 2.5D or 3D urban

277 models, which are necessary to evaluate geometrical dimension and orientation of facades to calculate

the BIPV potential.

279 However, the architectural characteristics of facades (e.g. openings, balconies, cornices...) are 280 generally not included in such urban models but their influence on the real BIPV potential is 281 considered thanks to a second phase where reduction factors are applied, such as in such as in Amado 282 & Poggi (2014), Dias et al. (2015), Fath et al. (2015), Wegertseder et al. (2016), Brito et al. (2017) and Vulkan et al. (2018). With regard to the urban characteristics that are included in the BIPV 283 284 potential calculation, this review shows that the shadow of nearby buildings is considered in the 285 majority of the cases, while few studies are capable to consider the influence of the vegetation (e.g. 286 Redweik et al., 2013; Bremer et al., 2016; Brito et al., 2017) and only one considers mutual reflections 287 (Fath et al., 2015).

Finally, it is important to note is that BIPV facades play fundamental roles, indeed, as demonstrated by Fath et al. (2105) for a high-density urban area where the solar potential of roofs is in the amount of 53% while the solar potential of facades represents the remaining 47% and by Vulkan et al. (2018) for high-rise buildings. Even though such a distribution can vary depending on the urban morphology, the contribution of facades for energy production is relevant to be taken into account.

Year	Authors	Scale	Aim	Spatial model	Method	Envelope characteristics	Buildings characteristics	Urban characteristics	Tools
	Caamaño-	Urban (two	Geographical	3D model from	Detailed GIS database of each facade and roof	Structural		Shadows due to	Tool of the Solar
	Martin et al.	districts of	potential of	survey	with info about active solar potential, that is	characteristics from 3		nearby buildings	Energy Institute
2012		376 + 710	facades and		computed by means of the software tool of the	roof and 3 façade			
		hectares)	roofs		Solar Energy Institute (Instituto de Energía Solar -	typologies			
					TU Madrid)				
	Lobaccaro et	Urban (n.a.)	Geographical	3D model	Development of a tool (SolarPW) to evaluate the			Shadow of one nearby	SolarPW
2012	al.		potential of		mutual overshading between two buildings			building	
			facades						
	Redweik et al.	Urban (area	Technical	3D model from	From LiDAR data a 3D model is generated. Then,	No windows, no	Geometrical features	Trees and building	MATLAB
		of about	potential of	elaboration of	the method (algorithm SOL) combines it with a	balconies	Orientation	shadows. No	
2013		160'000 m ²)	facades and	airborne LiDAR	radiation model and the astronomical model to			reflections	
			roofs	data	calculate the solar radiation with a high spatial				
					resolution. Moreover, "the method calculates				
					hourly shadow maps and facade shadow maps for				
					the estimation of the direct radiation as well as a				
					sky view factor map and facade sky view factor for				
					the estimation of the diffuse radiation"				
	Amado &	Urban (n.a.)	Technical	3D urban model	An urban area is subjected to a solar analysis by	Roof typologies,	Geometrical features	Shadow effects of	Autodesk
2014	Poggi		potential of		means of Ecotect and data are extrapolated to GIS	shading elements	Orientation	nearby buildings	Ecotect
2014			facades and			(utilization factors)			
			roofs						
	Catita et al.	Urban (n.a.)	Geographical	3D model from	MATLAB [®] algorithm, called SOL, that takes		Geometrical features	Shadow effects of	MATLAB
2014			potential of	DSM and	DSM, astronomical model and radiation model to		Orientation	nearby buildings	
2014			facades	airborne LiDAR	obtain global radiation on vertical facades,				
				data	implemented in GIS environment				

	Karteris et al.	Urban (n.a.)	Technical	Creation of a	Evaluation of the most suitable building's	Morphology of the	Geometrical features	shadow effects of	
			potential of	2.5D model from	typologies for PV. The selected archetypes have	facade, WWR, row	Orientation	nearby buildings	
			facades	DSM and DTM	been subjected to dynamic energy simulation to	balconies, U values of			
2014					calculate the solar potential, the energy output, the	facades			
					energy payback period and the CO_2 savings. Then,				
					through GIS, the effect of shadows is considered				
					with empirical rule				
	Dias et al.	Urban (n.a.)	Technical	No 3D models	Methodology to assess the domestic solar water	Shading due to roofs			
			potential of	are used	heating, thanks to the collection about roofs	elements are			
			facades and		number, area, inclination, orientation as well as	considered by means			
2015			roofs		restriction, the suitable area for solar thermal	of reduction factors			
2015					systems has been calculated through correlation				
					factors with the ground area of buildings, by				
					building typology and city district. Same				
					methodology for BIPV				
	Liang et al.	Urban (n.a.)	Geographical	3D model	Development of a computation engine -		Geometrical features	Shadow effects of	GRASS GIS
2015			potential of	required	SURFSUN3D - that, thanks to the 3D model and		Orientation	nearby buildings	r.sun
			facades and		the r.sun model, calculate solar irradiation				
			roofs						
	Wieland et al.	Urban	Geographical	CityGML 3D city	Solar radiation is calculated on a 3D urban model		Geometrical features	Shadow effects of	Python script
		(13'000	potential of	model of	on each surface thanks to point grids on building		Orientation	nearby buildings	
2015		buildings)	facades and	Karlsruhe	surfaces. Then, the solar irradiation income for				
			roofs		each point (reflection not yet) is computed				
					considering the shadows at a particular time step				
	Bremer et al.	Urban (n.a.)	Geographical	3D model from	Creation of the 3D model from different data set	Roof overhangs		Shadow effects of	GIS
2016			potential of	geometries, 2.5D	and implementation of a radiation model (based on			nearby buildings and	SAGA improved
2016			facades and	DEM and 3D-	standard ray-tracing) with a texture approach to			vegetation	module
			roofs	voxel	calculate the solar potential				
	Fath et al.	Urban (n.a.)	Techno-	3D city model	Assessment of the potential in LOD2 by means of	Utilization factors for	Geometrical features	Shadow effects and	Radiance
			economical		Radiance simulations	roofs/facades and for	Orientation	mutual reflections of	
2016			potential of			historical, structural		nearby buildings	
			facades and			or architectural			
			roofs			reasons			

	Wegertseder et	Urban (n.a.)	Technical		1st sub-model: solar potential map from the solar	Reduction factors are	Geometrical features	Obstructions due to	
	al.		potential of		radiation + topography (Cercasol). Definition of 6	used to consider	Orientation	nearby buildings and	
2016			facades and		urban zones analysed with URBES model for	architectural elements		topography	
			roofs		obstructions. ArcMap to assess potential. 2nd sub-				
					model: energy system model				
	Brito et al.	Districts (244	Techno-	DSM from	Development of 3D PV potential tool based on	Fixed reduction	Geometrical features	Nearby buildings	GIS
		+ 294	economical	LiDAR	LiDAR data and reference meteorological	factors for openings	Orientation	Vegetation	SOL algorithm
2017		buildings)	potential of		data to estimate solar irradiation of all points of the				
			facades and		study area (ground, roof and facades). The				
			roofs		obtained results about PV generation are compared				
					with electricity demand				
	Vulkan et al.	District (360)	Technical	2.5D model	Development of R package for spatial and	Fixed reduction	Geometrical features	Shadows of nearby	GIS
			potential of		temporal calculation of shadows. From the solar	factors for openings	Orientation	buildings	R language
2018			facades and		irradiation, the building capacity for BIPV is				
			roofs		provided. Finally, a comparison between				
					electricity generation and demand is provided.				

Table 2 – Studies about estimation of urban solar potential of facades

293 4 Discussion

This study has investigated the disciplinary fields of urban energy demand and envelope renovation potential of buildings, and the disciplinary field of urban solar energy potential by analysing their approaches, methods, tools and analysed characteristics.

Specifically, from the literature review, it arises that, from the point of view of the adopted approaches, to obtain detailed data of the building stock, both the disciplinary fields are characterized by a bottom-up approach. Indeed, even though bottom-up approaches can rely on assumptions about buildings characteristics and properties, they are capable to provide the building energy demand and/or the retrofit potential, as well as the solar potential of building envelopes at the urban scale.

302 Conversely, from the point of view of the adopted methods, the authors found differences in terms of 303 aims and implementation methods. Indeed, for buildings energy demand and envelope retrofit 304 potential studies, statistical methods or engineering methods are usually implemented, differently 305 from BIPV potential studies, which generally implement only engineering methods.

Depending on the method, different tools can be used to calculate the building energy demand and the energy retrofit potential, as well as the solar potential at the urban scale. Besides this, it emerges that GIS-based tools are often used in both disciplinary fields because they are suitable to store, analyse, visualise and manage data at the urban level. For instance, GIS is often used also to assess the solar irradiation over building surfaces by means of specific extensions, as well as to collect and manage energy-related data about buildings at the urban scale.

With regard to the analysed characteristics, both fields require geometrical information about buildings but, if building energy demand estimation at the urban scale can ask for surface and/or volume data independently from orientations, solar energy potential studies necessitate more detailed geometrical data, with 2.5D or 3D models to compute solar radiation on facades. In addition to this, it is necessary to note that for the calculation of the building energy demand and the energy retrofit potential, further data are required such as information about the envelope (e.g. window to wall ratio,

- 318 thermal transmittance values), construction periods and last renovation, among others, whereas solar 319 energy potential studies generally use utilization factors to include envelope characteristics (such as
- 320 window to wall ratio).
- 321 Even though there are some differences in terms of implementation methods and tools among the two
- 322 disciplinary fields, some synergies can be identified, as shown in Figure 4.

323

324

Figure 4 - Synergies among the two disciplinary fields

325 Firstly, both the disciplinary fields ground on GIS that can represent the common environment for an integrated assessment of urban BIPV retrofit potential of building facades. Secondly, the recent 326 327 development of 3D city models has led to novel calculation methodologies and techniques of the solar 328 energy potential of building façade in urban areas (e.g. Bill et al., 2016; Cheng et al., 2018), but such 329 urban 3D models can be also a useful database for improving the building energy demand and retrofit potential estimation at the urban scale (Biljecki et al., 2015), since they allow to increase the accuracy 330 331 of building geometrical data, as well as for providing information about building orientations and 332 mutual shading between buildings. Moreover, considering that 3D urban models can also include vegetation, this can allow to consider the effect of urban micro-climate on the evaluation of the urban 333 334 energy demand of buildings.

Thirdly, data about building and envelope characteristics, such as window-to-wall ratio, thermophysical properties, construction or renovation years, state of conservation, which are generally collected for the assessment of the building energy demand and the retrofit potential, can be used to detail the assessment of the BIPV potential of facades and to determine the suitable building surfaces for BIPV installation in accordance to a technological perspective.

340 By considering these possible synergies, the current approach characterized by the separation among 341 the two disciplinary fields can be overcome in favour of a more integrated approach capable to 342 determine the potential of retrofitting existing building surfaces with BIPV at the urban scale. In detail, among possible drivers for achieving this goal, one of the most promising is represented by 343 344 the recent spread of 3D city models together with the combination of the available building data 345 related to the two disciplinary fields. Indeed, even though obtaining this amount of data and urban 3D models can be not trivial, their combination and the development of a comprehensive information 346 347 GIS database about the building stock (including energy demand, need for energy retrofit, BIPV potential) can allow to obtain a clear integrated assessment of the urban potential for BIPV retrofit of 348 facades. In the framework of the integration of energy retrofit and BIPV potential, hourly based 349 350 evaluations assume particular importance, as cited from some authors (e.g. Redweik et al., 2013; 351 Catita et al., 2014 for solar potential studies, and Fonseca & Schlueter, 2015; Kazas et al., 2017 for 352 energy needs studies). Nevertheless, for the investigation of the BIPV retrofit potential of facades at 353 the urban scale, the seasonal time-frame can be considered as a preliminary evaluation for further 354 investigation at smaller scales (e.g. district or cluster of buildings), including hourly based dynamic 355 simulations, aimed at balancing energy retrofit solutions and PV production with appropriate time 356 resolution.

357 5 Conclusions

Thanks to an extensive literature review, this paper provides an innovative contribution related to the identification of common approaches, methods, tools and analysed characteristics to investigate whether the disciplinary field of urban energy demand and envelope renovation potential of buildings,and the disciplinary field of urban solar energy potential present synergies.

Indeed, in current urban energy planning, building energy demand together with retrofit potential studies and RES potential studies have been considered as separated disciplinary fields so far. In particular, the authors have found that there is no evidence of studies capable to integrate such disciplinary fields for the evaluation of the BIPV retrofit potential of facades with the same accuracy since the preliminary phases of the urban energy retrofit process, causing to lose the opportunity to develop synergic and integrated policies and actions, needed for urban energy transition.

However, thanks to an extensive systemic analysis of the literature carried out by authors, it arises 368 369 that there are some main synergies. Indeed, even though this study is a conceptual investigation, the 370 emerging results about synergies suggest that an integrated evaluation of the BIPV retrofit potential 371 can be developed starting from the combination of the available datasets of the two disciplinary fields 372 since the early stage of the energy retrofit process. This innovative approach could support 373 stakeholders (researches, urban planners, public administrators etc.) in combining available 374 databases, belonging to the two disciplinary fields, in order to provide the necessary information for 375 the development of operational methodologies and tools capable to assess the potential of building 376 facades to be renovated with BIPV. For example, a comprehensive GIS-based database, able to 377 include the geometrical and energy-related characteristics of the building stock, can be envisioned as 378 an effective support for definition of the policies and of the measures toward the renovation of the 379 building stock by multifunctional BIPV elements.

In conclusion, this review provides the theoretical basis for supporting the development of operative methodologies aimed at promoting the implementation of BIPV facades in wide energy retrofit processes at the urban level. In particular, further developments will mainly focus on the definition of a GIS-based interface in order to combine energy-performances and BIPV potential data and on the application of this tool to an existing case of study.

REFERENCE

Aghamolaei, R., Haris, M., Tahsildoost, M., Donnell, J. O. (2018). Review of district-scale energy performance analysis: Outlooks towards holistic urban frameworks. Sustainable Cities and Society, 41, 252–264. <u>https://doi.org/10.1016/j.scs.2018.05.048</u>

Aguacil Moreno, S., Lufkin, S., Rey, E. (2017). Integrated design strategies for renovation projects with building-integrated. In PLEA International Conference, Design to Thrive, Edinburgh, 2th-5th July 2017 (pp. 1604-1611).

Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., Evins, R. (2015). A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews, 52, 1391-1404. <u>https://doi.org/10.1016/j.rser.2015.07.123</u>

Amado, M., Poggi, F. (2014). Solar urban planning: A parametric approach. Energy Procedia, 48, 1539-1548, https://doi.org/10.1016/j.egypro.2014.02.174

Ascione, F., De Masi, R. F., De Rossi, F., Fostola, R., Sasso, M., Vanoli, G. P. (2013). Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation, and development of urban energy maps. Cities, 35, 270–283. <u>https://doi.org/10.1016/j.cities.2013.04.012</u>

Attoye, D. E., Tabet Aoul, K. A., Hassan, A. (2017). A Review on Building Integrated Photovoltaic Façade Customization Potentials. Sustainability, 9(12), 2287. doi:10.3390/su9122287

Belussi, L., Danza, L., Ghellere, M., Guazzi, G., Meroni, I., Salamone, F. (2017). Estimation of building energy performance for local energy policy at urban scale. Energy Procedia, 122, 98-103. https://doi.org/10.1016/j.egypro.2017.07.379

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842-2889.

Bill, A., Mohajeri, N., Scartezzini, J. L. (2016, December). 3D model for solar energy potential on buildings from urban LiDAR data. In Proceedings of the Eurographics Workshop on Urban Data Modelling and Visualisation (pp. 51-56). Eurographics Association.

Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., Essah, E., Oliveira, A. C., del Caño, T., Rico, E., Lechón, J. L., Andrade, L., Mendes, A., Atlı, Y. B. (2017). A key review of building integrated photovoltaic (BIPV) systems. Engineering science and technology, an international journal, 20(3), 833-858. http://dx.doi.org/10.1016/j.jestch.2017.01.009

Braulio-Gonzalo, M., Bovea, M. D., Ruá, M. J., Juan, P. (2016). A methodology for predicting the energy performance and indoor thermal comfort of residential stocks on the neighbourhood and city scales. A case study in Spain. Journal of Cleaner Production, 139, 646–665. <u>https://doi.org/10.1016/j.jclepro.2016.08.059</u>

Bremer, M., Mayr, A., Wichmann, V., Schmidtner, K., Rutzinger, M. (2016). A new multi-scale 3D-GISapproach for the assessment and dissemination of solar income of digital city models. Computers, Environment and Urban Systems, 57, 144-154. <u>https://doi.org/10.1016/j.compenvurbsys.2016.02.007</u>

Brito, M.C., Redweik, P., Catita, C. (2013). Photovoltaics and zero energy buildings: the role of building facades. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris.

Brito, M. C., Freitas, S., Guimarães, S., Catita, C., & Redweik, P. (2017). The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renewable Energy, 111, 85-94. http://dx.doi.org/10.1016/j.renene.2017.03.085

Caamaño-Martin, E., Higueras, E., Neila, F. J., Useros, I., Masa-Bote, D., Tortora, F., Díaz-Palacios, S., Marrero, X., Alonso, A., Saade, A., Jedliczka, M., Mique, C., de l'Epine, M., Willdbrett, E., Kjellsson, E., Cornander, A. Fernandes, M. (2012). Solar potential calculation at city and district levels. WIT Transactions on Ecology and the Environment, 155, 675-685. <u>https://doi.org/10.2495/SC120572</u>

Cajot, S., Peter, M., Bahu, J. M., Guignet, F., Koch, A., Maréchal, F. (2017). Obstacles in energy planning at the urban scale. *Sustainable cities and society*, *30*, 223-236. <u>https://doi.org/10.1016/j.scs.2017.02.003</u>

Caputo, P., Costa, G., Ferrari, S. (2013). A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy, 55, 261–270. <u>https://doi.org/10.1016/j.enpol.2012.12.006</u>

Caputo, P., Pasetti, G. (2015). Overcoming the inertia of building energy retrofit at municipal level: The Italian challenge. Sustainable Cities and Society, 15, 120–134. <u>https://doi.org/10.1016/j.scs.2015.01.001</u>

Caputo, P., Pasetti, G. (2017). Boosting the energy renovation rate of the private building stock in Italy: Policies and innovative GIS-based tools. Sustainable Cities and Society, 34, 394–404. https://doi.org/10.1016/j.scs.2017.07.002

Catita, C., Redweik, P., Pereira, J., Brito, M. C. (2014). Extending solar potential analysis in buildings to vertical facades. Computers and Geosciences, 66, 1–12. <u>https://doi.org/10.1016/j.cageo.2014.01.002</u>

Chatzipoulka, C., Compagnon, R., Nikolopoulou, M. (2016). Urban geometry and solar availability on façades and ground of real urban forms: using London as a case study. *Solar Energy*, 138, 53-66. http://dx.doi.org/10.1016/j.solener.2016.09.005

Chen, Y., Hong, T., Piette, M. A. (2017). Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Applied Energy, 205, 323-335. http://dx.doi.org/10.1016/j.apenergy.2017.07.128

Cheng, L., Xu, H., Li, S., Chen, Y., Zhang, F., Li, M. (2018). Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 12-29. <u>https://doi.org/10.1016/j.isprsjprs.2018.01.024</u>

Chiu, M., Hou, S., Tzeng, C., Lai, C. (2015). Experimental Investigations on the Thermal Performance of the Ventilated BIPV Wall. Journal of Applied Sciences. Volume 15 (3): 613-618. http://dx.doi.org/10.3923/jas.2015.613.618

Cumo, F., Garcia, D. A., Calcagnini, L., Rosa, F., Sferra, A. S. (2012). Urban policies and sustainable energy management. Sustainable Cities and Society, 4, 29-34. <u>https://doi.org/10.1016/j.scs.2012.03.003</u>

Dall'O', G., Galante, A., Pasetti, G. (2012). A methodology for evaluating the potential energy savings of retrofitting residential building stocks. Sustainable Cities and Society, 4(1), 12–21. https://doi.org/10.1016/j.scs.2012.01.004

de Oliveira, F., Schneider, S., Quiquerez, L., Lachal, B., Hollmuller, P. (2017). Spatial and temporal characterization of energy demand and resources for an existing and dense urban district in Geneva. Energy Procedia, 122, 259-264. <u>https://doi.org/10.1016/j.egypro.2017.07.312</u>

Delmastro, C., Mutani, G., Corgnati, S. P. (2016). A supporting method for selecting cost-optimal energy retrofit policies for residential buildings at the urban scale. Energy Policy, 99, 42-56. http://dx.doi.org/10.1016/j.enpol.2016.09.051

Dias, L., Seixas, J., Gouveia, J. P. (2015). Internal Report 12 Assessment of RES potential at city level The case of solar technologies (WP4. T4. 4).

EN 50583 (2016). Photovoltaics In Buildings.

Enerdata (2015). Household energy consumption by energy in the EU. Retrieved from <u>http://www.odyssee-</u>mure.eu/publications/efficiency-by-sector/households/energy-consumption-eu.html

EU. (2017a). Buildings. Retrieved from https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings

EU. (2017b). Commission welcomes agreement on energy performance of buildings. Retrieved from <u>https://ec.europa.eu/energy/en/news/commission-welcomes-agreement-energy-performance-buildings</u>

Evola, G., Fichera, A., Gagliano, A., Marletta, L., Nocera, F., Pagano, A., Palermo, V. (2016). Application of a Mapping tool to Plan Energy Saving at a Neighborhood Scale. Energy Procedia, 101(September), 137–144. https://doi.org/10.1016/j.egypro.2016.11.018

Evola, G., Margani, G. (2016). Renovation of apartment blocks with BIPV: Energy and economic evaluation in temperate climate. Energy and Buildings, 130, 794-810. <u>http://dx.doi.org/10.1016/j.enbuild.2016.08.085</u>

Fath, K., Stengel, J., Sprenger, W., Wilson, H. R., Schultmann, F., Kuhn, T. E. (2015). A method for predicting the economic potential of (building-integrated) photovoltaics in urban areas based on hourly Radiance simulations. Solar Energy, 116, 357–370. <u>https://doi.org/10.1016/j.solener.2015.03.023</u>

Fonseca, J. A., Schlueter, A. (2015). Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, 142, 247–265. https://doi.org/10.1016/j.apenergy.2014.12.068 Freitas, S., Catita, C., Redweik, P., Brito, M. C. (2015). Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915-931. https://doi.org/10.1016/j.rser.2014.08.060

Frontini, F., Friesen, T., von Ballmoos, C., Di Gregorio, S. (2014). Palazzo Positivo: renovation of a residential building in Switzerland with BIPV facades. In: 29th European PVSEC, 2014, Amsterdam.

Fu, P., Rich, P. M. (1999). Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales. In Proceedings of the Nineteenth Annual ESRI User Conference (Vol. 1, pp. 1-31).

Groppi, D., Santoli, L. De, Cumo, F., Astiaso, D. (2018). A GIS-based model to assess buildings energy consumption and usable solar energy potential in urban areas. Sustainable Cities and Society, 40(January), 546–558. <u>https://doi.org/10.1016/j.scs.2018.05.005</u>

Gupta, R., Gregg, M. (2018). Targeting and modelling urban energy retrofits using a city-scale energy mapping approach. Journal of Cleaner Production, 174, 401-412. <u>https://doi.org/10.1016/j.jclepro.2017.10.262</u>

Howard, B., Parshall, L., Thompson, J., Hammer, S., Dickinson, J., Modi, V. (2012). Spatial distribution of urban building energy consumption by end use. Energy and Buildings, 45, 141–151. https://doi.org/10.1016/j.enbuild.2011.10.061

IEC TS 61836 (2016). Solar photovoltaic energy systems - Terms, definitions and symbols.

Kammen, D. M., & Sunter, D. A. (2016). City-integrated renewable energy for urban sustainability. Science. Vol. 352, Issue 6288, pp. 922-928. DOI: 10.1126/science.aad9302.

Karteris, M., Theodoridou, I., Mallinis, G., Papadopoulos, A. M. (2014). Facade photovoltaic systems on multifamily buildings: An urban scale evaluation analysis using geographical information systems. Renewable and Sustainable Energy Reviews, 39, 912-933. <u>https://doi.org/10.1016/j.rser.2014.07.063</u>

Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., Djurovic-Petrovic, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 45(7), 1683–1697. <u>https://doi.org/10.1016/j.buildenv.2010.01.021</u>

Kazas, G., Fabrizio, E., & Perino, M. (2017). Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study. Applied Energy, 193, 243–262. https://doi.org/10.1016/j.apenergy.2017.01.095

Le Guen, M., Mosca, L., Perera, A. T. D., Coccolo, S., Mohajeri, N., Scartezzini, J. L. (2018). Improving the energy sustainability of a Swiss village through building renovation and renewable energy integration. Energy and Buildings, 158, 906-923. <u>https://doi.org/10.1016/j.enbuild.2017.10.057</u>

Liang, J., Gong, J., Zhou, J., Nasser, A. (2015). An open-source 3D solar radiation model integrated with a 3D Geographic Information System. Environmental Modelling and Software, 64, 94–101. https://doi.org/10.1016/j.envsoft.2014.11.019

Lobaccaro, G., Frontini, F., Masera, G., Poli, T. (2012). SolarPW: A new solar design tool to exploit solar potential in existing urban areas. Energy Procedia, 30, 1173–1183. https://doi.org/10.1016/j.egypro.2012.11.130

Lukač, N., Žlaus, D., Seme, S., Žalik, B., Štumberger, G. (2013). Rating of roofs' surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Applied energy, 102, 803-812. https://doi.org/10.1016/j.apenergy.2012.08.042

Ma, Z., Cooper, P., Daly, D., Ledo, L. (2012). Existing building retrofits: Methodology and state-of-the-art. Energy and buildings, 55, 889-902. <u>http://dx.doi.org/10.1016/j.enbuild.2012.08.018</u>

Mainzer, K., Fath, K., Mckenna, R., Stengel, J., Fichtner, W., Schultmann, F. (2014). A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Solar Energy, 105, 715–731. <u>https://doi.org/10.1016/j.solener.2014.04.015</u>

Martín, A. M., Domínguez, J., Amador, J. (2015). Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review. *AIMS Energy*, 3(3), 326-343. doi:10.3390/en11071719

Martín-Chivelet, N., Gutiérrez, J. C., Alonso-Abella, M., Chenlo, F., Cuenca, J. (2018). Building Retrofit with Photovoltaics: Construction and Performance of a BIPV Ventilated Façade. Energies, 11(7), 1-15.

Martinez, A., Choi, J. H. (2017). Exploring the potential use of building facade information to estimate energy performance. Sustainable Cities and Society, 35, 511-521. <u>http://dx.doi.org/10.1016/j.scs.2017.07.022</u>

Martínez-Rubio, A., Sanz-Adan, F., Santamaría-Peña, J., Martínez, A. (2016). Evaluating solar irradiance over facades in high building cities, based on LiDAR technology. Applied energy, 183, 133-147. http://dx.doi.org/10.1016/j.apenergy.2016.08.163

Mastrucci, A., Baume, O., Stazi, F., Leopold, U. (2014). Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy and Buildings, 75, 358–367. <u>https://doi.org/10.1016/j.enbuild.2014.02.032</u>

Moghadam, S. T., Toniolo, J., Mutani, G., Lombardi, P. (2018). A GIS-statistical approach for assessing built environment energy use at urban scale. Sustainable Cities and Society, 37, 70-84. https://doi.org/10.1016/j.scs.2017.10.002

Mutani, G., Delmastro, C., Gargiulo, M., Corgnati, S. P. (2016). Characterization of Building Thermal Energy Consumption at the Urban Scale. Energy Procedia, 101(September), 384–391. https://doi.org/10.1016/j.egypro.2016.11.049

Naspetti S, Mandolesi S, Zanoli R. Using visual Q sorting to determine the impact of photovoltaic applications on the landscape. Land Use Policy 2016;57:564–73. doi:10.1016/j.landusepol.2016.06.021

Österbring, M., Mata, É., Thuvander, L., Mangold, M., Johnsson, F., Wallbaum, H. (2016). A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model. Energy and Buildings, 120, 78–84. <u>https://doi.org/10.1016/j.enbuild.2016.03.060</u>

Redweik, P., Catita, C., Brito, M. (2013). Solar energy potential on roofs and facades in an urban landscape. *Solar Energy*, 97, 332–341. <u>https://doi.org/10.1016/j.solener.2013.08.036</u>

Reinhart, C. F., Davila, C. C. (2016). Urban building energy modeling–A review of a nascent field. Building and Environment, 97, 196-202. <u>http://dx.doi.org/10.1016/j.buildenv.2015.12.001</u>

Ren, Z., Paevere, P., & McNamara, C. (2012). A local-community-level, physically-based model of end-use energy consumption by Australian housing stock. Energy Policy, 49, 586–596. https://doi.org/10.1016/j.enpol.2012.06.065

Riera Pérez, M. G., Laprise, M., Rey, E. (2018). Fostering sustainable urban renewal at the neighbourhood scale with a spatial decision support system. *Sustainable Cities and Society* <u>https://doi.org/10.1016/j.scs.2017.12.038</u>

Ritzen, M., Vroon, Z., & Geurts, C. (2017). Building integrated photovoltaics. In Reinders et al. (Eds.), Photovoltaic solar energy: from fundamentals to applications, 579-589. 2017 John Wiley & Sons, Ltd. DOI: 10.1002/9781118927496

Sánchez-Pantoja N, Vidal R, Pastor MC. Aesthetic perception of photovoltaic integration within new proposals for ecological architecture. Sustain Cities Soc 2018;39:203–14. doi:10.1016/J.SCS.2018.02.027

Santos, T., Gomes, N., Freire, S., Brito, M. C., Santos, L., Tenedório, J. A. (2014). Applications of solar mapping in the urban environment. Applied Geography, 51, 48–57. https://doi.org/10.1016/j.apgeog.2014.03.008

Saretta, E., Bonomo, P., Frontini, F. (2017) Active BIPV glass facades: current trends of innovation. In: GPD Glass Performance Days 2017 - Conference Proceedings GPD Glass Performance Days 2017, 28.06.2017-30.06.2017, Tampere, Finland

Sarralde, J. J., Quinn, D. J., Wiesmann, D., & Steemers, K. (2015). Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renewable Energy, 73, 10-17. <u>http://dx.doi.org/10.1016/j.renene.2014.06.028</u>

Scognamiglio, A., Røstvik, H. N. (2013). Photovoltaics and zero energy buildings: a new opportunity and challenge for design. Progress in Photovoltaics: Research and applications, 21(6), 1319-1336. http://dx.doi.org/10.1002/pip.2286

Scognamiglio, A. (2017). Building-Integrated Photovoltaics (BIPV) for Cost-Effective Energy-Efficient Retrofitting. In *Cost-Effective Energy Efficient Building Retrofitting* (pp. 169-197). https://doi.org/10.1016/B978-0-08-101128-7.00006-X

Serrano-Jimenez, A., Barrios-Padura, A., Molina-Huelva, M. (2017). Towards a feasible strategy in Mediterranean building renovation through a multidisciplinary approach. Sustainable Cities and Society, 32(January), 532–546. <u>https://doi.org/10.1016/j.scs.2017.05.002</u>

Shukla, A. K., Sudhakar, K., Baredar, P., & Mamat, R. (2017a). BIPV in Southeast Asian countries - opportunities and challenges. Renewable Energy Focus, 21, 25-32.

Shukla, A. K., Sudhakar, K., & Baredar, P. (2017b). Recent advancement in BIPV product technologies: A review. Energy and Buildings, 140, 188-195. <u>https://dx.doi.org/10.1016/j.enbuild.2017.02.015</u>

Sorgato, M. J., Schneider, K., Rüther, R. (2018). Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate. Renewable Energy, 118, 84-98. <u>https://doi.org/10.1016/j.renene.2017.10.091</u>

Streicher, K. N., Parra, D., Buerer, M. C., Patel, M. K. (2017). Techno-economic potential of large-scale energy retrofit in the Swiss residential building stock. Energy Procedia, 122, 121-126. https://doi.org/10.1016/j.egypro.2017.07.314

SUPSI-SEAC (2017). Building Integrated Photovoltaics: Product overview for solar building skins. Retrieved from: <u>www.bipv.ch</u> (Accessed 21/08/2018).

Šúri, M., Hofierka, J. (2004). A new GIS-based solar radiation model and its application to photovoltaic assessments. Transactions in GIS, 8(2), 175-190.

Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques, 13, 1819–1835. <u>https://doi.org/10.1016/j.rser.2008.09.033</u>

Theodoridou, I., Karteris, M., Mallinis, G., Papadopoulos, A. M., & Hegger, M. (2012). Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renewable and sustainable energy reviews, 16(8), 6239-6261. http://dx.doi.org/10.1016/j.rser.2012.03.075

Vulkan, A., Kloog, I., Dorman, M., & Erell, E. (2018). Modeling the potential for PV installation in residential buildings in dense urban areas. Energy and Buildings, 169, 97-109. https://doi.org/10.1016/j.enbuild.2018.03.052

Wang, Q., Holmberg, S. (2015). A methodology to assess energy-demand savings and cost effectiveness of retrofitting in existing Swedish residential buildings. *Sustainable Cities and Society*, 14, 254-266. http://dx.doi.org/10.1016/j.scs.2014.10.002

Wegertseder, P., Lund, P., Mikkola, J., García Alvarado, R. (2016). Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Solar Energy, 135, 325–336. <u>https://doi.org/10.1016/j.solener.2016.05.061</u>

Wieland, M., Nichersu, A., Murshed, S. M., Wendel, J. (2015). Computing solar radiation on CityGML building data. In 18th AGILE international conference on geographic information science.

Wu, R., Mavromatidis, G., Orehounig, K., Carmeliet, J. (2017). Multiobjective optimisation of energy systems and building envelope retrofit in a residential community. Applied Energy, 190, 634-649. http://dx.doi.org/10.1016/j.apenergy.2016.12.161