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Abstract. Let X1, X2, . . . and Y1, Y2, . . . be two random sequences so that every random variable takes

values in a finite set A. We consider a global similarity score Ln := L(X1, . . . , Xn;Y1, . . . , Yn) that measures
the homology (relatedness) of words (X1, . . . , Xn) and (Y1, . . . , Yn). A typical example of such score is the

length of the longest common subsequence. We study the order of central absolute moment E|Ln −ELn|r
in the case where the two-dimensional process (X1, Y1), (X2, Y2), . . . is a Markov chain on A× A. This is a
very general model involving independent Markov chains, hidden Markov models, Markov switching models

and many more. Our main result establishes a general condition that guarantees that E|Ln−ELn|r � n
r
2 .

We also perform simulations indicating the validity of the condition.
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1. Introduction

1.1. Sequence comparison setting. Throughout this paper X = (X1, X2, . . . Xn) and Y = (Y1, Y2, . . . Yn)
are two random strings, usually referred as sequences, so that every random variable Xi and Yi take values on
a finite alphabet A. Since the sequences X and Y are not necessarily independent nor identically distributed,
it is convenient to consider the two-dimensional sequence Z = ((X1, Y1), . . . , (Xn, Yn)). The sample space of
Z will be denoted by Zn. Clearly Zn ⊆ (A× A)n but, depending on the model, the inclusion can be strict.
The problem of measuring the similarity of X and Y is central in many areas of applications including
computational molecular biology [10, 15, 40, 42, 46] and computational linguistics [33, 34, 36, 37]. In
this paper, we adopt the same notation as in [31], namely we consider a general scoring scheme, where
S : A × A → R+ is a pairwise scoring function that assigns a score to each couple of letters from A. An
alignment is a pair (ρ, τ) where ρ = (ρ1, ρ2, . . . , ρk) and τ = (τ1, τ2, . . . , τk) are two increasing sequences of
natural numbers, i.e. 1 ≤ ρ1 < ρ2 < ... < ρk ≤ n and 1 ≤ τ1 < τ2 < . . . < τk ≤ n. The integer k is the
number of aligned letters, n− k is the number of non-aligned letters. Given the pairwise scoring function S
the score of the alignment (ρ, τ) when aligning X and Y is defined by

U(ρ,τ)(X,Y ) :=

k∑
i=1

S(Xρi , Yτi) + δ(n− k),

where δ ∈ R is another scoring parameter. Typically δ ≤ 0 so that many non-aligned letters in the alignment
reduce the score. If δ ≤ 0, then its absolute value |δ| is often called the gap penalty. Given S and δ, the
optimal alignment score of X and Y is defined to be

Ln := L(X,Y ) = L(Z) := max
(ρ,τ)

U(ρ,τ)(X,Y ), (1.1)

where the maximum above is taken over all possible alignments. Sometimes, when we talk about a string
comparison model, we refer to the study of Ln for given sequences X and Y , score function S and gap penalty
δ. It is important to note that for any constant gap price δ ∈ R, changing the value of one of the 2n random
variables X1, . . . , Xn, Y1, . . . , Yn changes the value of Ln by at most ∆, where

∆ := max
u,v,w∈A

|S(u, v)− S(u,w)|. (1.2)
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When δ = 0 and the scoring function assigns one to every pair of similar letters and zero to all other pairs,
i.e.

S(a, b) =

{
1, if a = b;
0, if a 6= b.

(1.3)

then L(Z) is just the maximal number of aligned letters, also called the length of the longest common
subsequence (abbreviated by LCS) of X and Y . In this article, to distinguish the length of LCS from another
scoring schemes, we shall denote it via `n := `(Z) = `(X,Y )). In other words `(Z) is the maximal k so that
there there exists an alignment (ρ, τ) such that Xρi = Yτi , i = 1, . . . , k. Note that the optimal alignment
(ρ, τ) as well as the longest common subsequence Xρ1 , . . . , Xρk is not typically unique. The length of LCS
is probably the most important and the most studied measure of global similarity between strings.

1.2. History and overview. The problem of measuring the similarity of two strings is of central importance
in many applications including computational molecular biology, linguistics etc. For instance, in computa-
tional molecular biology, the similarity of two sequences (for example DNA- or proteins) is used to determine
their homology (relatedness) – similar strings are more likely to be the decedents of the same ancestor. Out
of all possible similarity measures, the global score L(X,Y ), in particular the length of LCS, is probably the
most common measure of similarity. Its popularity is partially due to the well-known dynamic programming
algorithms (so-called Needleman-Wunsch algorithm) that allows to calculate the optimal alignment with
complexity O(n2) and the score with complexity O(n) [10, 15, 40, 46, 9].

Unfortunately, although easy to apply and define, it turns out that the theoretical study of Ln is very
difficult. It is easy to see that the global score is superadditive. This implies that when Z is taken from an
ergodic process, by Kingman’s subadditive ergodic theorem, there exists a constant γ∗ such that

Ln
n
→ γ∗ a. s. and in L1, as n→∞. (1.4)

In the LCS case, the existence of γ∗ was first shown by Chvátal and Sankoff [11], but its exact value (or an
expression for it), although well estimated, remains unknown even for i.i.d. Bernoulli sequences. Alexan-
der [1] established the rate of convergence of the left hand side of equation (1.4) in the LCS case, a result
extended by Lember, Matzinger and Torres [30] to general scoring functions.

In their leading paper [11], Chvátal and Sankoff first studied the the asymptotic order of Var(`n) and
based on some simulations, they conjectured that Var(`n) = o(n2/3), for X and Y independent i.i.d. sym-
metric Bernoulli. In the case of independent i.i.d. sequences, it follows from Efron-Stein inequality (see, e.g.
[7]) that

Var(Ln) ≤ C2 n, for all n ∈ N, (1.5)

where C2 > 0 is an universal constant, independent of n. For the LCS case, this result was proved by
Steele [43]. In [45], Waterman asked whether or not the linear bound on the variance can be improved, at
least in the LCS case. His simulations showed that, in some special cases (including the LCS case), Var(Ln)
should grow linearly in n. These simulations suggest the linear lower bound Var(`n) ≥ c · n, which would
invalidate the conjecture of Chvátal and Sankoff. In the past ten years, the asymptotic behavior of Var(`n)
has been investigated by Bonetto, Durringer, Houdré, Lember, Matzinger and Torres, under various choices
of independent sequences X and Y (cf. [5], [18], [22], [29], [31],[32] [20], [25] etc). In particular, in [25] and
[31] a general approach for obtaining the lower bound for moments EΦ(Ln − ELn|), where Φ is a convex
increasing function we worked out. For more detailed history of the problem as well as the connection be-
tween the rate of central absolute moments of Ln and the central limit theorem

√
n(Ln −ELn), we refer to

[25].

In this paper, we follow the general approach developed in [31] and [25], but unlike all previous papers,
we apply it for sequences that are not necessarily independent and i.i.d. Indeed, in the present paper, we
assume that Z consists of n observations of aperiodic stationary Markov chain. Following W. Pieczynski, we
call such a model as pairwise Markov chain (PMC) [41, 14, 16]. It is important to realize that the Markov
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property of Z does not imply the one of marginal processes X and Y . On the other hand, it is not hard
to see that conditionally on X, the Y process is a Markov chain and, obviously, vice versa [41] . Hence the
name – pairwise Markov chains. Thus, we do not assume that X and Y are both Markov chains, although
often this is the case. So, our model is actually rather general one including as a special case hidden Markov
models (HMM’s), Markov switching models, HMM’s with dependent noise [16] and also the important case
where X and Y are independent Markov chains or even i.i.d.. Except [31], where among others also some
specific independent non-i.i.d. sequences were considered, all previous articles cited above deal with the case
when X and Y are independent i.i.d. sequences.

The paper is organized as follows. In Section 2, we state a very general theorem – Theorem 2.1 – for
obtaining the lower bound of EΦ(|Ln − ELn|) for any model (Theorem 2.1). The proof of Theorem 2.1
is a generalization of Theorem 3.2 in [25] and therefore, we prove it in the appendix. Theorem 2.1 does
not assume any particular stochastic model Z, instead it requires a specific random transformation R and
random vectors U, V so that several general assumptions listed as A1 – A4 are satisfied. The objective of
the present paper is to show that under PMC-model, a random transformation R as well as U and V can be
constructed so that the assumptions A2 – A4 hold. In this paper, we do not formally prove the assumption
A1 – the proof of that assumption is rather technical and beyond the scope of the present paper. Instead
of the proof, we present some heuristic reasoning and computer simulations to convince the reader that it
holds in many cases. The computer simulations also allow us to estimate constants in the lower bound.
Finally, in Section4 we present an upper bound of E|Ln−ELn|r. The upper bound shows that the order of
convergence cannot be improved, so that E|Ln − ELn|r � n

r
2 .

2. General lower bound in two-step approach

In this paper, we follow so-called two-step approach. This approach has actually been used in the most
of the papers for obtaining the lower bound of variance, but formalized in [31, 25].

Generally speaking, the first step is to find a random mapping independent of Z, usually called by us
as random transformation,

R : Zn → Zn
such that for an universal constant εo > 0, the following convergence holds:

P
(
E[L(R(Z))− L(Z)|Z] ≥ εo

)
→ 1 (2.1)

Here, abusing a bit of the notation, E denotes the expectation over the randomness involved in R and P
denotes the law of Z.

The second step is to show that equation (2.1) implies the optimal rate of convergence of absolute mo-
ments

Φ
(
|Ln − ELn|

)
,

where Φ : R+ → R+ is a convex non-decreasing function. To do so, we look for U := u(Z) and V := v(Z)
two new random vectors (functions of Z), such that Φ

(
|Ln − ELn|

)
can be somehow estimated from below

by Φ(U). So, the control of fluctuations of Ln is reduced to the (easier) control of fluctuations of U and V .
The current paper deals with the second step - the goal is to provide a general theorem and to apply it for
pairwise Markov chains.

2.1. The main theorem. Consider two given functions

u : Zn → Z, v : Zn → Zd

and define U := u(Z) (resp. V := v(Z) ) an integer value random variable (resp. vector). Denote by Sn,
SUn and SVn the support of distributions of (U, V ), U and V , respectively. Hence Sn ⊂ Zd+1, SUn ⊂ Z and
SVn ⊂ Zd. For every v ∈ SVn , we define the fiber of SUn as follows

Sn(v) := {u ∈ SUn : (u, v) ∈ Sn}.
3



For any (u, v) ∈ Sn, let

l(u, v) := E[L(Z)|U = u, V = v].

For any (u, v) ∈ Sn, let P(u,v) denote the law of of Z = (X,Y ) given U = u and V = v, namely

P(u,v)(z) = P (Z = z|U = u, V = v).

Assumptions. The choice of the random transformation R and U, V are linked together through the
following assumptions :

A1: There exist universal constant εo > 0 and a sequence ∆n → 0 such that

P
(
E[L(R(Z))− L(Z)|Z] ≥ εo

)
≥ 1−∆n.

A2: There exists an universal constant (independent of n) A <∞ such that L(R(Z))− L(Z) ≥ −A.
A3: There exists sets Vn ⊂ SVn and

Un(v) := {un(v) + 1, un(v) + 2, . . . un(v) +mn(v)} ⊂ Sn(v)

such that for any (u, v) such that v ∈ Vn and u ∈ Un(v), the following implication holds:

If Z ∼ P(u,v), then R(Z) ∼ P(u+1,v).

A4: There exists n1 > 0 and a function c(v) > 0 (independent of n) such that for every n ≥ n1 and
for every v ∈ Vn,

mn(v) ≥ c(v)ϕv(n)−1,

where ϕv(n) > 0 satisfies

min
u∈Un(v)

P (U = u|V = v) ≥ ϕv(n). (2.2)

We note that A4 is equivalent to the existence of n1 > 0 and a function c(v) > 0 (independent of n) such
that for every n ≥ n1 and for every v ∈ Vn,

mn(v) · min
u∈Un(v)

P (U = u|V = v) ≥ c(v)

and ϕv can be chosen as any function satisfying

ϕv(n) ∈ [c(v)/mn(v), min
u∈Un(v)

P (U = u|V = v)]. (2.3)

In what follows, we are interested in taking ϕv(n) as small as possible, because the smaller ϕv(n), the bigger
the lower bound of EΦ

(
|L(Z) − µn|

)
(see equation (2.4) in the theorem below). By equation (2.3), small

ϕv(n) means big mn(v), but too big a set Un(v) typically means an exponential decay in probability and
then the constant c(v) might not exist. Therefore A4 ties the lower bound of EΦ

(
|L(Z)−µn|

)
with the size

of Un(v). Clearly ϕv(n) can be chosen in such a way that ϕv(n) → 0 as n → ∞ if and only if mn(v) → ∞
as n→∞.

Theorem 2.1. Let Φ : R+ → R+ be convex non-decreasing function and let µn be a sequence of reals. As-
sume A1, A2, A3, A4. Suppose that c := c(v) is independent of v ∈ Vn and that ϕ(n) := supv∈Vn(ϕv(n))→
0 as n→∞. If, in addition, there exists bo > 0 such that P (V ∈ Vn) ≥ bo for any n big enough, then given
any constant co ∈ (0, boc/8) for every sufficiently large n

EΦ
(
|L(Z)− µn|

)
≥ Φ

( εoc

16ϕ(n)

)
co. (2.4)
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3. Pairwise Markov chains

In this paper, we consider a rather general model. Let X1, X2, . . . and Y1, Y2, . . . be two random processes
on common state-space A = {a1, . . . , ak} (i.e. r.-variables Xi and Yi take values on A) such that the 2D
process Z1, Z2, . . ., where Zi = (Xi, Yi) is an aperiodic stationary MC with state space A × A. Now the
words X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are taken as the first n elements from these sequences. In
what follows, we shall denote the elements of A×A by capital letters and we denote by P = (pAB)A,B∈A×A
the transition matrix of Z. By aperiodicity assumption, there exists an integer m such that Pm is primitive,
i.e. has all strictly positive entries.

Random variable V . To construct V , we fix pairs A,B ∈ A × A such that P (Z1 = A, Z3 = B) > 0 and
define f := IG, where IG stands for an indicator function and

G := {A} × A× A× {B}.

Let us now define a Markov chain ξ := ξ1, ξ2, . . . as follows

ξ1 := (Z1, Z2, Z3), ξ2 := (Z4, Z5, Z6), . . .

Thus, the state space of ξ-chain is a subset X ⊂ A6 (not necessarily A6, because given the zeros in P, it
might be that some triplets have zero probability). Since Z is stationary, so is ξ; moreover the aperiodicity
of Z implies that of ξ. The random variable V is defined now as follows

V :=: v(Z) :=

bn3 c∑
i=1

f(ξi) =

bn3 c∑
i=1

IG(ξi).

Therefore,

EV =

bn3 c∑
i=1

P (ξ ∈ G) = bn
3
cP (Z1 = A, Z3 = B),

where the last equality follows from the stationarity. Let α := 1
3P (Z1 = A, Z3 = B). Then

EV = bn
3
c3α.

When n = 3m, for some integer m, then EV = αn, otherwise

EV := αnn, where α− 3α

n
< αn ≤ α.

Let us define

Vn = [αnn−K
√
n, αnn+K

√
n] ∩ SVn ,

where K is a constant specified later.

Proving P (V ∈ Vn) > bo with bo arbitrary close to 1. Let us now show that P (V ∈ Vn) is bounded
away from zero for any sufficiently large n. Let bo ∈ (0, 1) be fixed. For that we use Hoeffding inequality
for Markov chain proven in [19]. The theorem assumes that ξ1, ξ2, . . . satisfies the following condition: there
exists probability measure Q on X , λ > 0 and integer r ≥ 1 such that for any state x ∈ X

Px(ξr+1 ∈ ·) ≥ λQ(·) (3.1)

where Px(·) := P (·|ξ1 = x). Recall that Z is aperiodic and so is ξ, hence there is a r such that for all states
x, y ∈ X , it holds Px(ξr = y) > 0. That implies that equation (3.1) holds with Q being uniform over X and

λ = min
x,y

P (ξ1+r = y|ξ1 = x)|X |.

Then, according to the theorem, given a function f : X → R, Sm :=
∑m
i=1 f(ξi), Hoeffding inequality is as

follows: for any x ∈ X

Px
(
Sm − ESm > mε

)
≤ exp[−

λ2(mε− 2 rλ‖f‖∞)2

2m‖f‖2∞r2
], if m > 2r(λε)−1‖f‖∞ (3.2)

5



where ‖f‖∞ := sup{|f(x)| : x ∈ X}. We take m = bn3 c (remember that V := Sbn3 c) and f = IG so that

‖f‖∞ = 1. The inequality (3.2) is now: for every ε > 0 and x ∈ X

Px
(
V − EV > bn

3
cε
)
≤ exp[−

λ2(bn3 cε−
2r
λ )2

2n3 r
2

], if n > 6r(λε)−1 + 3. (3.3)

Take now K so big that

exp[−3

8

(λ
r

)2
K2] <

1− bo
2

.

Take now ε = K 3√
n

; then

K
√
n− 3K√

n
≤ bn

3
cε ≤ K

√
n.

If n is so big that
K
√
n

2
>

3K√
n

+
2r

λ
,

then n > 6r(λε)−1 + 3 and inequality (3.3) implies

Px
(
V − EV > K

√
n
)
≤ exp[−

3λ2(K
√
n− 3K√

n
− 2r

λ )2

2r2n
] ≤ exp[−

3λ2( 1
2K
√
n)2

2r2n
] = exp[−3

8

(λK
r

)2
] ≤ 1− bo

2
.

Since the left hand side holds for any initial probability distribution of ξ and, then also, for any initial
probability distribution of Z. Thus, we have shown that there exists n1 so that for every n > n1

P (V − EV ≤ K
√
n) = P (V ≤ αn+K

√
n) >

1

2
+
bo
2
.

Applying the same argument for f = −IG, we obtain that

P (V + EV ≥ −K
√
n) = P (V ≥ αn−K

√
n) >

1

2
+
bo
2
.

These two inequalities together give

P (αnn−K
√
n ≤ V ≤ αnn+K

√
n) = P (V ∈ Vn) > bo, ∀n > n1.

Random variable U . Let us now define U . To this aim, fix a letter in A × A and let us call it D. The
random variable U is the number of states D in the middle of the (A ·B)-triplets. For the formal definition
let, for any z ∈ (A× A)n,

ni(z) := f(z3(i−1)+1, z3(i−1)+2, z3(i−1)+3), i = 1, . . . , bn
3
c

and let us denote (n1(z), . . . , nbn/3c(z)) by n(z). Hence

v(z) =

bn3 c∑
i=1

ni(z).

The function u(z) and random variable U are defined as follows

u(z) =

bn3 c∑
i=1

ni(z)ID(z3(i−1)+2), U = u(Z).

Clearly Sn(v) = {0, 1, . . . , v}. Moreover, by the Markov property given V = v, U ∼ B(v, q), i.e. the random
variable U has binomial distribution with parameters v and

q :=
pADpDB∑

D′∈A×A pAD′pD′B
.

The letter D is chosen in such a way that q > 0. Take now, for any v ∈ SVn
Un(v) := [vq −

√
v, vq +

√
v] ∩ Sn(v).
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When v is big enough, then
Un(v) = [vq −

√
v, vq +

√
v] ∩ Z.

In this case the interval contains at most b2
√
v + 1c integers.

Proving A4 for c(v) and ϕv(n) independent of v.

Lemma 3.1. Let X ∼ B(m, p) be a binomial random variable with parameters m and p. Then, for any
constant β > 0, there exists b(β, p) and mo(β, p) such that for every b ≥ b(β, p), m > mo and

i ∈ [mp− β
√
m,mp+ β

√
m],

we have

P (X = i) =

(
m

i

)
pi(1− p)m−i ≥ 1

b
√
m
. (3.4)

It can be shown (see [25, equation (4.11)]) that the constant b(β, p) can be taken as

b(β, p) :=
√

2πp(1− p) exp
[ β2

2p(1− p)

]
.

From this lemma, it follows that there exists universal constant b(q) > 0 and integer vo so big that for
every u ∈ Un(v),

P (U = u|V = v) ≥ 1

b
√
v
, v > vo (3.5)

given any constant b satisfying

b > b(q) :=
√

2πq(1− q) exp
[ 1

2q(1− q)

]
. (3.6)

Recall the definition of Vn. There exists n2 > n1 large enough such that if n > n2, then αnn −K
√
n > vo

and αnn+K
√
n ≤ n

3 < n. Therefore, if n > n2 then

Vn = [αnn−K
√
n, αnn+K

√
n] ∩ Z,

every v ∈ Vn is smaller than n and equation (3.5) holds. Hence, when n > n2, we have

P (U = u|V = v) ≥ 1

b
√
v
≥ 1

b
√
n
, ∀v ∈ Vn ∀n > n2.

Thus equation (2.2) holds with

ϕv(n) :=: ϕ(n) :=
1

b
√
n
.

We can find n3 > n2 large enough such that√
αnn−K

√
n ≥

√
α

2
n+

1

2
.

Therefore, if n ≥ n3, then every v ∈ Vn satisfies
√
v ≥

√
αn/2 + 1/2. Since the minimum number of integers

in the interval Un(v) is b2
√
vc, we obtain the following inequality

mn(v) > 2
√
v − 1 ≥ 2

√
α

2

√
n = b−1

√
2αϕ(n)−1, ∀v ∈ Vn.

Thus A4 with c = b−1
√

2α holds. Therefore,

εoc

16ϕ(n)
=
εo
√

2αn

16
.

Thus the right hand side of equation (2.4) is

coΦ
(εo√2αn

16

)
,
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where for n big enough

c =

√
2α

b
, co ≤

c

8

(
bo −

√
∆n

)
Since bo could be taken arbitrary close to one and ∆n → 0, we can take any co <

c
8 .

The random transformation R and the assumption A3. The random transformation R picks a
random (A·B)-triplet which does not have a letter D in-between (with uniform distribution) and changes the
letter in the middle of the triplet into a D-letter. Let {i1(z), . . . , iv(z)(z)} be the set of indexes corresponding
to 1s in n(z) and define b(z) := (b1(z), . . . , bv(z)(z)) where

bj(z) := ID(z3(ij(z)−1)+2), j = 1, . . . , v(z).

With this notation, the number of D-letters in-between the triplets is

u(z) =

v(z)∑
j=1

bj(z).

The random transformation R acts on the set of sequences z satisfying the following condition: u(z) < v(z).
Given such a sequence, R picks a random zero out of v(z) − u(z) zeros in the vector b(z) (uniform distri-
bution). Suppose that the chosen zero is the k-th element of b(z). Then z3(ik(z)−1)+2 6= D and R changes
that letter into D. Thus R(z) is a sequence such that ni(R(z)) = ni(z) for every i = 1, . . . , bn3 c, thus
v(R(z)) = v(z); but u(R(z)) = u(z) + 1.

The following is an auxiliary and almost trivial result which we prove for the sake of completeness.

Proposition 3.1. Let Z := (Z1, . . . , Zm) be a vector of iid Bernoulli random variables of parameter p and
let P(u) be the law of Z given U :=

∑m
i=1 Zi = u. Let W ∼ P(u), where u < m. Then choose a random

0 in W with uniform distribution and change it into one. Let W̃ be the resulting random variable. Then

W̃ ∼ P(u+1).

Proof. For any u = 0, · · · ,m, let A(u) ⊆ {0, 1}m consist of all binary sequences containing exactly u ones.
For any z ∈ A(u),

P (Z = z |U = u) =
P (Z = z, U = u)

P (U = u)
=
P (Z = z)

P (U = u)
=

pu(1− p)m−u(
m

u

)
pu(1− p)m−u

=

(
m

u

)−1
.

In other words, P(u) is the uniform distribution on A(u). Now for any u = 0, · · · ,m − 1, let W be any

random vector such that W ∼ P(u), then W̃ is supported on A(u + 1). For any z ∈ A(u + 1), let 0 ≤ i1 <
· · · < iu+1 ≤ m be the positions of ones in z, and let ẑij , j = 1, · · · , u+ 1, be the sequence in A(u) obtained
from z by replacing the symbol 1 at position ij with 0. We have

P
(
W̃ =z

)
=

u+1∑
j=1

P
(
W̃ =z

∣∣∣W = ẑij

)
P
(
W = ẑij

)
= (u+1)

1

m−u

(
m

u

)−1
=

(
m

u+ 1

)−1
= P(u+1)(z).

�

Let us consider the sequence Z = Z1, . . . , Zn and let

m := bn
3
c.

Recall that

V =

m∑
j=1

f(ξi) =

m∑
i=1

ηi,

where

ηi := f(ξi) = ni(Z) ∈ {0, 1}.
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Since Z is stationary, we have that the sequence η := (η1, . . . , ηm) is a stationary binary sequence. As in the
proof of Proposition 3.1, let A(v) be the set of binary sequences of length m having v ones. It is easy to see
that additional conditioning on U will not change the conditional probability of η (given u ≤ v), because for
any vector a ∈ A(v) we have {η = a} ⊆ {V = v} and

P (η = a|V = v, U = u) =
P (U = u, V = v, η = a)

P (U = u, V = v)
=
P (U = u|η = a)P (η = a)

P (U = u, V = v)

=

(
v
u

)
qu(1− q)v−uP (η = a)

P (U = u, V = v)
.

Since

P (U = u, V = v) =
∑

a∈A(v)

P (U = u|η = a)P (η = a) =

(
v

u

)
qu(1− q)v−uP (V = v),

we have

P (η = a|V = v, U = u) =
P (η = a, V = v)

P (V = v)
= P (η = a|V = v). (3.7)

For any u ≤ v ≤ m, let B(u, v) be the set of sequences such that the value of u and v are u and v respectively,
that is

B(u, v) = {z ∈ (A× A)n, u(z) = u, v(z) = v}.

Fix u ≤ v ≤ m and Z(u,v) ∼ P(u,v) (i.e. P (Z(u,v) = z) = P (Z = z|U = u, V = v)). Let us compute
P(u,v). To this aim define B := (B1, . . . , BV ) ≡ b(Z). Now for any z ∈ B(u, v), by definition of P(u,v), since
{Z = z} ⊆ {η = n(z), B = b(z)} ⊆ {U = u, V = v}, we have

P (Z(u,v) = z) = P (Z = z|U = u, V = v) = P (Z = z, η = n(z), B = b(z)|U = u, V = v)

= P (Z = z|η = n(z), B = b(z))P (η = n(z), B = b(z)|U = u, V = v).

Given η, let Z ′ be the random vector obtained by collecting all random variables from (Z1, . . . , Zn) corre-
sponding to the triplets where ηi = 0. And, analogously, let z′ be the vector obtained by z by collecting the
triplets where ni(z) = 0. From the Markov property we have

P (Z ′ = z′|η = n(z), B = b(z)) = P (Z ′ = z′|η = n(z)).

Let 1 ≤ i1 < · · · < iv ≤ m be the indexes of corresponding ones in n(z). Then, from b(z) we know for every
j = 1, . . . , v, whether z3(ij−1)+2 equals D or not. But this does not fully determine the values of z3(ij−1)+2.
Hence

P (Z = z|η = n(z), B = b(z)) =

P (Z ′ = z′|η = n(z))

v∏
j=1

P (Z3(ij−1)+2 = z3(ij−1)+2|Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Bj = bj(z)).

If, in the product above, bj(z) = 1, then z3(ij−1)+2 = D and

P (Z3(ij−1)+2 = z3(ij−1)+2|Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Bj = bj(z)) = 1,

otherwise

P (Z3(ij−1)+2 = z3(ij−1)+2|Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Bj = 0) =

P (Z3(ij−1)+2 = z3(ij−1)+2|Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Z3(ij−1)+2 6= D) =: ρ(3(ij − 1) + 2, z);

note that ∑
F∈A×A : F 6=D

P (Z3(ij−1)+2 = F |Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Z3(ij−1)+2 6= D) = 1. (3.8)
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Thus
v∏
j=1

P (Z3(ij−1)+2 = z3(ij−1)+2|Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Bj = bj(z))

=
∏

j=1,...,v

bj(z)=0

P (Z3(ij−1)+2 = z3(ij−1)+2|Z3(ij−1)+1 = A, Z3(ij−1)+3 = B, Z3(ij−1)+2 6= D)

=
∏

j=1,...,v

bj(z)=0

ρ(3(ij − 1) + 2, z) =: ρz.

From equation (3.7), we know

P (η = n(z)|U = u, V = v) = P (η = n(z)|V = v).

By the Markov property

P (B = b(z)|η = n(z), U = u, V = v) = P (B = b(z)|η = n(z), U = u)

and this probability is equal to the probability that v i.i.d Bernoulli random variables take values b(z) given

their sum is equal to u. This probability is
(
v
u

)−1
. Thus,

P (B = b(z)|η = n(z), U = u, V = v) =

(
v

u

)−1
.

Therefore, for any z ∈ B(u, v), we have

P (Z(u,v) = z) = P (Z ′ = z′|η = n(z))ρzP (η = n(z)|V = v)

(
v

u

)−1
. (3.9)

We apply now the random transformation and we compute P (R(Z(u,v)) = z). Clearly, given z ∈ B(u+ 1, v),

P (R(Z(u,v)) = z) =
∑

z̃∈B(u,v)

P (R(Z(u,v) = z|Z(u,v) = z̃)P (Z(u,v) = z̃) = (∗)

and

P (R(Z(u,v)) = z|Z(u,v) = z̃) =

{
0 if z̃ 6∈ HR(z)

1/(v − u) if z̃ ∈ HR(z)

where

HR(z) := {z̃ : P (R(z̃) = z) > 0} =
⋃

j=1,...,v

bj(z)=1

{z̃ : P (R(z̃) = z) > 0, z̃3(ij−1)+2) 6= D}

the latter being the union of u + 1 pairwise disjoint sets. Define η̃ := n(R(Z(u,v))) and observe that if
z̃ ∈ HR(z) then P (R(Z(u,v))

′ = z′|η̃ = n(z)) = P (Z ′ = z̃′|η = n(z̃)) and P (η̃ = n(z)|V = v) = P (η =
n(z̃)|V = v). Moreover

∑
z̃∈HR(z) ρz̃ = (u + 1)ρz (decompose the sum using the above partition of HR(z)

into u + 1 subsets and use equation (3.8)). Thus, by computing P (Z(u,v) = z̃) by means of equation (3.9),
we obtain

(∗) =
∑

z̃∈HR(z)

P (Z ′ = z̃′|η = n(z̃))ρz̃P (η = n(z̃)|V = v)

(
v

u

)−1
1

v − u

=
∑

z̃∈HR(z)

P (R(Z(u,v))
′ = z′|η̃ = n(z))ρz̃P (η̃ = n(z)|V = v)

(
v

u

)−1
1

v − u

= P (R(Z(u,v))
′ = z′|η̃ = n(z))ρzP (η̃ = n(z)|V = v)

(
v

u+ 1

)−1
which, according to equation (3.9), implies that R(Z(u,v)) ∼ P(u+1,v) and the proof is complete.
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Main result. We have defined the random transformation R, random variables U , V and sets Un(v) and
Vn such that assumptions A3 and A4 with ϕ(n) hold. Since R changes at most two letters at time, by
equation (1.2), the assumption A2 holds for A = 2∆. Thus, recalling that bo can be chosen arbitrarily close
to 1, from Theorem 2.1 we have the following result.

Theorem 3.1. Let Φ : R+ → R+ be convex non-decreasing function and let µn be a sequence of reals. If
there exists εo > 0 such that the random transformation R satisfies A1, then for every n sufficiently large,
the following inequality holds

EΦ
(
|L(Z)− µn|

)
≥ coΦ

(εo√2αn

16

)
, (3.10)

where α = 1
3P (Z1 = A, Z3 = B) and 0 < co < b(q)−1

√
2α/8 (b(q) defined as in equation (3.6)).

In particular, when Φ(x) = xr, for r ≥ 1 and µn = EL(Z), then equation (3.10) is

E | L(Z)− EL(Z) |r≥ co
(εo√2α

16

)r
n

r
2 ,

where

co <

√
2α

8b(q)
.

Taking r = 2, we obtain the lower bound for variance

Var(L(Z)) ≥ aon, ao :=
2coα

162
ε2o.

3.1. Combining random transformations. Suppose Ai,Bi,Di, i = 1, 2 are pairs of letters and let us
briefly consider a random transformation R that picks either a random (A1 · B1)-triplet which does not
have a letter D1 in-between or a random (A2 ·B2)-triplet which does not have a letter D2 in-between (with
uniform distribution over both kind of triplets) and changes the letter in the middle of the triplet either into
D1-letter (if the chosen triplet was (A1 ·B1)) or into D2-letter (if the chosen triplet was (A2 ·B2)). Such
a transformation R can be considered as a combination of two random transformations: R1 that acts on
(A1 ·B1)-triplets and R2 that acts on (A2 ·B2). We suppose that (A1,B1) 6= (A2,B2). Thus, for i = 1, 2,
we now have the random variables Vi that count (Ai · Bi)-triplets (and are dependent on each other) and
random variables Ui that counts number of states Di in-between the triplets. Let qi be the probability of
finding a Di-letter inside (Ai ·Bi)-triplet. Thus given Vi = vi, Ui ∼ B(vi, qi), i = 1, 2. Given V1 and V2, the
random variables U1 and U2 are independent.
We are now going to define the combined random transformation R. In what follows, let V = (V1, V2) and
U = U1 +U2. Given V = v := (v1, v2), the random variable U takes values from 0, 1, . . . , v1 +v2. Now define
the probabilities

p(l|u, v) := P (U1 = l|U = u, V = v), l = l1, l1 + 1, . . . , l2,

where l1 = l1(u, v2) := (u − v2) ∨ 0 and l2 = l2(u, v1) := u ∧ v1. Thus p(l|u, v) is the probability that
there are l D1-letters (inside the triplets) given the sum of D1 and D2 letters (inside the corresponding
triplets) is u. The random transformation R picks the side i with certain probability ri and then applies
the transformation Ri. In order for the composed random transformation R to satisfy A3, the probabilities
ri should be chosen carefully. To this aim, given z, define ui(z) and vi(z), i = 1, 2 as usual and let
w(z) := (u1(z), u2(z), v1(z), v2(z)). We now define the probabilities ri(z) = ri(w(z)) = ri(u1, u2, v) such
that r1(z) + r2(z) = 1, r1(v1, u2, v) = r2(u1, v2, v) = 0 and the following conditions hold:

r1(l − 1, u− l + 1, v)p(l − 1|u, v) + r2(l, u− l, v)p(l|u, v) = p(l|u+ 1, v), l2 ≥ l > l1 (3.11)

r2(0, u, v)p(0|u, v) = p(0|u+ 1, v),when u < v2 (3.12)

r1(u, 0, v)p(u|u, v) = p(u+ 1|u+ 1, v),when u < v1 (3.13)

for all u = 0, . . . , v1 + v2 − 1. Now for any w := (u1, v1, u2, v2), such that vi ≥ ui ≥ 0 and v1 + v2 ≤ m,
we define a random variable Tw such that P (Tw = i) = ri(w), i = 1, 2 and given the random variables
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Ui = ui, Vi = vi, Tw is independent of Z. The transformation R is now formally defined as follows:

R =

{
R1(z), if Tw(z) = 1;
R2(z), if Tw(z) = 2.

In general, the probabilities ri depend on the probabilities qi. When q1 = q2, then

ri(u1, u2, v) :=
vi − ui

(v1 − u1) + (v2 − u2)
, i = 1, 2

satisfy the requirements. Thus, in that case R just picks one (Ai ·Bi)-triplet over all such triplets with no
Di-letter inside with uniform distribution, whilst in the case q1 6= q2, the distribution is not uniform. It is
easy to see that such ri satisfy conditions (3.11) (3.13) and (3.12). Indeed, the reader can easily prove the
following statement.

Proposition 3.2. Let X ∼ B(v1, q) and Y ∼ B(v2, q) two independent binomially distributed random
variables. Then for any integers l and u such that u < v1 + v2 and u ∧ v1 ≥ l > (u− v2) ∨ 0 we have

v1 − l + 1

v1 + v2 − u
P (X = l − 1|X + Y = u) +

v2 − u+ l

v1 + v2 − u
P (X = l|X + Y = u) = P (X = l|X + Y = u+ 1).

Moreover, when u < v2, then

v2 − u
v1 + v2 − u

P (X = 0|X + Y = u) = P (X = 0|X + Y = u+ 1).

Clearly R satisfies A2. We now show that it also satisfies A3. Fix v = (v1, v2) such that v1 + v2 ≤ m.
Now, we can decompose the measure P(u,v) as follows

P(u,v) =

l2∑
l=l1

P(l,u−l,v)p(l|u, v), (3.14)

where P(l,u−l,v) is the distribution of Z given U1 = l, U = u, V = v. We know that Ri satisfies A3 for
any u = {0, 1, . . . , vi − 1}, thus the following holds: when Z ∼ P(l,u−l,v) and l < v1, u − l < v2, then
R1(Z) ∼ P(l+1,u−l,v) and R2(Z) ∼ P(l,u−l+1,v). Therefore, if Z ∼ P(u,v), then

R(Z) ∼
l2∑
l=l1

(
P(l+1,u−l,v)r1(l, u− l, v) + P(l,u−l+1,v)r2(l, u− l, v)

)
p(l|u, v).

Thus, by equation (3.11)

R(Z) ∼ P(l1,u−l1+1,v)r2(l1, u− l1, v)p(l1|u, v)

+

l2∑
l=l1+1

P(l,u−l+1,v)

(
r1(l − 1, u− l + 1, v)p(l − 1|u, v) + r2(l, u− l, v)p(l|u, v)

)
+ P(l2+1,u−l2,v)r1(l2, u− l2, v)p(l2|u, v) = P(l1,u−l1+1,v)r2(l1, u− l1, v)p(l1|u, v)

+

l2∑
l=l1+1

P(l,u+1−l,v)p(l|u+ 1, v) + P(l2+1,u−l2,v)r1(l2, u− l2, v)p(l2|u, v) = (∗).

If u < v1 and u < v2, then l1(u, v2) = l1(u + 1, v2) = 0 and l2(u + 1, v1) = u + 1 = l2(u, v1) + 1, thus by
equations (3.12) and (3.13) we obtain that (∗) equals

P(0,u+1,v)p(0|u+ 1, v) +

u∑
l=1

P(l,u+1−l,v)p(l|u+ 1, v) + P(u+1,0,v)p(u+ 1|u+ 1, v) =

l2(u+1,v1)∑
l=l1(u+1,v2)

P(l,u+1−l,v)p(l|u+ 1, v) = P(u+1,v).
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If u ≥ v1 and u < v2, then l1(u, v2) = l1(u + 1, v2) = 0, l2(u, v1) = l2(u + 1, v1) = v1 and then by
equation (3.12) and since r1(v1, u− v1, v) = 0, we have that (∗) equals

P(0,u+1,v)p(0|u+ 1, v) +

v1∑
l=1

P(l,u+1−l,v)p(l|u+ 1, v) =

l2(u+1,v1)∑
l=l1(u+1,v2)

P(l,u+1−l,v)p(l|u+ 1, v) = P(u+1,v).

If u < v1 and u ≥ v2, then l1(u+ 1, v2) = u+ 1− v2 = l1(u, v2) + 1 and l2(u+ 1, v1) = u+ 1 = l2(u, v1) + 1,
thus by equation (3.13) and since r2(u− v2, v2, v) = 0 we obtain that (∗) equals

u∑
l=u−v2+1

P(l,u+1−l,v)p(l|u+ 1, v) +P(u+1,0,v)p(u+ 1|u+ 1, v) =

l2(u+1,v1)∑
l=l1(u+1,v2)

P(l,u+1−l,v)p(l|u+ 1, v) = P(u+1,v).

Finally, if u ≥ v1 and u ≥ v2, then l1(u + 1, v2) = u + 1 − v2 = l1(u, v2) + 1, l2(u, v1) = l2(u + 1, v1) = v1.
Since r2(u− v2, v2, v) = r1(v1, u− v1, v) = 0 and (∗) equals

v1∑
l=u−v2+1

P(l,u+1−l,v)p(l|u+ 1, v) =

l2(u+1,v1)∑
l=l1(u+1,v2)

P(l,u+1−l,v)p(l|u+ 1, v) = P(u+1,v).

Thus, we have shown that R(Z) ∼ P(u+1,v) and A3 is fulfilled for any u ∈ {0, 1, . . . , v1 + v2 − 1}.
To the end of the paragraph, let us skip n from the notation and let V := V1 × V2. For (v1, v2) ∈ V, let
Ui(vi) := [viqi −

√
vi, viqi +

√
vi] ∩ Z and

U(v) := [(v1q1 + v2q2)−
√
v1 ∧

√
v2), (v1q1 + v2q2) +

√
v1 ∧

√
v2] ∩ Z.

It is not difficult to show that for every u ∈ U(v) the cardinality of {(u1, u2) ∈ U1(v1)×U2(v2) : u1 +u2 = u}
is at least b√v1 ∧

√
v2c. In order to show that R satisfies A4, we assume without loss of generality that

v1 ≤ v2, whence
√
v1 ∧

√
v2 =

√
v1. We know that Ri satisfies A4, so for i = 1, 2 there exists a constant bi

such that for every ui ∈ Ui(vi) and n big enough, we have

P (Ui = ui|Vi = vi) ≥
1

bi
√
vi

where bi depends only on qi (see Lemma 3.1). Now observe that bxc/x ≥ 1/2 for all x ≥ 1; thus, for every
u ∈ U(v) and every sufficiently large n,

P (U = u|V = v) ≥
∑

ui∈Ui(vi):u1+u2=u

P (U1 = u1|V1 = v1)P (U2 = u2|V2 = v2)

≥
∑

ui∈Ui(vi):u1+u2=u

1

b1b2
√
v1v2

≥ 1

2b1b2
√
v2
≥ 1

2b1b2
√
n
.

The number of elements in U(v) is bigger than 2
√
v1 − 1 and since there exists a constant c > 0 such that√

v1 ≥ c
√
n, we see that A4 holds with with ϕv(n) independent of v.

Finally, we note that from P (Vi ∈ Vi) ≥ bo (where bo is close to 1), it follows that P (V ∈ V) ≥ 1− 2(1− bo).

3.2. About assumption A1 for the longest common subsequence. The assumption A1 depends very
much on concrete model and the scoring function S. Even when A1 it is intuitively understandable, it is,
in general, very difficult to prove. Let us briefly explain the intuition behind A1 in the case of the longest
common subsequence. Thus L(Z) = `(Z) is the length of the longest common subsequence.
Suppose that there is a letter in A, say a so that the pair A∗ := (a, a) has high probability. Such a situation
might occur in many cases in practice, for example when X and Y are independent stationary Markov
chains having the same distribution and the probability P (X1 = a) is very high. Since the pair A∗ has
high probability, typically the sequence Z1, Z2, . . . , Zn has many A∗s. Then, in the construction of V and
U , take A = B = D = A∗. In this case the random variable V counts the number of (A∗ · A∗) triplets
in certain positions (i.e first three letters, then letters 4, 5, 6 etc) and U counts the number of A∗s between
these triplets. The random variable R now picks any non-A∗ in-between the triplet (with uniform distribu-
tion) and changes it into A∗. Clearly R then changes at least one non-a-letter into a-letter. As a result,
the number of A∗s increases and the number of as in X and Y increases as well. Since there are many
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A∗s in Z and, therefore, many as in X and Y , any longest common subsequence has to connect many as
on the X-side with as on the Y -side. If the probability of a in X is very high, then any longest common
subsequence consists of mostly a-pairs. It does necessarily mean that two as in the same position (thus a
A∗-pair) would be necessarily connected by LCS, but it is very likely that both as in a A∗ are connected.
In fact, as the simulations in [3] showed, with highly asymmetrical distribution of Xi (i.e. having a letter a
with high probability) the subsequence that aligns as many as as possible is very close to being the longest.
Hence, if X and Y sequences both have many a-letters then any LCS connects mostly a-letters. That implies
that non-a-letters have bigger likelihood to remain unconnected, because connecting a pair of non a-letters
will typically destroy many connected a-letter pairs. Thus changing at least one non-a-letter into an a-letter,
has tendency to increase LCS.

The above-described approach has been formalized in [20, 29]. In those articles, X and Y are consid-
ered independent i.i.d. sequences, where X1 and Y1 have the common asymmetric distribution over A (in
[29] a two letter alphabet is considered; in [20] the result is generalized for many letter alphabet). The
asymmetry means that one letter, say a, has the probability close to one. Thus both sequences consists
mostly of as. In these papers, the random transformation picks any non-a letter from these letters in X and
Y letters and then changes it into a. In this case, the random variable U counts as in X and Y sequence,
and there is no need for V -variable, formally take V ≡ 2n.
Formally the described random transformation used in these two papers differs from the one in the present
article by several aspects:

(1) The sequences X and Y are considered separately, not pairwise. This is due to the independence
of X and Y . If X and Y are independent Markov chains, then we could define R also as follows:
consider all (non-overlapping) triplets in X and Y sequences separately and let V count the a·a-ones.
The maximal number of such triplets would be 2bn3 c, not bn3 c as in our case. Then pick any triplet
with non-a-letter in between (either in X or Y sequence) and change the middle letter into a. The
random variable U counts the as in the middle of the triplets. Surely, due to the independence of X
and Y , the conditional distribution of U given V = v is still Binomial and it is straightforward to
verify that everything else holds as well. When X and Y are dependent, one need them to consider
them pairwise in order to obtain the conditional independence of B1, . . . , Bv given V = v.

(2) There are no fixed a · a-neighborhoods and hence also no V -variable. The fixed neighborhood is not
needed, because X and Y already consists of independent random variables. And the number of as
is Binomially distributed. In the case on Markov chains, the fixed neighborhoods are needed, again,
to obtain the conditional independence of B1, . . . , Bv given V = v. Without neighborhoods, there is
obviously no need for prescribed triplet-locations.

Thus, although formally different, the random transformation in the present article is of the same nature as
the ones used in [29, 20], where it is proven that when the probability of a is close to zero then assumption
A1 holds (see [20, Theorem 2.1], [29, Theorem 2.2]). Therefore, it is reasonable to believe, that in the
case where an A∗ = (a, a) pair has high enough probability, then R that replaces a random non-A∗ pair by
A∗ satisfies A1. To prove that, however, is beyond the scope of the current paper and needs a separate article.

Suppose now that there is a pair of different letters (a, b) such that P (Z1 = (a, b)) is close to one. Then
take A = B = D = (a, b) and let the random transformation to change a non (a, b)-pair into (a, b)-pair.
Clearly such a random transformation tends to decrease the length of LCS. But when such a transformation
decreases the length of LCS by a fixed εo, then defining L(Z) = n − `(Z), we see that A1 still holds. In
other words, it is not important whether R actually increases or decreases the score, important is that in
influences it. Hence, if there is a pair in A×A occurring with sufficiently large probability, then the approach
in [20, 29] applies.

3.3. Simulations. The goal of the present subsection is to check the assumption A1 by simulations. Given
random transformation R and a sequence Z = Z1, . . . , Zn, let us denote

En := E[L(R(Z))|Z]− L(Z),
14



where the expectation is taken over the random transformation. Under A1, there exists εo > 0 such that

P (En ≥ εo)→ 1.

If the convergence above is fast enough, then P (En ≥ εo, ev) = 1 implying that lim infnEn ≥ εo, a.s.. Our
objective now is to study the asymptotic behavior of En for several PMC-models. Throughout the subsection
the score is the length of LCS, i.e. L(Z) = `(Z). Let us start with the model.

The model. Before introducing our specific model we state the following lemma whose proof is is included
for the sake of completeness.

Lemma 3.2. Let Z1, Z2, . . . be a Markov chain on X with transition matrix P = (pxy)x,y∈X . Suppose that
{Ai}i∈I is a partition of X and define π : X → I as π(x) = i if and only if x ∈ Ai. Then the following
assertions are equivalent:

(1) for every initial distribution of Z0, π(Z1), π(Z2), . . . is a Markov chain on I with transition matrix
Q := (qij)i,j∈I ;

(2) for all i, j ∈ I, x ∈ Ai ∑
y∈Aj

pxy = qij . (3.15)

Proof. Let us denote by µ the initial distribution of Z0; hence, P (π(Z0) = i) = µ(Ai).
(1) =⇒ (2). From the hypotheses

qij = P (π(Z1) = j|π(Z0) = i) =

∑
x∈Ai

P (π(Z1) = j|Z0 = x)µ(x)

P (π(Z0) = i)

and this holds for every distribution µ (s.t. µ(Ai) > 0) if and only if qij = P (π(Z1) = j|Z0 = x) for every
x ∈ Ai, that is,

∑
y∈Aj

pxy = qij for all x ∈ Ai.
(2) =⇒ (1). If we compute P (π(Zn) = in|π(Zn−1) = in−1, . . . , π(Z0) = i0) by means of the decomposition

{π(Zn) = in, π(Zn−1) = in−1, . . . , π(Z0) = i0} =
⋃

z∈Ai0
×Ai1

×···Ain

{Zn = zn+1, Zn−1 = zn · · · , Z0 = z1}

and by using the Markov property of Z1, Z2, . . . and equation (3.15)

P
(
π(Zn) = in|π(Zn−1) = in−1, . . . , π(Z0) = i0

)
= P

(
π(Zn) = in|π(Zn−1) = in−1

)
= qin−1in

follows easily. �

From this result we can easily derive the most general transition matrix of a 2-dimensional random
walk Zn = (Xn, Yn) with state space {(1, 1), (1, 0), (0, 1), (0, 0)} whose marginals are Markov chains. More
precisely, given the marginals of X and Y with state space A = {0, 1}(

p 1− p
q 1− q

) (
p′ 1− p′
q′ 1− q′

)
the most general joint transition matrix can be easily obtained by applying Lemma 3.2 twice: first with
A1 := {(1, 1), (1, 0)}, A2 := {(0, 1), (0, 0)} (to ensure that Xn is a Markov chain) and then with A1 :=
{(1, 1), (0, 1)}, A2 := {(1, 0), (0, 0)} (to ensure that Yn is a Markov chain). The final result is

pλ1 p(1− λ1) p′ − pλ1 1 + pλ1 − p′ − p
pλ2 p(1− λ2) q′ − pλ2 1 + pλ2 − q′ − p
qµ1 q(1− µ1) p′ − qµ1 1 + qµ1 − p′ − q
qµ2 q(1− µ2) q′ − qµ2 1 + qµ2 − q′ − q


with the constraints

λ1 ∈
[p′ + p− 1

p
∨ 0,

p′

p
∧ 1
]
, λ2 ∈

[q′ + p− 1

p
∨ 0,

q′

p
∧ 1
]
,

µ1 ∈
[p′ + q − 1

q
∨ 0,

p′

q
∧ 1
]
, µ2 ∈

[q′ + q − 1

q
∨ 0,

q′

q
∧ 1
]
.
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This 4-parameter model is sufficiently flexible and general to cover a large variety of cases. When p = p′ and
q = q′, i.e. X and Y have the same distribution, then the transition matrix is simply

pλ1 p(1− λ1) p(1− λ1) 1 + p(λ1 − 2)
pλ2 p(1− λ2) q − pλ2 1 + pλ2 − q − p
qµ1 q(1− µ1) p− qµ1 1 + qµ1 − p− q
qµ2 q(1− µ2) q(1− µ2) 1 + q(µ2 − 2)

 .

This is the case we are considering in the present subsection. In what follows, without loss of generality, we
shall assume that p ≥ q. The parameters λi and µi regulate the dependence between marginal sequences X
and Y . Clearly X and Y are independent if and only if λ1 = µ1 = p and λ2 = µ2 = q. The transition matrix
corresponding to that particular choice of parameters will be denoted by Pind. If λi and µi are maximal i.e.

λ1 = 1, λ2 = q/p, µ1 = µ2 = 1,

then X and Y are (in a sense) maximally positive-dependent and the corresponding transition matrix is
p 0 0 1− p
q p− q 0 1− p
q 0 p− q 1− p
q 0 0 1− q

 .

We shall call this case maximal dependence, and the ”maximal” here means the maximal number of similar
pairs (1, 1) or (0, 0). The matrix above is not irreducible and therefore in the simulations below, we shall
use the following ”nearly” maximal dependence matrix

Pmax(p, q) =


p− ε ε ε 1− p− ε
q p− q 0 1− p
q 0 p− q 1− p

q − ε ε ε 1− q − ε

 , (3.16)

where to the end of the subsection ε = 0.05. Clearly the distribution of X and Y is not affected by adding
ε. The (nearly) maximal dependent Z favors pairs (0, 0) and (1, 1). When p and q are relatively high, then
typical outcome of Z will have many pairs (1, 1) and then changing a non (1,1)-pair into a (1,1)-pair has a
tendency to increase the score.
We shall also consider the ”minimal dependence” matrix that corresponds to the small λi and µi. Such
model favors dissimilar pairs (0, 1) and (1, 0). Due to the fact that X and Y sequences have the same
transition matrix, unlike in the case of maximal dependence, the minimal dependence (corresponding to the
correlation -1) is not always totally achieved and the structure of minimal dependence matrix depends more
on p and q. In the simulations we shall use the following minimal dependence matrices (again ε is added to
have an irreducible chain):

Pmin(p, q) =




2p− 1 + ε 1− p− ε 1− p− ε ε

p+ q − 1 1− q 1− p 0

p+ q − 1 1− p 1− q 0

2q − 1 + ε 1− q − ε 1− q − ε ε

 , if p+ q > 1 and q ≥ 1
2 ;


2p− 1 + ε 1− p− ε 1− p− ε ε

p+ q − 1 1− q 1− p 0

p+ q − 1 1− p 1− q 0

ε q − ε q − ε 1− 2q + ε

 , if p+ q > 1 and q < 1
2 .

(3.17)

The simulations. Let us briefly describe the simulations for a fixed transition matrix P. First, let us fix
A ∈ {0, 1}. Then we fix a transition matrix P and generate a Markov sequence Z1, . . . , Z3·7500 according to
the stationary distribution corresponding to P. Denote

Jm := {j : j ≤ m,Z3j−2 = Z3j = A, Z3j−1 6= A}.
16



For each m = 100, 200, ..., 7500 we do the following procedure. If Jm = ∅ we don’t do anything and just pick
the next m. Suppose now that Jm 6= ∅ (obviously then also Jm+100 6= ∅). We compute l(m), the length of
LCS of (Z1, . . . , Z3m). Next, for each j = 1, ..., |Jm| we do the following subprocedure. We compute l(m, j),
the length of LCS of the sequence

(Z1, ..., Z3j−2,A, Z3j , ..., Z3m).

Next we compute the difference
r(m, j) := l(m, j)− l(m).

Note that r(m, j) ∈ {−2,−1, 0, 1, 2}. By the end of this subprocedure we have |Jm| values r(m, 1), . . . , r(m, |Jm|)
and we compute

E(m) :=
1

|Jm|

|Jm|∑
i=1

r(m, i).

Recall that En = E[L(R(Z1, ..., Zn))|Z] − L(Z1, ..., Zn). Note that E3m
d
= E(m), where R is the random

transformation used in the proof of A3, with B = D = A. The final goal is to to see whether there are
indications of the existence of a positive εo such that |E(m)| ≥ εo eventually.

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000
m

E
(m

) seq 1

seq 2

seq 3

Figure 1. The behaviour of E(m) with P = Pmax, p = 0.9, q = 0.7, and A = (1, 1). Note
that for all three chains, E(m) seems to converge to same positive and constant limit.

We start our simulations with A = (1, 1). In Figure 1, three different sequences Z1, . . . Z3·7500 are generated
with the same distribution corresponding to matrix Pmax(0.9, 0.7). In this case, for every t, P (Zt = (1, 1)) =
0.819 and turning a non-(1,1)-pair into a (1,1)-pair clearly has positive effect to the score. From Figure 1, it
is evident that E(m) not only is bounded away from zero, but also converges to a strictly positive constant
limit (which we estimate to be around 0.4). The convergence is not needed for A1 to hold, but based on
that picture, we conjecture that (at least for some models) En a.s. tends to a constant limit.
Figure 1 also indicates that our choice of m is big enough to in the sense that all different sequences behave
similarly. Thus, in what follows, we shall generate only one sequence for every P. In Figure 2, for sev-
eral choices of (p, q) three different models, independent, maximal dependent (3.16) and minimal dependent
(3.17), are considered. From Figure 2, we see that in the case of Pmax (where the probability of (1, 1)-pair
is the highest, corresponding to the red line) E(m) clearly is bounded away from zero for every (p, q). For
independent sequences and the sequences corresponding to Pmax, the desired boundedness is evident for
models with relatively big p and q (upper row), whilst for smaller p and q, it might not be so. This is due
to relatively low number of (1,1)-pairs. Indeed, for independent sequences the probability of (1,1)-pair is pq
and so if p = 0.7 and q = 0.4 (D), the proportion of (1,1)-pairs is too small for our random transformation
to have positive effect to the score.
The random transformation considered so far is designed to increase the score and for most of the models
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(d) p = 0.7, q = 0.4

Figure 2. The behaviour of E(m) with transition matrices Pmax, Pmin and Pind, with A = (1, 1).
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Figure 3. The behavior of E(m) with transition matrices Pmax, Pmin and Pind, with A = (0, 1).
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in Figure 2, it indeed does so. We next consider a new R that tends to decrease the score. For that, we just
take A = (0, 1). In Figure 3, we repeat, with this new R, the same simulations of cases (C) and (D) of Figure
2. The choice of these cases is due to the fact that, for Pmin and Pind, the former transformation R (with
A = (1, 1)) did not convincingly show the existence of the positive lower bound ε0. For the independent
marginals case (p = q = 0.7), the behavior of E(m) is much better now and we can conclude that E(m)
converges a.s. to a constant limit that for cases Pmin and Pind are in (−0.25,−0.5). Recall that the negative
limit also ensures A1, we just formally have to consider a different score function. In the other case, namely
the case (B) of Figure 3, we see indications of the convergence of E(m), but for Pmin and Pind, it is difficult
to conclude whether the limit is different from zero or not.

In the case (A) of Figure 3, the probability P (Zt = (0, 1)) is 0.045 (max), 0.28 (min) and 0.49 (ind).
The same probabilities in the case (B) are 0.063, 0.418 and 0.245 respectively. We see that, especially for
Pmax, the number of (0, 1)-pairs in the sequence is very small and that jeopardies the simulations in this
case. The small number of (0, 1) pairs is evident from the pictures, where the red line is not varying much.
Therefore, we combine the transformations by taking A1 = B1 = D1 = (1, 0) and A2 = B2 = D2 = (0, 1).
As before, we generate a Markov sequence Z1, . . . , Z3·7500 according to the stationary distribution. We then
apply the procedure described above twice: first with A = (1, 0), and then with A = (0, 1). In this way we
obtain the sets J1

m and the LCS-differences r1(m, i) (corresponding to the pair (1, 0)), and the sets J2
m and

the LCS-differences r2(m, i) (corresponding to the pair (0, 1)). Finally we define

E(m) :=
1

|J1
m|+ |J2

m|

|J1
m|∑

i=1

r1(m, i) +

|J2
m|∑

i=1

r2(m, i)

 .

Again, note that R3m
d
= E(m), where R is now the combined random transformation with A1 = B1 =

D1 = (1, 0) and A2 = B2 = D2 = (0, 1). When we described the combined transformation in Section 3.1,
we mainly considered the case q1 = q2: this is true for our transition matrices Pmax, Pmin, Pind, so the use
of combined random transformations in the simulations is justified 1. The results of these new simulations
are presented in Figure 4. Since in all cases P (Zt = (0, 1)) = P (Zt = (1, 0)), including (1,0) into R has the
same effect as doubling the number of simulations in Figure 3. We see that the red line now varies more and
we can believe that there is a convergence. In the case p = q = 0.7, the convergence of green and blue lines
to the limits around -0.4 is now even more evident, and for the most difficult case p = 0.7, q = 0.4, we now
can deduce that lim supmE(m) < 0, i.e. A1 also holds in this case.

4. The upper bound

In order to judge the sharpness of the lower bound, we briefly calculate the upper bounds of Φ
(
|Ln−ELn|

)
in the case φ(x) = xr. In the case of independent random variables, there are many ways of finding upper
bound starting from Efron-Stein type of inequalities when r = 2. For an overview of several methods for
obtaining the upper bound, see [25]. However, most of the methods assume independence of random letters.
In the case of PMC-model, probably the easiest way to get an upper bound of the correct order seems to be
via the following McDiarmid’s-type of inequality for Markov chains (see [39, Corollary 2.9])

Theorem 4.1. Let Z := Z1, . . . , Zn be a homogeneous Markov chain with state space Z and mixing time
t(ε). Let f : Zn → R be function satisfying the bounded difference inequality; for every z, z′ ∈ Zn

|f(z)− f(z′)| ≤
n∑
i=1

ciI{zi 6=z′i},

1More specifically, note that when |A| = 2, then, as it is easy to see, the following conditions are sufficient for q1 = q2 to
hold: P22 = P33, P23 = P32, P21 = P31, P12 = P13, P24 = P34, P42 = P43. The transition matrices Pmax, Pmin, Pind satisfy

those equalities.
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Figure 4. The behaviour of E(m) with transition matrices Pmax, Pmin and Pind using
combined random transformations: A1 = B1 = D1 = (1, 0) and A2 = B2 = D2 = (0, 1).

where c := (c1, . . . , cn) are some nonnegative constants. Then, for any s > 0

P
(
|f(Z)− Ef(Z)| > s

)
≤ 2 exp

[
− s2

8‖c‖2tmix

]
, (4.1)

where ‖c‖2 =
∑
i c

2
i and tmix = t(1/4).

We are going to apply this theorem for f = L. Since the change of a value of Zi changes the score by at
most 2∆, we have the bounded difference property with ci = 2∆ and ‖c‖2 = n4∆2. Since, by assumption Z
is aperiodic, there exists m ≥ 1 such that

min
A,B∈A×A

P (Z1+m = B|Z1 = A) =: po > 0.

Then, as it is well-known,

max
A∈A×A

‖π(·)− P (Z1+n ∈ ·|Z1 = A)‖ ≤ Cρn,

where π is stationary distribution of Z, ‖ · ‖ is total variation distance, ρ := (1 − |A|2po)
1
m and C = 1 if

r = 1, and C := (1− |A|2po)−1, otherwise. Therefore

t(ε) ≤ ln ε− lnC

ln(ρ)
<∞, tmix ≤

−(ln 4 + lnC)

ln(ρ)
<∞.

Applying now equation (4.1), we get

P (|L(Z)− E (L(Z))| ≥ s) ≤ 2 exp

(
− s2

nF

)
, (4.2)

where F := 32∆2tmix. From that it is trivial to get the upper bound. Take Wn = |L(Z)− E (L(Z)) |

E (W r
n) =

∫ ∞
0

P
(
Wn ≥ t

1
r

)
dt ≤ x+ 2

∫ ∞
x

exp

(
− t

2
r

nF

)
dt.

Minimizing in x, i.e., taking x = (F (ln 2)n)
r/2

, and changing variables u = t2/r/(Fn), lead to:

E (W r
n) ≤ (F (ln 2)n)

r
2 + rF r/2n

r
2

∫ ∞
ln 2

e−uu
r
2−1du = n

r
2F r/2

[
(ln 2)

r
2 + r

∫ ∞
ln 2

e−uu
r
2−1du

]
,

20



an upper bound of the form C(r)nr/2, where

C(r) := F r/2
[
(ln 2)

r
2 + r

∫ ∞
ln 2

e−uu
r
2−1du

]
.

When x = 0, the corresponding constant is slightly bigger than C(r), and is given by:

D(r) := rF r/2
∫ ∞
0

e−uu
r
2−1du = rF r/2 Γ

(r
2

)
.

4.1. Appendix: proof or Theorem 2.1. Let Bn ⊂ Zn be the set of outcomes of Z such that{
E[L(R(Z))− L(Z)|Z] ≥ εo} = {Z ∈ Bn}.

Let the set Von ⊂ SVn be defined as follows:

v ∈ Von ⇔ P (Z 6∈ Bn|V = v) ≤
√

∆n. (4.3)

Now

∆n ≥ P (Z 6∈ Bn) ≥
∑
v 6∈Vo

n

P (Z 6∈ Bn|V = v)P (V = v) >
√

∆nP (V 6∈ Von), ⇒ P (V 6∈ Von) ≤ ∆
1
2
n .

Furthermore, for every v ∈ Von, let Uon(v) ⊂ Sn(v) be defined as follows

u ∈ Uon(v) ⇔ P (Z 6∈ Bn|V = v, U = u) ≤ ∆n
1
4 . (4.4)

Again, √
∆n ≥ P (Z 6∈ Bn|V = v) ≥

∑
u6∈Uo

n(v)

P (Z 6∈ Bn|V = v, U = u)P (U = u|V = v)

> ∆n
1
4P (U 6∈ Uon(v)|V = v), ⇒ P (U 6∈ Uon(v)|V = v) ≤ ∆

1
4
n .

We now show that there exists no so big that when v ∈ Von ∩ Vn and u ∈ Un(v) ∩ Uon(v), then

l(u+ 1, v)− l(u, v) ≥ εo
2
. (4.5)

Let Z(u,v) be a random vector having the distribution P(u,v). By A3, thus,

l(u+ 1, v) = E[L(R(Z(u,v)))].

Hence

l(u+ 1, v)− l(u, v) = E[L(R(Z(u,v)))]− E[L(Z(u,v))] = E[L(R(Z(u,v)))− L(Z(u,v))]

= E
(
E[L(R(Z(u,v)))− L(Z(u,v))

∣∣Z(u,v)]
)
.

By assumption A2, for any pair of sequences z, the worst decrease of the score, when applying the random
transformation is −A. Hence,

E
(
E[L(R(Z(u,v)))− L(Z(u,v))

∣∣Z(u,v)]
)
≥ εoP

(
Z(u,v) ∈ Bn

)
−AP (Z(u,v) 6∈ Bn) ≥ εo(1−∆

1
4
n )−A∆

1
4
n .

The last inequality follows from the fact that by definition of Uon(v), when v ∈ Von and u ∈ Uon(v), it holds

P
(
Z(u,v) ∈ Bn

)
= P (Z ∈ Bn|V = v, U = u) ≥ 1−∆n

1
4 .

Since ∆n → 0, there exists no so big that εo(1 −∆
1
4
n ) − A∆

1
4
n ≥ εo

2 , provided n > n0. In what follows, we
assume n > no.

Fix v ∈ Von ∩ Vn and consider the set Un(v) ∩ Uon(v) and n > no. When u ∈ Un(v) ∩ Uon(v), then by
equation (4.5) l(u+ 1, v)− l(u, v) ≥ εo

2 . When u 6∈ Un(v) ∩ Uon(v), then l(u+ 1, v)− l(u, v) ≥ −A.
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Recall Un(v) = {un(v) + 1, . . . , un(v) + mn(v)}. The set Un(v) ∩ Uon(v) can be represented as the union
of disjoint intervals of Un(v) , i.e.

Un(v) ∩ Uon(v) =

k(v)⋃
j=1

Ij(v),

where

Ij(v) = {un(j, v) + 1, . . . , un(j, v) +mn(j, v)}
is a subinterval of Un(v). Obviously the number of intervals k(v) as well as the intervals Ij(v) depend on n.
On every interval Ij(v), the function l(·, v) increases with the slope at least εo

2 i.e.

if u ∈ Ij(v), then l(u+ 1, v)− l(u, v) ≥ εo
2
. (4.6)

Let us consider the sets

Jj(v) := {l(un(j, v) + 1, v), . . . , l(un(j, v) +mn(j, v), v)} j = 1, . . . , k(v).

Thus Jj(v) is is the image of the set Ij(v) when applying l(·, v). Note that if u = un(j, v) +mn(j, v), i.e. u
is the last element in the interval, then l(u+ 1, v) is outside of the interval Jj(v). We know that all elements
of Jj(v) are at least εo

2 -apart from each other. However, the intervals Jj(v) might overlap (even thought we
know that the intervals Ij(v) do not). Since for any u ∈ Un(v)\Uon(v), it holds that l(u+1, v)− l(u, v) ≥ −A,
we have ∑

u∈Un(v)\Uo
n(v)

(
l(u+ 1, v)− l(u, v)

)
≥ −A|Un(v)\Uon(v)|. (4.7)

The inequality equation (4.7) together with equation (4.6) implies that the sum of the lengths of (integer)

intervals Jj(v) differs from the length of the set J(v) :=
⋃k(v)
j=1 Jj(v) at most by A|Un(v)\Uon(v)|. Formally,

defining for any finite set of real numbers T the length `(T ) as the difference between maximum and minimum
element of T i.e.

`(Jj(v)) := l(un(j, v) +mn(j, v), v)− l(un(j, v) + 1, v),

we obtain

k(v)∑
j=1

`(Jj(v))−`(J(v)) ≤
k(v)∑
j=1

`(Jj(v))−
(
l(un(k, v)+mn(k, v), v)−l(un(1, v)+1, v)

)
≤ A|Un(v)\Uon(v)|. (4.8)

The first inequality follows from the fact that

l(un(k, v) +mn(k, v), v)− l(un(1, v) + 1, v) ≤ `(J(v))

and the second from equations (4.7) and (4.6).

The number of εo
2 -apart points needed for covering an (real) interval with length A|Un(v)\Uon(v)| is at

most
2A|Un(v)\Uon(v)|

εo
+ 1.

This means that due to the overlapping at most
2A|Un(v)\Uo

n(v)|
εo

+ 1 points that are εo
2 -apart will be lost

implying that in the set J(v) there are at least

|Un(v)| − 2A|Un(v)\Uon(v)|
εo

− 1 = mn(v)− 2A|Un(v)\Uon(v)|
εo

− 1

points that are (at least) εo
2 -apart from each other.

Using the inequality (recall v ∈ Von)

P (U 6∈ Uon(v)|V = v) ≤ ∆
1
4
n
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and equation (2.2) we obtain

∆n
1
4 ≥ P (U ∈ Un(v)\Uon(v)|V = v) =

∑
u∈Un(v)\Uo

n(v)

P (U = u|V = v) ≥ |Un(v)\Uon(v)|ϕv(n)

implying that

|Un(v)\Uon(v)| ≤ ∆n
1
4ϕv(n)−1.

Thus by A4, there exists n1 such that

mn(v)− 2A|Un(v)\Uon(v)|
εo

−1 ≥ mn(v)−2A
∆n

1
4

εoϕv(n)
−1 ≥ (c(v)εo − 2A∆n

1
4 − εoϕv(n))

εoϕv(n)
≥ rv(n)

ϕv(n)
, ∀n > n1

where

rv(n) := c(v)− 2A∆
1
4
n

εo
− ϕv(n)→ c(v)

uniformly with respect to v ∈ Vn (for the definition of uniform convergence with respect to a variable in a
sequence of sets, see for instance [4, Definition 2.2]). To summarize: the set

J(v) ⊆ {l(un(v) + 1, v), . . . , l(un(v) +mn(v), v)}

contains at least rv(n)
ϕv(n)

elements being εo
2 -apart from each other.

Finally, define the set

An(v) :=
{
u ∈ Un(v) : |l(u, v)− µn| ≥

εorv(n)

8ϕv(n)

}
.

Since the interval [
µn −

εorv(n)

8ϕv(n)
, µn +

εorv(n)

8ϕv(n)

]
contains at most rv(n)

2ϕv(n)
+ 1 elements that are εo

2 -apart from each other and J(v) contains at least rv(n)
ϕv(n)

of

such elements, it follows that that the set

Bn(v) := {l(u, v) : u ∈ An(v)}

contains at least rv(n)
2ϕv(n)

− 1 points being εo
2 -apart from each other, and in particular, the set An(v) contains

at least rv(n)
2ϕv(n)

− 1 points i.e |An(v)| ≥ rv(n)
2ϕv(n)

− 1.

By conditional Jensen (recall Φ is convex), we get

E[Φ
(
|L(Z)− µn|

)
|V,U ] ≥ Φ

(
|E[L(Z)|V,U ]− µn|

)
= Φ

(
|l(U, V )− µn|

)
.
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Therefore (recall also that Φ is increasing)

EΦ
(
|L(Z)− µn|

)
= E

(
E[Φ

(
L(Z)− µn|

)
|V,U ]

)
≥ EΦ

(
|l(U, V )− µn|

)
≥

∑
v∈Vn∩Vo

n

∑
u∈Un(v)

Φ
(
|l(u, v)− µn|

)
P (U = u|V = v)P (V = v)

≥
∑

v∈Vn∩Vo
n

∑
u∈An(v)

Φ
(
|l(u, v)− µn|

)
P (U = u|V = v)P (V = v)

≥
∑

v∈Vn∩Vo
n

∑
u∈An(v)

Φ
(
|l(u, v)− µn|

)
ϕv(n)P (V = v)

≥
∑

v∈Vn∩Vo
n

Φ
(εorv(n)

8ϕv(n)

)
|An(v)|ϕv(n)P (V = v)

≥
∑

v∈Vn∩Vo
n

Φ
(εorv(n)

8ϕv(n)

)( rv(n)

2ϕv(n)
− 1
)
ϕv(n)P (V = v)

=
∑

v∈Vn∩Vo
n

Φ
(εorv(n)

8ϕv(n)

)(rv(n)

2
− ϕv(n)

)
P (V = v).

In particular, if ϕ(n) = supv∈Vn ϕ(n) → 0 as n → ∞ (that is, ϕv(n) converges to 0 uniformly with respect
to v ∈ Vn) then there exists n2 such that rv(n) > c

2 and ϕv(n) ≤ c/8 for all n ≥ n2, v ∈ Vn. Thus, if n ≥ n2,
then

EΦ
(
|L(Z)− µn|

)
≥ Φ

( εoc

16ϕ(n)

)( c
4
− ϕ(n)

)
P (V ∈ Vn ∩ Von) ≥ Φ

( εoc

16ϕ(n)

) c
8

(P (V ∈ Vn)−∆
1
2
n ).

If, in addition, P (V ∈ Vn) is bounded away from zero, then for any constant co satisfying boc/8 > co > 0 we
can choose n3 ≥ n2 such that for all n ≥ n3

EΦ
(
|L(Z)− µn|

)
≥ Φ

( εoc

16ϕ(n)

)
co. (4.9)
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[27] J. D. KeVarckić, P. M. Vasić, Some Inequalities for the Gamma Function, Publications de L’institut Mathématique,
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