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Clinical and Pathological Features of SCI
SCI is an overwhelming neurological disorder that affects approximately 180 000 new individ-ua
persons worldwide [1]. Causes include vehicle accidents, violence, accidental falls, and other traum
neurological deficits and impairment, provoking partial or total loss of sensory/motor capacity re
Glossary). It can be aggravated by other frequent dysfunctions, such as infections, cardiac proble
malfunctions, as well as by some pain syndromes (nociceptive and/or neuropathic). All these de
impact on the lives of SCI patients, with a heavy burden for society in terms of healthcare costs
traumatic degeneration of the tissue is caused by multifactorial secondary injury including severa
barrier dysfunction, local inflammation, neuronal death, demyelination, and disrupted nerve pa
includes one drug accepted by both European Medicine Agencies and the FDA, methylprednisolo
acute phase at a high dose for 48 h [3]. MP is a corticosteroid that inhibits lipid peroxidation, acting 
the inflammatory response and preserves the blood–spinal cord barrier, enhancing spinal cord
controversial, and important side effects include increased risk of urinary tract, respiratory, and wou
Current treatment to ameliorate SCI outcomes can also include surgery to decompress and stabilize 
of spasticity and rehabilitative care [6]. Different mechanisms have been suggested to facilitate rec
therapeutic approaches are being tested to relieve the secondary damage and maximize regeneration
(reviewed in [7]) act mostly on protecting the spinal cord and/or promoting regenerative mechan
shown no relevant efficacy when translated into clinical trials [7]. A possible reason could be tha
treatments directed towards a single pathophysiological mechanism; however, SCI has a
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Current Options for Cell Therapy in Spina
Irma Vismara,1,3 Simonetta Papa,1,3 Filippo Rossi,2 Gianluigi Forloni,1 and P

al cord injury (SCI) is a complex pathology that evolves after primary acute mechanical injury, ca
e that exac-erbates clinical outcomes. Based on encouraging results from preclinical experiments, so

ical practice dem-onstrate promising and effective improvement in sensory/motor function. Com-
ogical factors have been demonstrated to be more effective than cell treatments alone. Recent ad
aterials aiming to promote in situ cell delivery for SCI, together with combinatorial strategies u

imized multitarget approach. This review provides an overview of single and combinatorial regener
very options to treat SCI.
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trated by M1 
is might further 
multifaceted nature, and concomitant and consecutive pathological events
the progression of the secondary injury must be treated to achieve a global 
[2]. Other reasons could be associated with the limited pharmacological trea
tional administration, mainly because of the low concentration achieved a
and/or potential unacceptable side effects [9]. To overcome these limitations 
need for potential treatments to counteract secondary injury progression, an
multitarget therapeutic approach might be promising for SCI patients. In th
cell 
therapy is potentially protective in view of its own broad-spectrum efficac
extensively investigated preclinically in different SCI models [8]. In particular
potential of mesenchymal stem cells (MSCs), embryonic/neuronal stem cells
pluripotent stem cells (iPSCs), olfactory ensheathing cells (OECs), and Sch
putative treatment of SCI is discussed in this review (Figure 1 and Figure 2, Ke

Pathophysiology of SCI
Trauma
After a traumatic event due to contusion, massive compression, or lacera
cord, mechanical destruction of the tissue leads to acute neurological dam
primary injury. However, it is now well known that most of the post-traumatic
the cord is due to secondary injury, which occurs over time, from minutes to ye
further neurological damage [2]. In mammals, this secondary injury includes a 
subsequent events: blood–brain barrier dysfunction due to the vascular chan
bosis resulting in edema and ischemia, free radical formation, and increased g
that leads to neuronal death [2]. These in turn trigger an uncontrolled dege
with concomitant death of oligodendrocytes in white matter tracts that con
weeks after injury [2].

Generally, SCI involves pathophysiological processes that can be charac
consecutive phases developing over time in the injured cord: acute, subac
[2]. The acute phase leads to dramatic degeneration of cells and parench
following SCI, releasing many molecules such as excitatory neurotransmitte

and inflammatory molecules that, together with hypoxic perfusion, produce
ronment for any potential therapeutic cell transplantation [2]. However, the su
defined as the period between the acute and chronic phases (about 2 mon
models and 12 months in humans) seems to be more permissive for cell engr
better viability and efficacy [8].

Inflammation
A striking inflammatory response following trauma has been documented, and
glia and macrophages have been implicated as key players. Indeed, their sele
is deemed crucial for disease outcome [10–12]: the tissue microenvironment 
early activation of inflammatory cells (primarily microglia) that acquire a proinfla
phenotype in the first stage of injury, promoting early self-propelling local inflam
This proinflammatory environment recruits many peripheral monocytes/macro
[13], with different phenotypes – some could potentially have harmful effects, 
proinflammatory M1 macrophages [13] that exacerbate neurodegeneration 
and M2 macrophages, presumably beneficial, that support neuroprotection
in different animal models [13]. Unfortunately, a proinflammatory effect orches
macrophages appears predominate in SCI rat and mouse models [14], and th

impair and limit recovery of the tissue and motor function. This suggests that the timecourse of 
changes in inflammation and related ensuing responses is decisive in determining a destructive 
or constructive outcome [11,12].
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Neurodegeneration
Weeks after the initial injury the pathological condition may become chronic, w
matter demyelination, neuronal death, reactive gliosis, and deposits of e
that can lead to scar formation, preventing axon regeneration in SCI anima
progression of the pathology may be also exacerbated by molecules with 
effects that are released in the damaged spinal cord and act on multiple rece
on the neuronal membrane. These molecules can limit the regenerative pro
axonal outgrowth [15–17]. Specifically, disruption of the white matter in the p
during progression of the secondary injury, can lead to significant oligodendro
in turn releases myelin debris that contains several myelin-associated inhibito
Nogo-A is a well-characterized protein expressed at the plasma membrane
cytes that, when exposed in the environment, causes growth inhibition an
collapse by interacting with its receptor NgR1 on neurons in mouse and
[16,17,19]. Another molecule is myelin-associated glycoprotein (MAG) whic
produced by oligodendrocytes and is a strong inhibitor of axonal regrowth 
further barrier to spontaneous axonal regeneration is a group of molecules
proteoglycan family (chondroitin sulfate proteoglycans, CSPGs) [21]. P
expressed by different cells in the central nervous system (CNS), such as astro
cells, and oligodendrocytes, which are all involved in glial scar formation in dif
models [2,21]. However, others have shown a beneficial role of the glial sc
restraining cavity formation. This demonstrates that glial scars play a more
temporal role in SCI. On the one hand, at the acute/subacute stages of in
isolates the lesion area to preserve healthy tissue, and limits disruption and am
injury [22]. On the other, the glial scar shows a detrimental effect, constitutin
chemical barrier to axonal regrowth in different rodent SCI models [22].
pathological mechanisms suggest that SCI is a multifaceted pathology, and 
strategies poses a major challenge.

The Therapeutic Potential of Stem Cells in SCI 
MSCs: Immunomodulation and Trophic Support for SCI
MSCs are particularly appealing for SCI repair and currently constitute the mos
cells in preclinical and clinical research [23] on account of their relative eas
efficient in vitro expansion [24]. Compared to other stem cells they rouse no 
they can be used in autologous transplants, and are presumably safe when
CNS [23]. MSCs can be collected from different sources such as bone marrow
amniotic liquid, and adipose tissue. MSCs have recently shown desirab
therapeutic use in CNS pathologies (Alzheimer’s disease [25], stroke [26], Par
[25], multiple sclerosis [25], and amyotrophic lateral sclerosis [25]) including a
tory, immunomodulatory, trophic, and anti-apoptotic effects in different anima
disorders [23,25]. These functions might be mediated by transient paracrine 
anisms and/or by migration to injured tissues for cell-to-cell contact, rather tha
differentiation and replacement as reported in different models of neurolog
although the mechanisms have not been directly demonstrated [25,27]. As d
there are intrinsic differences in MSCs from different sources which may be 
therapy.

Bone Marrow (BM)-MSCs
BM-MSCs are distinguished from hematopoietic cells by their ability to adhere
differentiate into cells of mesodermal origin. However, specific markers a
unequivocally identify BM-MSCs [28]. MSCs from BM were initially believed 
with the ability to differentiate into neurons and glial cells; however, these findin
questioned. Indeed, cell fusion or transdifferentiation rather than cell differentia
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(See figure legend on the bottom of the next page.)

Figure 1. Cell Therapy Approaches to Spinal Cord Injury (SCI) Therapeutics. The cartoon illustrates (A) mesenchymal stem cells (MSCs) and neural stem 
cells can release several factors able to modulate different immune cells (T cells, macrophages, and dendritic cells) promoting an anti-inflammatory environment. 
MSCs can



also induce angiogenesis, neuroprotection and fibers regeneration acting on neurons and vessels. (B) Embryonic stem cells (ESCs) after differentiation into neurons and
oligodendrocytes can replace spinal cord architecture and functionality. (C) Induced pluripotent stem cells (iPSCs) derived from different sources can be reprogrammed
to differentiate into central nervous system cells and replace damaged spinal cord tissue. (D) Olfactory ensheathing cells (OECs) derived from the olfactory mucosa or
epithelium can give trophic support to neurons and facilitate axon regeneration. (E) Schwann cells can support axon regeneration and remyelination after injury.
Abbreviations: BDNF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; FGF, fibroblast growth factor; GDNF, glial cell-derived neurotrophic factor;
HGF, hepatocyte growth factor; HLA-G, human leukocyte antigen G; IL, interleukin; iNOS, inducible nitric oxide synthase; LIF, leukemia inhibitory factor; M1 and M2,
macrophage phenotypes 1 and 2; NGF, nerve growth factor; NT, neurotrophin; PGE2, prostaglandin E2; TSG-6, TNF-stimulated gene 6; TGF, transforming growth
factor; VEGF, vascular endothelial growth factor.
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Figure 2. The cartoon illustrates (A) the main cellular targets and putative mechanism of action of cell-based approaches in mammalian spinal cord tissue after SCI. (B)
A focus on stem cell-basedmechanisms driving anti-inflammatory and proregenerative processes on neuronal cytoarchitecture in SCI. Trophic factors and chemokines
released by mesenchymal stem cells (MSCs) and neural stem cells (NSCs) can have immunomodulatory effects on microglia, T cells, and peripheral macrophages,
promoting a pro-regenerative environment. Embryonic stem cells (ESCs), NSCs, and induced pluripotent stem cells (iPSCs) can differentiate into neurons to support
neuronal regeneration. ESCs/NSCs can replace damaged oligodendrocytes to promote remyelination of injured axons. MSCs, Schwann cells, and olfactory
ensheathing cells may offer trophic support to regenerate axons.



after transplantation [29]. BM-MSCs collected from different sources and transplanted into 
mouse and rat SCI models exposed to compression, contusion, or transection of the spinal 
cord have shown some improvements in motor activity [8]. The majority of BM-MSCs used in 
preclinical experiments are of human or rodent origin, although they may also be obtained 
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spinal cord in preclinical models [8] (Figure 3). The immunosuppressive pr
cells have been linked to their efficacy in mouse and rat SCI models [25,36]
MSCs might also play an antiinflammatory protective role [36], suppres
proliferation and differ-entiation [37], thereby prolonging MSC survival in vivo
SCI [36], or facilitating 
the transition of macrophages from the M1 proinflammatory phenotype
inflammatory and regenerative phenotype in these animal models [38] (F
Furthermore, BM-MSCs may protect the injured spinal cord from further ce
trophic support and neuroprotective activities [39,40]: among the trophic 
studied are vascular endothelial growth factor (VEGF), nerve growth fa
cellderived neurotrophic factor (GDNF), and brain-derived neurotrophic facto
known to support neural protection and fiber regeneration in SCI rat mod
combinatorial therapeutic approaches using a variety of molecules or fa
tested experimentally in SCI rodents, further improving motor performance
supple-mental information online). In addition, BM-MSCs could be used as o
therapeutic agent delivery on account of their ability to migrate toward damag

[41]. Specifically, BM-MSCs genetically modified to overexpress neurotrophi
sustain axon regeneration after transplantation in SCI rodent models, leading
motor activity [41]. Gene-modified BM-MSCs overexpressing BDNF have be
injured sites in a rat SCI model, resulting in improved neurological func
sprouting of injured corticospinal tract and its serotonergic projections, and
function outcome [42]. Given these encouraging results in preclinical ex
treatments have been rapidly translated into clinical practice, demonstrating 
transplantation in SCI patients, where partial efficacy has been seen in som
However, in several clinical trials, unlike preclinical studies, intrathecal ra
injection has mostly been adopted for SCI patients (Figure 3).

Umbilical Cord (UC)-MSCs
UC-MSCs are easily obtained by treating umbilical cord or cord blood from th
be stored at cryogenic temperatures until use. They are hypoimmunogenic a
graft rejection than other stem cells [50]. They can be expanded with differen
with excellent colony-forming ability and can potentially be used for autologo
[24]. Many preclinical studies have shown their broad therapeutic capacity [5
multifaceted efficacy in several rat and mouse SCI animal models, including n
anti-inflam-matory [52,53], anti-apoptotic [54] and angiogenic actions [55] (Fi
The most frequent route of administration in preclinical studies is in situ (Figur
numerous 
promising preclinical studies, few clinical trials have been published on the s
of UC-MSCs [56–58] (Table S2). A clinical trial of human UC-MSCs transpla
the damaged spinal cord of a female patient aged 37 years with SCI ha
adminis-tration was safe and movement and sensory perception improved 
treatment [56]. Another study documented the treatment of 25 SCI patients w
IV or intrathecal injection, which partially restored autonomic nerve
somatosensory evoked potentials within 12 months after the treatment [
evaluated therapeutic 
efficacy of UC-MSCs, directly injected into the spinal cord, in combinatio
training in 28 patients with chronic complete SCI, and found no severe adver

transplantation, with improvement of the motor performance in some SCI patients [58].
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Figure 3. Routes of Cell Administration in Preclinical and Clinical Studies in Spinal Cord Injury (SCI)
Therapeutics. The number of studies and the route of administration (percentage of total) are represented for different
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Amniotic Fetal (AF)-MSCs
AF-MSCs can be derived from amniotic fluid or amniotic membrane (a c
placenta) that are both important to sustain and protect the fetus and org
during pregnancy [59]. AF-MSCs can be considered as a valid alternative so
regenerative medicine in SCI [59]. They offer several advantages such as
isolation and no ethical issues. They also show multipotency, efficient prolifera
tumorigenicity, and low immunogenicity [59]. They can also be used for auto
tation of cells from patient tissues. A few studies suggest that these stem 
functional recovery in preclinical models [60,61]. One study found that IV inje
in a rat SCI contusion model could attenuate myelin loss in the damaged spin
angiogenesis, and reduce inflammatory cell migration into the lesion site, 
recovery [60]. These effects were proposed to be mediated by a specific cyto
growth factor, that supports angiogenesis and remyelination [60]. Another re
anti-inflammatory and anti-apoptotic effects of a combined treatment of A
after SCI in rats that was more effective in motor functional recovery than AF-M
[61] (Table S1). In addition, another study showed that amniotic cells tran
transection cavity of the spinal cord of monkeys supported the growth of ax
strating an effective treatment, even in primates.

Adipose Tissue MSCs (A-MSCs)
A-MSCs can be easily obtained in a minimally invasive manner from adipo
amounts using different techniques such as lipoplasty or liposuction. Seve
been attributed to A-MSCs such as secretion of trophic growth factors (BDNF
modulation of activated immune cells [64], neuroregeneration [65,66], anti
[67], and multilineage differentiation capacity (e.g., adipogenic, chondro
smooth muscle, neurogenic, and endothelial cell lineages, as well as Sch
which may confer potential regenerative effects in SCI. The secretome of A-
growth factors, extracellular matrix molecules, proteases, cytokines, and sev
ulatory molecules that can promote angiogenesis and wound healing; thes
cules have been suggested to aid new tissue growth and lead to immuno
reduction of inflammation by inhibiting the proliferation of activated lymphoc
Various preclinical and clinical studies have shown a potential regenerative 
when transplanted directly in situ in SCI, their most frequent route of adminis
For instance, one study found that transplanted A-MSCs in injured rat ce
reduced glial scar formation and stimulated axonal regrowth; however, this 
achieve recovery of forelimb function [65]. A-MSCs have also been directly 
spinal parenchyma of a rat model of spinal cord compression immediately
moting tissue preservation with abundant deposition of laminin and axo
leading to functional recovery, as evidenced by open-field locomotion tes
injection of A-MSCs after acute SCI in dogs has also been found to be feasib
functional motor recovery, without adverse effects [69].

To enhance the survival and therapeutic efficacy of A-MSCs in situ, coadminis
compounds has been studied (Table S1), such as 17b-estradiol (to increas
growth factors from A-MSCs) [70], or overexpression of Bcl-2 (anti-apop
Alternatively, chondroitinase ABC (ChABC, an enzyme from Proteus vulg
cell treatments. BM-MSCs are the prevalent cell population used in both preclinical and clinical studies. The best-evaluated 
route of administration for cell therapy in preclinical studies is in situ, whereas in clinical trials intrathecal administration is 
highly represented for mesenchymal stem cells (BM-MSCs, UCB-MSCs, and A-MSCs), and in situ for OECs and stem 
cells. Data: Pubmed. Abbreviations: A-MSCs, adipose tissue mesenchymal stem cells (MSCs); AF-MSCs, amniotic fetal 
MSCs; BM-MSCs, bone marrow MSCs; ESCs, embryonic stem cells; IV, intravenous; NA, not available; OECs, olfactory 
ensheathing cells; UCB-MSCs, umbilical cord blood MSCs.



enzymatically removes glial scars) has been combined with A-MSCs in a chronic SCI dog 
model [72]. All the combinatorial approaches listed above have shown increased efficacy and 
improved motor function recovery compared to single treatments [70,71,72]. On the basis of 
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these preclinical studies, several clinical trials have been proposed to confirm
intrathecal injection of these cells [73–75] (Table S2).

Using Stem Cells to Replace Spinal Cord Architecture and Func
Embryonic Stem Cells (ESCs)
ESC-based therapeutic strategies have been investigated in many diseases as
potential to repair mechanically damaged nerve tissue in SCI. The pluripotent n
may allow them to generate new cells in human or animal CNS tissue, includin
glial cells [76]. One of the major strategies for treating the injured spinal cord is
to differentiate into specific phenotypes to replace the desired cell (neurons or 
produce factors that could limit the damage and sustain regeneration of the tis
and 2). Several ESC-based therapeutic approaches have been proposed and 
treating SCI, and different groups have shown improvements in motor and sen
after transplantation of neuron or glia pre-differentiated mouse ESCs in rat or m
animal models. For instance, differentiation of ESCs into motor neurons using 
retinoic acid and Sonic hedgehog protein was demonstrated in vitro, as well as
transplanta-tion in vivo into the spinal cord of a paralyzed adult rat [77] (Figures
study showed that allogenic neural stem cells, derived from ESCs and grafted 
damaged spinal cord of adult marmosets, promoted functional recovery, as de
from behavioral analyses using an open-field rating scale, as well as from evide
preserved myelin and axons [78]. Others have demonstrated that stem cells cl
from ESCs and transplanted into a mouse thoracic SCI model gave significant
cells and tissue [79]. Moreover, porcine ESCs transplanted into the contused s
rats differentiated into neuronal cells, and animals showed significant functiona
motor function [80]. In addition, a combinatorial therapeutic strategy with grow
and PDGF) has been tested in a subacute model of SCI, and was found to enh
and differentiation into neurons [81](Table S1). ESCs differentiated into oligode
been used to treat SCI, achieving some improvements of motor activity after re
part of the white matter in transection or contusion SCI rat models [82,83]. In c
(Table S2), Geron Corpo-ration proposed in 2010 a trial recruiting SCI patients
derived oligodendrocytes grafted in the damaged spinal cord. Unfortunately, t
stopped the trial 1 year later for lack of funds, now restarted by Asterias Biothe
However, some ethical issues have been raised regarding the approval proces
management of this trial [84].

Neural Stem Cells (NSCs)
NSCs are multipotent, self-renewing progenitor or stem cells isolated from the
zone of the hippocampus of the brain and a region of central canal of the spina
These cells can differentiate into specific neuronal or glial phenotypes to replac
produce pro-regenerative factors. Different studies in rodent compression SCI
shown that transplantation of NSCs into lesioned spinal cord leads to function
sustained through neuronal cell replacement that was able to reconstitute lost
glial tissue, with trophic support (BDNF, CNTF, GDNF, NGF, and IGF-1) [86], p
damaged cells and axons [87]. The potential effect of immunomodulation (T ce
macrophages) has been demonstrated in other neurodegenerative disease su
inflammatory demyelinating disorders (e.g., multiple sclerosis), showing reduce
of CD4+ [777_TD$DIFF] T cells in the CNS together with reduced demyelination, shifting micro
harmful to a neuropro-tective phenotype [88]. Clinical trials have so far demons
transplantation into the injury site of SCI patients can be done safely, but effect
have not yet been documented [89,90].



Induced Pluripotent Stem Cells (iPSCs)
The recent development of iPSCs provides a valid alternative to ESCs. These cells are 
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generated by reprogramming somatic cells in the presence of the necess
factors (Yamanaka factors), and by different methods including viral transfe
delivery, targeted insertion, transposon-based insertion, and protein transfectio
Unlike traditional ES cell lines, iPSCs circumvent ethical concerns regarding the
and allow autologous transplantation of pluripotent cells which should red
rejection. Nevertheless, iPSCs and ESCs share some of the same disadva
the risk of forming teratomas [91]. However, studies have demonstrated i
efficacy for cell therapy in SCI after in situ injection (Figure 3) [92]. For exampl
of iPSCs into oligodendrocytes or neuronal cells has been reported to improve
contusion models of mouse, rat, or marmoset spinal cord [82,93], as well a
neuronal cells in compression/contusion models in mouse or rat [94–98].
results provide strong encouragement for using iPSCs in cell therapy, further
evidently be necessary to rigorously clarify their potential role as an effective tre

Olfactory Ensheathing Cells (OECs)
OECs are glial cell types which play an important role in neural regeneration of o
by supporting and guiding their constant replacement and axon growth fro
nervous system into the CNS. OECs can be obtained through nasal biopsies fr
mucosa (OM) located in the nasal cavity, or alternatively from the olfactory bulb
hold great promise for SCI regenerative treatment because after implantation
spinal cord they can create a permissive environment for axonal regeneration th
injured site in several rodent SCI models [99]. Several potential mechani
proposed to contribute to the efficacy of OECs in supporting axon regen
providing a large amount of neurotrophic molecules (BDNF, NT-3, NT-4/5, N
VEGF) (Figures 1 and 2). For example, they have been reported to regulate gl
and remyelination, and to counteract diffusion of inhibitory factors released b
neurons phagocytizing their debris in vitro [99]. Many laboratories have al
OECs transplanted into the spinal cord can facilitate axon regeneration and 
function, mostly in rat SCI models [100,101]. One study indicated that OECs 
trans-ected spinal cord of paraplegic rats promoted tissue regeneration afte
this persisted for up to 7 months after treatment [102]. In addition, OECs 
olfactory mucosa have been documented to promote regeneration when im
after transection of the rat spinal cord [103]. Another example has been t
OECs at the upper cervical level of an injured rat spinal cord as a trea
supraspinal control of breathing and climbing after SCI [104]. Others have re
transplanta-tion in the damaged site of the spinal cord can improve 
performance in 
paraplegic rats and, when combined with task-specific training, the effect on m
was enhanced [105,106].

Combinatorial therapy has been proposed to improve pro-regenerative effica
SCI models, including co-treatment with stem cells [107], Schwann cells [
[109], or when seeded into a biodegradable poly-lactic acid/polylactic-co-
scaffold [110] (Table S1). Nonetheless, the potential of OECs to promote tissu
remains controversial despite findings from preclinical and clinical studies [1
versy is presumably based on the observation that OECs can comprise severa
that are not well described phenotypically or functionally, and that, furth
protocols and purification methods have been used which might not
homogenous populations [112] (Tables S1,S2). A key aspect in defining t
transplantation therapies is to characterize the cell phenotypes thorough

reproducible protocols to validate their therapeutic potential in SCI.
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Schwann [780_TD$DIFF]Cells
Schwann cells in peripheral nerves support axonal regeneration after damage
suggested their potential application in spinal cord injury [113]. Schwann cells
to regeneration after injury by sustaining axonal regrowth and myelination; this
appropriate axonal functioning [113]. Schwann cells offer several properties th
enhance recovery after SCI, such as the production of a variety of growth fact
NGF, BDNF, and CNTF), cell adhesion molecules (N-CAM, N-cadherin, and in
extracellular matrix proteins (collagens and laminin) [113] (Figures 1 and 2). Th
efficacy has been demonstrated in a variety of rat SCI models, showing increa
myelinated axons in damaged sites, reduced cystic cavities, white matter sp
axonal regeneration [114]. Indeed, several proposals have been made to incre
therapeutic effect of Schwann cells after transplantation in situ. Combination t
directed against different targets using trophic factors, stem cells, anti-inflamm
drugs to improve axon regrowth, and enzymes (e.g., chABC) have been evalu
demonstrating a more effective outcome than transplantation of Schwann cel
in increased numbers of myelinated axons and improved motor function reco
S1). Schwann cells genetically modified to produce high levels of factors (glial
neurotrophic factor or cell adhesion molecule L1, a protein promoting neurite 
also been evaluated in rat SCI models, improving spinal cord repair and moto
[116,117]. Clinical trials using Schwann cells have suggested their safety and 
in humans as a single transplantation in situ [118,119] or in combination with B
or OECs [121]; there have been no noteworthy relevant side effects in SCI pat
functional improvement has been observed in some cases [119] (Table S2).

Adult Endogenous Stem Cells (AESCs)
AESCs are a population of stem cells that are present in adult neural tissue. In
ependymal cells, located in proximity to the central canal, have stem cell prop
an acute injury, they proliferate and constitute mostly new glial cells in the injur
[122]. The regenerative response of these cells after insult has been shown in 
or rat SCI models [122]. One study reported functional motor recovery after tr
spinal cord-derived precursor cells in paraplegic rats, and these were able to 
preferentially into glial cells when transplanted in situ [123]. Others found that 
cell population has stem cell properties, and these cells differentiate mostly in
astrocytes, forming glial scars, while oligodendrocyte progenitors could recon
and astrocytes in rat SCI models [122]. These findings have raised hope for fu
therapy for SCI. However, understanding the molecular regulation of these pr
fundamental in identi-fying potential therapeutic targets and for developing rea
regenerative strategies to promote recovery after SCI. Indeed, controversy sti
many of these approaches, and they evidently have advantages, disadvantag
limitations (Boxes 1 [781_TD$DIFF]–3). Thus, despite their potential use in SCI regeneration, 
research on the potential use of stem cell populations remains a priority.

Future Considerations for Stem Cell Therapy in SCI
The multipotency of pluripotent stem cells may offer a valuable solution for
replacement neurons and glial cells to restore motor function. However, many
regarding their clinical application. Ethical debate surrounds ESC research o
source, which limits clinical applicability [124]. Transplantation of ESCs mi
teratomas because of uncontrollable cell proliferation [125], further mitigatin
their potential application in repair strategies for CNS disorders.
New research has indicated great potential for iPSCs that have been proposed as a valid 
alternative to ESCs, and moreover overcome ethical obstacles because iPSCs can be obtained



Box 1. Potential Targets for SCI Cell-Based Therapy
The efficacy of cell transplantation is being intensively studied for its potential in treating SCI. However, less is known 
about the mechanisms through which transplanted cells promote functional improvements. Depending on the 
candidate cell types, different mechanisms have been proposed.

Tissue Protection

Preservation of the tissue after injury is one of the best-documented mechanisms underlying functional improvement 
following cell transplantation. Many cell types are able to promote tissue sparing, including MSCs, OECs, Schwann cells, 
and oligodendrocyte progenitor cells. It is broadly proposed that bioactive molecules such as trophic factors and cytokines 
secreted by transplanted cells support neuroprotection and preservation of the cytoarchitecture. Specifically, these 
biomolecules might enhance cell survival, modulate gliosis, and improve blood vessel repair (Figures 1 and 2) [773_TD$DIFF][134].

Immunomodulation

Among the mechanisms involved in secondary injury, there is a proinflammatory response that might exacerbate the SCI 
outcome [13]. Cell transplantation can offer benefits through immunomodulation by stimulating beneficial or reducing 
detrimental responses. MSCs or NSCs can modify immune responses after injury by releasing anti-inflammatory 
cytokines or factors. Specifically, MSCs could modulate the M1/M2 balance of macrophages and microglia in the 
injured site, promoting an M2 anti-inflammatory and regenerative phenotype, whereas NSCs might act by modulating T 
cell-mediated responses to ameliorate pathology (Figures 1 and 2) [774_TD$DIFF][88].

Axon Regeneration

Enhancingaxon growth is considered a significant challenge in SCI therapeuticstrategies. NSCs,Schwanncells,OECs, and 
MSCs can promote axon regeneration and sprouting. NSCs can differentiate into neurons that may be used to reconnect 
portions of the tissue through the formation of structural and functional circuits. OECs andMSCs can give trophic support to 
neurons sustaining axon regeneration. Scaffolds based on biocompatible material might be used to promote cell viability 
after transplantation [9] and support axon outgrowth for networking neuronal cells (Figures 1 and 2) [773_TD$DIFF][139].

Myelin Regeneration

Demyelination in white matter has been observed in experimental and human SCI [135]. Preserved myelin seems to be 
related to the ability to improve motor function [136], and some transplanted cells can potentially improve myelination. 
However, it is difficult to experimentally differentiate new myelinated axons from spared myelinated neurites [775_TD$DIFF][136]. Thus, 
debates remain concerning the potential of remyelination after cell transplantation [136]. It has been proposed that 
oligodendrocyte progenitor cells or NSCs might be differentiated and integrated as oligodendrocytes to enhance myelin 
regeneration after SCI; Schwann cells might contribute to regeneration by sustaining axon regrowth by trophic factors, 
and biomaterials might be used to improve the survival of these cells and create a permissive environment for axon 
regeneration and myelination (Figures 1 and 2) [9].
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Hematopoietic stem cells are currently used to treat many diseases (e.g., sev
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Box 2. Limits of Stem Cell Treatment in SCI
Although the application of stem cells is appealing, optimal therapeutic protocols in terms of the preparation, type, and 
number of cells, as well as the timing and route of administration, will require future preclinical study. Concerning delivery 
methods, different methods have been tested to release therapeutic cells into the injured spinal cord. Cells can be 
injected directly into the damaged site, intrathecally, or systemically (Figure 3). The direct injection of cells into the injury 
site is the most widely used approach and is an attractive alternative to systemic administration. IV injection of cells could 
have contraindications for treatment of the spinal cord, such as an unequal distribution of cells in the target tissue and 
greater risk of potential side effects. Concerns remain about cells intrathecally injected that often leave the zone of 
injection and about in situ administration where a hostile environment could limit their efficacy. Other issues regard the 
non-uniform origin of the therapeutic cells and the different protocols tested, giving rise to variability in the experiments 
that might compromise the apparent efficacy in SCI. For a clinical-grade formulation cells must be prepared in 
accordance with current good manufacturing practice to ensure the safety and quality of the products, and this is 
also needed in preclinical experiments. Additional effort will also be necessary to reveal the fundamental, detailed 
biological mechanisms of the efficacy of cell therapy. Mounting evidence suggests that therapeutic potential is related to 
the paracrine action of these cells, suggesting that this is essential to achieve a response. Some groups suggest using 
only the secretome produced by therapeutic cells to approach SCI therapy [137,138]. Relying on the secretome may 
provide various advantages, such as elimination of the variability in cell survival in situ and the potential for sustainable 
release of factors that might be modified according to diverse therapeutic needs.
developed by the American Spinal Injury Association, electromyography, and
nance imaging [43,44,127–129]. No significant adverse reactions have been
several months of follow-up [43,44,127–129]. Thus, BM-MSC transplantat
promising treatment to improve neurological outcome in SCI. However, it
thoroughly evaluate the clinical benefits of other MSC types that have been l
gated to select which may be the most effective.

The time of intervention is also an important issue for different types of thera
previously mentioned, the success of cell engraftment may depend on the a
and chronic phases of SCI injury. Specifically, several clinical trials have de
efficacy of cells injected in the chronic phase (after 1 year) in SCI patients, sug
may be treatable with a cell therapeutic approach during this time-window [4
randomized trials in larger cohorts will still be necessary to confirm and valida

Despite promising results so far, the reproducibility of cell treatments remains a ch
be overcomeonly by standardizing cell sources [130],maintenanceprotocols, an
cells transplanted (several million cells have seemed to be sufficient for therapeu
even if the numbers of surviving stem cells at the injured site have remained relat
considerably from animal to animal (reviewed in [8]). The number of cells mig
reducedbyusingabiopolymerscaffold toensureamorecontrolleddeliveryproce
dispersion of cells in spinal fluid and preserving them from the hostile environm

Another consideration regarding the preclinical paradigms used to demonstra
that rat SCI models are still considered to be better predictive models
approaches than mouse models, given that the pathological outcomes are
human SCI [131]. Functional recovery in these models is described mostly
significant hindlimbmotor function improvement compared to untreated group
spine trauma, instead of lumbar transection/contusion, is the most frequent inju
patients [1], but this has been poorly investigated in preclinical models, and ef
this injury paradigm might facilitate predicting treatment efficacy for translatio

To maximize the cell therapeutic effect, combinatorial strategies have also been
a multitherapeutic approach might thus be more effective than individual thera
biomaterials (e.g., hydrogel; reviewed in [9]) (Box 3) could be considered
strategy to complement multitherapeutic clinical needs. Simultaneous stem cel



Box 3. Engineered Biomaterials for Stem Cell Delivery in SCI
Recent advances in materials science have led to biomaterials that aim to promote functional tissue repair following SCI 
[9]. This approach could ameliorate repair in two ways: biomaterials can act as carriers that can maintain and release 
their payload (e.g., stem cells and their own biofactors) and, from a structural point of view, can act as supporting 
materials for tissue regeneration (scaffolds) [139]. Thus, biomaterials should guarantee high stem cell viability and then 
guide axon regrowth across their structure, thereby bridging to the opposite side of the cavity. To obtain these results 
several characteristics are fundamental: (i) biocompatibility, (ii) biodegradability, (iii) cytocompatibility, and (iv) adaptive 
mechanical properties (reviewed in [140]).

Hydrogels represent a promising strategy to support cell survival in situ: they are ‘soft matter’ that can be injected and 
easily fills the irregular conformation of the lesion cavity [141]. They present high flexibility, gas permeability, no toxicity, 
and good mechanical properties. Their intimate structure can be easily oriented (aligned fibers or pores) and can be 
prepared following proper nano-architecture through 3D printing [142]. Furthermore, their injectability is very important 
because in SCI repair the necessity to avoid risks due to surgery is mandatory, and minimally invasive placement is a 
fundamental prerequisite for therapy. Other advantages are their ability to load hydrophilic drugs and biomolecules that 
could be released with carefully controlled kinetics [141]. Indeed, loaded hydrogels are usually injected intrathecally and 
remain localized at the site of injection, potentially carrying cells and delivering the loaded drugs to the spinal cord [141].

Limitations of hydrogels include inadequate properties related to the control of delivery (e.g., low steric hindrance drugs 
that might diffuse uncontrollably), as well as unfavorable loading of hydrophobic drugs with low affinity in an aqueous 
environment. For control of delivery, polymer chains of hydrogel can be functionalized with several post-polymerization 
strategies to link, with a cleavable bond, drug molecules to reactive points on the polymer network. Following this 
strategy, the main mechanism related to drug release is the breakage of the link which can be chosen depending on the 
medical need: the weaker the bond, the higher the release rate [143]. Regarding hydrophobic drug molecules, these can 
be loaded into polymeric nanoparticles, which may be in turn loaded into the hydrogel [144].

Responding to the crucial issue of limited viability and presence of stem cells at the damaged site, several studies have 
suggested biopolymer support for cell delivery [145], providing localized targeted therapy to maximize the efficacy of 
these treatments (Table S3). Loaded hydrogels can remain temporally localized in the spinal cord after implantation, 
delivering factors that are secreted by stem cells [53] or structurally sustaining them to fill the gap at the site of damage. 
In addition, the hydrogel can preserve cells from the detrimental environment generated by the damaged spinal cord 
[53]. For instance, to maximize BM-MSCs efficacy after transplantation in vivo, smart 3D support has been proposed to 
mimic the stem cell niche, creating a more sustainable and permissive environment for cell viability and axonal 
regeneration [146–151]. Several studies have aimed to increase the survival and efficacy of UC-MSCs by supporting 
the graft with polymeric scaffolds that mimic a physiological niche in situ and that can preserve them from hostile 
environment while concomitantly permitting paracrine release of factors in situ [53,152]. To facilitate connection of the 
damaged spinal cord segment, several biodegradable scaffolds have been transplanted with A-MSCs to address the 
regenerative processes promoted by these stem cells in rat and dog SCI models [153,154].

To sustain ESC viability in the damaged spinal cord, polymeric scaffolds have been developed for therapeutic intervention 
that offer several advantages in supporting stem cell survival after transplantation [81,155]. Natural and synthetic polymer 
scaffolds have also been developed to support stem cell survival and augment the efficacy of the treatment [156–159].
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Concluding Remarks
SCI is a complex pathological condition that evolves over time, causing furth
spinal cord tissue after a primary injury, exacerbating clinical outcome. S
results have been seen in preclinical experiments with stem cell transplanta
not 
sufficiently successful for translation into clinical practice. This may reflec
standing of SCI neuropathology, especially regarding the therapeutic strateg

and particularly those used individually against one specific target, whereas many concomitant
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processes and pathways are clearly involved in SCI [2]. Consequently, mult
pathways may need to be targeted.

In this scenario, the multitherapeutic ability of stem cells, that are able to release
beneficial factors at the damaged tissue site, is being evaluated as one of the
strategies to treat SCI. Success with stemcell therapy holds promise because ma
on various pathological outcomes, combining trophic support, anti-inflammato
tory, and anti-apoptotic effects, as well as neutralizing inhibitory factors and
formation [134]. There are several other important issues that might be solved wit
stem cell-derived iPSC, or Schwann cell transplantation, where a favorable ax
environment and myelin cell replacement might promote and bridge any cysts, 
the nervous system [99,113,126]. Moreover, several preclinical experiments repo
cell therapy in SCI – as described in this review – and these have heavily promoted
trials with promising cell types. However, a stronger impact needs to be achieved i
the application of these cell therapies in SCI. A realistic therapeutic challenge for 
rescue sufficient nervous tissue and connections that, together with an appropr
therapy, might further improve clinical outcome. In conclusion, although man
challenges remain (see Outstanding Questions and Box 3), the success achie
novel cell transplantation protocols to treat SCI offers a promising foothold for futu
humans, hopefully optimized to achieve positive clinical outcomes.
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Growth cone: a large actin-supported motil
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Primary injury: neurological damage of the 
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 excessive proinflammatory response around the injured spinal cord. These are composed of 
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