
Stretching the Traditional Notion of Experiment
in Computing: Explorative Experiments

Viola Schiaffonati1

Received: 23 October 2014 / Accepted: 14 May 2015 / Published online: 28 May 2015

Abstract Experimentation represents today a ‘hot’ topic in computing. If ex-

periments made with the support of computers, such as computer simulations, have

received increasing attention from philosophers of science and technology, ques-

tions such as ‘‘what does it mean to do experiments in computer science and

engineering and what are their benefits?’’ emerged only recently as central in the

debate over the disciplinary status of the discipline. In this work we aim at showing,

also by means of paradigmatic examples, how the traditional notion of controlled

experiment should be revised to take into account a part of the experimental practice

in computing along the lines of experimentation as exploration. Taking inspiration

from the discussion on exploratory experimentation in the philosophy of science—

experimentation that is not theory-driven—we advance the idea of explorative ex-

periments that, although not new, can contribute to enlarge the debate about the

nature and role of experimental methods in computing. In order to further refine this

concept we recast explorative experiments as socio-technical experiments, that test

new technologies in their socio-technical contexts. We suggest that, when ex-

periments are explorative, control should be intended in a posteriori form, in op-

position to the a priori form that usually takes place in traditional experimental

contexts.

Keywords Experiment � Computing � Experimental control � Explorative

experiment

& Viola Schiaffonati

viola.schiaffonati@polimi.it

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza

Leonardo da Vinci 32, 20133 Milan, Italy

This is a post-peer-review, pre-copyedit version of an article published in Science and engineering ethics. The
final authenticated version is available online at: http://dx.doi.org/10.1007/s11948-015-9655-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s11948-015-9655-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11948-015-9655-z&domain=pdf
http://dx.doi.org/10.1007/s11948-015-9655-z

Experiment and Computing: Not Only Simulations

Experimentation represents today a ‘hot’ topic in computing. Not only experiments
made with the support of computers, such as computer simulations, play an essential
role in every domain of science and technology, but also questions such as ‘‘what
does it mean to make experiments in computer science and engineering and what
are their benefits?’’ have recently taken a center stage in the debate over the
disciplinary status of the discipline and its methodological accounts. However, if the
experimental capabilities of computer simulations have received increasing
attention from philosophers of science, the same attention has not been devoted
to analyze how the notion of experiment should be defined in the realm of
computing. Thus, our aim in this work is to show that an extension of the traditional
notion of controlled experiment is necessary to give reason for different
experimental practices in computing.

It is undoubtedly evident that science has entered what has been called the ‘age of
computer simulation’ (Winsberg 2010); the massive use of computer simulations in
virtually every domain of science has drawn attention to their epistemological
justification: if computer simulations started as tools to build tractable models for
solving the equations provided by theories, nowadays their role expanded and,
besides dealing with the construction of models of greater and greater complexity,
computer simulations can be used to increase the exploration opportunities. This is
in accordance with the idea of ‘modeling from above’ (Keller 2002) and ‘modeling
from the ground up’ (McLeod and Nersessian 2013), where the theoretical model
behind the simulation is under construction and shaped by the simulation results
themselves. Accordingly, a different relation between theory and experiment
emerges, where the latter actively participates in the settling of the former, instead
of aiming only at testing or rejecting the theory itself.

Recently the experimental properties of computer simulations have been
examined, and philosophers have begun to consider in what sense, if any, computer
simulations are experiments (see Winsberg 2013 for a detailed analysis of this
debate). Positions range from a full acceptance of the identity thesis (‘‘Computer
simulation studies are literally instances of experiments’’) to its rejection in different
degrees. Computer simulations can be used as experiments in the case in which the
purposes of simulation and those of experiment coincide, but they are not
necessarily experiments: it is perfectly plausible to have computer simulations at
work that do not have any experimental purpose (think for example of simulations
adopted for didactical purposes).

The possibility of using simulations as experiments resides in the ability (and in
the necessity) they both possess of controlling the features under investigation, thus
implementing the original idea of experiment as a controlled experience. The source
of credibility for the models used in the different cases of simulations as
experiments greatly varies: if the case in which the credentials are provided by the
theoretical ancestors, on which simulations are based, is not problematic, the
‘modeling from above’ or ‘from the ground up’ practices require an epistemological
justification for their use. Indeed the use of computer simulations also in those fields

that do not have secure theoretical foundations and/or in which data are sparse has

reshaped the way experimental results are considered reliable. In these contexts

experiments (in the form of computer simulations) cannot be considered as pure

controlled experiences anymore, but are better conceived as explorations, where the

theoretical background is shaped by simulation results.

Let us move now from experiments made with computing (simulations) to

experiments made in computing: a closer look on whether and to what extent the

traditional experimental protocol can be applied to computing provides evidence

that the same explorative approach used in computer simulations is already at work

in this context, even if it is not yet properly conceptualized. Our goal in this paper is

to show how the traditional notion of experiment should be revised to take into

account a part of the experimental practice in computing along the lines of

experimentation as exploration. Taking inspiration from the discussion on

exploratory experimentation in the philosophy of science—experimentation that is

not theory-driven—we advance the idea of explorative experiments that, although

not new, can contribute to enlarge the debate about the nature and role of

experimental methods in computing. In order to further refine this concept we recast

explorative experiments as socio-technical experiments, that test new technologies

in their socio-technical contexts. We suggest that, when experiments are

explorative, control should be intended in a posteriori form, in opposition to the a

priori form that usually takes place in traditional experimental contexts.

Before we embark on our discussion, however, we need to provide a working

definition for the two core concepts on which this paper relies, namely those of

explorative experiment and a posteriori control. These initial definitions will be

expanded and further clarified, mostly with the help of examples, throughout this

paper. In general an experiment is a set of observations and actions, performed in a

controlled context, to test theories and to provide the basis for scientific knowledge

(Hacking 1983; Franklin 1986; Radder 2003). Control, intended as an active

manipulation of the phenomena under investigation where the choice of the factors

to be controlled is critical, is usually considered a central feature of experimentation

so that experiments are also labelled ‘controlled experiments’. In this paper by

explorative experiments we mean a form of investigation of novel and interesting

ideas or techniques without the typical constraints of rigorous experimental

methodologies. These are experiments that are driven by the desire of investigating

the realm of possibilities pertaining to the functioning of an artefact and its

interaction with the environment in the absence of a proper theory or theoretical

background. So hypotheses cannot be clearly stated and, even if the ultimate goal is

to acquire knowledge about the performance of the artefacts under investigation and

to find out proper concepts to formulate possible regularities, the experimenter is not

in full control of the experimental setting due to the impossibility of anticipating all

the plausible outcomes. Therefore, when experiments are explorative, control

should be intended in a posteriori form, in opposition to the a priori form of the

traditional experimental contexts. If in the latter experimental factors are in control

of the experimenter in a sort of anticipation of the scenario to be tested, in the

former the possibility of full anticipation disappears and control is in part carried out

after the artefact has been inserted into society.

In this paper, after discussing how the notion of experiment has been differently
conceived in computer science and engineering in the last 40 years (‘‘Experiment-

ing in Computing’’ section), reasons and examples to move beyond the traditional
idea of controlled experiment in the direction of exploration are presented (‘‘Some
Reasons (and Examples) that Stretch the Traditional Categories’’ section). Then, the
concept of explorative experiment is defined and discussed (‘‘Toward Explorative
Experiments’’ section), together with the idea of a posteriori control, while
reflecting on the possible extension of a posteriori control to social experiments
intended as an introduction of new technologies in society (‘‘Explorative
Experiments, Social Experiments and a Posteriori Control’’ section). Finally, some
concluding remarks are advanced (‘‘Conclusion’’ section).

Experimenting in Computing

A trend has recently emerged toward making the experimental scientific method
take center stage in computer science and engineering, also as a way for reflecting
on the disciplinary status of this discipline in between science and technology (see
for instance Denning 2013; Schiaffonati and Verdicchio 2014; Hatleback and
Spring 2014). The call for a more rigorous experimental practice puts attention on
numerous questions: from the dispute on the name (should this discipline be called a
science or not?) to the investigation of the sciences of the artificial, including the
debate on whether and how traditional experimental principles (control, compar-

ison, repeatability, reproducibility, etc.) could be applied to computing.

Probably one of the first and most famous concepts of computer science as an
experimental science goes back to the 1976 paper by Allan Newell and Herbert
Simon published in the occasion of their acceptance of the Turing award:
‘‘Computer science is an empirical discipline. We would have called it an
experimental science, but like astronomy, economics, and geology, some of its
unique forms of observation and experience do not fit a narrow stereotype of the
experimental method. None the less, they are experiments. Each new machine that
is built is an experiment. Actually constructing the machine poses a question to
nature; and we listen for the answer by observing the machine in operation and
analyzing it by all analytical and measurement means available’’ (Newell and
Simon 1976, 114). This conception of machines and programs as experiments has
been influential for many years, promoting the idea that the appeal to experience is
fundamental in contrast with the view of computer science as a pure mathematical
and deductive discipline. However, the rather ingenuous view of experiments,
without any more specific reference to some principles of experimentation, may
have contributed to spread an oversimplified conception of how the experimental
method can be applied to computing.

The quest for experiments in computing began to be treated systematically at the
beginning of the 1980s, following a crisis in what was then called experimental
computer science. In a report of the Association for Computing Machinery (ACM)
published in 1979 (Feldman and Sutherland 1979), experimental research in
computer science is strongly related to the measurement and testing of computing

algorithms and systems. In the same issue of the journal (McCracken et al. 1979)

where the ACM report was published, the call for experimentation is expressed in

terms of the recognition of the possibility for major advantages in different fields of

computing. At the same time, a ‘rejuvenation’ of experimental computer science is

advocated from very concrete perspectives: for example, by promoting experimen-

tal facilities for computer systems research. However, experimental computer

science is seldom defined in a precise way in this context, and experiments are

conceived mainly as explorations. Experimental computer science is to be

rejuvenated also according to Peter Denning, who proposes in a short article that

the experimental work produced in computer science should be judged by

traditional standards: ‘‘Let us employ traditional measures when assessing

experimental computer science. Let us always have a clear plan for testing a clear

hypothesis. Let us not call ‘‘hacking’’ science. These are the criteria by which the

rest of the world will evaluate our field’s experimental work. If we do not live up to

the traditional standards of science, there will come a time when no one takes us

seriously’’ (Denning 1980, 543). Denning advances the idea that to implement

experimentally a computer system is not just to build the system and ‘‘see what

happens’’. In a way, this approach tries to go beyond the ‘construct and test’

paradigm of Newell and Simon, by proposing that experimental computer science

has to deal with the process of supporting and testing a hypothesis, thus making

computing closer to the standards of rigor and the practice found in the progression

of the traditional sciences.

Although some efforts along this direction have been put to work over the years

(Tichy 1998; Langley 1988), the above-mentioned guidelines, whether reductive or

not, remained mostly unattended. More recently, a trend has once again emerged

toward making the experimental scientific method take center stage in computing.

These recent efforts in several projects have shown a renewed need for an

experimental methodology in this discipline (Freeman 2008; Morrison and

Snodgrass 2011). Experiments are deemed to have an impact on several aspects

of computing: their importance is recognized for assessing computing systems’

performance and for triggering new developments (Freeman 2008; Morrison and

Snodgrass 2011; Tichy 1998) and experimentation with prototypes is considered

essential in use-inspired research and product design (Snir 2011). Moreover, the use

of the experimental scientific method is advocated to understand computations that

are often too complex for mathematical analysis, to prove their correctness, to check

consistency with hypotheses, to uncover performance constraints, and to show

whether original goals are met (Denning and Freeman 2009).

‘Experimental computer science’ has become a quite common label to which

today different meanings can be associated; (Feitelson 2006) acknowledges at least

three of them. The first one refers to the type of research devoted to the realization

of concrete systems; this kind of activity lies in the realm of engineering rather than

science, and thus its experimental side is related to the demonstration of the

feasibility of these systems, whether software or hardware. The second meaning

(Denning 1981) views experimental computer science as the mathematical

modeling of the behavior of complex systems, where the anticipated properties of

the systems have to be tested experimentally. This ‘experimental feedback’ is

recognized elsewhere as the underlying force of computing (Newell and Simon
1976). The third meaning defines the discipline as the evaluation of computer
systems by means of the traditional methodologies of natural sciences (Tichy 1998),
such as repeatability.

Despite the increasing interest in a more rigorous methodological approach to
computing, many lament that the current methodology is inadequate and that, in
comparison with other fields (e.g., natural sciences), computer scientists should
experiment more (Denning 2005). Many recommendations (see Harrison and Basili
1996; Barni et al. 2007; Vandewalle et al. 2009; Mayer and Nordio 2010) present
common traits: they stem from the acknowledgment of a crisis in computing that is
meant to be overcome with a greater maturity of the discipline, in terms of more
rigorous experimental methods to the search for solutions. Moreover, they accept
the view that computing is a science without much discussion: ‘‘The question of
‘scienceness’ of computing has always been complicated because of the strong
presence of science, mathematics, and engineering in the roots and practice of the
field. […] Computing is now accepted as science. Some of us even believe
computing is so pervasive that it qualifies as a new domain of science alongside the
traditional domains of physical, life, and social sciences’’ (Denning 2013, 37–38).
As a consequence of computing being considered a fundamental science, the
scientific method should apply, but no systematic analysis on how it should be
intended in this particular context is provided: ‘‘Experimentation is central to the
scientific process. Only experiments test theories. Only experiments can explore
critical factors and bring new phenomena to light so that theories can be formulated
and corrected. Without experiments, computer science is in danger of drying up and
becoming an auxiliary discipline. The current pressure to concentrate on application
is the writing on the wall. I don’t doubt that computer science is a fundamental
science of great intellectual depth and importance. Much has already been achieved.
Computer technology has changed society, and computer science is in the process of
deeply affecting the world view of the general public. There is also much evidence
suggesting that the scientific method does apply. As computer science leaves
adolescence behind, I hope to see the experimental branch of this discipline
flourish’’ (Tichy 1998, 40). Another recurrent theme in this discussion is the success
of scientific reasoning and the necessity to extend it to computer science: ‘‘These
examples and other extant computer science theories emphasize that by embracing
the methodology of developing and evaluating predictive models through
experimentation over multiple members of a class of software systems, a more
complete understanding of such artifacts will emerge. […] How can these benefits
be realized? How might we change what we do? We can adapt our already very
skilled hypothesis testing in debugging and broaden it by asking more general
questions […] The pristine presentations of scientific reasoning and the tremendous
successes of such reasoning in other fields may appear to the practicing computer
scientist as out of reach. But many of our colleagues have started down this path, the
tools are accessible, and the promise is great’’ (Morrison and Snodgrass 2011, 38).

In what follows we propose to enlarge this debate, without taking for granted that
the traditional experimental method should be applied to computing, but rather
analyzing from a critical standpoint the limits of this application. In our view, a

good starting point is the acknowledgment of the variety of ways in which the term

experiment is used in the field of computing. As it has been reconstructed in detail in

(Tedre 2015), at least five different views of experiments can be recognized in the

practice of the field. There are the so called feasibility experiments aimed at

empirically demonstrating (demonstration and experimental are terms commonly

used as synonymous in computer science) the proper realization and working of a

technology. There are trial experiments, evaluating some aspects of the system

using predetermined variables, and field experiments, aimed at evaluating these

aspects of the system outside of the laboratory in the real world. There are also

comparison experiments devoted to compare among different solutions by looking

for the best solution for a specific problem. And finally there are controlled

experiments, those more similar to the traditional notion of experimentation aimed

at achieving generalization and prediction. What is important in this account is not

how the notion of experiment should be used, but how in fact it is used: ‘‘Many

would object against calling, for instance, feasibility demonstrations ‘experiments,’

arguing that the term ‘experiment’ has a special meaning in science. They are right.

But if one looks at how authors in computing have used the term—not how it should

be used—those five uses are easily found’’ (Tedre 2015, 190).

Some Reasons (and Examples) that Stretch the Traditional Categories

The five views introduced by Tedre (2015) constitute the starting point for

extending the conception of an experiment in computing in the direction of

experiment as exploratory work on novel and interesting ideas or techniques.

However, contrary to Tedre, we are not interested here in a comprehensive

description of the ways the notion of experiment is currently intended in computing,

but rather on a reflection on how some traditional categories, such as that of the

controlled experiment, are challenged in current computing practice.

The coexistence of these different views on experimental computer science is

probably due to a variety of reasons: surely the large number of the subareas of

computing plays a key role; moreover, the novelty of the whole field (with

respect to more traditional scientific disciplines) contributes to a lack of

uniformity regarding methodological issues. Anyway, besides the investigation

of these reasons (which are out of the scope of this work), what seems important

to us is the acknowledgment of the wide differences between the various

components of computer science and engineering that are reflected in the

differences in the ways experiments are intended and performed. In the

following, we present two paradigmatic examples that show how the emphasis

on the experimental method is differently acknowledged and carried out in two

subareas of the field.

Let us consider first empirical software engineering, which aims at the study and

application of techniques for the design, development, operation, and maintenance

of software. Here more and more attention has been progressively devoted to

methodological issues trying to adopt a rigorous approach inspired by the scientific

experimental tradition, namely the controlled experiment. If we consider the 50

most cited papers (according to Scopus) from ‘‘Empirical Software Engineering: An
International Journal’’ (Basili and Briand 1996) in the 2003–2012 decade, it is
significant to observe that, besides case studies, reviews, empirical analysis,
comparative analysis and field studies, more than 1/5 of the articles present a form
of controlled experimentation (even if not all of them explicitly refer to the
presented work as a controlled experiment). Indeed, they pay attention to replication
and present results derived from replicated rounds; they carefully design the
experimental setting, with an informed reflection on the choice and variation of
controlling factors; they devote attention to the issue of the number of subjects
involved in the experimentation trying to enlarge it in a considerable way; they
present in most of the cases a considerable statistical analysis of their results; they
are interested in both the internal and external validity of their results so making it
possible to generalize these results.

A closer look at one of these articles, explicitly referring to the presented work as
a controlled experiment (Vokac et al. 2014), shows a replication of a previous
experiment aimed at verifying the beneficial effects of design patterns (i.e. proven
solutions to design problems organized into reusable software modules) with the
motivation to support the industrial use of design patterns. Accordingly, to increase
experimental realism, a real programming environment, instead of pen and paper, is
used, and 44 paid professionals from multiple companies as subjects, instead of the
29 volunteers from a single organization like in the previous attempt. Moreover, the
repeated experiment is carefully designed not just in terms of subject selection,
background and group assignment, but also in terms of the expectations and
hypothesis that are clearly expressed in the description of the experiment conduct.
This is a very important aspect that, together with the authors’ claim to add a
qualitative analysis (beside the quantitative analysis of dependent variables) in the
discussion, clearly shows their purpose to try to explain the reasons why the
quantitative results were observed. This attention to qualitative explanations, and
not only to quantitative analysis, can be seen as an important step toward a more
articulated view of experiments, more similar to the traditional notion of the
controlled experiment.

Let us consider now another area of computing that is autonomous mobile
robotics. This is a field oriented to develop robotic systems that are autonomous in
the sense that they have the ability to maintain a sense of position and to navigate
without human intervention, in order to operate in places hardly accessible by
humans or in cooperation with humans in common environments. Note that human
operators are not completely excluded from autonomous mobile robotics, but they
evolve from being active tele-controllers of the robotic systems to being more
passive tele-supervisors of the same robotic systems. The emphasis on experiments
and the effort in developing good experimental methodologies have gained a
growing attention also in autonomous robotics in the last years. Basically, this
community started to recognize that experimental methodologies have not yet
reached the level of maturity of other computing disciplines. To cope with this
situation, a number of initiatives have been promoted, ranging from workshop series
on these topics, to special issues of journals, to European projects funded under
different programs. However, the analysis of experimental trends that emerge for

instance from the autonomous mobile robotics papers presented over the last

10 years at the international conference on autonomous agents and multiagent

systems (AAMAS) (Amigoni et al. 2014) shows that, if from the one side the

principles of the experimental method (such as comparison, reproducibility and

repeatability, justification and generalization) play an inspirational role in the

direction of a more rigorous approach to experiments (say controlled experiments),

from the other side these rigorous approaches are not yet a full part of the current

research practice.

From the systematic analysis presented in (Amigoni et al. 2014) and from another

more preliminary research (Amigoni et al. 2009), it emerges that none of the

experiments considered in autonomous mobile robotics can be properly labelled as

controlled. The increasing use of public data over which different systems can be

run and compared is surely a sign of how comparison is acquiring a crucial

importance in this field, as well as the recent trend toward the development of

comparable implementations of systems, starting from their descriptions provided in

papers and reports, and using the same code that was used in previous experiments.

Moreover, the public distribution of code and/or problem instances (data sets) is a

positive sign that experimentation is moving toward a more rigorous approach.

However, experiments involving several data sets referring to different environ-

ments (indoor or outdoor) are still not so common and, hence, the implementation of

similar experiments, to understand for instance which parameters influence a robotic

system, is very difficult. Plus, the report of anomalies in performance, that should

help in detecting those issues deserving further attention, is rare. Finally, weak

attention is given to statistical analysis of results, thus compromising the possibility

of justifying and explaining them.

The case of autonomous robotics, and the way experiments are performed,

represents a clear example of a subarea of computing in which, although the

importance of the notion of controlled experiment is recognized, the traditional

experimental scenario is not fully applied. We believe that the reasons for this are

due not only to a lack of methodological maturity of this field, but also (and perhaps

principally) to more intrinsic reasons, as we are going to argue in the following

section of the paper.

Toward Explorative Experiments

The examples presented, the notion of directly action-guiding experiments (Hansson

2015), and some preliminary reflections on intervention and control in social

experiment (Kroes 2015) represent the starting points for introducing the idea of

explorative experiment in computing that is discussed in this section. To a first

approximation, explorative experiments are investigations on the functioning of an

artefact and its interaction with the environment in the absence of a proper theory or

theoretical background and without the typical constraints of controlled experiments.

Let us consider the notion of directly action-guiding experiments as a way to

stress the kind of experimental intervention that characterize explorative ex-

periments in computing. In particular, the difference between epistemic experiment

and directly action-guiding experiments, as recently conceptualized in (Hansson
2015), can help emphasize in this discussion not only that explorative experiments
are performed on artefacts (and not on natural phenomena), but also that they have
different purposes than the epistemic ones. An experiment is epistemic when aims at
providing us with information about the workings of the natural world, whereas an
experiment is directly action-guiding if and only if satisfies two criteria: a) the
outcome looked for should consist in the attainment of some desired goal of human
action, and b) the interventions studied should be potential candidates for being
performed in a non-experimental setting in order to achieve that goal. A clinical trial
of an analgesic is one of the examples provided by Hansson of a directly action-

guiding experiment, where the outcome looked for is the efficient pain reduction
and the experimental intervention is the treatment that might be administered. A
systematic test on an autonomous robot employed to assist an elderly person in her
home is also an example of a directly action-guiding experiment: the outcome
looked for is the proper interaction of the robot with the person and the experimental
intervention consists in the careful tuning of the abilities that the robot must possess
to positively achieve this goal.

Let us focus now on the explorative character as a form of investigation of the
unknown. Although the concept of experiment as exploration is not new, we
introduce it as a further category of experimentation in computing, with respect to
the five categories already introduced in (Tedre 2015), to give reason of a significant
part of the experimental practice in computer science and engineering. In some
recent philosophical research exploratory experimentation has been used to label
those forms of experimentation in science which are not always guided by theories.
One of the first authors to recognize the epistemic importance of exploratory
experiments (Steinle 1997) defines exploratory experimentation as driven by the
desire to obtain empirical regularities when no well-formed theories or no
conceptual framework are available. What is important in this characterization (that
in this case it is based on a detailed reconstruction of the early research in
electromagnetism) is that the experimental activity may be highly systematic and
driven by the typical experimental guidelines, despite its independence from
specific theories. The same term is used with a slightly different meaning in an
another article in the same year but in the context of some early research in protein
synthesis (Burian 1997), where exploratory experimentation is seen as a style of
inquiry not guided by theory. These and other similar works are mainly directed
against the theory-driven approaches of most of the philosophy of science in the
spirit of experimentation as having a life on its own (Hacking 1983). Even if they
recognize that exploratory experimentation is typically not free of theory, they aim
at showing the epistemic significance of those inquiries that are not primarily
theory-driven by presenting several detailed case-studies. The idea that ‘‘the aim of
exploratory experiments is to generate significant findings about phenomena
without appealing to a theory about these phenomena for the purpose of focusing
experimental attention on a limited range of possible findings’’ (Waters 2007, 5) is
probably that serving better as an inspiration for more recent works devoted to
provide evidence of the exploratory shift observed in the methodology of some
areas of biology (Franklin 2005).

To our purposes, however, this emphasis on theory (even when theory is

relegated as background knowledge) is out of scope, as it is not even completely

clear what a theory in computer engineering is or whether references to a theoretical

background play a key role in experiments in computing. This is also the reason

why we use the term ‘explorative’ instead of ‘exploratory’ to mark our difference

from the philosophical work focused on accounting the distinction between

exploratory and theory-driven experiments on the ways in which experiments

depend on theory. In our attempt to characterize explorative experiments in

computing we are interested, rather, in the appeal to complexity that has been

stressed in the philosophical literature (Burian 2007), where some systems are

considered too complicated to be investigated by means of a theory-driven

approach. If this appeal to complexity certainly applies to biology, we believe that

there are good reasons to apply it to computing fields as well, in particular when

considering that what is the subject of the experimentation are not just the artefacts

per se, but also the ways these artefacts are able to interact with the surrounding

physical and social world.

Indeed the reference to complexity helps in defining one important aspect we

wish to stress in our characterization of explorative experiments: the fact that there

is not sufficient information (in most of the cases for the lack of a proper theoretical

background and/or previous experience) to provide exact expectations of what

investigators will find. And, thus, explorative experimentation is a way to find

patterns of activities from which later scientists could generate new hypotheses. In

this sense explorative experiments are forms of investigation on novel and

interesting ideas or techniques without the typical constraints of rigorous

experimental methodologies.

Controlling the experimental factors that are to be investigated constitutes one of

the key factors of the experimental method. To realize an experimental system,

knowledge and control of the interactions between the system and its environment

need to be managed. Controlled experiments are usually performed having in mind

quite precise expectations of the possible outcomes. The research questions are

clearly stated and the hypotheses to be investigated are made explicit. Then,

experiments are designed and performed, varying the different experimental

parameters in order to determine which of the different experimental conditions are

indispensable and, then, looking for stable empirical rules. Amongst the strategies

for producing stable and repeatable experiments, experimenters vary a number of

factors in their experimental systems to examine whether they are relevant or not.

The fact that experiments are performed in laboratories responds exactly to this

attempt of control.

Traditionally the control paradigm for experimentation, as has been devised in

the history of science, relies on two assumptions (Kroes 2015): the experimenter is

not part of the system on which the experiment is performed and (s)he is in control

of the independent variables and of the experimental set-up. Accordingly, (s)he is

able to intervene both by changing these variables to evaluate their influence on the

dependent ones and by varying the experimental set-up. As it has been argued by

Kroes in the case of new technologies, this traditional control paradigm becomes

problematic and a shift in the notions of intervention and control can be observed

when considering new technologies as socio-technical systems or as involving
socio-technical systems, namely as hybrid systems composed of natural objects,
technical artefacts, human actors and social entities: the idea of controlling the
experimental system from a center of command and control outside becomes highly
problematic (Kroes 2015). Not only the distinction between the experimental system
and its environment is critical, but also the environment is complex being composed
of both technical artefacts and natural and social elements.

It is interesting to note that the same crisis in the traditional notion of control can
be observed also in a part of the current experimental practice in computing.
Although the kind of technology (computer science and engineering) we are
discussing here does not possess in a full and complete way the features of large-

scale socio-technical systems, such as the world civil aviation system (Vermaas
et al. 2011), it presents already some of the characteristics of a socio-technical
system. In other words, we could say that the experimental system in the case, for
instance, of experiments with autonomous mobile robots is hybrid, in the sense that
not just technical components play an essential role for the functioning of the
system, and thus have to be evaluated, but also natural objects, human actors and
social entities need to be taken into account. Moreover, if in the natural sciences it is
prescribed that the experimenter should be an outsider of the phenomenon to be
explained, it is not clear how a person working in computing, which is aimed at
producing computation-based artefacts, could be an outsider with respect to a
phenomenon (i.e. an artefact) that (s)he has created (Tedre 2011). Except from some
significant examples, experiments in computing are usually performed by the same
people that has created the artefacts and, at the same time, need to test them, losing
the sort of independence of the experimenter prescribed in the classical
experimental protocol.

One could ask what is the reason for the same person to test the artefacts that
(s)he has created and, thus, should know in detail. To answer this question, it is
important to recognize a certain level of unpredictability arising both in the artefact,
due to its complex nature, and in its interaction with the physical environment
(including the persons) surrounding it. This is particularly evident in the case of
autonomous robotics, where the goal is of having robots that do not require
continuous human supervision. Autonomous robots are very complex entities whose
behavior is hardly predictable, even by their own designers, especially when
considering their interaction with the physical (and the social) world. Not only
parameters and factors to test that a given robot is working properly, and possibly
better than others, have to be taken into a rigorous account without the required
independence of the experimenter, given that the experimenter and the creator of the
artefact are the same; but also autonomous robots have to be tested for their
interaction with an environment (including in most of the cases human beings) that
is hardly predictable. This does not mean that experiments to test the functioning of
these artefacts cannot be made, but that some constraints relative both to the type of
object (technical artefacts rather than natural phenomena) and to the procedure of
evaluation (explorations rather than controlled experiments) are to be taken into
account.

A good example is provided by one of the challenging application areas in

autonomous mobile robotics that is search and rescue, which aims at developing

robotics systems to assist human rescuers in detecting and reaching victims after a

disaster. Tasks range from moving between locations of disaster environments,

building spatial representations (maps) of the environments, to searching environ-

ments for victims. Generally autonomous robots for search and rescue are developed

to explore the largest possible amount of the area of an initially unknown

environment in a given period of time, or to explore the whole area of an initially

unknown environment in the shortest possible time. During exploration, robots can

be required to collect information about the presence of victims, about the possible

paths traversed by human rescuers, or about the structural stability of buildings. As

the use of autonomous robots in search and rescue applications is rather complex,

the presence of human operators is required to supervise operations and to actively

intervene on the system in case of unexpected problems. Hence, the instructions to

use these robots are complex and usually require human operators to undergo some

training. Due to these characteristics, to experiment on the functionalities and

behavior of these robots, they need to be evaluated at run-time, usually being the

distance from the planned (expected behavior) at design-time larger than expected.

The attempt to anticipate at design-time, through modeling, the possible problems

that can arise at run-time is one of the fundamentals of engineering (Vincenti 1990).

However, when considering autonomous mobile robotics, the above distance

increases because the modeling at design-time of the interactions between robots

and real environments in which they are embedded becomes very complex. The

reasons are multiple, but they can be summarized in the wide variability of

situations in which autonomous robots can find themselves and in the high difficulty

in modeling their interactions with the environment, especially when humans (as in

the search and rescue scenario) are involved. To cope with this difficulty,

experiments in autonomous robotics aim not only at testing whether and how the

design proves have been correctly translated in practice, but also at understanding

the often not fully predictable behavior of these robots when interacting with the

physical and social world.

As we have already noticed in ‘‘Some Reasons (and Examples) that Stretch the

Traditional Categories’’ section, the attempt of autonomous robotics to conform its

experimental methodology to the protocol of controlled experiment cannot be fully

carried out. The examples considered indicate that a purely controlled form of

experimentation is not possible due to the lack of some features that characterize the

traditional protocol and have to do with the control of experimental factors. This is

particularly evident when we consider, for example, the kind of experiment

performed to understand the behavior of a robotic system moving from location A to

location B in the presence of obstacles that were not explicitly modeled in the

design of the robot. Indeed a behavior for obstacle avoidance (considering only

polygonal obstacles) could be designed for the robot, but predicting its performance

for non-polygonal obstacles (such as round ones), that can be easily encountered in

real applications, is very difficult. This difficulty is due to a number of reasons, such

as errors in deciding what to do to negotiate a perceived obstacle, errors in the

locomotion for avoiding the obstacles, bugs in the software program deciding where

to move in order to avoid a detected obstacle, errors in performance, when for

instance a properly decided action is not performed as expected. If some of the

above mentioned causes (such as that related to the control of software programs)

can be addressed adopting the classical software testing tools, others are specific to

robotics and can be hardly addressed using tools originally designed for software

programs that interact with ‘‘controlled’’ environments.

Modeling and predicting all these aspects is not only far beyond the current and

near-future technical knowledge, but also not in the experimenter’s control due to

the intrinsic reasons we mentioned above: the experimenter is part of the system and

(s)he is not in full control of the experimental set-up (Kroes 2015). For example,

predicting ex ante which features of the environment are not properly represented,

before deploying the robotic system in the actual environment, is almost impossible,

making the traditional control paradigm not applicable, and moving the current

practice to a form of experimentation that is more suitable to call exploration. In this

case, experiments are carried out to explore possibilities, to investigate opportu-

nities, and they give back information that is iteratively used to improve the

artefacts both in their structure and in their interaction with a complex environment.

What is explored is only partially known in advance, and surely not at the level of

being expressed in the form of clear hypotheses to be tested later in an experimental

campaign.

With this discussion and these examples in mind, we can now attempt a less

tentative and more general definition of explorative experiments in computing. We

can say that explorative experiments are a special kind of directly action-guiding

experiments which possess the following features:

• They are devoted to testing artefacts, meant as artificial entities purportedly built

by humans to fulfill a purpose and, therefore, having a technical function.

• They are not devoted to hypothesis testing, but to investigate the realm of

possibilities pertaining to the functioning of an artefact and its interaction with

the environment in the absence of a proper theory or theoretical background.

• The control of the experimental factors cannot be managed from the beginning,

but it is in part carried out after the artefact has been inserted into its

environment.

Explorative Experiments, Social Experiments and a Posteriori Control

In this section we intend to argue on how the notion of explorative experiment and
that of social experiment share some commonalities and how they can contribute to
their respective shaping through the notion of a posteriori control. A posteriori
control is the form of control that characterizes explorative experiments that are
driven by the desire of investigating the realm of possibilities pertaining to the
functioning of an artefact and its interaction with the environment in order both to
acquire knowledge about the performances of the artefact itself and to find out
proper concepts to formulate possible regularities. A posteriori control refers, in

particular, to the fact that the experimenter is not in full control of the experimental

setting due to the impossibility of anticipating plausible outcomes for the lack of a

proper theory or theoretical background that make impossible to clearly state

hypotheses. In this situation, establishing a priori dependent and independent

variables is problematic so that to precisely track what aspects will be controlled

during the experiment becomes impossible.

The above described characteristics of explorative experiments in computing

resemble some aspects of the view of new technologies as social experiments

(Science and Engineering Ethics, this special issue), both being forms of

experimentation in society intended as a laboratory to experiment with technologies.

The idea of technology as social experiment is not new and derives from how the

notion of social experiment has been developed in the social sciences where various

conceptualizations, even if they emphasize one aspect or another of this idea,

conceive society as a sort of laboratory to experiment in with technologies.

According to (van de Poel forthcoming) a social experiment is an experiment in

society, on society and done by society. This means not only that technologies can

be (and sometimes they must be) experimented in society, but also that these

experiments are conducted to learn about the consequences of the technologies on

the society and that, in a sense, it is the society itself that carries out such form of

experimentation. Even if the notion of social in the case of explorative experiments

in computing has to be intended still in a very weak sense,1 the idea that such

technologies are experimented in the real world, and not in laboratories, and thus

their results are shaped also by society (where society is restricted in our case to the

actual users of the technology) clearly recalls social experimentation.

Moreover, the notion of control needs to be reconsidered in the case both of

social experiments and explorative experiments, as in both cases the traditional

control paradigm cannot be completely applied. In the social experimenting

tradition the notion of uncontrolled experiment plays a significant role and can be

interpreted in various ways. In particular van de Poel allows for the possibility of

uncontrolled experiments (in the sense that they are not controlled by the

experimenter); so it is not control that is one of the defining elements of experiment,

but the following two conditions: the first is that the phenomenon under

investigation is the result of an intervention; the second is that learning should be

one of the aims of experimentation. Although agreeing with these remarks, we

believe that the notion of control should maintain its centrality, as it is precisely

control that distinguishes experimentation from other forms of investigation. Not

only experiments have to intervene actively in the material world producing all

kinds of new objects, substances, phenomena and processes, but ‘‘clearly not any

kind of intervention in the material world counts as a scientific experiment. Quite

generally, one may say that successful experiments require, at least, certain stability

and reproducibility, and meeting these requirements presupposes a measure of

control of the experimental system and its environment as well as a measure of

1 Consider for example autonomous robotics, where it is plausible to think that in the future this social

scenario will progressively extend both for the increasing use of autonomous robots in everyday life and

for the social implication this use will entail.

discipline of the experimenters and the other people involved in realizing the
experiment’’ (Radder 2009, 3).

To maintain the centrality of control in explorative experiments conceptualized
in the broader framework of social experiments, while recognizing a different
weight of it with respect to controlled experiments, a promising strategy seems that
of mitigating the notion of control itself. In experiments as explorations control
could be intended in the a posteriori form, in opposition to the a priori form that
usually takes place in traditional experimental contexts. If in the latter experimental
factors are fully in control of the experimenter in a sort of anticipation of the
scenario to be tested, in the former the possibility of anticipation disappears and the
option for control is in the experimentation as exploration after new technologies
have been introduced within society. Therefore, although a different meaning for
experiment is required when dealing with a posteriori control, nevertheless control,
in one form or in another, still represents one of the defining properties of an
experiment.

Let us consider again the example discussed in ‘‘Toward Explorative Ex-

periments’’ section about search and rescue applications in autonomous mobile
robotics, and in particular the experiment devoted to understand the behavior of a
robotic system moving from location A to location B in the presence of obstacles not
explicitly modeled in the design of the robot and of the experiment. We have already
discussed how the notion of control cannot be applied according to the traditional
control paradigm, as the possibility of anticipating the scenario to be tested
disappears. Still some forms of control are possible after robots are inserted in real
world environments in which explorative experiments are conducted. First, the
research questions to be explored are set by the experimenter: this is true also in the
case of the explorative experiments we have discussed so far where, even if initial
hypotheses cannot be clearly stated, directions of exploration are devised and ways of
implementing them are realized. Secondly, control is exercised in the ways robots’
behaviors are organized for the specific experiment at stake. The possibility of failure
for an autonomous robot given in the case in which the properly decided action is not
performed as expected, for instance due to the surface of the environment that makes
wheels slip, is something that cannot be always predicted in advance, but can be
reconsidered a posteriori after the technology has been introduced in society. Finally,
the acts of measuring performances, of analyzing and explaining data, of
generalizing solutions also represent weaker forms of control that mitigate the idea
that, when control does not work as in the traditional experimental paradigm,
experiments become suddenly and completely uncontrolled.

By introducing this notion of a posteriori control, although in a very preliminary
way, we aim at emphasizing some features of explorative experiments in computer
engineering and, possibly, suggesting that this notion could be considered to
characterize control in social experimentation. We are well aware that different
forms of a posteriori control are likely to be observed in different fields of
application so that it is difficult at this stage to characterize this notion in a general
way. We suspect, however, that to consider explorative experiments in computing as
a very special form of social experimentation and control in social experiments as a
case of a posteriori control typical of experimentation in computing constitutes a

good starting point to stretch the traditional notion of experiment within socio-

technical systems and to go beyond the concept that social experiments can take

place all the time, whether we are aware of them or not.

Conclusion

We hope to have substantiated the need of reconsidering the traditional notion of

controlled experiment within the field of computer science and engineering. The

well-known notion of controlled experiment is not sufficient to give reason for the

different experimental practices that characterize this field and, therefore, we have

introduced the notion of explorative experiment to characterize experiments which

are not theory guided and should be better intended as explorations rather than as

hypothesis testing. To better clarify this notion we have discussed examples coming

from a recent area of computer engineering, namely autonomous mobile robotics,

where the unpredictability that arises both at the level of the artefact and at the level

of its interaction with the physical and social environment dissolves the idea of

traditional controlled experiments. Finally, by recasting explorative experiments as

a peculiar form of social experiment, intended to examine the introduction of new

technologies in society, we have considered how these two notions can mutually

benefit, in particular when considering how a posteriori control could provide a

form of control when working in explorative experiments.

In conclusion, this preliminary and partial analysis of experimentation in

computing already forces us to extend the traditional notion of the experiment. This

extension could be useful also in shaping the notion of a social experiment as

experiment in society, on society, and done by society.

Acknowledgments I am grateful to all the participants and organizers of the workshop ‘‘New

Technologies as Social Experiments’’, held at TU Delft in January 2014, and two anonymous reviewers.

References

Amigoni, F., Reggiani, M., & Schiaffonati, V. (2009). An insighful comparison between experiments in

mobile robotics and in science. Autonomous Robots, 27(4), 313–325.

Amigoni, F., Schiaffonati, V., & Verdicchio, M. (2014). Good experimental methodologies for

autonomous robotics: From theory to practice. In F. Amigoni & V. Schiaffonati (Eds.), Methods and

experimental techniques in computer engineering. Springer briefs in applied sciences and

technology (pp. 37–53). Berlin: Springer.

Barni, M., Perez-Gonzalez, F., Comesana, P., & Bartoli, G. (2007). Putting reproducible signal processing

into practice: A case study in watermarking. In Proceedings of IEEE international conference on

acoustics speech and signal processing.

Basili, V. R., & Briand, L. C. (Eds.). (1996). Empirical software engineering: An international journal.

Berlin: Springer.

Burian, R. M. (1997). Exploratory experimentation and the role of histochemical techniques in the work

of Jean Brachet, 1938–1952. History and Philosophy of the Life Sciences, 19, 27–45.

Burian, R. M. (2007). On microRNA and the need for exploratory experimentation in post-genomic

molecular biology. History and Philosophy of Life Sciences, 29(3), 285–311.

Denning, P. J. (1980). What is experimental computer science. Communications of the ACM, 23(10),

543–544.

Denning, P. J. (1981). ACM’s president letter. Performance analysis: Experimental computer science at

its best. Communications of the ACM, 24(11), 725–727.

Denning, P. J. (2005). Is computer science science? Communications of the ACM, 48(4), 27–31.

Denning, P. J. (2013). The science in computer science. Communications of the ACM, 56(5), 35–38.

Denning, P. J., & Freeman, P. (2009). Computing’s paradigm. Communications of the ACM, 52(12),

28–30.

Feitelson, D. G. (2006). Experimental computer science: The need for a cultural change. Unpublished

manuscript available at http://www.cs.huji.ac.il/*feit/papers/exp05.pdf. Last accessed October

2014.

Feldman, J. A., & Sutherland, W. R. (1979). Rejuvenating experimental computer science. Communi-

cations of the ACM, 22(9), 497–502.

Franklin, A. (1986). The neglect of experiment. Cambridge: Cambridge University Press.

Franklin, L. R. (2005). Exploratory experiments. Philosophy of Science, 72, 888–899.

Freeman, P. (2008). Back to experimentation. Communications of the ACM, 51(1), 21–22.

Hacking, I. (1983). Representing and intervening. New York: Cambridge University Press.

Hansson, S. O. (2015). Experiments before science? What science learned from technological

experiments. In S. O. Hansson (Ed.), The role of technology in science. Philosophical perspectives.

Dordrecht: Springer.

Harrison, W., & Basili, V. R. (1996). Editorial. Empirical Software Engineering, 1(1), 5–10.

Hatleback, E., & Spring, J. (2014). Exploring a mechanistic approach to experimentation in computing.

Philosophy and Technology, 27(3), 441–459.

Keller, E. F. (2002). Making sense of life: Explaining biological development with models, metaphors,

and machines. Cambridge, MA: Harvard University Press.

Kroes, P. (2015). Experiments on socio-technical systems: The problem of control. Science and

Engineering Ethics Special Issue on Experiments, Ethics, and New Technologies. doi:10.1007/

s11948-015-9634-4.

Langley, P. (1988). Machine learning as an experimental science. Machine Learning, 3, 5–8.

Mayer, B., & Nordio, M. (Eds.). (2010). Empirical software engineering and verification. Lecture notes in

computer science. Berlin: Springer.

McCracken, D. D., Denning, P. J., & Brandin, D. H. (1979). An ACM executive committee position on

the crisis in experimental computer science. Communications of the ACM, 22(9), 503–504.

McLeod, M., & Nersessian, N. J. (2013). Building simulations from the ground up: Modeling and theory

in systems biology. Philosophy of Science, 80(4), 533–556.

Morrison, C., & Snodgrass, R. (2011). Computer science can use more science. Communications of the

ACM, 54(6), 38–43.

Newell, A., & Simon, H. (1976). Computer science as empirical inquiry: Symbols and search.

Communications of the ACM, 19(3), 113–126.

Radder, H. (Ed.). (2003). The philosophy of scientific experimentation. Pittsburgh: The University of

Pittsburgh Press.

Radder, H. (2009). The philosophy of scientific experimentation: A review. Automated Experimentation,

1, 2. doi:10.1186/1759-4499-1-2.

Schiaffonati, V., & Verdicchio, M. (2014). Computing and experiments. Philosophy and Technology,

27(3), 359–376.

Snir, M. (2011). Computer and information science and engineering: One discipline, many specialties.

Communications of the ACM, 54(3), 38–43.

Steinle, F. (1997). Entering new fields: Exploratory uses of experimentation. Philosophy of Science, 64,

S65–S67.

Tedre, M. (2011). Computing as a science: A survey of computing viewpoints. Minds and Machines, 21,

361–387.

Tedre, M. (2015). The science of computing. Boca Raton: CRC Press, Taylor and Francis Group.

Tichy, W. (1998). Should computer scientists experiment more? IEEE Computer, 31(5), 32–40.

Van de Poel, I. (forthcoming). Society as a laboratory to experiment with new technologies. In E. Stokes,

D. Bowman, & A. Rip (Eds.), Embedding and governing new technologies. Singapore: Pan Stanford

Publishing.

Vandewalle, P., Kovacevic, J., & Vetterli, M. (2009). Reproducible research in signal processing. IEEE

Signal Processing Magazine, 37, 37–47.

Vermaas, P., Kroes, P., van de Poel, I., Franssen, M., & Houkes, W. (2011). A philosophy of technology.

From technical artefacts to sociotechnical systems. USA: Morgan and Claypool.

http://www.cs.huji.ac.il/~feit/papers/exp05.pdf
http://dx.doi.org/10.1007/s11948-015-9634-4
http://dx.doi.org/10.1007/s11948-015-9634-4
http://dx.doi.org/10.1186/1759-4499-1-2

Vincenti, W. (1990). What engineers know and how they know it. Baltimore: The Johns Hopkins

University Press.

Vokac, M., Tichy, W., Sjøberg, D. I., Arisholm, E., & Aldrin, M. (2014). A controlled experiment

comparing the maintainability of programs designed with and without design patterns—A

replication in a real programming environment. Empirical Software Engineering, 9, 149–195.

Waters, C. K. (2007). The nature and context of exploratory experimentation. History and Philosophy of

the Life Sciences, 19, 275–284.

Winsberg, E. (2010). Science in the age of computer simulations. Chicago and London: The University of

Chicago Press.

Winsberg, E. (2013). Computer simulations in science. In E. N. Zalta (Ed.), The Stanford encyclopedia of

philosophy. http://plato.stanford.edu/archives/sum2013/entries/simulations-science/.

http://plato.stanford.edu/archives/sum2013/entries/simulations-science/

	Stretching the Traditional Notion of Experiment in Computing: Explorative Experiments
	Abstract
	Experiment and Computing: Not Only Simulations
	Experimenting in Computing
	Some Reasons (and Examples) that Stretch the Traditional Categories
	Toward Explorative Experiments
	Explorative Experiments, Social Experiments and a Posteriori Control
	Conclusion
	Acknowledgments
	References

