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Abstract—Traditional hardware development exploits descrip-
tion languages such as VHDL and (System)Verilog to produce
highly parametrizable RTL designs. Different parameter val-
ues yield different utilization-frequency trade-offs, and hand-
tuning is not feasible with a non-trivial amount of parame-
ters. Generally, the Computer-Aided Design (CAD) literature
proposes approaches that mainly tackle automatic exploration
without combining a design automation feature. Hence, this work
proposes Dovado, an open-source CAD tool for design space
exploration (DSE) tailored for FPGAs-based designs. Starting
from VHDL/(System)Verilog, Dovado exploits Vivado and sup-
ports the hardware developer for an exact exploration of a
given set of parameters or a DSE where it returns the non-
dominated set of configuration points. In this work, we exploit a
multi-objective integer formulation and Non-Dominated Sorting
Genetic Algorithm (NSGA)-II for a fast DSE. Moreover, we
propose an approximation model for the NSGA-II fitness function
to decide whether Vivado or a Nadaraya-Watson model should
estimate the optimization metrics.

Index Terms—Design Space Exploration, Design Automation,
FPGAs, Approximation Model, Mutli-Objective Optimization

I. INTRODUCTION

The Register Transfer Level (RTL) defines input-output
relationships in terms of dataflow operations on signals,
and register values [1]. Often RTL-based designs encode
in Hardware Description Languages (HDLs) such as VHDL
and Verilog/SystemVerilog (V/SV). Such languages give the
designer the possibility of specifying parameters for each RTL
module (e.g., VHDL generics and SV parameters) to provide a
reusable module for multiple use cases. However, the volume
of the parameters space (i.e., their possible permutations) is
factorial in the number of parameters. Hence hand-tuning
them may be unfeasible even in low-dimensional spaces. A
designer is often interested in tuning module parameters to
achieve the optimal area-frequency trade-off, which is often
known after evaluating specific design points through the
hardware design flow steps. The typical hardware design flow
of an Electronic Design Automation (EDA) tool, for both
Field Programmable Gate Arrays (FPGAs) and Application
Specific Circuits (ASICs), starts with logic synthesis (i.e.,
translating RTL into logic gates with the technology mapping)
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and follows with the place and route phase on the target
device (also called implementation). Within this context, the
designer must manually run synthesis or implementation rou-
tines and then hand-tune the parameters for a given metric to
optimize. However, synthesis and implementation are time-
consuming for non-trivial designs, for this reason, manual
Design Space Exploration (DSE) is unfeasible. On a different
wave, many emergent HDLs try to tackle the tricky generation
of highly parametrizable RTL-based designs [2], [3]. Indeed,
they tremendously ease the generation of highly customizable
modules and enable the birth of System on Chip generators [4],
[5]. However, architecture modeling is often case-specific [6],
and the support for automatic DSE is still missing. Nowadays,
Computer-Aided Design (CAD) tools are vital to increase
productivity, ensure correctness and performance of intricate
designs, and enable a higher level of complexity. Many tools
such as Aladdin [7], Heracles [8] and SystemCoDesigner [9]
have been developed to tackle DSE but none of those provide a
comprehensive approach to be used both for design automation
and exploration of RTL designs.

For these reasons, we propose Dovado [10], an open-
source tool that leverages an already existing hardware suite
to provide design automation and automatic DSE for RTL
parameters, currently tailored for FPGAs-based designs. Start-
ing from an RTL hierarchy, a hardware developer can specify
a set of design points, i.e., a set of free parameters, and
then Dovado evaluates them in terms of maximum achievable
frequency and/or user-defined area usage metrics, e.g., LUTs,
RAMs, Array Cells. Dovado provides a methodology to extract
these results from one of the typical design steps, synthesis
or implementation, and automatically, or in case manually,
evaluating the metrics.

Moreover, Dovado builds on top of the automation feature to
provide a design exploration functionality. Indeed, we iterate
single-point evaluation with several optimization strategies to
compute the non-dominated set of points in DSE mode. This
set is composed of points such that no further point exists
among the solutions, which is better on all objectives. Addi-
tionally, Dovado exploits a model that, thanks to a synthetic
dataset, predicts synthesis/implementation outcomes, which
can highly reduce the exploration time for a complex module
with a huge search space.

In summary, the contributions of this work are:
• a design automation methodology for the single design



point evaluation on FPGA devices (Section III-A)
• a mathematical formulation of a design space exploration

problem as multi-objective problem (Section III-B) that
enables an approximation model for synthesis and im-
plementation outputs and the associated control model
(Section III-C)

• the whole framework is open-sourced for contributions
and usage, and available as a python package [10]

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of how some of the literature
works address the automation and exploration issues. Then,
Section III presents Dovado with design automation (Sec-
tion III-A) and exploration (Section III-B) methodologies.
Section IV describes the experimental setup and discusses
the results obtained with Dovado, while Section V draws the
conclusions.

II. RELATED WORK

Traditionally, the DSE term is used in HW/SW codesign
methodologies as the configuration choice of a target system
to find an optimal trade-off among figures of merit (e.g., area,
delay) according to system architecture choices and HW/SW
partitioning [11]. Indeed, optimizing one of the metrics usually
implies the degradation of the other(s), and DSE problems find
their solutions in an optimization problem, as shown in the
literature [12]. Instead, in this work, we use a different DSE
flavor at the RTL-module level, and we use it to find design
parameters trade-offs according to figures of merit.

Starting with a more traditional approach, Hammerquist et
al. [13] devised the concept of application-specific FPGAs
(AFPGAs) to fill the gap between FPGAs and Application
Specific Integrated Circuits (ASICs), which are much more
expensive in terms of time and money to develop and imple-
ment. The exploration problem is defined as a search among
architectural features to be customized. For instance, we might
consider 3-input, 4-input, and 5-input LUTs, enabling different
architectural level parametrizations.

Karakaya [14] tackles the problem of finding an efficient
algorithm for DSE. The author treats the problem as an
integer single-target optimization targeting power-delay-area
product. The author adopts a heuristic to solve the problem,
showing remarkable performance when parallelized; however,
this hinders the optimization of metrics separately.

Kao et al. [15] used a commercial synthesis and implemen-
tation tool to tackle RTL DSE, formulating it as a module
selection problem by determining all possible design imple-
mentations with different area-time curves. Modules contain
either combinational or sequential logic, but they are not
considered singularly, and the area-time curve is assessed on
the whole system. The authors do not consider that more
complex designs expose prohibitive time costs for a good
DSE. Thus, others aim at finding alternative solutions to really
executing all the synthesis or implementation steps. Indeed, So
et al. [16] estimate the synthesis process through behavioral
synthesis, highlighting the prohibitive cost of running a large
amount of hardware synthesis. They further extend DSE
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Figure 1: Dovado framework block diagram with design
automation and design space exploration flows.

using a compiler approach and consider parametrization and
code transformation techniques usually employed by designers
when exploring the broader design space.

On the other hand, Pilato et al. [17] examine the relevance of
evolutionary algorithms, especially NSGA-II, exploiting High-
Level Synthesis. Moreover, they address the computational
cost of a full synthesis or implementation by using an in-
heritance model. In this way, they lower the number of actual
fitness evaluations by inheriting the parents’ fitness in a portion
of the population. Besides, visual performance models, such
as LogCA [18], and Roofline [19], offer a completely different
approach that may be a valuable tool for designers together
with DSE ones. However, they are still under investigation and
offer limited support for RTL-based designs, showing exciting
results in static imperative code analysis [20].

For all these reasons, we propose Dovado, an open-source
CAD tool with a modular design that enables fast, automatic
DSE for a module or a given RTL system with an online
approximation model of a target EDA tool.

III. DOVADO FRAMEWORK

This Section presents Dovado, its components, and the
three flows to support hardware developers at different lev-
els. Dovado offers design automation functionalities for fast
evaluation of a single design point or a set of given ones (i.e.,
one or multiple configurations) based on Vivado Design Suite
(Section III-A). On top of that, Dovado provides an entry-level
Design Space Exploration (DSE) feature, where it exploits a
multi-objective solver based on a genetic algorithm to find
a set of non-dominated design points (Section III-B). Based
on this, Dovado can exploit an estimation model to decide
whether or not to execute Vivado and pay the implementation
time cost (Section III-B).

Figure 1 shows the high-level structure of Dovado, where
the reader can notice the different flows of Dovado for design
automation or DSE. Once the user feeds Dovado with inputs
at the calling step, the tool completely automatize the flows.



library ieee;
____
use ieee.std_logic_1164.all;
entity box is
port (
clk: in std_logic
);

end entity box;

architecture box_arch of box is
attribute DONT_TOUCH : string;
attribute DONT_TOUCH of BOXED :
label is "TRUE";

begin
BOXED: entity ____
____
port map(
____ => clk,
____
);

end architecture box_arch;

Listing 1: Box example for VHDL modules, underscores are
replaced with module specific parts

A. Single Design Point Evaluation Methodology

Dovado employs a modular methodology applied to RTL
architectures, Vivado, and FPGAs, but it is generally valid
for hardware development. The single point evaluation is
a design automation step consisting of three preprocessing
steps and then invoking the synthesis and implementation
tool, i.e., Vivado. Dovado starts parsing the given RTL design
and extracting the user’s parameters along with other useful
information. Then, it exploits a sandboxing procedure, which
creates a secure environment to avoid unintended simplifi-
cations of input/output interfaces. It enables a secure clock
constraint application without naming restrictions. Moreover,
it enables proper support for safe parametrization applications.
Starting from parsing and boxing information, Dovado gener-
ates module-specific scripts for the boxed module for a given
target technology, i.e., boards or parts.

1) Parsing: The Parsing step is a significant part of the
design flow automation. Indeed, we apply a first formal
verification to the design and extract essential information for
subsequent Dovado steps. We are interested in extracting the
hardware module interfaces (i.e., module name, parameters
declaration, ports/signal interface declaration) for the boxing
step. VHDL and V/SV are context-free languages, hence
requiring push-down automata for parsing, while they are
regular in the declaration section. However, both languages’
different standards present a wide variety of declaration styles
of ports and parameters, hindering regular expressions usage
and requiring to handle all the different cases in the parsing
step. For these reasons, the Dovado parsing step is based on a
parser generator called Antlr [21], which exposes different run-
times, easing Dovado deployment across different platforms,
and provides VHDL2008 and V/SV grammars. Hence, we
employ these grammars for a parsing step robust to declaration
styles and reasonably performance on large RTL files.

2) Boxing - Dealing with Pin Overflow and Parsing Short-
comings: The Boxing step is essential to generalize the

Dovado approach for every possible RTL module, even one
not intended to be a top-level one. Indeed, to avoid tool
simplifications at the input/output level, which may cut out
part of the module interface, we introduce this sandboxing
technique. Thanks to boxing, Dovado can deal with the FPGA
implementation phase without incurring in any pin overflow
issue or, in general, at the device input/output level. Moreover,
the Dovado box is the entry point where we apply parame-
terization, and it enables a straightforward timing analysis of
the module and the final achievable frequency. Listing 1 is an
example box frame for VHDL modules, where the underscores
represent the run-time information extracted from parsing, e.g.,
libraries, module name, clock port, and parameters.

3) Synthesis and Implementation: Dovado currently lever-
ages Vivado as the hardware design suite for synthesis and
implementation phases. However, another physical tool with a
technology library can be used, e.g., Yosys [22], RapidWright
[23], Symbiflow [24]. Dovado spawns Vivado as a subprocess
and communicates with the physical tool through the TCL
interface. As for the Boxing step, we also built general frames
for TCL scripts that Dovado customizes at run-time for module
specifications and user-selected directives. Indeed, Dovado
exposes the possibility of tailoring this step for a given board
or parts and customizing the toolchain directives for a given
step, i.e., synthesis, place, and route. The user can specify the
directives to guide the tool for a given optimization metric,
e.g., run-time performance, area usage, and other additional
features. For instance, Vivado offers the incremental design
flow feature to reuse previous run checkpoints and information
to speed up following computations for both synthesis and
implementation steps. This feature turns to be particularly
useful whenever the module parameters influence only a small
subsection of a larger design.

To comply with Vivado’s standard compilation for VHDL
and V/SV, we apply some naming constraints for VHDL
libraries (i.e., one subfolder per library with the same name)
and parsing orders specifications (i.e., SV packages are read
at the very beginning of the step).

4) Design Points Results: After the physical step, i.e.,
synthesis and/or implementation, Dovado retrieves metrics of
interest as the final result. The main metrics we provide are
area utilization and maximum achievable frequency for a given
module, including all submodules. The latter comes from the
worst negative slack (WNS) extraction and is computed as
follows:

Fmax =
1000

( 1
1000 ∗ T )−WNS

(1)

where T is a user-defined target period (in nano-seconds),
usally bigger than the achievable one, WNS is the worst
negative slack and it is the time interval calculated on the
longest path (in nano-seconds). The slack is considered neg-
ative when the timing constraint is violated. Differently, the
utilization metric divides into the different available resources
for a given board/parts, e.g., BRAMs, CLBs, DSPs. However,
some resources, such as URAMs, are not always available for
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Figure 2: Dovado DSE Block Diagram zoom focused on
Synthesis/Implementation Approximation

each possible FPGA, hence are device-dependent and reported
only if present.

B. Design Space Exploration Methodology

Dovado builds the entry level of DSE on top of the
single design point methodology. Here, given a module with
parameters’ possible ranges, the DSE module extracts the non-
dominated set (or Pareto set) of design points according to
some metrics, such as achievable frequency and LUTs usage.
We adopt a genetic algorithm to find this set of design points
according to our multi-objective optimization formulation.
Moreover, we optimize to reduce DSE execution times coming
from Vivado executions by exploiting special tool features.

1) Multi-Objective Optimization: We formulate the DSE
problem as a multi-objective integer optimization problem
since we optimize multiple metrics simultaneously. Consid-
ering a single metric is usually trivial, and the optimizer
would yield only the degenerative case, i.e., the smallest
design possible. Instead, considering multiple optimization
metrics might lead to many non-dominated solutions with
different area-frequency trade-offs. Moreover, we can consider
the DSE as an integer optimization problem since only integer-
valued parameters are synthesizable both in VHDL and V/SV.
Besides, boolean parameters are treated as integer with 0
and 1 values. Designers may apply further restrictions to the
design space; for instance, they can limit the range of a given
parameter to only power of two values. In this way, reducing
the volume space at exploration time, or even enforcing
meaningful solutions only.

We solve this multi-objective optimization problem through
Non-Dominated Sorting Genetic Algorithm (NSGA)-II [25],
[26]. This procedure is a genetic algorithm that does not
require specific domain knowledge on the search space or the
optimization metrics, making it suitable for a general DSE
solver with adequate performance. Moreover, NSGA-II is an
elite-preserving algorithm that preserves non-dominated solu-
tions in the population, while the sorting by non-domination
reduces computational complexity [12].

2) Incremental Synthesis and Implementation: To further
reduce the exploration time, Dovado exploits the incremental
design flow feature of Vivado, which, for each run, writes some
archives, called checkpoints. Thanks to these checkpoints,
Dovado avoids repeating the exploration of design parts not
affected by parametrization. The incremental flow may be
independently activated for one, or both, design flow step(s),
i.e., synthesis and implementation. For complex and large
designs, this technique may be handy to save time for non-
parametrized sections.

C. Fitness Function Approximation Model

A critical aspect of genetic algorithm design is the accurate
composition of efficient yet representative fitness functions.
Essentially, we would need to create a vector of functions
where each function returns the value of a given metric
for a given design point, e.g., [utilization(pointn),
frequency(pointn)]. This naive approach implies calling
Vivado for each exploration iteration and complete the synthe-
sis/implementation, requiring prohibitive execution times for
non-trivial modules.

For these reasons, we design a non-parametric statistical
model to estimate the actual design points values close enough
to already evaluated ones to reduce the time complexity of
the exploration. We employ a method inspired by Shokri
et al. [27] for reducing calls to an expensive computational
simulator, thanks to a control model. Conversely from [27],
we use a non-parametric regression model called Nadaraya-
Watson Model (NWM) as an approximator. Thanks to the
non-parametric method, we simplify the training of the model
with a frequently updated dataset. Moreover, we simplify the
validation step, according to Shapiai et al. [28] work, where
they have shown how the NWM model performs better with
a Gaussian Kernel, leaving the bandwidth as the only free
parameter. We adopt Leave-One-Out cross-validation given the
small size of the dataset and the NWM cheap computational
cost. More complex models with higher variance, such as Neu-
ral Networks, showed overfitting on such small datasets [27].
In summary, Dovado model is loosely speaking a weighted
average of the dataset points, where the weights are defined
by a Gaussian Kernel function:

ŷ = f(x,D, h) =

∑n
i=1Kh(x, xi) · yi∑n

i=1Kh(x, xi)
(2)

where, D denotes the dataset, ŷ is the estimated design value,
x is a design point, yi and xi are the pair value-point in the
dataset, Kh(x, xi) is the kernel function with bandwidth h,
computed as :

Kh(x, xi) =
1√
2π
exp(− (x− xi)2

2h2
) (3)

Dovado’s overall DSE algorithm is shown in Figure 2 without
the model preparation step. More specifically, our algorithm
starts to generate a synthetic dataset of size M by making M
(100 default, can be user-defined) distinct calls to Vivado with
randomly sampled design points from user-defined parameter



Figure 3: Mean Squared Error for metric estimation on the RISC-V CPU [29] targeting a Kintex-7: (a) Flip Flops predictions,
(b) LUTs prediction, (c) Frequency prediction. The more the samples we collect, the more the accurate Dovado become

ranges. Then, we train and validate the statistical model on
the synthetic dataset, and the exploration with the genetic
algorithm starts. For each new design point explored, Dovado
handles three different cases. First, if our design point is
already in the dataset, Dovado calls Vivado, which employs
cached results as the answer. Second, if the generated design
point is similar enough to one of the dataset points, Dovado
employs the statistical model for an estimate. Finally, if
none of these applies, Dovado calls Vivado, adds the new
design pair (tuple-value) to the dataset, and applies a new
training/validation step.

As similarity measure to decide whether employing the
statistical model or not, we exploit the one proposed by Shokri
et al. [27]:

Φn =

√∑m
j=1(xj − znj )2

m
(4)

where Φn is the similarity measure, j is the decision variables
counter, m is the number of decision variables (or design
point dimensionality), xj is the j-th decision variable of
the new design point, and znj is the j-th decision variable
of the n-th nearest solution from the training dataset. We
employ a threshold-based approach to decide whether to call
Vivado or the estimator by comparing the threshold with
the similarity metric result. However, the threshold setting is
a non-trivial problem that depends on run-time information,
i.e., the parameters’ range. For these reasons, we employ an
adaptive threshold set Γ by averaging the distance between
dataset points and updating it after an addition to the dataset,
Γ =

∑L
i=1 Φi

n

L , where L is the number of element in the dataset.

IV. EXPERIMENTAL SETUP AND RESULTS

We employ Xilinx Vivado Design Suite 2019.2 and target
different FPGA technologies. The parser exploits ANTLR
python run-time [21], while we exploit a NSGA-II genetic
algorithm implementation from a novel python library called
pymoo [30]. The genetic algorithm hyperparameters are the
following: integer random sampling, integer simulated binary
crossover [31], with duplication elimination mutation occurs

with an approximately Gaussian distribution with 0.5 as mean
and variance controlled by a hand-tuned parameter.

We employ four different case studies to showcase Dovado
compatibility across languages and projects. The user duty is
to specify target board, top module, search space parameters
(which one, desired range of exploration) and then Dovado
runs automatically. We target for all of them a frequency of
1GHz to better verify the maximum theoretical frequency.
The first is an SV-based RISC-V core called cv32e40p [29]
where we show the model accuracy convergence. Then we
exploit an open-source, high-performance FPGA-based NIC
[32], called Corundum, where we explore the design space of a
Verilog submodule and we showcase non-dominant solutions.
We move then to Neorv32 [33], a VHDL-based RISC-V core,
where we apply the power of two restrictions to explore
core memories space. Finally, we explore a VHDL-based
Architecture called TiReX [34] where we explore both the
datapath and memories parameter spaces.

A. Testing Fitness Approximation Model: OpenHW group
RISC-V IP

As a case study, we employ a small 32-bit RISC-V core
by the open hardware group under the name of cv32e40p
[29] to assess the Mean Squared Error (MSE) of the proposed
approximation model. Moreover, we see the model variance
according to the increasing number of Vivado calls targeting
a XC7K70TFBV676-1. We test the DSE on a SystemVerilog
FIFO submodule exploring the depth parameter. The interest
for this case-study revolves not in finding the optimal trade-
off but in exploiting a module that provides enough samples
for accuracy assessment. We constrained on time the DSE
with a four hour of a soft deadline to the genetic algorithm.
The parameter range comprised 500 possible values, and the
estimation model was pre-trained on 100 samples.

Figure 3 shows the MSE trends for Flip Flops, LUTs, and
Frequency prediction. The reader can notice how the MSE is
very low for all the metrics and how the proposed estimation
model will converge to a real estimation of a Vivado call given
a high enough number of samples in the dataset. For instance,
the highest MSE, i.e., the one for frequency estimation, reaches



Figure 4: Solution trade-off for Corundum Space Exploration

Figure 5: Non-Dominated Solutions for Neorv32 Space Exploration

Table I: Configurations for Corundum Queue Manager

Design Point A B C D E F G H I J K L M

# operations 8 8 10 13 27 35 10 12 10 14 19 17 15outstanding

# of 5 4 4 4 4 4 4 4 7 4 4 4 4queues

Pipe. stages 2 2 2 3 3 2 3 2 3 3 5 3 4

a peak of 0.45·10−2 and becomes stable around a value of
0.25·10−2 after 40 samples.

B. Corundum: Verilog Network Interface Card

Corundum is an open-source, high-performance FPGA-
based NIC [32] written in Verilog. We targeted the same
Kintex-7 FPGA disabling the approximator model to employ
direct Vivado evaluations. As figure of merits, we employ
LUTs, Register, and BRAM occupations with maximum
achievable frequency. We explored the parameter space of
a non-top module implementing a completion queue man-
ager and targeting design parameters such as the number
of outstanding operations, the number of queues, and the
pipeline stages. The non-dominated configurations parameters
reported from our DSE are in Table I. Figure 4 reports
all the quantitative results achieved with Dovado DSE of

non-dominated points. Here the reader can appreciate the
differences among possible trade-offs offered by different
configurations. Indeed, the module is constant in the number
of BRAMs needed, while the LUTs and Registers numbers
vary according Table I configurations. On the other hand, this
module achieves a running frequency near 200 MHz, showing
a potential bottleneck in the overall design. We can see how
our DSE approach provides a set of non-dominated solutions
with useful insights to the hardware developer.

C. Neorv32: VHDL RISC-V core

Neorv32 [33] is an in-order 4-stage RISC-V core VHDL-
based. We tested the top module and explore as module pa-
rameters the instruction and data memory sizes. We decided to
constrain the exploration only to the power of twos to explore
a larger parameter space without considering meaningless
parameter assignments. We targeted the same Kintex-7 FPGA
without the approximation model.

Figure 5 shows the fives non-dominated solutions identified
by Dovado. The main difference that the reader can notice is
in the high number of BRAMs compared to the others. The
first solution exploits instruction and data memories size of
215, while the others 214 and 213, respectively. We can see
how increasing from 214 to 215 memory sizes yield a sensible



Figure 6: Non-Dominated Solutions for TiReX Space Exploration on ZU3EG

Figure 7: Non-Dominated Solutions for TiReX Space Exploration on XC7K70T

change in BRAM occupation while leaving almost unchanged
the other metrics.

D. TiReX: VHDL DSA for Regular Expressions

TiReX [34] is a domain-specific architecture tailored for
the Regular Expressions domain. We explore the architecture
scaling according to datapath and memories parameters, target-
ing a Zynq Ultrascale+ XCZU3EG and the same Kintex-7 for
the implementation phase. The architecture has two datapath
parameters that determine the internal core parallelism and
the width of the instruction that we constrain to be a unique
parallelism parameter called NCluster. Moreover, we explore
the size of the instruction and data memories and the stack’s
size the control unit exploits for context switching.

Figure 6 and Figure 7 shows the DSE results for the ZU3EG
and the XC7K70T, respectively. We constrain the exploration
with only the power of twos for both devices. We can also
appreciate, also from Table II, the differences in the number
of identified non-dominated solutions and achieved optimiza-
tion metrics usage. In this way, we can analyze technology
impacts from the different technologies in resource usage and
achievable frequencies. For instance, the ZU3EG is produced
at 16 nm process while the XC7K70T at 28 nm. Moreover,
the ZU3EG has 70K LUTs and 141k Flip Flops, while the
XC7K70T has 41k LUT and 82K FF. The reader can see how
the achievable frequencies are so different, e.g., 550 against
190 MHz, even though configurations are quite similar.

Table II: Configuration Parameters for TiReX

ZU3EG A B C D - - - -

NCluster 1 1 1 1 - - - -
Stack. Size 24 22 28 21 - - - -

Instr. Mem. Size 23 23 23 23 - - - -
Data Mem. Size 24 23 23 23 - - - -

XC7K A B C D E F G H

NCluster 1 1 1 1 1 1 1 1
Stack. Size 20 21 23 21 20 24 25 23

Instr. Mem. Size 23 24 23 23 23 23 24 24

Data Mem. Size 24 23 23 23 23 23 23 23

V. CONCLUSIONS AND FUTURE WORKS

With this work, we present Dovado [10], an open-source
support for highly parametrized RTL module design automa-
tion and exploration for FPGAs. Dovado’s modular approach
ensures flexibility in target devices, different HDLs (i.e.,
VHDL and (System)Verilog) for synthesis and implementation
tasks. Moreover, Dovado exploits specific features of the given
EDA tool, such as different Vivado directives and incremental
flows. The experimental results show how VHDL and V/SV
are handled seamlessly. Indeed, we explore design spaces of
both VHDL (Neorv and TiReX), Verilog (Corundum), and
SystemVerilog (cv32e40p) modules. Additionally, the user can
tweak resources occupation percentage by targeting different
utilization metrics (e.g., LUTs, BRAMs) of a given technol-



ogy, e.g., Xilinx UltraScale+. Dovado provides a model of
approximation for synthesis/implementation outcomes based
on a synthetic dataset for further exploration at a reduced cost
showing promising results.

As future works, we will improve the parser to define design
space more broadly in terms of code transformations [16]
and parameter optimization for a further boost. We plan to
support newer languages, such as Chisel [2] or SpinalHDL
[3], that offer a convenient way for highly parametrizable
hardware or to support high-level synthesis approaches for
fast architecture choices explorations [35]. Currently, Dovado
lacks in run-time performance modeling of RTL modules.
Hence, we will add the chance of inserting a custom model for
static performance that enables an improved DSE and adding
a visual performance model (e.g., Roofline [19]).

The computation cost of running a DSE for Dovado can be-
come prohibitive, and studying newer approaches for synthe-
sis/implementation outcome approximations must be carried
out. We plan to explore different statistical models, either para-
metric or non-parametric, to amortize the expensive synthetic
dataset generation. Panerati et al. [12] provide an overview of
exploration algorithms for multi-objective optimizations with
their peculiarities and strengths. Starting from their work,
we envision an investigation on a run-time choice among
various algorithms based on information from synthetic dataset
generation and an in-depth analysis of genetic algorithms
operators and encoding strategies trade-offs.
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