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Abstract An Emergency Medical Service (EMS) plays a fundamental role in providing 
good quality health care services to citizens, as it provides the first answer in distressing 
situations. Early response, one of the key factors in a successful treatment of an injury, is 
strongly influenced by the performance of ambulances, which are sent to rescue the pa-
tient. Here we report the research carried on by the authors on the ambulance location and 
management in the Milano area (Italy), as a part of a wider research project in collabora-
tion with the EMS of Milano and funded by Regione Lombardia. The question posed by the 
EMS managers was clear and, at the same time, tricky: could decision making tools be 
applied, based on the currently available data, to provide suggestions for decision makers?
To answer such a question, three different studies have been carried on: first the evaluation 
of the current EMS system performance through statistical analysis; then the study of op-
erational policies which can improve the system performance through a simulation model; 
and finally the definition of an alternative set of posts through an optimization model. This 
paper describes the methodologies underlying such studies and reports on how their main 
findings were crucial to help the EMS in changing its organization model.
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1 Introduction

An Emergency Medical Service (EMS) is in charge of providing pre-hospital (or out-of-
hospital) acute care to patients with illnesses and injuries. EMSs play a fundamental role in 
providing good quality health care services to citizens, as they provide the first answer in dis-
tressing situations. Besides, their importance is increasing due to the ageing of population. 
The key factors in a successful treatment of an injury are: early detection, early reporting, 
early response, good on scene care, care in transit, transfer to definitive care. Each factor 
has to be carefully managed in order to guarantee a suitable and quick response to citizens 
needs. In particular, the early response is strongly influenced by the performance of ambu-
lances, which are sent to rescue the patients. The resources of an EMS, such as ambulances, 
are usually limited and therefore their management has a considerable impact on the overall 
system performance. Ambulances are usually deployed in order to provide a suitable cov-
erage of the considered area, namely in order to reach each demand point within a limited 
time. Although different policies may be applied, according to a quite common policy the 
ambulances wait in a set of locations called ambulance posts or posts, a post being essen-
tially a reserved parking. Such policy is applied by the EMS operating in the urban area of 
Milano, Italy, which is the subject of our study. Posts have been identified over the years 
without a clear coverage plan and without any decision support, except that of personnel 
experience.

In the past years the EMS of Milano has collected a huge amount of data about its every 
day activity, which however were never used to evaluate the possibility of improving the 
system performance and the management of the limited resources. Therefore the question 
arose if such huge amount of data could be exploited and decision making tools could be 
applied so as to provide suggestions for decision makers. This topic has been the subject 
of a research project in collaboration with the Emergency Medical Service of Milano and 
funded by Regione Lombardia.1 Within the project, the authors carried on a research on 
the ambulance location and management in the Milano area, which is described in this pa-
per. Three steps were developed: first the current EMS system performance was evaluated 
through statistical analysis based on the collected data; then a simulation model was devel-
oped in order to study operational policies which can improve the system performance; and 
finally an optimization model was studied with the purpose of defining alternative sets of 
posts. This paper describes the methodologies underlying such studies and reports on how 
their main findings were crucial to help the EMS in changing its organization model.

The paper is organized as follows. Sections 2, 3 and 4 illustrate the three studies, re-
spectively. The findings which support the EMS management in reorganizing its process, 
leading to a new organizational model, are reported in Sect. 5. Section 6 closes the paper 
discussing some general insights regarding the EMS management in Italy and some new 
methodological aspects inspired by our collaboration with the EMS of Milano.

2 The performance of the actual EMS

As mentioned, the EMS of Milano collects, via the Operations Centre (OC), a huge amount 
of data describing the ambulance services or missions, from the instant in which a call is 
received by the operator to the instant in which the ambulance leaves the hospital and comes

1Regione Lombardia is the regional administrative district to which Milano belongs, and it is in charge of
organizing emergency services.



Table 1 Frequencies of the ambulance requests. The first column lists the total requests of ambulances,
which may or may not be served by prepaid ambulances; the second column shows the services covered by
prepaid ambulances during the whole day; the last column the number of service requests covered by prepaid
ambulances in the time period 7 a.m.–11 p.m

Ambulance requests Prepaid ambulances 7 a.m.–11 p.m.

Urgent calls 51413 41647 34663

Nonurgent calls 44681 36368 29808

96094 78015 64471

back to an ambulance post. The operators at the OC are in charge of answering the calls 
and assigning a color code to each patient, based on the severity of injury, through a phase 
called triage. Here we refer to an urgent call as a patient with very severe injury to whom 
a red or yellow code is assigned: the Italian law states that the response to urgent calls has 
to be performed within a mandatory time of 8 minutes in the urban areas. From now on, 
we refer to this mandatory time as LAW time. After the triage phase the operator usually 
dispatches the nearest ambulance. Ambulance crew rescues the patient and, if necessary, 
transports him/her to a hospital. Ambulance crew is in charge of the patient until he/she is 
handed to the hospital staff. The crew looks after the patient until a bed is available; in the 
meanwhile the ambulance is not available.

The Milano EMS uses two types of ambulances, which differ in the kind of applied 
contract. The first set, composed of 29 ambulances, is always available and represents a 
fixed cost which does not depend on the number of performed missions; the second set 
can be summoned if needed and it is paid for each performed mission. Ambulances of the 
first set are located in the ambulance posts, while ambulances of the second one wait in the 
headquarters of the volunteering organizations which own them. We denote the ambulances 
in the first set as prepaid ambulances.

The EMS needed to evaluate, from a quantitative point of view, its capability of satisfy-
ing the emergency demand arising in different points of the urban area. This means that a 
statistical analysis of the available data with the goal of gathering together system perfor-
mance and spatial information was needed. Therefore, we first analyzed the EMS activities 
in the time interval 7 a.m. to 11 p.m.; as a matter of fact, during this time period, the prepaid 
ambulances are placed in the corresponding ambulance posts, while during the night they 
wait in their headquarters, where the crew can have a rest. The results about the activities of 
year 2005 are reported in Table 1.

During the year 2005, the OC received 145844 calls. Among them, 96094 calls required 
an ambulance service. As described in Table 1, out of the number of requests, 78015 services 
were carried out by prepaid ambulances, 64471 of which were covered by the ambulances 
located at the posts, during the 7 a.m.–11 p.m. interval. In Table 2 the number of served 
requests is detailed for each post. Here we focus on the performance of the 29 prepaid am-
bulances, located in the 29 ambulance posts. The rationale is to guarantee that the EMS 
serves the largest number of requests with prepaid ambulances, with the aim of both mini-
mizing the service cost and guaranteeing the same quality of service to every citizen.

The first aim of the study was to evaluate whether or not the actual post location covers 
all the emergency requests within LAW time. In order to estimate the area covered by each 
ambulance post within the mandatory time, we first performed a statistical analysis upon the 
random variable “OC performing time” describing the time needed by the OC to assign a call 
to a specific ambulance. We estimated an average OC performing time of 2.328 minutes with



Table 2 Frequencies per ambulance post of the 34663 urgent services covered by prepaid ambulances in the
time period 7 a.m–11 p.m

Post # Call

1 894

2 884

3 1546

4 1666

5 2019

6 1284

7 912

Post # Call

8 1493

9 1055

10 1847

11 492

12 2096

13 681

14 1389

Post # Call

15 2129

16 903

17 1807

18 1241

19 1909

20 1659

21 1444

Post # Call

22 260

23 1128

24 815

25 616

26 190

27 912

28 534

29 858

Fig. 1 Box-Whisker plot for the
Euclidean distance (in meter)
covered by the ambulances
within the LAW time, starting
from each of the 29 posts

a 95 % confidence interval, given by [2.32, 2.34], in the case of urgent calls. For nonurgent 
calls, the average OC performing time is higher, i.e., 4.58 minutes, with a 95 % confidence 
interval [4.53, 4.63]. We observed that both intervals are rather tight. Hereafter, we consider 
the allowed travel time as the difference between LAW time and the average time needed by 
the OC to alert an ambulance for a high priority call.

In order to estimate the area covered by the ambulances, we consider a random variable 
which describes the Euclidean distance between the post and the scenes traveled within the 
allowed travel time, according to the collected data detailed in Table 2.

The use of Euclidean distance is due to the fact that there is a lack of information on 
the trajectory of each ambulances: actually, we do not have any information about the routes 
followed by the ambulance drivers and, by consequence, GIS distances can not be measured. 
To verify if it is possible to consider the Euclidean distance instead of the real one, we 
have performed a regression among the two distances. It comes out that it is statistically 
significant to consider the linear relation dGI S = 1.4 ∗ dE (p-value < 0.05), where dGI S is 
the GIS distance while dE is the Euclidean distance.

Figure 1 depicts the Box-Wisker plot for the distance in meters covered by ambulances 
starting from each of the 29 assigned posts: the y-axis denotes the distance in meters covered



Table 3 Percentage of demands served within the LAW time for each post

Post %

1 62.1 %

2 59.1 %

3 61.1 %

4 63.0 %

5 60.1 %

6 61.4 %

7 65.2 %

Post %

8 65.2 %

9 61.1 %

10 54.0 %

11 64.9 %

12 63.4 %

13 66.3 %

14 59.0 %

Post %

15 57.5 %

16 69.3 %

17 58.4 %

18 66.2 %

19 53.5 %

20 61.4 %

21 61.7 %

Post %

22 51.5 %

23 71.3 %

24 48.6 %

25 66.8 %

26 57.4 %

27 46.4 %

28 57.6 %

29 49.4 %

by an ambulance starting from the post reported in the x-axis, considering all the 34663 
urgent missions served by prepaid ambulances from 7 a.m. to 11 p.m. Note that the average 
covered distance may be different from post to post. The sample size per each post is shown 
in Table 2.

From the above analysis, we deduced that the urban area of Milano is not completely 
covered by the posts within the LAW time. The estimated percentage of the demand served 
within the LAW time per ambulance post is shown in Table 3, while the average over all 
posts is 60.1 % with a 95 % confidence interval given by [56.13 %, 64.06 %]. It would be 
certain important to include in the reported analysis a distinction among days in a week or 
hours in a day but here we are interested in focusing on the covering capability of the target 
area. A wider analysis for estimating and forecasting the demand of ambulance service in 
the area of Milano is reported in Micheletti et al. (2010).

3 Actions for improving the EMS performance

The analysis reported have shown that there is room for improving the performance of the 
EMS system. To achieve this goal, two different actions are often taken into account, that is 
to increase the average ambulance speed and to add a new ambulance. A further action, sug-
gested by the preliminary analysis, is meant to increase the time availability of ambulances. 
These actions, especially the first one, require a huge investment without any guarantee of 
return in terms of improving the performance.

To overcome this limitation, a simulation model has been developed in order to evaluate 
the behavior of the EMS system when a critical parameter, such as speed or number of 
ambulances, changes. In this section, we first describe a new simulation model adopted in 
the present analysis, and then we report about its use to evaluate the above actions.

3.1 The ABS-EMS simulation model

One of the most critical issues to be addressed in developing a simulation model for an 
EMS is how to model the movement of an ambulance in the system. The simulation models 
already proposed in literature (see, e.g., Goldberg et al. 1990a, 1990b; Henderson and Ma-
son 2004; Ingolfsson et al. 2003; Wu and  Hwang 2009; Van Buuren et al. 2012; Zaki et al. 
1997) are usually based on a discrete event simulation (DES) approach. In a DES frame-
work, the movement of an ambulance from a place to another one is usually represented by 
a new event, whose occurrence is set after a given time interval from the occurrence of the



event modelling the beginning of the movement. The interval represents the time needed 
by the ambulance to reach the destination. This time can be computed by using a travel 
time model (Henderson and Mason 2004) or exploiting a third part route planning soft-
ware (Van Buuren et al. 2012) based on an accurate speed estimation. Basically, the actual 
movement of the ambulance is not an active part of the simulation model.

On the contrary, in our preliminary work (Aringhieri et al. 2008), and in its extension 
(Ar-inghieri 2010), we proposed an agent based model (ABS-EMS) in which the 
ambulance movement is a crucial part of the model: as a matter of fact, the agent modelling 
the ambu-lance replicates its movement on the Euclidean space or on the GIS map. This 
characteristic makes the model more flexible when testing different ambulance 
management policies: for instance, it naturally allows to reroute an ambulance while it is 
moving if a more serious emergency request occurs nearby. An agent based model allows 
to track the behavior of each individual acting in the simulated environment (Gilbert 2008). 
A set of rules describes the agent behavior and its interaction with the environment; as a 
consequence, the state of each agent is determined (Gilbert and Terna 2000). Here we 
report a simplified description of the whole model. Further details are reported in 
Aringhieri (2010). Even if it has been developed for the case of Milano EMS, ABS-EMS 
can be simply generalized by adjusting, if needed, the statecharts reported in the following.

ABS-EMS is intended to evaluate the EMS performance starting from a set of posts. 
Due to difficulty of having a reliable emergency demand generator in terms of both spatial 
and temporal distribution, each emergency request is generated by using the real data of a 
given day. This choice is also motivated by the need of the EMS managers to evaluate the 
system performance during some selected critical days, which are representative of typical 
emergency scenario such as, for instance, a day with a large number of missions and, 
among them, a large number of urgent requests. ABS-EMS is composed of two types of 
agents, that is “Operation Centre” and “Ambulance”. Regarding the ambulance agent 
description, two different models will be reported, that is the “standard ambulance” and the 
“smart am-bulance”.

The Operation Centre The Operation Centre is in charge of two important decisions: 
which ambulance has to serve a given call and the time within which it happens. The target 
is to serve the emergency requests as fast as possible, trying to keep the whole urban area 
covered. Clearly, these two targets, namely serving each request as soon as possible and 
keeping a good area coverage with the available ambulances, contrast when the number of 
calls increases for an extended time period.

Currently, OC adopts the following simple strategy: it serves all the urgent calls quickly 
by assigning the service to the nearest available ambulance, whereas the nonurgent calls are 
queued if the number of available ambulances is below a given threshold. Practically, EMS 
adopts a nearest neighbor policy (Cuninghame-Greene and Harries 1988) which has been 
proven to perform, on the average, uniformly better than the other dispatching rules studied 
in Larsen et al. (2002). The agent modelling the OC follows the set of rules shown in Fig. 2.

Standard ambulance If not busy, an ambulance waits in a post until it is activated by the 
OC for a new service. Then it starts its task as depicted in Fig. 3. We refer to such type 
of ambulance as standard ambulance. The speed assigned to each ambulance is a function 
of the time of the day and of the area in which the ambulance is currently located. As al-
ready discussed in Sect. 2, Euclidean distances can be considered in place of GIS distances. 
Furthermore, this assumption reduces the running time of the simulation: actually, a GIS 
based simulator should compute a large number of shortest paths between two points in



Fig. 2 Behavior of the agent “Operation Centre”

Fig. 3 Behavior of the agent “standard ambulance”

the graph representation of the GIS map, as discussed in Aringhieri (2010), which is more 
computational expensive than computing the Euclidean distance.



Fig. 4 Behavior of the agent
“smart ambulance” (detail)

Table 4 Scenarios

Day Total Number of missions

Hospitalization Not hospitalization Urgent Nonurgent

Jan 25 256 221 35 153 103

Feb 02 298 251 47 172 126

Mar 08 270 224 46 170 100

Apr 20 268 236 32 146 122

May 20 303 251 52 204 99

Jun 07 284 235 49 156 128

Sep 05 250 219 31 142 108

Smart ambulance Preliminary analysis showed that the time lost by an ambulance in the 
transfer to a post at the end of a service might be not negligible. This was also confirmed by 
the EMS management and by the senior OC operators. Therefore we evaluate the 
possibility of summoning an ambulance before it reaches the post after finishing a mission.

With respect to the statechart in Fig. 3, we note that a transition to “startNewMission” 
state is also possible from “selectClosestPost” and “reachSelectedPost” states. This capabil-
ity, depicted in Fig. 4, might depend on both technological and human factors. We refer to 
this case as smart ambulance. Notice that this feature is clearly an advantage of ABS-EMS 
due to the flexibility of agent based methodology. We also observe that the implementa-tion 
of this new feature strongly depends on the fact that the model simulates an effective 
ambulance movement.

3.2 Model validation and actions assessment

In order to carry out our analysis, we selected 7 different scenarios. Each scenario is selected 
to be representative of different and critical levels of emergency load and different compo-
sitions of the emergency demand. Each scenario represents a day from 7 a.m. to 11 p.m. 
reporting all the required information to perform the simulation, such as time instants, call 
coordinates and triage codes. Table 4 describes the scenarios in terms of calls. Hereafter, we 
consider an experiment as the execution of the simulator on all of the 7 scenarios. For each 
experiment, we report the percentage of urgent (U) and nonurgent (nU) calls not served 
within LAW time. Although a nonurgent call is not subject to LAW time constraint, it is im-
portant to evaluate them in terms of quality of service. Note that each experiment requires 
about 1 minute of running time, on average.

Concerning the ambulance speed, our study showed that it is usually very close to its 
average value of 25.8 km/h in the time period 7 a.m.–11 p.m. Note that this behavior is



Table 5 ABS-EMS validation: percentage of calls not served within LAW time for each scenario (last col-
umn reports the average percentage)

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 Avg.

U 29.41 % 48.26 % 32.35 % 29.45 % 45.59 % 43.59 % 23.94 % 36.08 %

nU 38.83 % 64.29 % 41.00 % 41.80 % 39.39 % 50.00 % 28.70 % 43.43 %

Table 6 Action 1: percentage of calls not served within LAW time for each scenario and for each average
ambulance speed tested (last column reports the average percentage)

Speed Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 Avg.

20.8 U 54.25 % 64.53 % 54.71 % 48.63 % 75.98 % 66.03 % 45.77 % 58.56 %

nU 61.17 % 88.10 % 66.00 % 56.56 % 72.73 % 72.66 % 50.00 % 66.74 %

30.8 U 16.99 % 28.49 % 21.18 % 17.81 % 38.24 % 26.28 % 14.79 % 23.40 %

nU 28.16 % 47.62 % 26.00 % 31.15 % 28.28 % 29.69 % 17.59 % 29.78 %

the same empirically observed by ambulance drivers in their experience. As a consequence, 
in agreement with EMS managers, we set the speed of the ambulance equal to its average 
value. Ambulances are modeled as standard ambulances.

Model validation The validation of a simulation model requires a quite complex analysis. 
This is particularly true in the case of ambulance simulation (Goldberg et al. 1990a, 1990b; 
Henderson and Mason 2004). Since we are interested in the evaluation of calls not served 
within the LAW time, we focus our validation process on this value. Table 5 reports the 
percentage of calls not served within the LAW time obtained running the simulation model 
over the 7 test scenarios starting from the actual post location using 29 ambulances. The last 
column reports the average among those values.

Table 5 reports an average number of calls not served within LAW time equal to 36.08 
%corresponding, conversely, to the 63.92 % of urgent calls served within the LAW time. 
As reported in Sect. 2, the average value obtained over all the posts is 60.1 % with a 95 %
confidence interval [56.13 %, 64.06 %]. Since the average value 63.92 % belongs to the es-
timated confidence interval, we can consider the simulation outcomes enough 
representative of the EMS behavior.

Action 1: average speed analysis We consider the variation of the ambulance average 
speed. By decreasing the speed to 20.8 km/h, we represent the case in which traffic jam 
increases in the urban area. On the contrary, by increasing the speed to 30.8 km/h, we 
repre-sent the case in which the municipality operates against traffic jam, that is, for 
instance, by arranging reserved lanes and green wave for ambulances on the main streets.

By comparing the results in Table 6 with those reported in Table 5, we observe that the 
worsening and the improvement of the EMS performance are not proportional to the 
decrement and to the increment of the average speed. Note that the average speed in Milano 
is slightly decreasing along the years, because of traffic congestion.

Action 2: adding a new ambulance The simulation experiment consists in evaluating the 
impact of adding one ambulance but keeping the same number of posts (29) and their corre-



Table 7 Action 2: percentage of calls not served within LAW time for each scenario (last column reports the
average percentage)

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 Avg.

+1 U 32.03 % 44.77 % 38.24 % 31.51 % 48.53 % 48.72 % 28.87 % 38.95 %

nU 33.01 % 57.94 % 38.00 % 35.25 % 37.37 % 47.66 % 28.70 % 39.70 %

Table 8 Action 3: percentage of calls not served within LAW time for each scenario (last column reports the
mean percentage)

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 Avg.

U 17.65 % 28.49 % 21.18 % 26.71 % 25.49 % 26.28 % 15.49 % 23.04 %

nU 30.10 % 50.00 % 30.00 % 23.77 % 19.19 % 35.94 % 22.22 % 30.17 %

sponding location. This scenario models the solution that would be implemented temporarily 
by EMS management until a new post is activated.

From the results reported in Table 7, we observe that the average performance of the 
system slightly decreases if compared with that in Table 5. Adding a new ambulance main-
taining the same number of posts implies that each post should host, if needed, two am-
bulances at the same time, instead of one. We also remark that the system currently im-
plements a nearest neighbor policy. It is well known in literature (Channouf et al. 2007; 
Setzler et al. 2009) that emergency demand is not static, but, rather, fluctuates during the 
week, according to the day of the week, and hour by hour within a given day. Analysis 
confirms the demand swings hour by hour (Micheletti et al. 2010), while no meaningful 
difference has been showed during the day of the year except for special days such as, for 
instance, August holidays or snowing days (Righini et al. 2011). This implies that, during 
the simulation, it might happen that some posts are uncovered whilst some other posts are 
covered by two ambulances as ambulances tend to follow the emergency demand. 
Basically, ambulances tend to be gathered in few posts determining an unbalanced global 
coverage.

Action 3: ambulance time availability The current system does not allow the assignment 
of ambulances when they are traveling to an ambulance post, as their position is unknown 
since the prepaid ambulances are not equipped with a Global Positioning System (GPS). 
Despite the clear advantages determined by such a system, the past years were characterized 
by a lack of political will to support the new organization regarding especially the need of a 
secure communication link between ambulances and OC.

In the current experiment, we consider smart ambulances instead of the standard one: as a 
matter of fact, as depicted in Fig. 4, a new mission can be assigned during the path toward 
an ambulance post.

Table 8 reports the results of the experiment. We observe a performance improvement 
with respect to the same case without smart ambulances (see Table 5). This fact indicates 
that increasing the time availability of an ambulance, catching up the time spent when they 
are en route to a location while they are not serving a call, can significantly increase the 
EMS performance. Furthermore, if we consider the scenario “May 20”, we can observe a 
large percentage reduction (about the 20 %) of urgent calls not served within LAW time. 
This scenario represents the EMS heavy day, i.e., day with a large number of total missions 
and, among them, a large number of urgent calls. The same trend is confirmed by the 
results of scenarios “Feb 02” and “Jun 07”.



Fig. 5 The optimization
simulation process

We also observe that the improvement obtained adopting smart ambulances is equivalent, 
on average, to that obtained by increasing the average speed. Notice that the technologies 
required by smart ambulances are cheaper than the cost of road upkeeping to increase av-
erage speed. Moreover, the average speed depends not only on the road status but also, for 
instance, on the weather. Therefore, the investment for smart ambulances seems to be more 
trustworthy than the one needed to increase the average speed.

4 An alternative set of ambulance posts

The simulation model discussed in Sect. 3 allows to evaluate different actions whose target is 
to improve the operational efficiency of the current EMS system. Clearly, the improvement 
of such actions strongly depends on the current set of ambulance posts: the strategic deci-
sion on the ambulance posts location has an impact on the operational efficiency. But what 
happens if a different set of ambulance posts is used? Is the current set of posts really effi-
cient? This section is devoted to the third step of the study, namely the problem of finding 
an efficient set of ambulance posts in the urban area of Milano.

Uncertainty arises inherently in many parameters describing an EMS system, such as the 
instant of a new call occurring, the time of response, the traveling time, the waiting time in 
a hospital, and therefore the ambulance availability is itself a random variable. However, the 
randomness is more relevant at the operational level than at the strategic one. The method-
ology proposed here is a combined approach of optimization and simulation models: the 
optimization model takes into account the emergency demand and the required coverage 
level to determine an optimal set of posts while the simulation model evaluates the actual 
coverage dealing with the randomness of parameters. The proposed approach follows the 
line of the main finding reported in Aringhieri et al. (2013) for which health care optimiza-
tion problems often require to adopt unconventional solution methodologies: the optimiza-
tion simulation process tries to determine a final solution through the iterated solution of the 
above models and the integration of their main results, as depicted in Fig. 5.

The remaining of the section is organized as follow. First we describe the optimization 
model, then we describe how to combine it with the simulation model discussed in Sect. 3.

4.1 The Low-Priority Calls Coverage optimization model

There is a widespread literature on the ambulance location models as evidenced by the num-
ber of surveys available in literature (Brotcorne et al. 2003; Goldberg 2004; Li et al. 2011; 
Marianov and ReVelle 1995; ReVelle and Hogan 1989). Typically, optimization models are 
classified in static models (such as in Church and ReVelle 1974; Gendreau et al. 1997) and 
dynamical models (see, e.g., Bélanger et al. 2012; Gendreau et al. 2001; Laporte and Lou-
veaux 2010): dynamical models deal also with the relocation of ambulances after the end of 
a service instead of only dealing with location, as in static models. Furthermore, both deter-
ministic (such as in Church and ReVelle 1974; Gendreau et al. 1997; Toregas et al. 1971)
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and probabilistic (such as in Goldberg et al. 1990b; Iannoni et al. 2008; Larson 1974, 1975; 
Mandell 1998) descriptions of the phenomenon have been studied. An interesting taxon-
omy is proposed in Başar et al. (2012) while alternative approaches are recently discussed 
in Chanta et al. (2011), Noyan (2010).

Many strategic optimization models have been proposed in the literature (see, e.g., Tore-
gas et al. 1971; Hogan and ReVelle 1986). However, some features of the Milano EMS, 
such as the different kinds of demands which can be served in different response time, are 
not usually considered. We developed a model which captures the management of nonurgent 
calls requiring the use of an ambulance: although it has been developed for the Milano case 
it can be applied to the more general problem of locating ambulance posts in a given area.

An ambulance can perform a limited number of missions during a given time interval. 
Such number may be also represented as an ambulance capacity and it depends on the 
ambulance position. The main advantage of the introduction of a capacity parameter is to 
take into account the ambulance availability in a static deterministic optimization model.

Coverage models usually take into account only the urgent calls because they require a 
response within a mandatory time. In those models, nonurgent calls are discarded even if 
they may require an ambulance mission. Besides, patients with nonserious disease may wait 
for considerable time in the hospital before they are assigned to a physician, thus reducing 
the ambulance availability. In the proposed model the impact of nonurgent calls on the am-
bulance capacity is taken into account together with the need of providing a good quality of 
service also to nonurgent patients.

Let V and W be the set of points to be covered and the set of candidate post locations, 
respectively. For each point i ∈ V , dh denotes the amount of urgent or high priority (h)
demands arising in demand point i, while d�

i denotes the amount of nonurgent or low priority
(�) demands.

The capacity associated to each post j ∈ W is denoted by kj . Let Wh
i be the set of candi-

date posts from which demand point i ∈ V can be reached within the LAW time. To model
the coverage of the nonurgent demand arising in i ∈ V , we introduce a second time limit,
which is less tight and models the quality of service requirement for nonurgent calls. Ac-
cording to such time limit, let W�

i ⊆ W be the set of posts covering i ∈ V .
Two continuous variables are defined: yij , representing the fraction of emergency demand

of point i served by an ambulance located in post j , and wij , representing the fraction of
nonurgent demand of point i served by an ambulance located in post j . An integer variable
xj is defined for each post j ∈ W , representing the number of ambulances assigned to the
post.

The Low-Priority Calls Coverage (LPCC) model aims at providing a lower bound on the
number of the ambulances needed to serve the demand, and it can be formulated as follows.

min z =
∑

j∈W
xj , (1a)

s.t.
∑

j∈Wh
i

xj ≥ 1, ∀i ∈ V (1b)

∑

j∈Wh
i

yij = 1, ∀i ∈ V (1c)

∑

j∈W
wij = 1, ∀i ∈ V (1d)



∑

i∈V

∑

j∈W�
i

d�
i wij ≥ q

∑

i∈V
d�

i , (1e)

∑

i∈V

(
dh

i yij + d�
i wij

) ≤ kjxj , ∀j ∈ W (1f)

xj ∈ Z+,wij ∈ [0,1], yij ∈ [0,1], ∀i ∈ V, ∀j ∈ W (1g)

The objective function (1a) aims to minimize the number of required ambulances. The 
first constraints (1b) state that there must be at least one ambulance close enough to each 
demand point, guaranteeing the coverage of the whole city. Constraints (1c) guarantee that 
all the urgent calls are served within the given time limit (LAW time). Constraints (1d) 
guarantee that all the low priority calls are served from any post and (1e) force at least a 
given percentage q of such demand to be served within the second time limit. Constraints 
(1f) state that the number of missions assigned to a post must not exceed the number of 
missions kj xj that the post can afford in the considered time horizon. Finally, (1g) define 
the variables domain.

4.2 Combining LPCC and ABS-EMS

Combining optimization and simulation is a promising methodology as discussed in Fu 
(2002), Fu et al. (2005). Here we propose an iterative greedy procedure to compute an 
alternative set of posts for the urban area of Milano.

The procedure starts from the optimal solution computed by LPCC. This solution pro-
vides a lower bound on the number of the ambulances needed to cover the area under deter-
ministic assumption. Such a solution is then evaluated via ABS-EMS determining a ranking 
of the ambulance posts with respect to their utilization. If the number of posts is less than the 
number of available ambulances, the procedure adds a new post in such a way to decrease 
the highest utilization value: let pmax be the post with the highest utilization value and let p′ 

and p′′ be the posts having larger utilization value among those near to pmax; the new post 
is the point equidistant from pmax, p′ and p′′. The procedure iterates from the ABS-EMS 
evaluation and the post is located for each available ambulance.

Finally, we observe that the iterative procedure can be used to design a set of posts in 
order to guarantee a given overall system performance: instead of stopping when available 
ambulances are finished, the procedure continues by adding ambulances until the perfor-
mance of the system reaches a given threshold.

The solution for the case of Milano In order to determine the set of parameters for LPCC, 
the city is divided into 493 grid squares representing the demand points in the LPCC 
model. Each grid square represents a subarea such that every part of the subarea is covered 
by the same subset of candidate post locations. Thus, by guaranteeing that each subarea is 
covered, we guarantee that any possible origin of an urgent call is covered by at least one 
chosen post, and therefore served within LAW time. We estimate the distribution of the 
emergency demand via a statistical spatial distribution analysis. Figure 6 shows urgent (a) 
and nonurgent (b) estimated emergency requests for each subarea. We observe that the 
profiles are roughly the same. Furthermore, one can see that the demand is higher in the 
city center than in the suburb both for urgent and nonurgent demands. Finally, the urgent 
requests seems to be concentrated in the city center more than nonurgent requests. In the 
following, we refer to a square grid or subarea as a single point.



Fig. 6 Estimated spatial distribution profiles of the demand divided in urgent (a) and nonurgent (b) requests.
Points represent the current ambulance posts (Gauss-Boaga coordinate system)

Table 9 Alternative ambulance posts evaluation: percentage of calls not served within LAW time for each
scenario (last column reports the average percentage)

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 Avg.

LPCC U 73.86 % 76.16 % 74.71 % 67.81 % 82.35 % 77.56 % 68.31 % 74.39 %

nU 96.12 % 97.62 % 97.00 % 90.98 % 80.81 % 92.19 % 73.15 % 89.69 %

LPCC U 26.80 % 46.51 % 37.06 % 31.51 % 37.25 % 34.62 % 35.21 % 35.57 %

ABS-EMS nU 42.72 % 60.32 % 45.00 % 34.43 % 49.49 % 47.66 % 35.19 % 44.97 %

The initial solution computed by LPCC is obtained by setting W = V , the amount of 
demand and the capacity are computed with respect to the time interval 7 a.m.–11 p.m., 
q = 0.5 and the time limit for nonurgent demand is set to 30 minutes. The optimal solution 
value is equal to 25. This means that the iterative procedure should allocate the remaining 4 
ambulances.

The performance of the final solution obtained by the iterative greedy procedure is then 
evaluated using ABS-EMS in order to compare them with the current set of posts. Table 9 
reports the performance evaluation of the set of posts computed by the iterative procedure 
(third and fourth rows). First and second rows report the performance of the initial solution 
computed by solving LPCC. First we remark the evident improvement gained by the iterative 
procedure with respect to the initial solution. Then, comparing these results with those in 
Table 5, we observe that such a solution is comparable, in terms of system performance, 
with the current location posts. The same remark holds when evaluating actions 1–3 starting 
from the new set of posts.

5 The answers and the EMS reorganization process

Although they are able to provide a lot of information about the system (see, e.g., their 
website http://www.118milano.it for real time information), the Milano EMS management

http://www.118milano.it


was not able to link together system performance and spatial information. In other words, 
they are not able to evaluate, from a quantitative point of view, their capability to satisfy the 
emergency demand coming from the urban area.

The studies reported in Sects. 2–4 have shown that there is room for improving the per-
formance of the system following one of the three actions proposed and evaluated. Further-
more, they support the idea that the inefficiencies were due to the demand peaks during the 
day while less impact has the current post location. This claim is supported by the following 
remarks. The first one is the difficulty to find an alternative set of posts: the solution 
reported in this paper is the best one among 7 different solutions tested in Aringhieri et al. 
(2008) and  obtained applying different strategic optimization models. Then, we observe 
that the LPCC solution determines a lower bound of the number of ambulances which is 25 
against the 29 currently in service. Note that such a lower bound is the solution value of a 
deterministic optimization model in which the capacity parameter models the ambulance 
capacity assum-ing that emergency demands occurring in the same post are not 
simultaneous, which is not true especially when an emergency demand peak arises.

To improve the EMS performance, the more promising action to be taken seemed that of 
increasing the ambulance time availability. Furthermore, this action seemed to be more 
reliable in terms of final improvement. Therefore, the EMS management decided to intro-
duce the concept of smart ambulance within the EMS organizational model. As already 
mentioned, the introduction of smart ambulances requires an innovation in terms of both 
technological and human factors determining a change in the EMS organizational model.

The main change concerned the introduction of the so called “logistic operator”. The in-
troduction of logistic operators allows to assign ambulances to missions when traveling to 
a post. It determines a change in the emergency request management. The classical OC 
operators are still in charge of answering the calls and of the triage procedure, but are no 
longer responsible for dispatching ambulances. Logistic operators are in charge of assigning 
ambulances to emergency requests. They can select the nearest ambulance among all the 
ambulances, that is to say, not only those waiting in a post, but also those traveling to a post. 
Furthermore, if there are many ambulances able to serve the request within LAW time, the 
logistic operator can select, based on his/her experience, the ambulance minimizing the loss 
of coverage. To allow the use of traveling ambulances, the system must be equipped with 
a complete GPS-based tracking system based on secure link connections. If such tracking 
system is not available, the logistic operator is also in charge of manually tracking the posi-
tion of the ambulances. The transition to the new organizational model has been made easier 
allowing special training session for logistic operators employing the interactive simulator 
discussed in Pinciroli et al. (2010).

During the collaboration, a web site (http://118.dti.unimi.it) was maintained in order to 
spread the main project findings and to allow participation. Although it was open to 
everyone for consultation, the target audience of the OC operators and ambulance crews, 
i.e., people interested in the possible organizational changes. The success of the 
collaboration expanded the audience also to people working on other EMS of Regione 
Lombardia.

6 Conclusions

The emergency service is an important aspect in the life of every city, and, due to limited 
resources, requires a careful management. In Italy, the organizational model of emergency 
medical services is not uniquely defined and we can observe several and different models 
implemented by Italian EMSs. For instance, the Milano EMS deploys the ambulances in a 
set of posts so as to provide a coverage of the emergency demand.

http://118.dti.unimi.it


Despite the availability of many Information Technology and mathematical decision sup-
port tools, in Italy EMSs usually locate and manage their ambulances based on operators’ 
experience rather than on quantitative tools. To the best of our knowledge, the Milano EMS 
is the only one who systematically collects data about its every day activity. Nevertheless, 
such huge amount of data was not exploited to evaluate the system performance or to sug-
gest new management strategies. In this paper we report a study which proves that statistical 
modelling, simulation and mathematical programming can be successfully applied to an 
EMS, in order to evaluate its current performance and to provide suggestions to improve it. 
The study shows that the Milano EMS provides a high level of performance, and yet it can 
benefit from the policy analytics techniques to improve the quality of the delivered service 
and to better exploit limited and expensive resources.

Regarding the organization of an EMS, we can gather some general insights. The first in-
sight is that the ambulance management model in use at EMS of Milano could be exported 
in the other Italian large urban area adopting the iterative procedure depicted in Sect. 4.2. 
The second one concerns the impact of practical parameters, such as the average ambulance 
speed and the number of ambulances, when they may vary: the action assessment study 
shows, for instance, how to manage the introduction of a new ambulance in the system. 
The last one concerns the method for improving the performance of the whole system, i.e., 
the introduction of the required technologies and communication systems for smart am-
bulances. Furthermore, the smart ambulance can be used to implement more sophisticated 
dispatching policies: for instance, it allows to re-route an ambulance, while serving a low 
priority call, to serve a medical emergency having higher priority located nearby.

The close cooperation with EMS management has also determined some novelty in terms 
of methodological contributions. The need of dealing with nonurgent demands encouraged 
the development of the LPCC optimization model while the idea of increasing the ambulance 
time availability inspired the ABS-EMS model. Finally, difficulties in finding an alternative 
set of posts determined the development of the iterative procedure combining optimization 
and simulation. We remark that the developed procedure can be used to design from scratch 
a set of posts guaranteeing a given overall system performance.
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