
Trade-off between stakeholders’ goals in the home care
nurse-to-patient assignment problem

Giuliana Carello a, Ettore Lanzarone b,*, Sara Mattia c
a Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
b Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy c Istituto di Analisi dei Sistemi ed Informatica (IASI), 
Consiglio Nazionale delle Ricerche (CNR), Rome, Italy

Keywords:
Stakeholders’ perspectives 
Home care
Nurse-to-patient assignments 
Continuity of care

Three stakeholders are involved in health care services: patients, operators and service provider managers. They usually have conflicting needs: 
patients aim at obtaining good quality of service, operators require fair workloads, and managers try to reduce costs. Moreover, a fourth 
stakeholder, i.e., the contracting authority, pays for the service and fixes the requirements in terms of costs, quality of service and working 
conditions, to guarantee that the needs of the three actors are all taken into account and well balanced. Home care services represent a relevant 
example in which all of the different stakeholder perspectives should be included in the decision process, whereas they have been never compared 
nor considered together in the literature. We propose a set of mathematical models for the nurse-to-patient assignment problem in home care under 
continuity of care, inspired to multi-criteria optimization, to investigate the effect of each stakeholder’s goal on the others and their interactions. The 
three stakeholder perspectives are modeled as alternative objective functions of an integer linear programming model, and a threshold method to 
include all of them is proposed. The approach is then tested on real-life instances, and both deterministic and uncertain patient demands are 
considered. For the considered setting, results show that the service provider can achieve good quality of service and fair workloads with limited cost 
increase. Thus, including the other perspectives in the decision making process and respecting the service authority’s requirements is not as costly as 
expected.

1. Introduction

Health care services are provided by complex private and public
organizations, and they affect society, citizens and national and
regional budgets. Three stakeholders are usually involved in such
services, i.e., patients, service provider and operators. Each one
has his/her own point of view, goal and requests: patients are
interested in a good quality of care; service provider managers
must guarantee the service while keeping the operating costs
low; operators require good working conditions and fair workload
assignments. Unfortunately, these goalsmight be conflicting. Thus,
although the real decision maker is the service provider, patients’
and operators’ perspectives cannot be neglected to pursue an over-
all good service quality. Satisfying the needs of the three actors is
also the goal of a fourth stakeholder, i.e., the contracting authority,
usually a public institution, which pays for the service and sets
the requirements in terms of costs, quality of service and working
conditions.
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We consider in this paper the case of the Home Care (HC) 
service. HC consists of delivering treatments and cares to patients 
at their home rather than in hospitals or other structures. HC avoids 
hospitalization costs and improves patients’ quality of life, as they 
continue living in a familiar environment during the treatment [1]. 
Thus, HC services are nowadays gaining importance in many West-
ern countries [2].

Several optimization problems arise in managing HC services 
and can be classified according to the planning level [3,4]. Long-
term strategic planning involves decisions on districting and staff 
dimensioning, while short-term decisions focus on the daily ac-
tivity planning, such as visits scheduling and operators routing. In 
addition, when the so-called continuity of care is preserved, mid-
term planning includes stable assignments of operators to patients. 
Continuity of care is preserved when patients are assigned to only 
one nurse, named the reference nurse, who follows the patient’s 
entire care pathway and preferably provides all of the visits during 
the whole treatment period. Although several aspects influence the 
quality of care, continuity of care is usually considered crucial in 
the literature, as it prevents patients from continuously developing 
new relations with new nurses and avoids potential loss of infor-
mation among operators [5,6].ettore.lanzarone@cnr.it (E. Lanzarone), sara.mattia@iasi.cnr.it (S. Mattia).
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This paper focuses on the nurse-to-patient assignment problem in 
HC, which asks to assign a set of patients to a set of reference nurses 
over a planning horizon divided into time periods [4,7]. We address 
an operational problem – see [3] for a description of the different 
planning levels – assuming fixed staff and fixed capacity for each 
nurse, i.e., the available working time without incurring overtime. 
Assignments are decided taking into account nurses’ skills and 
patients’ locations, and according to three different continuity of 
care requirements. On the one hand, this is an important added 
value because different requirements fairly describe the patients’ 
point of view; on the other hand, the simultaneous presence of 
different requirements, even though common in the practice, is 
rarely included in the literature.

As for other management problems in health care, the nurse-
to-patient assignment problem in HC must account for the dif-
ferent stakeholders’ points of view (patients, service provider and 
nurses). Patients’ continuity of care requirements must be satis-
fied, as high quality of service is pursued; limiting costs is crucial 
because HC is specifically designed to keep the care costs low 
while guaranteeing the service; nurses’ activities should be accu-
rately planned because they are particularly exposed to stress and 
burnout.1 Indeed, to guarantee an ideal working environment, the 
workloads must be evenly distributed among the nurses, so that 
no operator is overloaded while others have reduced duties.

We first analyze the problem considering a single point of 
view at a time: each perspective is represented by a metrics, the 
problems are modeled as Integer Linear Programming (ILP) models 
that optimize only one of these metrics, and their solutions are 
compared to study the relations among the different perspectives. 
Then, to account for the contracting authority, we balance the 
stakeholders’ perspectives by means of ILP models in which one 
metrics is optimized in the objective function and the others are 
accounted for as additional constraints (threshold method).

Although many approaches can be applied to deal with multi-
criteria problems, the threshold method has been chosen because 
it models the actual stakeholders’ roles in the decision making pro-
cess. Indeed, the service is managed by only one of them (i.e., the 
service provider) under some regulations imposed by the National 
or Regional health care system and by the working contracts. Thus, 
the best way to naturally reproduce this situation is to consider the 
provider’s point of view as the objective function and the needs of 
the other actors involved, together with the limits imposed by the 
contracting authority, as constraints. In this way, the provider is 
the decision maker but, at the same time, it takes into account the 
needs of the other actors by limiting to which extent their point of 
view can be stressed out.

Our analysis also includes uncertain patients’ demands, which 
may cause high variability of the assigned workloads. Uncertainty 
is modeled using the cardinality-constrained approach [9,10].

Models have been tested on the historical data of one of the 
largest Italian public HC providers, which operates in the North-
ern Italy. Results confirm that the ILP models can handle real-
life instances and, therefore, can be applied in practice for the 
management of real HC services (they always provide a solution in 
reasonable time). Moreover, in the considered instance, we found 
that the service provider can achieve good quality of service (pa-
tients’ perspective) and fair workloads (nurses’ perspective) with 
limited cost increase. This result, which was not a priori expected, 
has an important practical impact, as it shows that the service 
provider can include the other stakeholders’ perspective (and thus 
respect the constraints from the contracting authority) without 
increasing costs.

1 Burnout is a prolonged response to chronic job-related stressors, which brings 

workers to stress-related health problems and low career satisfaction [8].

Summing up, the contributions of the paper are: (i) to represent 
the three stakeholders’ perspectives with three associated metrics;
(ii) to investigate the effect and the relations of the three metrics 
through an approach that combines the metrics into one model 
that fits the decisional process; (iii) to verify that the approach 
can be applied in real life instances, to provide low cost solutions 
that also guarantee suitable working conditions for nurses and 
good quality of service for patients; (iv) to evaluate the benefit 
of accounting for uncertain patients’ demands in this approach 
through the cardinality-constrained model. To pursue these goals, 
we exploited proven methodologies of the multi-criteria optimiza-
tion, considering in particular the so-called threshold method.

Alternative objectives have been previously compared in HC. 
However, authors compared different ways of pursuing the goal of 
a given stakeholder, or global functions that include the different 
stakeholder’s perspectives together. On the contrary, separately 
addressing the stakeholders’ perspectives in HC has not been con-
sidered in the literature. To the best of our knowledge, an analysis 
related to this one in HC can be found only in [11], where equity and 
efficiency criteria are compared; in particular, the authors com-
pared two alternative balancing objective functions via optimiza-
tion and simulation, showing their impact on diverse indicators.

Looking at the HC nurse-to-patient assignment problem, a sim-
ilar approach with different continuity of care requirements has 
been only considered in [12], where a penalty function that com-
bines costs and reassignments of the reference nurses was consid-
ered. However, in that paper, the quality of the obtained solutions 
with respect to the single points of view was not investigated. Thus, 
the present work is the first attempt to investigate the three point 
of views in such problem and their relations.

The paper is structured as follows. Section 2 revises the lit-
erature about multi-criteria problems, particularly in health care 
management. Section 3 describes the addressed problem and gives 
the ILP formulations. Then, the experimental setting is presented 
in Section 4, and the obtained results are discussed in Section 5. 
The robust counterpart of the models, based on the cardinality-
constrained approach, is presented in Section 6. Finally, the con-
clusions of the work are given in Section 7.

2. Related works

Many real-life problems involve multiple, possibly conflicting, 
objectives to be simultaneously optimized by a unique decision 
maker [13]. Such problems are referred to as multi-objective or 
multi-criteria optimization problems.

Let us consider a solution of a multi-criteria optimization prob-
lem. From the optimization perspective, the solution is said to be 
dominated if there exists another feasible solution with a better 
value for at least one of the objective functions while the others 
are not degraded. If a solution is non-dominated, i.e., it cannot be 
improved in any of the objectives without degrading at least one of 
the others, it is said to be Pareto optimal. The set of Pareto optimal 
solutions is called Pareto frontier. No solution in the Pareto front is 
better than the others in the multi-criteria framework, although 
the decision maker may prefer a solution depending on his/her 
own preferences. Multi-criteria decision problems are harder to 
solve than single-objective problems and several techniques have 
been applied to cope with them [14] and to compute the Pareto 
front [15,16].

In practice, solving a multi-objective problem consists of find-
ing a solution that is good enough according to all the considered 
metrics [17]. Two main approaches are used. The first one com-
bines the metrics into a single utility function to optimize (value 
function method). However, this method does not allow to directly 
control the value obtained for each metrics, and their relative 
weights within the utility function may be difficult to tune. The



second approach uses one metrics as objective function, requiring 
at the same time that the values of the other metrics remain 
above or below given thresholds (threshold method). Reasonable 
thresholds are required to guarantee a feasible and good solution. 
Remarkably, under some assumptions, both approaches produce 
solutions belonging to the Pareto front. Multi-criteria optimization 
is becoming increasingly popular, and recent works can be found in 
the literature dealing with several application fields, e.g., manufac-
turing [18], real-time train scheduling [19], urban passenger trans-
port systems [20], waste management [21], and water resources 
management [22].

2.1. Multi-criteria in health care

The number of health care applications where multi-criteria de-
cisions are investigated is constantly increasing over time, in par-
ticular for management problems [23]. Such applications spread 
from the nurse rostering problem [24–27] to operating rooms 
scheduling [28,29] and hospital bed planning [30].

Recently, some works started to explicitly deal with different 
stakeholders’ perspectives in the management of health care facili-
ties. Two relevant examples deal with the operating room theaters: 
Cappanera et al. [31] addressed conflicting stakeholders’ priorities 
in surgical scheduling by goal programming, while Marques and 
Captivo [32] proposed deterministic and robust approaches to 
evaluate the different stakeholders’ perspectives in a surgical case 
assignment problem.

As for the short-term HC operations management (the daily 
schedule and routing of nurses) the quality of nurse schedules 
mainly depends on travel times, overtime, unscheduled tasks, 
nurses’ and patients’ preferences. In the literature, such criteria 
are often combined in a single objective function. Trautsamwieser 
and Hirsch [33] addressed the daily planning of HC services 
assigning nurses to routes and visits; the objective considers 
traveling time, unscheduled jobs, patients’ dissatisfaction due to 
assignments to more than one nurse, and nurses’ dissatisfaction 
due to overtime and long travel times. Rasmussen et al. [34] 
focused on the HC nurse routing and scheduling problem 
considering competence, time windows and working times; the 
objective function combines travel times, nurses’ preferences and 
unassigned visits. Nickel et al. [35] considered a routing and 
scheduling problem where each visit must be assigned to a route; 
unassigned visits and lack of nurse–patient loyalty are penalized 
in the objective function, which also considers overtime costs and 
traveled distances. As mentioned, Cappanera et al. [11] compared 
equity and efficiency criteria by means of two alternative 
balancing objective functions, showing their impact on diverse 
indicators. More recently, Bowers et al. [36] analyzed the trade-off 
between continuity of care and travel times in a home midwifery 
service. Yalçındağ et al. [37] considered an objective function 
which includes both traveling times and utilization rates in an 
assignment and routing problem, while afterwards Yalçındağ et al. 
[38] proposed a pattern-based decomposition for this problem. 
Finally, Braekers et al. [39] mod-eled a routing and scheduling HC 
problem using a bi-objective optimization, where the two 
objectives are the minimization of travel costs and client 
inconveniences (in terms of penalties for not respecting the 
patients’ preferences about nurses and visit-ing times); non-
dominated solutions are produced using a multi-directional local 
search.

Focusing on the HC nurse-to patient assignment problem under 
continuity of care, Lanzarone et al. [4] considered a stochastic 
optimization model whose goal is to balance workloads under 
continuity of care. Lanzarone and Matta [7,40] developed analytical 
policies to reduce overtime penalty costs, i.e., a convex function 
of overtime that also balances the assigned workloads. Carello 
and Lanzarone [12] proposed a robust mathematical formulation

where the objective function combines costs and reassignments of
the reference nurse; as mentioned, it is the only paper, to the best
of our knowledge, that includes the three types of continuity of care
considered in this work.

All of the above-mentioned papers use the value function
method, and none of them investigate the relations among the
stakeholders’ goals nor propose a method that can be used by
the contracting authority to set minimal service requirements and
working conditions. The value function method does not to allow
to control the values of each single metrics and requires to tune
the weights of the metrics within the objective function. On the
contrary, as discussed in the introduction, the threshold method
represents themost natural way to reproduce the decision process
in many health care services, where the service provider is in
charge of making decisions while considering the other stakehold-
ers’ needs and respecting the limits imposed by the contracting
authority.

3. Problem and models

This section presents the addressed problem (Section 3.1) and 
the proposed ILP models. We first describe the common parts 
of all formulations in Section 3.2; then, we present the different 
stakeholders’ metrics and the related objective functions in Sec-
tions 3.3–3.5. Finally, the adopted threshold method is presented 
in Sections 3.6 and 3.7. The common parts are similar to those re-
ported in [12], whereas the different objectives and the additional 
constraints are defined afresh.

3.1. Problem description

We consider a set P of patients requiring care during a planning 
horizon of |T | time periods. Each patient j ∈ P requires a treatment 
duration rjt in each time period t ∈ T . Patients are classified 
accord-ing to their continuity of care requirement: Phc (hard 
continuity of care), Ppc (partial continuity of care) and Pnc (no 
continuity of care). A patient j ∈ Phc must be assigned to a single 
reference nurse over the entire time horizon; a patient j ∈ Ppc must 
be assigned to a single nurse in each period t ∈ T , but the 
reference nurse may change from period to period; a patient j ∈ 
Pnc has no restrictions and can be assigned to more than one nurse 
even in the same period, i.e., a nurse can provide only a part of the 
treatments required by j in t . Moreover, either patients are already 
under treatment before the beginning of the planning horizon or 
they start the treatment at the beginning of the planning horizon. 
Hence, subsets Phc and Ppc are further divided into patients already 
under treatment (Pa

hc and Pa
pc , respectively) and new patients (Pn

hc 
and Pn

pc , respectively). The number of patients is fixed during the 
planning horizon. However, patients’ characteristics may vary as 
for each patient j a specific treatment duration rjt is considered for 
each period t . This also allows considering a variable number of 
patients even though set P and its subsets have fixed cardinalities. 
In fact, we can represent patients who exit from the service at time 
t∗ by setting rjt = 0 ∀t > t∗, and patients who enter in the service at 
time t∗ by setting rjt = 0 ∀t < t∗.

A set I of nurses is currently employed. Each nurse i ∈ I has a 
working time vi per time period according to the employment 
contract. However, nurse i may also work overtime (above vi), 
provided that his/her total working time does not exceed λvi in a 
single time period and η|T |vi over the whole time horizon. The 
overtime is not included in the salary and must be paid for. Finally, 
nurses have different skills and operate in different areas. Hence, 
each patient j can be treated only by nurses in Ij ⊆ I who operate in 
the patient’s neighborhood and have the required skills.



Table 1
Common sets, parameters and decision variables.

Sets

T Time horizon
P Patients
Phc ⊆ P Patients with hard continuity
Ppc ⊆ P Patients with partial continuity of care
Pnc ⊆ P Patients with no continuity of care
Pa
hc ⊆ Phc Patients already under treatment with hard continuity of care

Pn
hc ⊆ Phc New patients with hard continuity of care

Pa
pc ⊆ Ppc Patients already under treatment with partial continuity of care

Pn
pc ⊆ Ppc New patients with partial continuity of care

I Nurses
Ij ⊆ I Nurses compatible with patient j

Parameters

rjt Patient j’s demand at time period t
vi Nurse i’s available working time per time period
λ Maximum workload ratio in each time period
η Maximum workload ratio over the whole time horizon
x̃ji Assignment of patient j ∈ Pa

hc to nurse i

Decision variables

xji Assignment of patient j ∈ Pn
hc to nurse i (binary)

ξ t
ji Assignment of patient j ∈ Ppc to nurse i at time period t (binary)

χ t
ji Fraction of rjt for patient j ∈ Pnc assigned to i (continuous non-negative)

wit Overall workload of nurse i at time period t (continuous non-negative)

3.2. Common parts of the formulations

A set of assignment variables for each type of continuity of care 
are introduced to model the problem. Binary variable xji ∈ {0, 1} 
equals 1 if nurse i is in charge of patient j ∈ Pn

hc during the entire
time horizon, and 0 otherwise. Binary variable ξji

t 
∈ {0, 1} equals 

1 if nurse i is in charge of patient j ∈ Ppc in time period t , and 
0 otherwise. Continuous variable χji

t (0 ≤ χji
t 

≤ 1) represents 
the fraction of rjt for patient j ∈ Pnc assigned to nurse i in time 
period t . As for patients in Pa

hc , they must keep the reference nurse 
assigned before the beginning of the planning horizon, as specified 
by parameter x̃ji that takes value 1 if patient j ∈ Pa

hc is already 
assigned to nurse i, and 0 otherwise. Besides, a continuous non-
negative variable wit represents the overall workload (including 
overtime) of nurse i in time period t . Sets, parameters and decision 
variables of the problem are summarized in Table 1.

The common constraints are listed below:∑
i∈Ij

xji = 1, ∀j ∈ Pn
hc (1)

∑
i∈Ij

ξ t
ji = 1, ∀j ∈ Ppc, t ∈ T (2)

∑
i∈Ij

χ t
ji = 1, ∀j ∈ Pnc, t ∈ T (3)

wit ≤ λvi, ∀i ∈ I, t ∈ T (4)∑
t∈T

wit ≤ η|T |vi, ∀i ∈ I (5)∑
j∈Pahc

rjt x̃ji +
∑
j∈Pnhc

rjtxji+

+

∑
j∈Ppc

rjtξ t
ji +

∑
j∈Pnc

rjtχ t
ji = wit , ∀i ∈ I, t ∈ T (6)

Constraints (1)–(3) force to assign each patient to one or more 
suitable nurses in each time period, according to the required con-
tinuity of care. Constraints (4) and (5) guarantee that the maximum 
allowed workload is not exceeded. Constraints (6) compute the 
workload of each nurse in each time period.

3.3. The service provider’s perspective

The service provider aims at minimizing the overtime costs,
where the overtime cost per time unit of nurse i is denoted by ci. A
continuous non-negative variable ωo

it represents the overtime of
nurse i in time period t and is computed through the following
constraints:

ωo
it ≥ wit − vi ∀i ∈ I, t ∈ T (7)

The cost metrics of the provider is then the overall overtime cost,
which is computed as

∑
t∈T

∑
i∈Iciω

o
it . The provider’s objective

function asks for minimizing the cost metrics:

min
∑
t∈T

∑
i∈I

ciωo
it (8)

We refer to the problem (1)–(8) as the Provider Problem (PrP).
We remark here that we are dealing with an operational prob-

lem, in which staffing decisions are not considered, and that the 
considered time horizon is too short to include changes in the 
staff. Moreover, as usual in real life services, staff is not over-
dimensioned and the available capacity often results in a tight 
constraint, making the overtime crucial for the provider.

3.4. The nurses’ perspective

Nurses should not be overloaded to avoid burnout and other 
stress-related problems; thus, the service provider’s perspective is 
also related to nurses’ requirements.

However, nurses ask for something more, and it is important 
to prevent them from developing the feeling of being unequally 
treated, i.e., to avoid situations in which one nurse works at a high 
percentage of his/her capacity and another one at a low percentage.

Thus, the nurses’ utilization rates should be limited and evenly 
balanced, where the utilization rate of nurse i in period t is the 
ratio between the workload wit and the available working time vi. 
Accordingly, in the nurses’ objective (referred to as fairness metrics) 
a weighted sum of the maximum utilization rate and of the dif-
ference between the maximum and the minimum utilization rates 
is minimized. The second term of the objective function prevents 
from having a limited but not evenly distributed utilization rates, 
i.e., some nurses are far more utilized than others. The maximum



andminimumutilization rates are represented by continuous non-
negative variables zmax and zmin, respectively, whose value is set
through the following constraints:

zmax ≥
wit

vi
∀i ∈ I, t ∈ T (9)

zmin ≤
wit

vi
∀i ∈ I, t ∈ T (10)

The fairness metrics is then given by αnzmax + (zmax − zmin), where
αn is the relative weight of the first term. A high value of αn mainly
accounts for the maximum utilization, whereas a low value for the
imbalances among nurses. The nurses’ objective function is thus
the following:

min αnzmax + (zmax − zmin) (11)

We refer to the model (1)–(6), (9)–(11) as the Nurse Problem (NuP).
Fairness is not guaranteed by (4) and (5), nor automatically en-

sured by the optimal solution of the service provider’s perspective. 
Moreover, although a provider may be interested in guaranteeing 
good working conditions, fairness is not its main goal when it does 
not affect provider’s costs or even increases costs. Thus, fairness 
has to be explicitly required when aimed.

3.5. The patients’ perspective

The quality of care received by patients is influenced by sev-
eral aspects, which are difficult to separate and capture with a 
mathematical function. Most of them are also related to the nurses’ 
working conditions, thus involving the service provider’s and the 
nurses’ perspectives.

However, continuity of care is described in the literature to be 
a key point in guaranteeing a good level of care; thus, continuity of 
care is the major point to consider when focusing on the patients’ 
perspective. Continuity is mandatory for patients in Phc , whereas it 
is not required for patients in Pnc . Thus, the goal is to guarantee 
the continuity of care for the largest number of patients in Ppc 
(reassignment metrics).

Binary variable yjt ∈ {0, 1} represents the change in the ref-
erence nurse between two consecutive time periods for patient j ∈ 
Ppc . It takes value 1 if two different nurses are in charge of patient j 
∈ Ppc at time periods t − 1 and t . In addition, a contin-uous non-
negative variable s represents the maximum number of 
reassignments for a single patient over the whole planning 
horizon. Values of yjt and s are set through the following 
constraints:
ytj ≥ ξ t

ji − ξ t−1
ji ∀j ∈ Ppc, i ∈ I, t ∈ T \ {t = 1} (12)

y1j ≥ ξ 1
ji − ξ̃ji ∀j ∈ Pa

pc, i ∈ I (13)

s ≥

∑
t∈T

yjt ∀j ∈ Ppc (14)

Parameter ξ̃ji represents the last assignment of patient j ∈ Pa
pc

before the beginning of the planning horizon.
We aim at minimizing the total number of reassignments, pro-

vided that no patients are particularly penalized, i.e., the reassign-
ments must be fairly distributed among the patients. Thus, the re-
assignment metrics consists of a weighted sum of the total number
of reassignments and of the highest number of reassignments for
a single patient, i.e., αp|Ppc ||T |s +

∑
j∈Ppc

∑
t∈Ty

t
j , where αp is the

relative weight of the first term. The patients’ objective function is
therefore:

min αp|Ppc ||T |s +

∑
j∈Ppc

∑
t∈T

ytj (15)

Model (1)–(6), (12)–(15) is called the Patient Problem (PaP).

3.6. Threshold method: Adding points of view as constraints

According to the threshold method for multi-criteria optimiza-
tion, we add a set of constraints to each model, to limit the values
of the other metrics, thus obtaining the corresponding constrained
model. This naturally replicates the role of the contracting author-
ity, which imposes limits to guarantee the needs of all stakehold-
ers. Moreover, as these needs are related, this harmonizes all of
the requirements to improve the overall level of the service for all
actors involved.

Whenminimizing the fairness or the reassignment metrics, costs
are limited by adding the following constraint:∑
t∈T

∑
i∈I

ciωo
it ≤ c̄ (16)

where c̄ is the maximum acceptable overtime cost. Of course, (16) 
also requires constraints (7) to compute ωo

it .
When minimizing the cost or the reassignment metrics, the 

nurses’ point of view can be accounted for by limiting the dif-
ference in the utilization rates between any two nurses and the 
utilization rates themselves, coherently with the two terms of (11):

wht

vh
−

wkt

vk
≤ δ1 h, k ∈ I, t ∈ T (17)

wit

vi
≤ δ2 i ∈ I, t ∈ T (18)

where the δ1 and δ2 are suitable threshold values.
Finally, when minimizing the cost or the fairness metrics, we

limit the individual number of reassignments as follows, where q
is the given threshold.∑
t∈T

yjt ≤ q j ∈ Ppc (19)

We then consider the following problems:

• Constrained Provider Problem (CPrP): PrP with additional pa-
rameters δ1, δ2 and q, and additional constraints (17)–(19);

• Constrained Nurse Problem (CNuP): NuP with additional pa-
rameters c¯ and q, and additional constraints (7), (16), (19);

• Constrained Patient Problem (CPaP): PaP with additional pa-
rameters c¯, δ1 and δ2, and additional constraints (7), (16)–
(18).

3.7. Setting and refreshing the thresholds

Thresholds represent the minimal values that a particular
stakeholder may consider satisfactory for its own metrics. Each
time the problem is solved, either the value of each threshold can
be provided by the stakeholder itself (first case) or it can be com-
puted from the current conditions of the provider (second case).
In the latter case, to get the maximum utility for the stakeholder,
the threshold can be set at the optimum of the single objective
problem, provided that a certain degradation may be necessary to
guarantee the feasibility of the constrained problem. Considering
that the assignments are refreshed at a fixed frequency or every
time one or more new patients enter the service, thresholds are
fixed in the first case, while they need to be updated in the second
case.

Updating could be ideally performed each time the problem
is solved. In such layout, solving the multi-criteria optimization
always requires solving two single objective models in advance, to
get the values of the thresholds for the two metrics not included
in the objective function. Moreover, in case the set thresholds
give infeasibility for the constrained problem, the multi-criteria
optimization has to be repeated while increasing the thresholds.



Table 2
Patients per week.

Week |Pa
| |Pn

| Week |Pa
| |Pn

| Week |Pa
| |Pn

|

1 560 29 10 568 8 19 575 21
2 571 22 11 559 16 20 582 13
3 571 30 12 563 14 21 582 15
4 573 14 13 557 23 22 581 16
5 568 9 14 557 18 23 576 16
6 559 24 15 568 18 24 575 19
7 566 25 16 557 22 25 590 8
8 575 20 17 557 26
9 579 20 18 564 19

Alternatively, if the provider conditions are quite stable, the 
values of the thresholds can be provided based on the past ex-
perience, to avoid the additional computational times every time 
the problem is solved. Thus, the thresholds are kept constant 
over a mid-term horizon, and refreshed at a fixed frequency or 
in the presence of a certain deviation secondary to a variation 
in the provider working conditions (different number of patients, 
composition of the patient mix, . . . ). We address the reader to [15] 
for details about the threshold method.

4. Experimental setting

Tests are run on real-life instances, in which the planning is 
performed on a weekly basis. To test the approach over a long time 
period, we consider a rolling horizon framework, in which the 
assignments computed in a week feed the next week instance as 

input (i.e., they provide the values for parameters x̃ji and ξ̃ji). 
Indeed, we consider the historical data of a large HC provider 
operating in the Northern Italy [4,7,12,40] over 26 weeks (period 
April 2008–September 2008). The initial week (named week 0) is 
used for initializing the assignments, while the assignments are 
rolling updated in the remaining weeks 1–25.

The considered HC provider is in charge of about 1000 patients 
who are cared after by about 50 nurses. It is divided into three 
divisions, and the number of patients in the charge together with 
their features are taken from the historical data of the largest di-
vision. The patient set P and its subsets (cardinalities and patients’ 
characteristics) are then updated at each rolling week based on the 
actual historical data at the corresponding week. The number of 
patients at each week is reported in Table 2.

Patients are classified into 14 different care profiles (11 profiles 
for non-palliative patients and 3 for palliative ones) and demands 
rjt are estimated from current patients’ conditions through the 
stochastic model of Lanzarone et al. [41], i.e., rjt are obtained as the 
expected value of an estimated probability density function.

Nurses and patients of the considered division are divided into 
6 independent districts based on territory and skill (palliative or 
non-palliative). We consider a separate management of districts, 
in which each nurse operates in only one district. Table 3 reports 
the number of nurses, their available working times vi and the 
percentage of patients for each district.

Two continuity of care scenarios are considered: (i) scenario 
Partial in which all of the patients require partial continuity of care;
(ii) scenario Mix which includes all types of continuity (hard, par-
tial, none). Continuity requirements in the Mix scenario depend on 
the patient’s care profile. As for non-palliative patients, intensive 
care profiles require a harder type of continuity; as for palliative 
patients, they are randomly assigned to hard and partial continuity 
of care requirement with probability 0.8 and 0.2, respectively. The 
same division is kept in all tested Mix cases. On average, the 54%
of the patients ask for hard continuity of care, the 20% for partial 
continuity, and the 26% do not ask for any continuity.
With a look ahead perspective, we consider a planning horizon of 

|T | = 8 weeks for each instance, which corresponds to as many

future weeks starting from the current one. Parameters λ and η

are set equal to 1.8 and 1.4, respectively, and both αn and αp are
set equal to 10, i.e., we give more importance to the maximum uti-
lization rate (in the fairness metrics) and to the individual number
of reassignments (in the reassignment metrics). Finally, we assume
that the overtime cost ci is equal to 1 for all nurses.

Concerning the thresholds for the multi-criteria approach, we
work in the second case presented in Section 3.7 as, based on the
available historical data, we may assume that the service condi-
tions are rather stable over the considered rolling weeks. Thus, we
consider that the provider sets the threshold values for themetrics
based on its past experience, and that such thresholds are kept
constant over the weeks.

To emulate such behavior in the experiments, we treat the first
7 weeks after the initialization (weeks 1–7) as the past experience
of the provider, and we use them to set the thresholds for the
following weeks (weeks 8–25). We run each unconstrained model
up to week 7, and we take the maximum of the metrics over
the weeks 1–7 as initial thresholds. Then, for each constrained
model, we check the feasibility of the metrics constraints with
these thresholds; in case of unfeasibility, we iteratively increase
the threshold values by 10% until a feasible solution is found up to
week 7. The obtained thresholds are then applied to the following
weeks 8–25. If these thresholds are too tight for a week, they are
increased only for this unfeasibleweek (iteratively by 10% until the
feasibility is reached); if the infeasibility occurs in several weeks,
this suggests an updating of the thresholds.

Models have been implemented in the CPLEX STUDIO IDE en-
vironment, and solved with CPLEX 12.6.1 on a PC equipped with
processor Intel i7-6700MQ at 2.60G Hz and with 16 Gb of RAM. A
time limit of 5400 s, a tree memory limit of 3 Gb and an acceptable
optimality gap equal to the 0.05% have been imposed. As we
are considering a weekly based planning, one hour and a half of
computation is reasonable.

5. Results

This section analyzes the computational results, aiming at:

(i) Investigating the relations among the three unconstrained 
problems, so as to verify whether a single objective can pro-
duce good results also for the other two metrics. Hence, the 
three unconstrained problems are compared in Section 5.1.

(ii) Evaluating the impact of the thresholds and the possibility 
of providing a low cost solution while guaranteeing suitable 
working conditions for nurses and good quality of service for 
patients (thus satisfying the contracting authority). Hence, 
the behavior of the constrained problems is analyzed with 
respect to all of the metrics in Section 5.2.

(iii) Evaluating the computational effort required to solve the 
models, either with or without the additional constraints, 
to show that the proposed approach can be used in practice. 
Results are reported in Section 5.3.

(iv) Evaluating the benefit of planning the assignments account-
ing for the uncertain patient demands through a cardinality-
constrained robust model. Results are separately reported in 
Section 6.

It is worth pointing out that, due to the rolling approach, the
different models are not compared on the very same instances
at each week. Indeed, the previously computed assignments are
kept to define parameters x̃ji and ξ̃ji; thus, solving different models
in a week leads to different instances in the successive weeks.
However, as we are interested in the long-term behavior of each
model, the rolling approach follows the impact of a model over the
time.



Table 3
Number of nurses, vi and percentage of patients in weeks 1–25 for each district. NP* districts include the non-palliative 
patients, whereas P* districts the palliative ones.

District Number of nurses Nurse weekly working time vi Percentage of patients

NP1 8 35, 40, 45, 50, 50, 50, 50, 50 39%
P1 3 20, 30, 30 6%
NP2 4 30, 35, 50, 50 22%
P2 1 35 3%
NP3 5 30, 35, 40, 50, 50 26%
P3 1 35 4%

Table 4
Objective function values for the unconstrained models: average value among the
weeks together with the minimum and maximum values in brackets; weeks 1–7
(a) and weeks 8–25 (b).

Scenario PrP NuP PaP

Partial 13.60 11.62 20264

(a)

(5.05–19.03) (10.99–13.10) (0–47442)

Mix 13.60 11.63 0
(5.05–19.03) (10.99–13.13) (0–0)

Hard 16.75 12.64
(6.70–23.59) (11.57–13.65)

Scenario PrP NuP PaP

Partial 12.25 11.43 20863

(b)

(3.88–25.25) (10.94–12.02) (0–47921)

Mix 12.36 11.44 533
(3.88–25.25) (10.97–12.01) (0–9601)

Hard 15.29 12.07
(6.29–28.71) (11.43–12.75)

5.1. Comparison among the unconstrained problems

As first step of the analysis, we report in Table 4 the values of the 
objective function obtained by the three unconstrained problems 
for both weeks 1–7, used for setting the thresholds, and the actually 
tested weeks 8–25. Only in this first analysis, to highlight the 
impact of the continuity of care, we also report the results of a third, 
less realistic, scenario, i.e., the Hard scenario in which all patients 
require hard continuity of care. Of course, the PaP is not reported 
for the Hard scenario, as the continuity is always respected.

In the initial 7 weeks, the PrP and the NuP have the same 
objective function value for the Partial and the Mix scenarios. 
Instead, the PaP objective function is significantly higher for the 
Partial scenario, both because the number of patients who require 
partial continuity is higher in the Partial scenario and because in 
the Mix scenario patients in Pnc allow reassigning nurses without 
penalties; in fact, in the Mix scenario, there are no reassignments 
in all of the weeks. Fairness does not change much from week to 
week both for the Partial and the Mix scenarios. As for the Hard 
scenario, the objective function values are higher than for the other 
scenarios: hard continuity of care reduces the flexibility of the 
service, thus increasing the overtime costs for the PrP and slightly 
increasing the fairness metrics for the NuP. On the contrary, in 
the Mix scenario, patients requiring hard continuity are somehow 
balanced by those requiring partial or no continuity, who give 
flexibility to the system.

Similar remarks also hold for the actually tested weeks 8–25. 
Indeed, the PrP and NuP objective functions do not change much 
in the Partial and Mix scenarios, while they both increase in the 
Hard one. The number of reassignments is significantly lower for 
the Mix scenario when compared to the Partial one, although not 
always null as in weeks 1–7 (there is one reassignment in week 24 
in the Mix scenario). Comparing these weeks with the initial ones, 
we may note that the average value of the PrP objective function 
is lower than in the first weeks, while the minimum–maximum 
interval is larger. Instead, the NuP objective function is a little bit

lower (average, minimum and maximum values) than in the first 
weeks. Finally, the PaP objective increases in weeks 8–25.

We show now the relations among the different perspectives, 
by analyzing the value of the three metrics when solving each 
unconstrained problem. Results are reported in Table 5, where 
columns are associated with models and rows with metrics; thus, 
the best possible value of each metrics can be found on the diago-
nal.

Similar relations among the metrics are found in both scenarios 
and both in weeks 1–7 and 8–25. The PrP guarantees reasonably 
good fairness, as the increase of the average fairness metrics is 
between the 10% and the 16% for any scenario and considered set 
of weeks. Instead, the opposite is not true, as overtime costs may 
significantly increase when solving the NuP (between 1.3 and 7.21 
times as far as the average value is concerned; up to about 14 times 
for the maximum value). Yet, overtime and fairness are somehow 
related. On the contrary, the patient perspective conflicts with the 
others: in fact, when solving the PrP or the NuP, the number of 
reassignments dramatically increases, and the PaP produces the 
highest values of overtime costs and fairness metrics.

Results show that we cannot rely on an unconstrained model to 
guarantee good values for each metrics. In fact, even the PrP, which 
produces not only the best overtime cost but also good fairness 
values, is not able to produce the optimal value of fairness and 
generates many reassignments. Thus, we resort to the threshold-
constrained models described in Section 3.6 to obtain good quality 
solutions with respect to all of the metrics.

5.2. Including the threshold constraints

Here we analyze the results obtained solving the constrained 
problems, where threshold values are computed with the proce-
dure described at the end of Section 4 using the results obtained in 
weeks 1–7 as thresholds for weeks 8–25.

Initial tested values are c̄ = 19.03, δ2 = 1.22 and q = 1 for both 
the Partial and the Mix scenarios, while δ1 = 0.86 in the Partial 
scenario and δ1 = 0.88 in the Mix scenario. Although q never 
reaches value 1 in the Mix scenario, nevertheless we set q = 1 in 
both cases so as to provide some flexibility. After the required 
increments to get the feasibility of the constrained problems in 
weeks 1–7, the obtained thresholds are as follows (10% of increase 
with respect to the initial values):

• CPrP: δ2 = 1.34 and q = 1 in both scenarios; δ1 = 0.97 and
δ1 = 0.95 in theMix and Partial scenario, respectively.

• CNuP: c̄ = 20.93 and q = 1 in both scenarios.
• CPaP: δ2 = 1.34 and c̄ = 20.93 in both scenarios; δ1 = 0.97

and δ1 = 0.95 in theMix and Partial scenario, respectively.

Results are reported in Table 6, where rows are associated with 
metrics and columns are associated with problems.

Let us first note that the adopted thresholds (derived from 
weeks 1–7) always allow to find a feasible solution for the con-
strained problems but in two weeks, namely week 9 and 20, 
thus showing that the service demand is stable enough and that 
historical data can be used to provide suitable thresholds for a long



Table 5
Metrics of the unconstrained models: average value among the weeks together with the minimum and maximum values 
in brackets. Weeks 1–7 for scenario Partial (a); weeks 8–25 for scenario Partial (b); weeks 1–7 for scenario Mix (c); weeks 
8–25 for scenario Mix (d).

Metrics PrP NuP PaP

Overtime 13.60 64.07 530.89

(a)

(5.05–19.03) (8.20–281.86) (433.18–645.70)

Fairness 12.83 11.62 19.48
(11.95–13.53) (10.99–13.10) (19.06–19.73)

Reassignment 380151 380123 20264
(372589–388109) (372578–388007) (0–47442)

Metrics PrP NuP PaP

Overtime 12.25 28.16 379.26

(b)

(3.88–25.25) (8.40–96.48) (309.97–475.82)

Fairness 13.03 11.43 19.23
(11.51–15.76) (10.94–12.02) (17.74–19.66)

Reassignment 378975 379400 20863
(370412–386847) (370921–386834) (0–47921)

Metrics PrP NuP PaP

Overtime 13.60 111.66 407.79

(c)

(5.05–19.03) (43.66–255.63) (330.64–554.01)

Fairness 13.24 11.63 19.00
(11.60–14.24) (10.99–13.13) (16.96–19.80)

Reassignment 69878 71134 0
(65891–77788) (65886–77149) (0–0)

Metrics PrP NuP PaP

Overtime 12.36 83.69 214.70

(d)

(3.88–25.25) (31.75–158.16) (109.63–413.48)

Fairness 13.26 11.44 16.99
(11.58–15.09) (10.97–12.01) (15.95–19.17)

Reassignment 70484 70376 533
(63656–77840) (63573–77073) 1 (0–9601)

Table 6
Metrics of the constrained models: average value over weeks 8–25 together with the minimum andmaximum values in
brackets. Number of weeks in which the adopted thresholds make the problem infeasible and have been recomputed.
Scenario Partial (a) and scenario Mix (b).

Metrics CPrP CNuP CPaP

Overtime 12.25 13.78 16.97

(a)

(3.88–25.25) (3.88–26.07) (8.57–25.25)

Fairness 12.71 11.43 12.19
(11.47–14.34) (10.94–12.02) (11.76–12.85)

Reassignment 47478 47513 18312
(46449–48419) (46450–48412) (0–47921)

Weeks 8–25 with
threshold recomputation 0 2 2

Metrics CPrP CNuP CPaP

Overtime 12.25 14.02 19.38

(b)

(3.88–25.25) (3.88–26.64) (8.72–26.64)

Fairness 13.06 11.43 13.47
(11.97–14.70) (10.93–12.01) (12.52–16.98)

Reassignment 9421 9435 1587
(8866–10067) (8863–10063) (0–9762)

Weeks 8–25 with
threshold recomputation 0 2 2

time horizon (up to 6 months) with few critical weeks in which the 
thresholds must be recomputed.

Two main behaviors are a priori possible when solving the con-
strained models: either there are equivalent optima and the addi-
tional constraints select among them, or the metrics are conflicting 
and the additional constraints worsen the objective function value 
with respect to the unconstrained optimum. Our results show 
that adding constraints (16)–(19) with suitable thresholds allows 
selecting, among a set of almost equivalent optimal solutions with 
respect to a single point of view, a solution that provides a good 
value also for the other two metrics. In fact, by comparing the

results with those in Table 5, we observe that in almost all cases 
the objective function does not get worse when the values of 
other metrics are limited, while the other metrics are significantly 
improved.

Let us first consider the Partial scenario and the CPrP and 
CNuP problems. On the one hand, their objective does not change 
when adding the threshold constraints (average, minimum and 
maximum values). On the other hand, as for the CPrP, the fairness 
metrics improves with respect to the PrP, and the reassignment 
metrics dramatically decreases at the same time. Similarly, when 
solving the CNuP, the overtime cost is almost halved with respect



to NuP and the reassignment metrics is reduced by almost one 
order of magnitude. As for the CPaP in the Partial scenario, not 
only the fairness metrics and the overtime cost are reduced (up to 
about 20 times as far as the average overtime cost is concerned) but 
also the average reassignment metrics is improved. This happens 
because the alternative assignments that meet the threshold con-
straints in one week result in a different (and possibly better) input 
for the following weeks, leading to solutions that may be even 
better than the unconstrained ones. The behavior is confirmed 
in the Mix scenario: the CPrP and the CNuP improve all of the 
metrics with respect to the PrP and the NuP, respectively, including 
that optimized in the objective. Instead, the CPaP only improves 
overtime and fairness metrics with respect to the PaP, whereas the 
reassignment metrics increases.

From these results, we also note that overtime cost and fairness 
are somehow related, and that optimizing the cost yields to low 
values of the fairness metrics. Indeed, the PrP provides a good value 
of the fairness metrics even without the additional constraints and 
the fairness metrics value is only marginally reduced in the CPrP. 
On the contrary, as mentioned, a reduction is observed in the over-
time cost metrics passing from NuP to CNuP. Further, the number of 
reassignments may significantly increase if not constrained; hence, 
a great reduction can be obtained by adding the corresponding 
constraints.

The selection among equivalent optimal solutions was not 
expected, especially for the reassignment metrics, which seems 
conflicting with the others. Such behavior is mainly driven by the 
ratio between the demands rjt and the working times vi. In fact, 
if rjt values are small with respect to the working times vi, it is 
possible to adjust the assignments so as to guarantee good quality 
of care at limited costs. On the contrary, higher ratios rjt over vi 
mean that workloads are less adjustable and, thus, one of the two 
metrics must be worsened in order to favor the other.

In the considered dataset, the expected rjt at week t = 1 is on 
average 2.6 h, and it never rises above 6.5 h; moreover, these values 
decrease while t increases (see [41] for detailed values). Moreover, 
in the patient mix obtained from the real data of the considered 
weeks, the fraction of patients requiring the maximum treatment 
time (a subset of the palliative patients) is small, being about the 
10%, while about the 70% of patients require less than 3 h.

More in general, high treatment times are not common in HC. In 
fact, patients requiring higher service times are usually addressed 
to other services (e.g., hospitals, nursing houses), or they hire a 
full time caregiver. Thus, our instance can be considered general 
enough, and the results provide indications that are also valid for 
other HC providers. In particular, they are highly impacting from 
the application point of view, as they mean that the provider can 
meet the other stakeholders’ requirements without increasing the 
costs.

As a last analysis, let us compare the results with those obtained 
by the model proposed in [12] on a scenario similar to the Mix 
case in terms of number and characteristics of the patients. Both 
models include three types of continuity of care requirements, 
but the objective function considered in [12] is a weighted sum 
of two terms. The first term, aiming at both reducing overtime 
costs and balancing workloads, is a piecewise linear approximation 
of a quadratic function, where the overtime cost per time unit 
increases with the increasing overtime; the second term, aiming 
at minimizing the number of reassignments, is the sum of the 
reassignments. The weight of the second term with respect to the 
first one has been set so that one reassignment is as expensive as 
2.5 h of overtime in the first piece. Also that model provides, in 
general, good performances for the three metrics. The quadratic 
penalty cost function keeps the overtimes limited and also limits 
the overtime differences among nurses, as it spreads the overtime 
among the nurses rather than assigning all of it to only one or

few nurses; moreover, the high relative weight of the second term 
keeps the number of reassignments low. However, that model does 
not separate the effects of the different points of view, nor allows 
to evaluate the relations among the metrics or to tune the limits 
of the individual metrics. On the contrary, the threshold method 
here proposed can show how close or far each metrics is from its 
optimal value. Finally, we highlight that good performances were 
obtained with the model in [12] because the three individual met-
rics are somehow related, as shown before in this section; while 
the threshold method is able to analyze this trade-off and to deal 
with other cases in which the points of view may be conflicting, 
the other approach does not.

Let us conclude this analysis discussing the impact of keeping 
constant thresholds using the maximum value as starting point for 
computing them. It may be argued that keeping the same thresh-
olds along the whole time horizon may excessively worsen the 
metrics in some weeks. However, the worsening is not dramatic 
in the tested instances. Let us consider the CPrP, which is more 
likely to be solved in the real practice; results in Table 5 show 
that, as far as the fairness metrics is concerned, the maximum 
value among the weeks is about the 20% higher than the smallest 
one; concerning the continuity of care metrics, the increase of the 
maximum value among the weeks with respect to the lowest one 
seems to be significant but, indeed, it represents a small number 
of reassignments. Anyway, even computing the thresholds starting 
with the maximum values and keeping them constant, the solution 
is good enough for both metrics. It proves, in the considered HC 
provider, that the demand is stationary enough to assume constant 
thresholds (as also confirmed by the small number of weeks in 
which the thresholds must be recomputed — see Tables 6(a) and 
6(b), last row) and that the method is able to produce good results 
in practice.

5.3. Computational time

Computational times are analyzed to assess whether the pro-
posed approach can be applied in practice for a weekly planning. 
The approach requires a threshold-setting phase, where first the 
unconstrained problems and then the constrained ones are solved 
on historical data, and the actual weekly assignment planning.

Results for the threshold setting phase are reported in Table 7, 
where the average, the minimum and the maximum computa-
tional times among weeks 1–7 are given, together with the sum 
over the weeks, for each unconstrained and constrained problem. 
Results for weeks 8–25 are reported in Table 8, where the average, 
the minimum and the maximum computational times among the 
weeks are reported for each constrained problem.

As for the unconstrained problems, results show that solving 
the problems on weeks 1–7 in the Partial scenario is not com-
putationally challenging: the PrP requires 6.63 s on average and 
less than 1 min even in the worst case; NuP is slightly more time 
consuming on average (7.35 s) but it does not require more than 
20 s; the PaP is the least time consuming, as it requires 4.14 s 
on average and never more than 8 s. Solving the unconstrained 
models in the Mix scenario is even less time consuming, as it always 
requires less than 1 s. Summing up, the Partial scenario is the most 
time consuming, requiring about 10 times the computational time 
of the Mix one, since no assignment is forced (subset Pa

hc is empty).
Including the metrics constraints increases the computational 

time. The computational time needed to solve the Partial scenario 
significantly increases for the CPrP and the CNuP with respect 
to the unconstrained versions, while CPaP increases only slightly. 
The Mix scenario, i.e., the most realistic one, suffers less from the 
additional constraints: in fact, whatever the considered case is, the 
constrained problem always requires about 1 s and its computa-
tional time never rises above 1.54 s.



Table 7
CPU times[s] for weeks 1–7, unconstrained and constrained problems.

Partial Mix

avg min max sum avg min max sum
weeks 1–7 weeks 1–7

PrP 6.63 1.12 39.16 46.42 0.58 0.52 0.62 4.05
NuP 7.35 1.53 18.27 51.45 0.67 0.61 0.76 4.68
PaP 4.14 2.52 7.96 28.98 0.71 0.69 0.74 4.97

CPrP 19.65 13.64 37.61 137.53 1.09 1.01 1.17 7.65
CNuP 57.52 6.61 96.27 402.64 1.16 1.06 1.30 8.12
CPaP 5.93 4.38 8.93 41.53 1.00 0.94 1.09 7.01

Table 8
CPU times [s] for weeks 8–25, constrained problems.

Partial Mix

avg min max avg min max

CPrP 21.63 12.20 47.33 1.10 0.97 1.40
CNuP 89.64 14.43 162.83 1.08 0.86 1.54
CPaP 5.29 4.33 6.98 0.93 0.84 1.23

As for the threshold setting phase, it requires to first solve the 
unconstrained problems in weeks 1–7, and then the constrained 
versions, possibly increasing the thresholds if an unfeasibility oc-
curs in a week; in this case, the constrained problems must be 
solved more than once. In our experiments, thresholds are in-
creased only once, by the 10%. Considering the worst case (unfea-
sibility at week 7), each constrained problem is solved twice per 
week. Thus, being the time for the feasibility check negligible, the 
computational effort for the overall thresholds setting procedure 
includes that to solve 7 times the unconstrained problem and 
to solve 14 times the constrained one, besides the time for the 
corresponding 3 initializations at week 0, which correspond to less 
than 15 min. Considering that the thresholds setting procedure is 
occasionally performed (in our experiments the same thresholds 
are kept for 17 weeks and they do not need to be updated but in 
two), the computational effort is highly acceptable and compatible 
with the real life application.

As for the weekly planning, results in Table 8 show that, even in 
the most time consuming case (the CNuP solved in the Partial sce-
nario), the computational time for solving a constrained problem in 
a week never rises above 3 min. Moreover, solving the constrained 
problems in the Mix scenario, which is the most likely to occur in 
practice, is much faster and never rises above 1 s.

Finally, we remark that, even if the thresholds have to be in-
creased in a week, being the time consumed for the feasibility 
check negligible, the computational times in Table 8 are valid and 
the weekly planning requires a certainly acceptable effort.

6. Robustness and executed solutions

So far, treatment durations rjt have been assumed to be de-
terministic parameters. Instead, in real-life cases, rjt are uncertain 
parameters that depend on patient’s conditions [41]. To tackle 
this uncertainty, we propose robust counterparts of the developed 
models, based on the cardinality-constrained approach [9], and 
we analyze the behavior of the solutions when applied to real-life 
scenarios.

In the robust cardinality-constrained formulation, parameters 
rjt are assumed to take values in an interval between a nominal 
value r̄jt and a maximum value r̄jt + r̂jt . For each nurse i and time 
period t , a subset of patients of given cardinality for each 
continuity of care requirement (Γhc patients in Phc , Γpc patients in 
Ppc and Γnc patients in Pnc , respectively) ask for the maximum 
treatment duration, while the others for the nominal one. The 
approach selects the worst possible case, thus guaranteeing that 
the obtained solution remains feasible for every other choice of

the subsets with the given cardinality. In the following, we briefly 
describe how to formulate the robust counterpart; we refer to [12] 
for a detailed description of the formulation.

Reformulation is based on duality, and a pair of variables for
each type of continuity of care, ζ hc

it , πhc
jit , ζ

pc
it , π

pc
jit , ζ

nc
it , πnc

jit are in-
troduced to account for the dual amounts. Robust counterparts of 
the models are reformulated by replacing constraints (6) with the 
following sets of constraints:∑
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≤ wit , ∀i ∈ I, t ∈ T (20)

ζ c
it + π c

jit ≥ r̂jtxji, ∀i ∈ I, j ∈ Phc, t ∈ T (21)

ζ
pc
it + π

pc
jit ≥ r̂jtξ t

ji, ∀i ∈ I, j ∈ Ppc, t ∈ T (22)

ζ nc
it + πnc

jit ≥ r̂jtχ t
ji, ∀i ∈ I, j ∈ Pnc, t ∈ T (23)

where variables wit now represent the robust workloads in the 
worst case.

Robust increased workloads are used for computing the cost 
metrics. As for the fairness metrics, robust increased workloads 
are taken when computing zmax for the maximum utilization rate, 
i.e., the first term in (11). However, the difference between the 
maximum and minimum rates (the second term) is computed 
based on the nominal workload values without robustness to en-
sure the applicability of the approach.

In the analyses, we set each cardinality Γ equal to 2 and the 
maximum values r̂jt at the 80% quantile of the probability density 
function from the patient stochastic model of Lanzarone et al.[41]. 
The initial assignment are computed solving the deterministic 
model on week 0; then, the robust model is solved both in weeks 
1–7, when setting the thresholds, and in weeks 8–25. Parameters 
λ and η keep the already adopted values for the PrP and the NuP 
(and the corresponding CPrP and the CNuP), which are large 
enough to permit managing the worst case. As for the PaP and the 
corresponding CPaP, λ and η are increased by 0.1 in some weeks to 
guarantee feasibility, due to the increased workload in the robust 
approach.

For the constrained models, the thresholds are defined starting 
from the unconstrained robust models, considering the weeks 1–7 
as described in Section 3.6. Initial tested values are c̄ = 178.60, δ1 
= 0.90, δ2 = 1.45 and q = 1 (according to what mentioned above, 
δ1 considers the robust workloads while δ2 the determinis-tic 
ones). The thresholds have been increased by the 10%, i.e., the final 
adopted values are: c̄ = 196.46, δ1 = 0.99, δ2 = 1.60 and q = 1. 
Moreover, no additional increase has been required in weeks 8–25 
in any experiment.

Due to the worst-case selection, the objective function of the ro-
bust solution has not a practical meaning. The impact of robustness



Table 9
Execution in 10 sample paths of the overtime per nurse and the utilization rate, for
the constrained models in the Mix case over weeks 8–25.

Model Metrics Deterministic Robust District

avg mix–max avg mix–max

overtime 1.24 0.00–2.04 0.61 0.00–1.75 NP1
0.26 0.00–2.79 0.13 0.00–1.52 P1
1.02 0.00–4.03 2.23 0.00–6.16 NP2

CPrP 1.59 0.00–5.10 1.74 0.00–3.91 NP3

zmax 1.19 0.99–1.41 1.11 0.95–1.35 NP1
0.88 0.54–1.28 0.80 0.43–1.15 P1
1.08 0.96–1.28 1.24 0.98–1.48 NP2
1.14 0.93–1.51 1.19 1.00–1.47 NP3

zmin 0.38 0.27–0.58 0.54 0.40–0.76 NP1
0.25 0.08–0.66 0.35 0.14–0.66 P1
0.75 0.57–0.93 0.69 0.51–0.91 NP2
0.57 0.29–0.81 0.68 0.56–0.85 NP3

overtime 0.81 0.00–3.43 0.61 0.00–1.60 NP1
0.09 0.00–1.42 0.02 0.00–0.38 P1
0.73 0.00–3.83 1.26 0.00–5.31 NP2

CNuP 1.43 0.00–4.97 1.22 0.00–3.79 NP3

zmax 1.12 0.89–1.35 1.08 0.88–1.24 NP1
0.75 0.47–1.21 0.69 0.46–1.04 P1
1.05 0.92–1.29 1.10 0.91–1.31 NP2
1.16 0.97–1.52 1.10 0.88–1.33 NP3

zmin 0.48 0.33–0.64 0.50 0.36–0.70 NP1
0.43 0.25–0.73 0.44 0.28–0.77 P1
0.78 0.65–0.93 0.74 0.64–0.82 NP2
0.60 0.48–0.76 0.63 0.35–0.84 NP3

overtime 0.54 0.00–1.87 0.48 0.00–2.86 NP1
0.38 0.00–2.99 0.10 0.00–0.95 P1
1.24 0.00–5.37 3.36 0.00–6.78 NP2

CPaP 1.71 0.00–4.47 1.63 0.00–5.21 NP3

zmax 1.06 0.89–1.18 1.05 0.86–1.39 NP1
0.92 0.49–1.30 0.72 0.45–1.10 P1
1.13 0.96–1.72 1.33 0.98–1.65 NP2
1.19 0.92–1.52 1.15 0.99–1.40 NP3

zmin 0.38 0.26–0.51 0.49 0.37–0.68 NP1
0.27 0.14–0.58 0.43 0.29–0.65 P1
0.76 0.59–0.98 0.65 0.49–0.78 NP2
0.54 0.38–0.69 0.61 0.48–0.84 NP3

is then evaluated by applying both the deterministic solutions and
their robust counterparts to 10 sample paths of patient demands,
i.e., realizations of uncertain patient demands, as in [12].

The Mix case is considered, which is the most realistic in prac-
tice. We evaluate the behavior in terms of the overtime cost and of 
the minimum and maximum utilization rates zmin and zmax in the 
scenarios over the weeks. Reassignments are not evaluated, as they 
do not change from the planned solution to the executions.

Results obtained by applying the solutions of the constrained 
models to the 10 sample paths are reported in Table 9, where the 
overtime costs, the maximum and the minimum utilization rates 
are given for both the deterministic and the robust case in terms 
of average, minimum and maximum value over weeks 8–25. They 
are separately presented for the four districts with more than one 
nurse (namely NP1, P1, NP2, NP3). P1 includes palliative patients, 
while NP1, NP2 and NP3 non-palliative ones (Table 3).

We first analyze the executed solutions of the deterministic 
models. Results show that the constrained models allow preserv-
ing good results while executing the solutions. As for the overtime 
cost, the best average values are obtained by the CNuP in three out 
of four districts, while the CPaP provides the best average value for 
NP1 district. It may seem counter-intuitive; however, it is worth 
noting that in general the values obtained by different objectives 
are very similar. The CNuP provides the best values for the fairness 
metrics, i.e., the lowest zmax in two out of four districts and the 
highest zmin in all districts, while the CPaP provides the lowest

Table 10
CPU times in seconds for the constrained deterministic and robust models for sce-
nario Mix over weeks 8–25 (TL denotes the time limit).

Deterministic Robust

avg min max avg min max

CPrC 1.10 0.97 1.40 819.24 8.46 TL
CNuP 1.08 0.86 1.54 24.26 4.03 66.35
CPaP 0.93 0.84 1.23 6.04 5.05 7.78

(best) zmax in NP1. Summing up, the CNuP provides slightly better 
results for both the overtime and the fairness metrics.

Then, we analyze the impact of the robustness by comparing the 
behavior of the deterministic and the robust executed solutions. 
Adding robustness slightly reduces the average overtime, which 
decreases in two out of four districts with the CPrP, and in three out 
of four with the CNuP and CPaP solutions. A particular behavior is 
observed in district NP2, where the robust solution provides higher 
overtime costs whatever the considered model is. Robust solutions 
also provide a lower maximum overtime for CPrP and CNuP in 
all district but in NP2. Thus, robustness proves to be effective 
and provide a reliable solution in terms of overtime when facing 
demand realizations, especially for CPrP and CNuP.

Robustness is demanding from the computational effort point 
of view. We compare the CPU time required to solve the deter-
ministic and the robust counterparts of the constrained models 
in Table 10. Computational times significantly increase, from few 
seconds up to the one hour and a half time limit. However, the three 
models react in a different way to robustness. The highest increase 
of the average computational time is found for the CPrP (from 1.10 s 
to about 15 min), whereas the lowest increase is found for the CPaP 
(from about 1 s to about 6 s). However, the required CPU time is 
always compatible with the threshold setting procedure and with 
a weekly planning. Gaps when the time limit is reached over weeks 
8–25 (twice only in the robust CPrC) are below the 0.35%.

7. Conclusions

In this paperwe consider themid-termnurse-to-patient assign-
ment problem in HC service planning under different continuity
of care requirements. Three stakeholders’ perspectives are consid-
ered: the patients’ perspective, which asks for meeting continuity
of care requirements; the nurses’ perspective, which asks for good
levels of fairness; and the provider’s perspective, which asks for
reducing costs. We discuss a threshold method to evaluate the
relations and the trade-offs among the perspectives, formalized
into metrics, and to support the decision process while accounting
for the contracting authority as well, which forces to guarantee a
good service according to the perspectives of all stakeholders.

We compared the different formulations on real-life data from
a large HC provider operating in the Northern Italy, and both
certain and uncertain patient demands were considered in the
experiments through deterministic model formulations and their
robust counterparts.

We found that, for the considered instances, the overtime and
the fairness metrics are somehow related, while the reassignment
metrics is conflicting, and that cheap solutions are also fair, while
the opposite is not always true. Moreover, results show that fairly
good values of the fairness and the reassignment metrics can be
obtained with a minimal increase of the cost metrics. This was not
a priori expected and has an important practical impact. In fact,
although the real decision maker is the service provider, nurses’
and patients’ perspectives can be accounted without increasing
costs, thus pursuing an overall good quality of service for all the
stakeholders, as required by the contracting authority.



Results also prove that the considered formulations can solve
real-life instances in reasonable times, thus ensuring the practical
applicability of the approach.

As discussed above, these results can be extended to several
other HC providers. In fact, the main characteristics of our dataset
(i.e., low ratio betweenpatient’s demand andnurse’sworking time,
and non over-dimensioned staff) are common to the majority of
HC providers. Future work will be done in extending the analysis
to other simulated data that do not fit with these characteristics.
Even far from the real HC cases, the outcomes from these instances
could provide additional insight to the approach.
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