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This paper addresses the problem of estimating continuous boundaries between acceptable and unac- ceptable engineering design parameters in

complex engineering applications. In particular, a procedure is proposed to reduce the computational cost of finding and representing the boundary.

The proposed methodology combines a low-discrepancy sequence (Sobol) and a support vector machine (SVM) in an active learning procedure able

to efficiently and accurately estimate the boundary surface. The paper describes the approach and methodological choices resulting in the desired

level of boundary surface refinement and the new algorithm is applied to both two highly-nonlinear test functions and a real-world train stability

design problem. It is expected that the new method will provide designers with a tool for the evaluation of the acceptability of designs, particularly 
for engineering systems whose behaviour can only be determined through complex simulations.

1. Introduction

Any engineering design process deals with the evaluation of a 

possible set of design solutions, each obtained as the combination 

of specific values of a set of design parameters . This evaluation is 

usually performed comparing a design score with a predetermined 

limit score , and often defining a safety factor to ensure compliance 

despite the uncertainty of the actual manufacturing process and 

 

 

 

 

 

 

 

 

 

 

 

cost of computing each solution’s design score increases dramati- 

cally. If the designer is unaware of the likely sets of design parame- 

ter combinations resulting in acceptable design scores, this process 

may become cumbersome. 

Providing an estimate of the limit-score boundary separating ac- 

ceptable and unacceptable design parameters (in terms of design 

score) would enable the designer to focus on areas of the solution 

space sufficiently far from the limit boundary. Moreover, once the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operating conditions. Traditional applications of this methodology,

such as the verification of static and fatigue criteria for beams and

shafts, are based on simple analytic relationships between design

and operation parameters (e.g. dimensions, material properties and

loading) and design score (e.g. maximum von Mises equivalent

tensile stress). 

With a push for innovative design solutions, the designer is

often following a time- and resource-intensive trial-and-error de-

sign process, including the proposal of creative new solutions and

a long series of design score evaluations. In complex engineering

systems (i.e. multiple design parameters and nonlinear functional

relationships) the number of possible suitable solutions and the
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solution is chosen, the assessment of the distance from the bound-

ary would also allow evaluating its “safety margin”, i.e. robustness

to variations of design parameters. 

This study aims at obtaining an estimate of the limit-score

boundary using a limited number of computationally expensive

design-score evaluations. The boundary search consists of finding

all the combinations of design parameters in the space resulting

in a fixed value of the design score (limit score). Without loss of

generality, this task is equivalent to a zero-finding problem for an

unknown multi-input single-output function. 

To achieve this result, this paper proposes to (i) represent the

zero finding task as a classification problem and estimate the level

set as a decision boundary; (ii) ensure sufficient exploration of the

design parameter space by using a space filling algorithm to select

candidate samples; (iii) reduce the number of design-score evalu-

ations needed to estimate the boundary by iteratively evaluating

only samples likely close to the boundary. 
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The proposed iterative procedure is based on: 

1. a Sobol sequence for the generation of a space-uniform set of

candidate design parameter combinations;

2. a Support Vector Machine (SVM), applied to a small subset of

the candidate combinations from 1 to obtain a decision bound-

ary used as a proxy (or surrogate) of the limit-score boundary;

3. the use of this computationally inexpensive SVM-surrogate to

identify which of the design parameter combination of 1 is

most likely close to the boundary (without running actual sim-

ulations);

4. the iterative (points 3 and 4) generation of refined SVM-based

representations of the boundary by running targeted numerical

simulations only for samples identified in 3.

This procedure allows producing a refined representation of

the boundary without the need for an exhaustive evaluation of 

the design score throughout the multidimensional space of de

sign parameters. This is done by using at each step the partia

information on the location of the boundary to select only few

and high-value design parameter combinations to be evaluated.

The proposed methodology thus uses an SVM surrogate (or “meta

model” ) to identify an explicit representation of the boundary.

While other meta-modelling approaches are available, e.g. Artifi

cial Neural Neworks ( Sundar & Shields, 2016 ), Response Surface 

methods ( Goswami, Ghosh, & Chakraborty, 2016; Roussouly, Petit

jean, & Salaun, 2012 ), and Kriging Methods ( Sun, Wang, Li, & Tong,

2017 ), SVMs have important advantages for pursuing boundary

re- finement (point 4) (Kremer, Steenstrup Pedersen, & Igel, 2014

and are therefore selected here.

The proposed estimation-and-refinement strategy (points 3 and

4) belongs to the framework of active learning,  a branch o

machine learning where training includes iteratively querying new

training data points. Active learning is particularly beneficial when

the labelling of new training points comes at a high

computational cost. The idea is that by intelligently querying

points, one can achieve a high-accuracy classifier with only a

limited subset of training samples (Settles, 2009). Given a

classifier trained on a (small) subset of the available data, the key

question in active learning is how to select the most informative

unlabelled samples. The most popular strategy is to select sample

in regions where the classifier is the least confident, called

uncertainty sampling or simple query strategies (Guyon, Cawley

Dror, & Lemaire, 2011; Ho, Tsai, & Lin, 2011; Kremer et al., 2014

Lewis & Gale, 1994; Settles, 2009). However, it is well known tha

this sampling approach can be problematic: it can over-emphasize

regions of the feature space that are not representative of the

data distribution and it assumes that the classifier accurately

labels points that are far from the estimated decision boundary

( Kremer et al., 2014 ). In other words, uncertainty sampling alone

tends to stress “exploitation” while sacrificing “exploration” of new

feature space regions ( Guyon et al., 2011 ).

In active learning SVMs are commonly chosen as the

algorithms to perform classification owing to their ability to

clearly identify samples near the decision boundary ( Kremer e

al., 2014). SVMs have been traditionally used to classify

experimental data in a wide variety of applications, including

condition monitoring ( Kim, Tan, Mathew, & Choi, 2012; Samanta

2003; Widodo & Yang, 2007 ), face recognition (Huang, Shao, &

Wechsler, 1998), medical diag- nosis ( Chen, Yang, Liu, & Liu, 2011

Musselman & Djurdjanovic, 2012), and pattern recognition in

control charts (Hachicha & Ghor- bel, 2012; Lu, Shao, & Li, 2011)

In the traditional active learning applications, as for condition

monitoring and diagnostics, the main focus has been the result o

the classification (accuracy, recall, etc.) rather than the

classification boundary itself, whose intrinsic value is generally

disregarded because not physically meaningful. 
A more closely related line of work can be found in literature on 

structural reliability where surrogates are used to decrease the 

p

o

omputational effort required for Monte Carlo simulations about a

esign point. Two main approaches exist for developing surrogates

or structural reliability analysis: 

1) regression methods (e.g. Response Surface Methods) where the

limit score function itself (not just the boundary) is approxi- 

mated, often with a surrogate regression model such as Artifi- 

cial Neural Networks (ANNs) or Gaussian Processes ( Dai,

Zhang, Wang, & Xue, 2012; Roussouly et al., 2012; Sundar &

Shields, 2016; Viana, Haftka, & Watson, 2012 );

2) classification methods that seek only to ascertain if a design is

unacceptable or acceptable.

In structural reliability, regression approaches dominate, but a

umber of studies have been conducted in recent years using the 

lassification approach ( Alibrandi, Alani, & Ricciardi, 2015; Basud

ar & Missoum, 2010; Bourinet, Deheeger, & Lemaire, 2011

orissen, Couckuyt, Demeester, Dhaene, & Crombecq, 2010;  J.E

urtado & Alvarez, 2010; Lin, Qiu, Yao, & Wu, 2012; Song, Choi

ee, Zhao, & Lamb, 2013; Van Der Herten, Couckuyt, Deschrijver

 Dhaene, 2016). Moreover, in a review of surrogate modelling

ools, Hurtado (Hurtado, 2004)  noted that classification method

re more naturally suited to identification of implicit limit score

oundaries. The main justification is in the nature of the

roblem: one is only interested in the exceedance of score

unction limit and not in its exact value. 

Most of the aforementioned classification studies employed

VMs as the surrogate classifier and some use different active

earning strategies to refine boundary estimates. Alibrandi et al. 

2015)  developed a strategy that generated points in a cone be

ween the nominal design values and the nearest point on the sur

ace (found via a separate optimization problem). Bourinet et al

2011)  developed a subset sampling algorithm that employed an

VM-based active learning strategy which generated new sample

lose to the SVM boundary by clustering points that are close the

oundary. Hurtado and Alvarez (2010)  used Particle Swarm Opti

isation to find local minima of the score function (i.e. sample

hat are close to the boundary). 

asudhar and Missoum developed an active learning strategy

ased on an SVM estimate of the decision function and an auxiliary 

ptimization strategy ( Basudhar & Missoum, 2010)  aimed a

elect- ing new samples that provide the highest refinement o

he bound- ary. Song et al. (2013)  made use of the score

unction values (not just the sign) and augmented Basudhar and

issoum’s method to 

nclude “virtual samples” based on a local regression. This most re

ent line of work is based on the active learning strategy proposed

y Basudhar and Missoum (2008)  combined with different com

lex methodologies to alleviate the “locking” phenomenon which

esults from a strong focus on selecting samples close to the limi

core boundary. 
In this work, a new SVM-based active learning strategy is

eveloped with the aim of avoiding complex and ad hoc anti

ocking strategies ( Basudhar & Missoum, 2008,2010; Bourinet et al.,

011; Song et al., 2013 ). To strike a balance in the exploitation

xploration trade-off, an innovative combination of a space-filling 

trategy and active learning is proposed. In addition to its anti

ocking properties, the new methodology enables an approximate a

riori specification of the resolution error when the designer pos

esses some modest knowledge of the properties of the boundary

The general SVM theory will be introduced and described con

eptually in the first section of the paper, in combination with a

ecursive and efficient surface refinement methodology aimed a

btaining the best definition of the limit hyper-surface with the 

inimum number of numerical simulation runs. The next two

ec- tions will present the practical implementation of the

ethodologies in an efficient algorithm for N-dimensiona
roblems and the validation of the procedure with numerical tests 

n a-priori 
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nown functions, therefore allowing the exact quantification o
he difference between actual limit surface and SVM surrogate
ubsequently, the new methodology will be compared to
asudhar and Missoum (2010)  on a benchmark function
howing no loss in performance (on the contrary, slightly
mproved) despite the significantly simpler sampling strategy
inally, the algorithm will be tested on a railway engineering
pplication, using ADTRES software (Bruni, Collina, Diana, &
anolo, 20 0 0)  for the simulation of train dynamics.

. Conceptual approach

.1. Problem setting and terminology 

The type of (design) problem described in the introduction is

epresentable by a score function 

 = f ( x ) with x ∈ I S (1)

here I S = [ 0,  1] S  is the S -dimensional unit hyper-cube, x the nor- 
alised design and operation parameters 1 and v the design score

r criterion. The score function v is usually characterised by a crit-

cal value v 0,
 

 defining the limit for acceptable design. 

Therefore, the aim is to identify the boundary B within the de-
ign parameter space x

 

 = 

{
x ∈ I S : f ( x ) = v 0 

}
(2) 

orresponding to the critical score value v 0 . 

In typical engineering problems, the subset B generally consists

f a finite number of connected sets (i.e. each subset is a hyper-

urface within in the I S hyper-volume). This characteristic, common

o most engineering problems, shows both advantages and chal-

enges: the absence of isolated points in B suggests the possibility

o explore and refine each hyper-surface progressively, once a point

f the surface is found. However, the presence of multiple discon-

ected hyper-surfaces requires a good initial sampling of the space

exploration), to identify at least one point for each. 

This study will consider the case where the function f ( x ) is

nknown and therefore the boundary B has to be estimated on

he basis of finite training data {( x i , f ( x i ))}, with i = 1 , . . . , N and

( x i , f ( x i ) ) ∈ I S × R . In the rest of this paper: x will be referred to as

unction input, f as score function, v as score value and B as boundary

et. 

.2. Limit surface finding as a classification task 

Given the binary nature of the problem (score values above and

elow v 0 ), estimating the limit surface from a training data set fits

ithin the framework of binary classification problems. However,

he purpose of this study is different: instead of seeking an ac-

urate classification result we seek an accurate estimation of the

ecision boundary B that separates the two classes. 

Under the classification framework, the boundary B defines the

wo subsets C − and C + of the space I S , corresponding to points

ith score function values below and above v 0 : 

 − = { x ∈ I s : f ( x ) < v 0 } and C + = { x ∈ I s : f ( x ) > v 0 } (3) 

In typical engineering problems, the two subsets C − and C + 
ach consist of a finite number of connected sets C −,k and C + ,� 
i.e. each subset is composed by a finite number of hyper-volumes

ithin I s ), separated by the hyper-surfaces B k,� . 

 = 

⋃ 

k,�

B k,� (4) 
1 The normalisation of general real-valued design parameters is obtained by

eans of simple (linear) transformations.

C
C

Analogously, each point can be associated with a class label

(x ) : I s �→ [ −1 , 1 ] , based on its membership in C + or C −: 

 ( x ) = 

{
1 x ∈ C + 

−1 x ∈ C −
(5) 

Following this approach, the training data {( x i , f ( x i ))} is mapped

n a training set D: 

 = { ( x i , c i ) } with c i = c ( x i ) , i = 1 , . . . , N (6)

In this work an SVM classifier will be used to optimally sep- arate

he two classes in (3)  and consider this decision surface to be an

stimate of the unknown limit surface B. Since f(  x)  is often

onlinear, it is natural to select a classifier that supports nonlinea

ecision boundaries, such as Artificial Neural Networks (ANNs), k

earest Neighbours (kNNs), or Support Vector Machines (SVMs). 

mongst these approaches, only SVMs include explicit consider- 

tion of the decision surface (boundary) during learning: SVMs seek a

ecision hyper-surface that maximizes the distance (margin)  from the

earest training points (support vector), minimizing the structura

lassification risk (Burges, 1998; Cortes & Vapnik, 1995). In addition

he SVM framework easily identifies points in D that are close to the

ecision boundary, a property that will prove useful in the refinemen

f the decision boundary (Section 4.5). This study will therefore utilise

VMs for the identification and estimation of the separating boundary

 of the two classes. 

.3. Support vector machines 

SVMs, introduced by Vapnik and his colleagues ( Cortes & Vap

ik, 1995 ), are a popular classification tool based on statistica

earning theory. SVMs were originally formulated for hyper-plane

ecision surfaces but were extended to nonlinear surfaces via the

kernel trick” ( Abe, 2010 ), i.e. transforming the original feature

nto a new space via a kernel transform. While many variants o

VMs exist for multi-class classification, regression and othe

asks, the original binary SVM suits this application for the

eparation of the classes in Eq. (3).  Further details and extension

f SVMs can be found in the copious literature on the subject, e.g

 Abe, 2010; Burges, 1998; Chang & Lin, 2011; Cortes & Vapnik

995; Hearst, Dumais, Osuna, Platt, & Schölkopf, 1998 ). 

SVM belongs to the family of maximum margin classifiers, which aim

t defining a boundary hyper-surface with maximum “distance” from the

eparated classes. A traditional SVM boundary is defined by a vector w ∈
q
 

 and an offset b,  forming a hyperplane ( w,  b)  in Rq
 

 : 

 

T z + b = 0 z ∈ R 

q (7) 

The hyper-plane ( w , b ) splits the space R 

q in two regions ˆ Z −
nd 

ˆ Z + : 

ˆ 
 − = { z ∈ R 

q : w 

T z + b < 0 )
ˆ 
 + = { z ∈ R 

q : w 

T z + b > 0 )
(8) 

This hyper-plane is however able to produce only plane bound-

ries, which are often insufficient in the representation of many

ighly nonlinear engineering problems f (x ) = v 0 . However, choos-

ng an appropriate nonlinear transformation z = φ(x ) : R 

s → R 

q it

s possible to use the same approach to define curved boundaries

n R 

s . In this case the split of R 

s is executed on the basis of the

ign of the decision value d ( x ): 

 ( x ) = w 

T φ( x ) + b (9) 

And the resulting predicted classes X − and X + are obtained as:

ˆ 
 − = 

{
x ∈ R 

q : w 

T φ( x ) + b < 0 

}
ˆ 
 + = 

{
x ∈ R 

q : w 

T φ( x ) + b > 0 

} (10)
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2 The upper and lower bounds for C and γ were set sufficiently wide so that the

optimal values were typically not on the bounds.
The selection of suitable SVM parameters for a good approxi-

mation of the boundary B must therefore lead to the separation

of the sets C −, C + (actually defined by the sign of f (x ) − v 0 ) and
ˆ C −, ˆ C + (defined by the decision value d ( x )). If this is ensured, the

limit hyper-surface can be approximated by the SVM boundary B:

ˆ B = { z : d ( z ) = 0 } (11)

In the classic definition of SVM ( Abe, 2010; Chang & Lin,

2011; Cortes & Vapnik, 1995 ), the optimal values of w and b are

found using the training set D N defined in Eq. (6) and the

optimization problem: 

arg min 

w ,b,ξ

= 

1 

2 

|| w || 2 + C 

N ∑ 

i =1 

ξi 

subject to = c i 
(
w 

T φ( x i ) + b 
)

≥ 1 − ξi 

= ξi ≥ 0 , i = 1 , 2 , . . . , N 

(12)

In this formulation, a minimum of w corresponds to the max

imum distance between the boundary and the training points of the

two classes (classification margin), while the combination of the othe

term with the first constraint represents a penalty for the

misclassification of the training set (xi  ∈ Cˆ
 − and xi  ∈/  C −, or xi  ∈

Cˆ
 +  and xi  ∈/  C +). Therefore Eq. (12) describes the conflicting

objectives of maximizing the classification margin and minimizing the

clas- sification errors ( Cortes & Vapnik, 1995 ). The parameter C play

a key role in balancing the two objectives: a high value of C wil

increase the penalty for misclassification and therefore produce

“harder ” and lower-margin boundaries, whereas a low C will re- sult in

lower penalties for misclassifications and therefore generate “softe

”and higher-margin boundaries. The optimal value of w can be shown

to be also dependent on the weighted sum of the transform of the

training set φ( xi ) (Cortes & Vapnik, 1995): 

w = 

N ∑ 

c i αi φ( x i ) (13)
i =1

The weighting coefficients of each summation term in Eq. 

(13) are defined by the sign of ci  = ±1 (the actual class of the

training set) and by the magnitude of the Lagrange multipliers αi ≥
0 associated with the first constraint of Eq. (12).  By combin- ing
Eqs. (9) and ( 13)  and defining the kernel function as K( x,  y ) =
φT (x ) φ(y ),  the kernel-based formulation of SVM is obtained:

d ( x ) = 

N ∑ 

i =1

αi c i K ( x , x i ) + b (14)

Usually, αi > 0 only for a subset of the N training points, suf-

ficiently close to the boundary. The points belonging to this sub-

set V ⊂ D are called support vectors and their definition limits the 

summation of Eq. (14) to less than N terms: 

d ( x ) = 

∑ 

( x i , c i ) ∈V 
αi c i K ( x , x i ) + b (15)

The cardinality of the support vector set is strongly affected by

the parameter C:  a high value of C emphasises on correct classifica-

tion and thus encourages the optimisation process to increase the

number of support vectors enabling high-curvature portions in the

boundary; a low value of C,  on the contrary, relaxes the classifica-

tion constraint, promoting “smoothness” in the surface and there-

fore few support vectors. 

In this paper the radial basis function kernel ( Scholkopf et al., 

1997)  is chosen for K(  x, y ): 

K ( x , y ) = e −γ | | x −y | |2

(16)

This kernel does not allow an explicit definition of the trans-

form φ( x ) but has been shown effective in a large range of clas-

sification examples owing to its ability to reproduce complex
oundary shapes, see for instance ( Huang, Chen, & Wang, 2007;

otsia & Pitas, 2007; Madeo, Peres, & Lima, 2016; Rojas & Nandi,

006 ). This property is necessary in a highly nonlinear problem

here the shape of the boundary can be highly irregular and

ven show a series of disconnected sets. 

In this study, the parameters γ and C are set using a 5-fold

ross-validation approach with a logarithmic scale for the parame-

er grid ( Chang & Lin, 2011 ). 2 

.4. Ensuring sufficient exploration 

The capability of SVM of producing a good estimate of the

oundary, as described in the previous section, clearly depends on

he training data D on which it is based. The possibility of actually

valuating the score function f(  x)  for any arbitrary design solutio

 offers, in this case, an additional opportunity compared to most

raditional active learning studies where a finite training dataset is

iven a priori.  

A good estimation of the boundary is obtained when the train-

ng set D includes sufficient points close to the surface and well-

istributed on the whole surface. Without any prior knowledge of

he score function f(  x)  (and thus of the boundary B), a homoge-
eous space filling represents the most reasonable choice. 

In this study, the Sobol sequence S N is chosen for this purpose.

he Sobol sequence belongs to the family of quasi-random low-

iscrepancy sequences ( Sobol’, 1967 ). The discrepancy H of a set

f N points { x } N = { x 1 , . . . , x N } , defined in the s -dimensional unit

hyper-cube I s = [ 0 , 1 ] s (i.e. each point x n = ( x n, 1 , . . . , x n,s ) with 0 ≤
 n, s ≤ 1), is expressed in analytical terms as ( Kuipers & Niederre-

ter, 2012 ): 

 ( { x } N ) = max 
r∈ I s 

∣∣∣∣
P ( G r ; { x } N ) 

N 

−
s

p=1

r p 

∣∣∣∣ (17)

here r = ( r 1 , . . . , r s ) ∈ I s and P ( G r ; { x } N ) is the number of points

f { x } N contained in the hyper-rectangle G r = [ 0 , r 1 ) × [ 0 , r 2 ) ×
· · × [ 0 , r s ) (i.e. the hyper-rectangle with vertex in O = ( 0 , . . . , 0 )

nd r ). Therefore, a low discrepancy consists of a uniform density

f points represented in Eq. (17) by the proportionality between

he hyper-volume G r and the expected number of set points { x } N
ithin G r .

Another interesting property of Sobol sequences is the progres-

iveness of the low-discrepancy space filling. This is expressed as

ollows: for any integrable function f ( x ) over I S , the Sobol sequence

 N = { x 1 , . . . , x N } ensures that:

lim 

→∞ 

1 

N 

N ∑ 

i =1

f ( x i ) = 

∫ 
I s

f ( x ) dV (18)

This means that, given a Sobol sequence S N , the first N − 1

oints constitute a Sobol sequence with the optimal space-filling

roperty (low-discrepancy) for the N − 1 points. In other words,

he N -th point of the Sobol sequence S N is placed in the “most

mpty” section of the space covered by the sequence S N−1 . This

equential low-discrepancy property (progressive space-filling) will

e exploited in the iterative algorithm described in the following

ection. 

.5. Refinement of the boundary based on uncertainty sampling 

The hypothesis of complete ignorance of the boundary stated

n the previous chapter is no longer valid once an estimate ˆ B N 
s obtained by SVM using an initial number of training points N .



Fig. 1. Summary of the proposed algorithm. Dashed boxes represent the inputs to the algorithm: r is the desired 1D distance between points near the boundary, V min is

the minimum single-class volume, and Nit er is computed using Eq. (27). 
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Fig. 2. Result of the SVM iterative refinement procedure applied to the test func- 

tion.

 

g  
his estimate can be used for further selection of training points

ikely close to the actual boundary B according to the active learn-
ng paradigm. In doing this, it is important to ensure that all the
urface is sufficiently covered by the selected training points. 

This is obtained by using a Sobol sequence to generate a pool of

otential training points from which subsequent training samples

re selected. The density of this sample pool, which represents a

iscretisation of the solution space, determines the maximum final

esolution of the boundary estimation. This limit, imposed to the

ocal refinement of the boundary, effectively limits exploitation al-

eady prior to the iterative refinement process. The first iteration

f the boundary estimation process is based on a first small subset

f the entire Sobol set (which is itself a Sobol set). The density of

his subset is crucial in ensuring a full exploration of the space and

dentification of disconnected sections of the boundary. 

Therefore, the proposed procedure is composed of an initializa

ion and an iterative refinement phase ( Fig. 1 ). Initialisation start

ith the generation of a candidate set of points with sufficiently

ne resolution in the unit hyper-cube Is
 .  These points serve as 

iscretisation of the space Is
 .  The candidate set is established usin

 Sobol sequence S M 

= { x 1 , . . . , x M 

} in the unit hyper-cube Is
 .  Th

umber M of candidate points is selected according to the desired

nal resolution the grid of points which will define the surface at

he end of the algorithm: 

 ≈ 
1

(19)rs
 

 

here r is the desired linear (1D) resolution of the final grid,

.e. the target average distance 3 between two points defining the

oundary, and s is the dimensionality of the domain.
3 This distance is defined in the normalised unit hyper-cube I S ( r < 1).

e  

r  

u  
A first subset of the candidate set S M 

has to be selected for the

eneration of the first SVM-surrogate without any knowledge or

stimate of the boundary B, thus purely focussing on the explo-

ation of the domain I s . The first K points of S M 

ensure the most

niform exploration of the space, given the property of subsequent



Fig. 3. Comparison of actual vs estimated boundary: direct graphical representation (top), and distance between the two curves (bottom).

Fig. 4. Evolution of the error measure ε as a function of the number of function 
evaluations. For a comparison with Fig. 11 in Basudhar and Missoum (2010 ), note 
that in that reference, the number of function evaluations is equal to 20 + 3 k. 

t 
s 
s 

 

w  

o

V  

W  

p  

e  

f  

o

D  

 

b  

t  

d  

s  

b

s 

w  

c

d  

 

s

x  

x  

 

u  
low-discrepancy of Sobol sequences, i.e. S K = { x 1 , . . . , x K } with K

< M is also a Sobol sequence. The cardinality of this initial subse
is chosen according to an a priori hypothesis on the volume
defined by the hyper-surfaces Bk  of the boundary and the limit

of Is
 .  In particular, K is selected as: 

K ≈ 1

V 

(20)

min 
here V min is the smallest volume among the same-class portions

f the space: 

 min = min 

k,�

(
V ol 

(
C −,k , V ol ( C + ,� ) (21)

ith this approach it is expected that at least one point will be

laced within each sub-volume, thus having at least one point on

ach side of each hyper-surface Bk ,�.  The evaluation of the score

unction f(  x)  and the consequent classification ( Eqs. (3) and ( 5 ))

f the initial subset S K results in the initial training dataset D 

(0) : 

 

( 0 ) = { ( x i , c i ) } with x i ∈ S K (22)

This allows the first estimate B̂ 

(
 

0) of the unknown actual
oundary B and in turn the beginning of an iterative refinement of

he surface estimate by selecting additional points from the candi-

ate set located close to the estimate of the boundary. The deci-

ion value of each point is used as an estimate of proximity to the

oundary. 

Therefore, each iteration of the refinement ( Fig. 1)  cycle start

ith the evaluation of the decision value for all the points of the

andidate set D: 

 

( k ) ( x ) = 

N ∑ 

i =1

α( k ) 
i 

c ( 
k ) 

i 
K 

( k ) ( x , x i ) + b ( k ) (23)

Two points x (k ) 
+ and x (k ) 

− are selected from class C + and C − re-

pectively, based on their decision values (closest to zero): 

 

( k ) 
+ = arg min 

x ∈ C + ∩ ( D \ D ( k ) ) 
d ( k ) ( x ) (24)

 

( k ) 
− = arg max 

x ∈ C −∩ ( D \ D ( k ) ) 
d ( k ) ( x ) (25)

The selection constraint D \ D 

(k ) ensures that points already

sed in previous iterations are excluded. The classes c( x (k ) 
+ ) and



Fig. 5. Graphical representation of the “toy” function: (a) 3D-view, (b) y-z plane, (c) x-y plane, (d) x-z plane.
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( x (k ) 
− ) of the new points are evaluated by computing f ( x (k ) 

+ ) and

f ( x (k ) 
− ) , therefore allowing the definition of the training set D 

( k +1 ) 

or the next iteration: 

 

( k +1 ) = D 

( k ) ∪ x 

( k ) 
+ , c x 

( k ) 
+ 

))
, x 

( k ) 
− , c x 

( k ) 
−

))} 

(26) 

The procedure described so far is run for N iter iterations 

 iter ≈
α

2 · r s −1 
(27) 

here r is the same linear resolution desired for the grid of points

efining the surface, s is the dimensionality of the space and α

epends on hypotheses on the dimension of the boundary. In par-

icular, in a three-dimensional case, α represents the expected area

of the boundary surface within the normalized parameter space I 3.
Fig. 1 shows a graphical summary of the proposed algorithm

he design choices are shown as dashed boxes. It can be clearly

een that the algorithm requires K + 2 N iter evaluations of the scor-
ng function. This quantity represents the computational complex-
ty under the hypothesis of highly expensive (dominant) evaluation
f the scoring function (simulations), which motivated this study. 

. Numerical simulations with a-priori known functions

.1. Two-dimensional case 

In this section the procedure described in the previous chap-

er is applied to the function proposed by Basudhar and Missoum 

2010)  in order to allow a benchmarking with the most relevant
revious work and examine the accuracy of the a priori specifica-

ion of the resolution. The score function has the following analyt-

cal form 

f ( x ) = x 2 − 2 sin ( x 1 ) − 5 (28) 

ith x = ( x 1 , x 2 ) representing the raw design parameters, x ∈ [0,

0] 2.
The relatively simple analytical expression and the low dimen-

ionality of the problem also allows for a more detailed analysis of

he quality of the boundary identification result. 

After proper normalisation of the design parameters to the

nit-area space I 2,  the procedure presented in the previous section

s applied imposing a resolution r = 0.  01 (corresponding to a reso
ution of 0.1 in the original space [0, 10] 2 ). This, with a choice of α
etween 1 and 2, leads to a suggested number of generations N iter 

etween 50 and 100. In order to ensure fairness in the compari-

on of the proposed method results with the previously published

ethodology, N iter is set to 75, and the initial number of points is

et to 20 (in this case chosen independently from V min ). This cor-

esponds to the same number of initial points and total numbe

f function evaluations as in Basudhar and Missoum (2010 ), who 

dded to the same initial pool 3 points per each of the 50 itera-

ions. 

The following figure shows the result of the SVM itera-

ive refinement procedure. The concentration of the points near

he boundary demonstrates the correct behaviour of the active-

earning methodology, which successfully identifies points near the

oundary. The fairly even distribution of points along the boundary



Fig. 6. Result of the boundary identification using the newly proposed algorithm: (a) 3D-view, (b) y-z plane, (c) x-y plane, (d) x-z plane.
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shows the additional property of this methodology which intrinsi

cally balances local refinement and coverage of the whole bound- ary.

The result in Fig. 3 can be compared with the corresponding

result presented in Fig. 10 of Basudhar and Missoum (2010 ). The

top diagram of Fig. 3 qualitatively confirms the high accuracy o

the proposed methodology, which shows a similar (if no

superior) 

quality to the boundary estimation. The representation of the esti-

mated boundary in this and in the following figures is obtained 

by a contour command in Matlab. 

The bottom diagram shows the Euclidean distance between

the boundaries as a function of the coordinate x 1 and has been

obtained by discretising the two boundary representations using

10 0 0 uniformly spaced x 1 values. The behaviour of the distance

function and of its maximum value support the effectiveness of the

a priori specification of the resolution target, which is also plotted

in the figure. 

A final comparison with the methodology proposed by

Basudhar and Missoum (2010)  is shown in Fig. 4,  which

represents the evolution of the error measure ε used by the same

authors. This error measure represents the misclassification on a

large set of N test points x,  generated randomly (uniformly) in the

parameter space: 

ε = 

num 

(
x ∈ 

(
ˆ C + ∩ C − + num 

(
x ∈ 

(
ˆ C − ∩ C + 

N test 
(29)

where num( c ) is the number of elements satisfying the condition

c . 
i

The result suggests a superior convergence rate and final result,

chieving a final ε ≈ 0.1% (0.001), which appear to be below that

eported in Basudhar and Missoum (2010)  (where ε ≈ 0.005) 

.2. Three-dimensional case 

The procedure proposed in this paper is applied in this section

o a known function, in order to assess the accuracy of the method.

he “toy” function f(  x)  is R 

3 → R is defined as follows 

f ( x ) = tan 

−1 

{ || x − p 1 || 2
ρ2 

1 

· || x − p 2 || 2
ρ2 

2 

· sin ( 1 . 5 πx + 0 . 1 )

}
− 0 . 5

(30)

here x = ( x, y, z ),  || · || is the Euclidean norm, p 1 = ( 0.  5, 

. 5,  0.  5 ),  p 2 = ( 0.  25,  0.  25,  0.  25 ) and ρ1 = 0.  5

nd ρ2 = 0.  125.  A plot of the function can been seen in Fig. 5.

The function is designed such that the boundary consists of two

isconnected sets having strongly different dimensions and

hapes. The presence of two sets is intended to test the capability

f the algorithm to explore and refine a disconnected boundary

hese as- pects challenge in particular the refinement phase o

he proposed algorithm: the presence of two disconnected sets o

 − requires a balanced selection of subsequent points fo

efinement. The defini tion of the localised protrusion on the

urface B 1,  1 will also contribute to the evaluation of the

efinement phase. On the other hand, the presence of a smal

bubble” (disconnected set C ) validates the ability of the
2,  −
nitialisation phase to identify the presence 



Fig. 7. Evolution of the boundary identification using the newly proposed algorithm: (a) situation at iteration 0, (b) situation at iteration 10, (c) situation at iteration 20, (d)

situation at iteration 40 iterations, (e) situation at iteration 60, and (f) situation at iteration 80.



Fig. 8. Result of the boundary identification adopting a purely space filling approach.
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of this small volume completely contained within the other vol-

ume C 1 , + . 
The parameters of the algorithm are set according to the fol-

lowing considerations: 

• M = 10 0 0 computed using Eq. (19) with a desired 1D resolution

of s = 0.  1

• K = 125 computed using Eq. (20) and an expected volume of 
the smallest set to be Vol ( C 2,  −) ≈ 0.  2 3

• N iter = 100 computed using Eq. (27) with a somehow conserva-

tive shape factor α = 2 (boundary surface expected to have an 
area lower than twice that of a face of the unit cube I 3 ).

The results of the application of the proposed technique are

shown in Fig. 6.  The definition of the surface is almost perfec

(see comparison with Fig. 5 ), with a maximum error within the

chosen resolution. The grid representation of the surfaces in al

the following figures is obtained by a contour command in

Matlab. Fig. 7 shows the evolution of the boundary identification

at dif- ferent iterations. The initial surface estimate, based on the

K = 125 initial space-filling points captures the dominant feature

of the boundary, i.e. the vertical surface, but completely neglect

its lo- calised features (“bubble” and protrusion). As expected, the

subse- quently samples are selected along this first-approximation

bound- ary. Later ( Fig. 7 b to c), as the density of points along

the main surface grows, connected details of the same are

identified (i.e. protrusion in the middle of the main surface). Once

the main sur- face is well explored ( Fig. 7 c and d), the nex

samples are selected on the secondary disconnected elemen

(“bubble” ). Fig. 7 d shows that, once all the disconnected set
have been identified, the re- 
nement of the two surfaces progresses somewhat uniformly. I

s also possible to notice that the final boundary estimation is 

chieved near iteration 60, with little change thereafter. This i

x- plained by the conservative choice of the parameter α = 2

hich overestimates the actual boundary surface area, closer to a
alue of 1.3. If known a priori and substituted into Eq. (27),  thi

alue of α would yield a number of iterations of 65, which i

xtremely close to the critical iteration number for which the
nal estimation is achieved. 

In order to benchmark the effectiveness of the refinement pro

edure versus a pure space-filling approach, the same function i

stimated by a single step of SVM fitting over a Sobol set with a

umber of points equal to M′
 

 = 525.  This corresponds to lim

ting the proposed algorithm to the initialisation phase with the

ame computational cost in term of number of evaluations of the

core function f(  x ). The results are displayed in Fig. 8,  which

learly shows the inferior performance of this direct approach. In

artic- ular, the isolated section of the boundary B 2,  1 is no

dentified at all, and the shape of B 1,  1 is poorly approximated. 

he missing recognition of the second surface is due to the 

carcity of points obtained in the “bubble” with a purely Sobol

ased point selection. This is visible in Fig. 9,  showing the differ

nt sets obtained with the two approaches. While the points o

he iterative algorithm create a rich set of support vectors, the

ow number of points on the boundary for the second case

esults in a low overall penalty for the misclassification (e.g. only

ne point in the set C 2,  −) and is therefore insufficient to

dentify the additional 

B 2 , 1 . 



Fig. 9. Different sets causing different performances in (a) the iterative 

refinement algorithm and (b) the purely space-filling method.
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Table 1

Misclassification distance results for the two boundary estimation algorithms.

Maximum distance Average distance

Iterative refinement algorithm 0.0530 0.0 0 02

Purely space-filling method 0.4626 0.0032
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An accuracy evaluation of the result has been obtained by gen

rating 1 million samples from a 3D uniform distribution within

he parameter’s space and verifying the correct classification o

he two classifiers corresponding to Fig. 9 (a) and (b). The

oundary identified using the methodology proposed in this pape

 Fig. 9 (a)) resulted in a classification error ε = 1.  5%,  while the

lassification error of the boundary obtained with the same

umber of samples 

sing a purely space-filling algorithm provided a classification er- 

or of 3.3%. 

Since the accuracy measure is only a “volumetric” representa

ion of the error, an additional assessment of “distance” between

he actual and the identified surface is introduced. In particular, 

his second measure aims at identifying the maximum/average dis

ance of misclassified points from the actual boundary. In a prac

ical design application, knowledge of this distance (or its uppe

ound) would allow choosing a design solution outside of a “safety

argin” from the estimated boundary. In this complex 3D scenario
he Euclidean approach used in Fig. 3 is approximated by: 

i

• randomly selecting points according to a 3D uniform distribu-

tion;
• classifying the points using the SVM model that defines the es-

timated boundary;
• finding all misclassified points;
• for each misclassified point, calculating its distance from the

closest correctly classified point of the same actual class.

The results with 1 million random samples for the two bound-

ries of Fig. 9 are reported in 

Table 1. 

he ten-fold improvement of the iterative refinement algorithm is

ue to the correct identification of local features of the surface 

e.g. disconnected set or “bubble” ) which, despite having lower 

olume, would constitute a high risk for a designer operating 

ith the purely space-filling model. The quantitative result of 

aximum 

istance obtained with the iterative algorithm is not only show-

ng the relative improvement against the reference case, but also

emonstrates that the boundary resolution target (set a-priori to 

.1) is achieved. 

. An application case study: train dynamics

Recent works in railway engineering have proposed numeri- ca

ehicle simulation methods used mainly for certification pur- 

oses. The study ( Bigoni, True, & Engsig-Karup, 2014)  presents 

n approach based on total sensitivity indexes in order to quantify

he effect of the uncertainty on suspension parameters on the so-

alled vehicle critical speed ( True, 1994 ). The latter is defined as 

he minimum speed at which the so-called hunting motion on

ets (instability). This has a practical implication; in fact, the ve

icle should not run at speeds where it exhibits hunting in or

er to avoid large dynamic oscillation which can lead to fatigue

or even damage) of vehicle components or can compromise the 

unning safety. Numerical simulations have been used in other re

ent studies to obtain a simulation-based certification of the rai

ehicle (Bezin, Funfschilling, Kraft, & Mazzola, 2015)  or to

valuate the effect of the propagation of the variability of the

arameters ( Funfschilling, Perrin, & Kraft, 2012 ). 

However, the computational cost has so far represented one o

he main obstacles to extend this simulation-based approach to the

ehicle design phase. This situation, combined with the economica

nfeasibility of building actual prototypes for experimental testing,

esults in a lack of proper design tools available to railway engi

eers in the design phase. 

ome attempts in this field have been made recently: the firs

pproach (Mousavi Bideleh & Berbyuk, 2016)  envisaged the use

f global sensitivity analysis in order to determine the mos

nfluencing parameters on specific phenomena which can reduce

he number of input design parameters for the optimization of a

ogie suspension system; the second approach ( Mousavi Bideleh

erbyuk, 

 Persson, 2016 ), on the contrary, makes use of a Pareto optimisa-

ion based on a multi-objective genetic algorithm in order to define

he optimal design parameters of the bogie. However, the results 

f this work show that even employing a large number of simula

ions ( > 10 0 0) it is difficult to define the Pareto front with

nough accuracy. 
The algorithm proposed in this paper is applied to this problem 

n the attempt to decrease the computational cost of a simulation- 



Fig. 10. Results obtained with the proposed iterative refinement algorithm (a) and with the benchmarking case of pure space filling (b).
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p  
based approach for vehicle design and design validation. In partic- 

ular, the evaluation of the design parameters is obtained by the

determination of the vehicle’s critical speed by means of a vehi

cle dynamic model. This numerical model is based on a multi

body approach where the kinematics of each body is linearized

with respect to moving reference frames following the track cen-

treline at the same speed of the vehicle (which is imposed to a

constant value). The nonlinearities due to the nonlinear character- 

istics of the suspensions or to the wheel-rail contact (geometry o

the profiles and creep-force characteristics) are fully accounted for

More details on the simulation program can be found in reference

(Bruni et al., 20 0 0; Di Gialleonardo, Braghin, & Bruni, 2012 ). 

In the framework of this study, the score function f(  x)  is rep

resented by the vehicle dynamic simulation software, whose inpu

x is the combination of three selected design/operational param- 

eters considered to have the main influence on the insurgence of 

hunting motion: 

• longitudinal primary suspension stiffness;
• anti-yaw damping;
• vehicle speed.

The output v of the score function is represented by the rms value

of the sum of the lateral forces on the wheelset filtered ( + /- 2 Hz

around the hunting frequency. This is chosen in accordance to the

standard EN14363, which also provides a threshold value v 0 for the

insurgence of the hunting motion. The classification algorithm

described in the previous sections is therefore applied to the zero

finding problem B = { x,  f (x ) = v 0 }. 

Fig. 10 reports the results of the analysis for the full algorithm

(a) and for the benchmarking case using space-filling only (b). In

both cases the total number of simulations (i.e. dots in the lef

side of the figures) is set to 410. Fig. 11 shows the results obtained

with the full procedure described in Section 4.5, with a Sobol se

of M = 4100, an initial number of points K = 10 and refinemen
iterations N iter = 200 (corresponding to a resolution r ≈ 0.0625 and 

α ≈ 1.6).
he benchmarking case is, on the contrary, obtained on a single

teration with a Sobol sequence of 410 points. In both cases the 

ormalisation of the input variables follows the same linear inter

olation of plausible design limits. 

he proposed approach shows a significantly higher level of de

ail in comparison with the pure space-filling approach, without 

ny additional computational cost (excluding the iterative SVM

tting). In fact, the presence of a rich set of support vector

llows for the identification of the limit surface in Fig. 10 (a

ithout any contour operation. On the contrary, the contouring

peration ( Fig. 11)  is necessary for the pure space-filling case

b). Even with the contouring, the definition of the limit surface

s much more de- tailed in the iterative algorithm results of Fig

1 (a), as a conse- quence of the high number of support vector

istributed along the different areas of the boundary. 

The results of the analysis confirm the typical considerations

ade by railway engineers: it is observed, as expected, that in-

reasing both the longitudinal stiffness of the primary suspension

nd the anti-yaw damping the critical speed increases. The iden-

ified boundary allows also the quantification of the effect of each

arameter on the critical speed. 

The algorithm also provides a rich and well-distributed set of

oints (support vector) on the boundary itself, representing a com-

utationally cheap proxy for the calculation of a “distance” mea-

ure from the boundary. This is in turn extremely valuable for

he evaluation of the risks of production variability and equipment

egradation over the design parameters (stiffness and damping),

hich would result in a spread of the expected design condition

long the two horizontal axes. 

For instance, the identified boundary is very steep close to the

ertical plane represented by the null normalised longitudinal sus-

ension stiffness. Thus, stiffness variations in the lower part of the

onsidered stiffness range are more risky. 

Considering the desired distance from the surface and the ex-

ected variability of the vehicle properties in operation, it is pos-



Fig. 11. Contoured surfaces obtained from the results of the proposed iterative refinement algorithm (a) and with the benchmarking case of pure space filling (b). Large

points represent support vectors while the color represents the decision value of each point.
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ible to establish the optimal design parameters (adding cost con-

traints). 

. Conclusions and future work

In this paper, a new methodology for the efficient numerical es-

imation of complex multi-dimensional boundaries has been pro-

osed. This problem is typical of engineering design criteria defin-

ng the boundary between acceptable and unacceptable design pa-

ameter values. The proposed procedure is particularly valuable

hen the number of parameters and/or the complexity of the cri-

erion requires computationally expensive numerical simulations.

 support vector machine (SVM) is used to identify the bound-

ry hyper-surface from a set of simulation results. The combina-

ion of a low-discrepancy sequence (Sobol) of parameter values

nd an SVM-based active learning approach for the selection of

ubsequent simulations is the key factor that allows the efficient

efinement of the boundary estimation. The selection of informa-

ive samples from the Sobol set enables a balancing of exploration 

nd exploitation without complex ad hoc diversification mecha-

isms present in previous studies while achieving similar (if not

uperior) boundary accuracy. 

The methodology has been applied to two highly-nonlinear

nown functions to demonstrate the accuracy of the resulting

oundary estimation and a priori resolution target. Subsequently,

he algorithm has been utilised in a real-world engineering de-

ign application: the acceptability of train suspension parameters

n terms of running stability. 
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