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2Mathematics Institute, École Polytechnique Fédérale de Lausanne (EPFL),

Av. Piccard, CH-1015 Lausanne, Switzerland (Professor Emeritus)
*corresponding author

{luca.dede,alfio.quarteroni,francesco.regazzoni}@polimi.it

This paper is dedicated to the memory of Edoardo Vesentini.

Abstract

This paper deals with the mathematical model that describes the function of the human
heart. More specifically, it addresses the equations that express the electromechanical process,
that is the mechanical deformation (contraction and relaxation) of the heart muscle that is
induced by the electrical field that, at every heartbeat, is generated in the sino-atrial node and
then propagates all across the cardiac cells. After deriving the equations of the mathematical
model from basic physical principles, we proceed to their numerical approximations and dis-
cuss issues such as stability, accuracy and computational complexity. We close the paper by
illustrating a few numerical results on test problems of potential interest for clinical applications.

1 Introduction

In the human heart, each heartbeat is triggered by an electrical signal, originating from the sinoatrial
node, the heart’s natural pacemaker consisting of a group of self-excitable cells and located in the
upper part of the right atrium. The signal propagates from one cell to another through the two
atria (right and left), and reaches the atrioventricular node, located between the atria and the
two ventricles. The atrioventricular node acts as a filter for signal propagation in order to ensure
that the contraction of the ventricles begins once the blood has passed from the atria into the
same ventricles. The electrical signal then propagates from the atrioventricular node through a
fast connecting set of fibers, called the Purkinje fibers, reaching the myocardial cells through the
so-called Purkinje muscle junctions. Cardiomyocytes, the cells of the heart muscle, are excitable:
when electrically stimulated, the electro-chemical balance of the cell membrane changes, giving rise
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to a sequence of biochemical processes that determine a significant variation of the cell potential,
precisely a rapid depolarization followed by a repolarization. This phenomenon, known as action
potential, is due to the opening and closing of ion channels, that are made of proteins located in the
cell membrane. The latter becomes permeable to different ions (calcium, potassium, magnesium)
thanks to the transmembrane potential, the voltage difference between the inner and outer part of
the cell. The ionic fluxes cause a variation of the transmembrane potential and have a feedback
effect on the voltage difference itself. Among the various ionic species involved in the dynamics of
the action potential, calcium ions play an important role. Calcium is in fact a trigger for muscle
contraction: calcium ions induce a complex chain of reactions by generating an active force inside the
cardiomyocytes. Finally, thanks to a transmission process between different space-time scales, the
active force at the microscopic scales generates a resulting force at the level of the organ, thus giving
rise to deformation, or contraction of the ventricles and atria. The joint effect of active and passive
force (i.e. the reaction of the myocardium to mechanical stress thanks to its elastic characteristics),
altogether with the coordinated action of the atria and ventricles, governs blood fluid dynamics in
the four chambers and dynamics valve.

In this paper we will review the derivation of the mathematical model that governs the elec-
tromechanical process occurring in the heart. This model, that is obtained by starting from basic
physical principles as well some suitable phenomenological laws, consists in a set of coupled partial
differential equations (PDEs) and ordinary differential equations (ODEs). The model variables are
suitable to describe the transmembrane electric potential, the concentration of the ionic species at
cell level, the active mechanical force that is generated at the cardiomyocytes, and the displacement
of the heart muscle.

The complexity of this mathematical model, and the consequent lack of exact solutions in closed
form, calls for the construction of suitable numerical approximation strategies. We therefore propose
a thorough methodological framework to allow for the numerical construction of an approximate
system of nonlinear algebraic equations. We will comment on the stability and convergence properties
of the numerical solution and will indicate a possible way to solve this large dimensional system
efficiently. The conclusive part of this paper will be devoted to the illustratrion of an example of
numerical solution of the electromechanical model of a left ventricle.

The paper is organized as follows. First, we discuss the mathematical models describing the
cardiac function. Specifically, in Sec. 2 we address the models describing cardiac electrophysiology.
Then, in Sec. 3, we focus on the modeling of active force generation and, in Sec. 4, on cardiac active
and passive mechanics. After having reviewed, in Sec. 5, the mathematical models describing blood
circulation, we present in Sec. 6 the fully coupled multiphysics model of cardiac electromechanics.
We then turn to the numerical approximation of this model, first considering the space discretization
of the PDEs (Sec. 7) and then considering the time discretization of the coupled model (Sec. 8).
We conclude with Sec. 9, illustrating the numerical solution of the electromechanical model in a left
ventricle and commenting on the obtained results.

2 Modeling cardiac electrophysiology

The driver of the cardiac function is electrophysiology, resulting from chemical and electrical pro-
cesses taking place at different spatial scales, from subcellular to the the whole organ scale. A
mathematical description of these phenomena is based on the translation in mathematical terms of
the principles ruling the chemo-electrical activity of ions species at the finest scale; then, by pro-
gressively climbing up the hierarchy of spatial scales, a set of equations describing the tissue-level
electrophysiological activity is derived. The multiscale model of cardiac electrophysiology is depicted
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Figure 1: Multiscale model of cardiac electrophysiology. From the finest to the coarsest spatial
scale: (a) ionic channels; (b) cell membrane; (c) cardiomyocyte; (d) cardiac tissue; (e) myocardium
or cardiac chamber.

in Fig. 1.

2.1 Transmembrane fluxes of single ionic species

The exchanges of a ionic species X with valence zX across a permeable membrane is due to ionic
fluxes. For simplicity, let us consider a cell membrane with thickness L, orthogonal to the x axis,
under the assumption that the flux in the tangential direction is negligible compared to the trans-
membrane one x. We indicate such ionic flux as JX for x ∈ [0, L], which results from the sum of two
contributions, namely a diffusive and an electric flux [50] (see Fig. 1a). Diffusion originates a net flux
JX,diff (mol m−2 s−1) down the concentration gradient, according to the Fick’s law JX,diff = −D dcX

dx ,
where D is the diffusion coefficient (m2 s−1) and cX the ion concentration (mol m−3). On the other
hand, the spatial variations of an electric potential u (V) generate a flux that satisfies the Planck
equation JX,elec = −cX sign(zX)µ du

dx , being µ the ionic mobility (m2 V−1 s−1). In his theory on

Brownian motion, Einstein linked diffusivity D to µ [23] as D = µRT
|zX |F , where R is the gas constant,

T the absolute temperature and F the Faraday constant. It follows that the total ionic flux across
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the membrane returns the Nernst-Plank equation:

JX = JX,diff + JX,elec = −D
(
dcX
dx

+ cX
zX F

RT

du

dx

)
. (1)

By denoting with ui = u(0) and ue = u(L) the intracellular andextracellular electrical potentials,
respectively, and assuming a constant electric field across the membrane, we get

du

dx
= − v

L
, (2)

where v = ui − ue is the transmembrane potential. By the continuity equation, we have ∂t cX +
∂x JX = 0, which entails, at the steady-state, that JX is constant across the cell membrane. It
follows from (1) and (2) that

D
dcX
dx

=
D zX F v

RT L
cX − JX , (3)

whose solution is cX(x) = JX RT L
D zX F v

[
1− exp

(
zX F v
RT x

)]
+ cX(0) exp

(
zX F v
RT x

)
.

By defining the electrical current density associated with the ionic flux as IX := zXFJX
(A cm−2), we finally obtain the Goldman-Hodkin-Katz (GHK) current-voltage relation:

IX =
D z2

X F
2

LRT

ciX − ceX exp
(
− zX F v

RT

)
1− exp

(
− zX F v

RT

) v, (4)

where ciX = cX(0) and ceX = cX(L) represent the intracellular and extracellular concentrations of
the ionic species X, respectively.

At thermodynamical equilibrium, the rate of each process is balanced by it reverse, that is
JX = 0. Therefore, the solution of the Nernst-Plank equation (1) entails that, at equilibrium,
the transmembrane potential depends on the ratio between the concentration of the ionic species
inside and outside the cell membrane. Precisely, the equilibrium potential difference, known as

Nernst potential, is vX = RT
zXF

log
(
ceX
ciX

)
. The GHK equation is not the unique current-voltage

relation used in cardiac electrophysiology models. For example, the following simple voltage-current
relationship

IX = gX(v − vX), (5)

where gX is the membrane conductance, is derived by perturbation analysis from (4) in the long-
channel limit (it represents the linearization of GHK). Importantly, both relationships satisfy IX = 0
when v = vX .

2.2 Cell membrane models

Equations like (4) and (5) describe the voltage-current relationship of a single ionic species. However,
the membrane of cardiomyocytes is permeable to multiple ionic species, as sodium, potassium and
calcium. The total electric flux across the cell membrane, as depicted in Fig. 1b, is given by the sum
of the electric currents associated with these ionic species, numbered from k = 1 to N :

Iion =

N∑
k=1

Ik. (6)

where the current of the k-th ionic species is modeled either by (4) or (5).
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The cardiomyocytes membrane is selectively permeable to specific ionic species. Equations (4)
and (5) describe the voltage-current relationship when all the ionic channels are open. In order to
track the opening and closing of these channels, the gating-variables wj ∈ [0, 1], for j = 1, . . . ,M ,
are introduced (we have wj = 0 when all the channels of type j are closed, wj = 1 when they are
all open, 0 < wj < 1 when only a fraction of channels are open). Then, considering for instance the
linear relationship (5), the net current associated with the k-th species is

Ik = gk

 M∏
j=1

w
pj,k
j

 (v − vk), for k = 1, . . . , N, (7)

where pj,k quantifies the influence of the j-th channels on the k-th ionic species (in particular, we
have pj,k = 0 when the j-th channel is not permeable to the k-th ion). The dynamics of ionic
channels is driven by the transmembrane potential v and according to the following equation:

dwj
dt

=
w∞j (v)− wj

τj
, for j = 1, . . . ,M. (8)

The ionic models described by (6)–(7)–(8) are known as first generation models (e.g. [8, 57]). The
most celebrated, the Hodgkin-Huxley model [40], encompasses three ionic currents (sodium current,
potassium current and leakage current) and three gating variables:

INa = gNaw
3
1w2(v − vNa), IK = gKw

4
3(v − vK), IL = gL(v − vL). (9)

Second generation models include an additional set of variables tracking the dynamics of ion concen-
trations; see e.g. [56, 87–89]. Reduced (phenomenological) models, which provide a phenomenological
description of the action-potential dynamics by describing simplified subcellular processes or disre-
garding them, have also been proposed; see e.g. [1, 11, 26].

Each of the above mentioned ionic models can be written in the general form

dzion

dt
= Φion(v, zion), Iion = Iion(v, zion), (10)

where zion(t) ∈ RNion is a vector collecting the so-called ionic variables (describing ionic chan-
nels, concentrations or simply phenomenological variables) and Iion and Φion are suitably defined
functions.

To complete a model describing the electrical activity across the cell membrane, we need an
equation relating the dynamics of the transmembrane potential v to the total ionic current Iion.
With this aim, the cell membrane is modeled as a capacitor in parallel with a nonlinear resistor,
associated with the ionic currents (Fig. 1c):

Cm
dv

dt
+ Iion = Iapp (11)

where Cm denotes the membrane capacity and Iapp represents an externally applied current. The
form of Iion depends on the specific ionic model at hand.

2.3 Cardiac electrophysiology

Equation (11) describes the electrical activity of a single cell. However, in the cardiac tissue, the
nearly three billion cells are not electrically isolated. Indeed, they are connected by the so-called
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gap junctions, which link the intracellular and extracellular spaces of adjacent cells (see Fig. 1d).
Let Ω0 ⊂ R3 be an open connected set, denoting the region of space occupied by the cardiac
tissue. We denote by Je(X, t) and by J i(X, t) the local average current densities per unit area in
the intracellular and extracellular spaces, respectively. Equation (11), that provides the balance
of electric current per unit area across the cell membrane, can be upscaled at the macroscale by
introducing the factor χm, denoting the area-to-volume ratio (i.e. the amount of membrane area
per volume of tissue). In fact, the transmembrane current per unit volume can be computed as

Im = Im
(
Cm

∂v

∂t
+ Iion

)
. (12)

Note that we use here partial derivatives, as the variable v(X, t) is now function of both space
and time. Moreover, the conservation of charge entails that the divergence of both Je and J i are
balanced by the current Im and – possibly – by an externally applied current:

∇ · Je = Im + Ieapp, ∇ · J i = −Im + Iiapp. (13)

Finally, we need to relate the electric currents Je and J i to the transmembrane potential v = ui−ue.
With this aim, the cardiac tissue is typically modeled as an anisotropic medium, whose preferential
directions are defined by the arrangement of cardiac cells into fibers and sheets. At each point X ∈ Ω0

we define a local frame of reference (f0, s0,n0), consisting of three orthogonal vectors representing
respectively the fibers direction, the sheets normal and a third direction, normal to the others.
Denoting by σfα, σsα and σnα (for α ∈ {e, i}) the extracellular and intracellular conductivity in the
directions f0, s0 and n0, respectively, the conductivity tensors in the extracellular and intracellular
media are defined as

Dα = σfαf0 ⊗ f0 + σsαs0 ⊗ s0 + σnαn0 ⊗ n0 for α ∈ {e, i}. (14)

Then, the currents in the extracellular and intracellular spaces read

Je = −De∇ue, J i = −Di∇ui. (15)

By combining (12), (13) and (15), we obtain the so-called Bidomain equation:

−χmCm
∂v

∂t
−∇ · (De∇ue)− χmIion = Ieapp in Ω0 × (0, T ],

χmCm
∂v

∂t
−∇ · (Di∇ui) + χmIion = Iiapp in Ω0 × (0, T ],

(16)

On the boundary of the domain Ω0, assuming that the muscle is electrically isolated from the
surrounding environment, one typically sets no flux boundary conditions (De∇ue) ·N = (Di∇ui) ·
N = 0, where N denotes the outward unit vector normal to the surface ∂Ω0.

In spite of our heuristic derivation of the Bidomain model, based on the assumption of inter-
penetrating domains (the intracellular and extracellular spaces coexist at each point of Ω0) [33, 81],
this model can be rigorously derived by assuming the existence of the extracellular and intracellular
spaces as two simply-connected subdomains and by employing a homogenization technique [18].

By assuming De = γDi for come constant γ > 0 and defining the effective conductivity tensor
and the effective applied current as D = γ

1+γDi and Iapp = (Ieapp + γIiapp)/(1 + γ), (16) reduces to
the simpler Monodomain equation:

χmCm
∂v

∂t
−∇ · (D∇v) + χmIion = Iapp in Ω0 × (0, T ]. (17)
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To wrap up, the electrophysiology models reads
χmCm

∂v

∂t
−∇ · (D∇v) + χmIion(v, zion) = Iapp in Ω0 × (0, T ]

∂zion

∂t
= Φion(v, zion) in Ω0 × (0, T ]

(18)

with suitable initial conditions for v and zion and boundary conditions for v and where Iion(v, zion)
and Φion(v, zion) are assigned by the membrane model (see Sec. 2.2). The Bidomain model is more
detailed than the Monodomain model, even if the latter is by far the most used in application. For
the sake of space, in this paper we will only consider the Monodomain model. The applied current
Iapp is typically prescribed as a function with support restricted to a short time interval (usually a
few milliseconds) at the beginning of each heartbeat and to a few spots located close to the surface
of the myocardium, representing the end points of the Purkinje fibers. The typical solution of (18)
features a traveling wave for the variable v, originating from the regions where Iapp is applied. When
a point of the domain is reached by the wavefront, v quickly raises (depolarization), then features
a plateau and finally returns to its resting position (repolarization); this yields the so called action
potential. Due to the quick depolarization, the potential wave is characterized by a very steep front.

Even when it is derived from physical principles, the mathematical meaningfulness of a model
is not guaranteed a priori yet. Specifically, one should check that the problem is well posed from
a mathematical standpoint, that is a solution exists, it is unique and it depends continuously from
data (the importance of the latter assumption is related to the uncertainty that unavoidably affects
the measurements of these data). Moreover, the existence of solutions is an essential requirement
to address the numerical approximation of a model. As a matter of fact, even if the approximate
problem admits solutions, they would be meaningless in absence of an exact solution they can
converge to. In this regard, a well-posedness result for the Bidomain model, in case the Fitzhugh-
Nagumo model [26] is employed to describe the ionic activity, is provided in [30]. Another well-
posedness result, making use of a fixed-point argument, is presented in [92].

3 Modeling active force generation

As a consequence of the action potential dynamics, in the first stages of each heartbeat the calcium
concentration inside cardiomyocytes (denoted by [Ca2+]i, where i stands for intracellular) quickly
raises by nearly one order of magnitude before returning to its resting concentration in nearly 500 ms.
Calcium acts in fact as a cellular messenger by triggering the contraction of cardiomyocytes.

At the microscopic scale, cardiac muscle tissue is organized in sarcomeres, cylinder shaped con-
tractile elements of the size of nearly 2 µm. Sarcomeres are composed of myofilaments: thin filaments,
made of proteins (troponin, tropomyosin and actin) and thick filaments, made of myosin (see Fig. 2).
The active force is generated by the interaction between actin and myosin, molecular motors capable
of transforming the chemical energy of ATP into mechanical work [48].

3.1 Modeling calcium-driven regulation

The microscale generation of active force is driven by the variation of intracellular calcium con-
centration due to the following mechanisms. When the muscle is relaxed (i.e. at low calcium
concentration), tropomyosin occupies the actin binding sites, preventing the interaction of the latter
with myosin (tropomyosin is said to be in non-permissive configuration). When a calcium ion binds
to troponin, this bound induces a conformational change in tropomyosin towards a permissive con-
figuration, thus exposing the actin binding site, so that myosin can bind and generate force. Hence,
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Figure 2: Active force generation model.

by determining the fraction of tropomyosin units in permissive configuration, the concentration of
calcium ions inside the cell regulates the amount of generated active force.

In mathematical terms, this process is typically described as a continuous-time Markov Chains
(or Markov jump processes, see e.g. [62])). The different configurations of proteins are represented
by discrete states, and the transition rates that determine the dynamics of the associated stochastic
processes are assigned by the laws of thermodynamics. Let us consider the following simple example.
An isolated troponin unit can be in two states: either unbound (U) or bound (B) to a calcium ion.
Its dynamics can be described with the following notation

U + Ca2+
k+−−⇀↽−−
k-
B. (19)

where −⇀↽− means that two chemical reactions are possible: an unbound troponin unit can bind to

a calcium ion to form a bound unit (forward reaction), while a bound unit can turn back to the
unbound state releasing a calcium ion (backward reaction). The velocity at which these reactions
occurs is described by k+ and k-, respectively called association and dissociation rates. By the law
of mass action this dynamics is described in mathematical terms as

d

dt
[U ] = k-[B]− k+[U ][Ca2+]i,

d

dt
[B] = k+[U ][Ca2+]i − k-[B] (20)

where [U ](t) (resp. [B](t)) denotes the concentration of troponin units in unbound (resp. bound)
state at time t. At equilibrium, the reverse reaction perfectly balances the forward one and concen-
trations are constants. At equilibrium we have

[B]

[U ][Ca2+]i
=
k+

k-
. (21)

The value of the ratio k+/k- can be inferred by thermodynamics arguments. For an ideal dilute
solution, the chemical potential (i.e. the Gibbs free energy) of a solute is G = G0 + RT log(c/c0),
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where c is its concentration, c0 = 1 M denotes the standard concentration and G0 is the standard
free energy at standard concentration c0. The change in chemical potential ∆G associated with the
forward reaction of (19) is

∆G = GB − (GU +GCa2+) = G0
B − (G0

U +G0
Ca2+)︸ ︷︷ ︸

=:∆G0

+RT log

(
[B]

[U ][Ca2+]i

)
. (22)

The chemical potential denotes the preference of a state compared to another. At equilibrium, since
neither state is preferred, ∆G = 0. Therefore, comparing (21) with (22), we obtain the following
relationship, that relates the ratio between the transition rates and the difference in standard free
energy:

k+

k-
= exp

(
−∆G0

RT

)
. (23)

This equation will be later used to describe an important aspect of the dynamics of calcium-driven
regulation, that is cooperativity.

Using the formalism of Markov Chains, denoting by Xt ∈ {U ,B} the stochastic process describing
the time evolution of the state of a single troponin protein, we can interpret [U ](t) (resp. [B](t)) as
the fraction (up to a multiplicative constant) of troponin units in unbound (resp. bound) state at
time t, that is as the probability [U ](t) = P[Xt = U ]. By summing up the two equations of (20),
it follows that, in accordance with the conservation of probability, [U ](t) + [B](t) = 1. Hence, (20)
reads

d

dt
[B] = k+(1− [B])[Ca2+]i − k-[B]. (24)

When [Ca2+]i is constant, the dynamics of [B](t) asymptotically tends towards an equilibrium state
that depends on [Ca2+]i, given by the following hyperbolic law (known as Michaelis-Menten equation)
[50]:

[B]eq =
[Ca2+]i

[Ca2+]i + α
=

(
1 +

α

[Ca2+]i

)−1

, (25)

where α = k-/k+ is called half maximal effective concentration, that is – more in general – the
concentration of an agent (in this case, calcium ions) producing half of the maximum response.

Mathematical models describing the dynamics of myofilaments are more complex than the two-
state reaction (19). Still, the single elementary reactions are modeled using the same mathemat-
ical tools. For example, the model of [77] considers, besides the dynamics of troponin, that of
tropomyosin, which can be either non-permissive (N ) or permissive (P). Thus, the troponin-
tropomyosin complex (known as regulatory unit) can be in one of the four states UN , BN , UP
or BP (see Fig. 2a). The rates associated with the transitions of regulatory units are defined as

UN + Ca2+
k-/kd−−−⇀↽−−−
k-
BN

kTQ−−−⇀↽−−−
kT
BP

k-/µ−−−⇀↽−−−
k-/kd

UP + Ca2+ kT−−−−⇀↽−−−−
kTQ/µ

UN + Ca2+ (26)

where kT, kd, Q and µ are suitable constants. In particular, µ� 1 introduces a bias in the dynamics,
making the transition N ⇀ P more likely when troponin is bound to calcium (i.e. in state B). By
denoting, as before, the probability of a state by the symbol [·], the low of mass action entails that
the state vector p(t) = ([UN ](t), [BN ](t), [UP](t), [BP](t))T evolves according to the linear system

dp

dt
= Ap. (27)
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The transition matrix

A =


−
(
k-[Ca2+]i

kd
+ QkT

µ

)
k- kT 0

k-[Ca2+]i
kd

− (k- +QkT) 0 kT

QkT
µ 0 −

(
k-[Ca2+]i

kd
+ kT

)
k-
µ

0 QkT
k-[Ca2+]i

kd
−
(
k-
kd

+ kT

)

 .

has by construction zero-sum columns, which ensures the conservation of probability (this can be
shown by left multiplying (27) by a row vector of ones). System (27) is known as the forward
Kolmogorov equation (FKE), or master equation, associated with the CTMC.

An important output of model (27) is the permissivity, that is the fraction of regulatory units in
permissive state, defined as [P](t) = [UP](t) + [BP](t). Indeed, by assuming that the actin-myosin
interactions occurring for each permissive regulatory units generate a fixed amount of force, the total
active force is proportional to the permissivity. The steady-state solution of (27) yields

[P]eq =

1 +
µ
(

1 + [Ca2+]i
kd

)
Q
(

1 + µ [Ca2+]i
kd

)
−1

, (28)

which is well approximated, as µ� 1, by the Michaelis-Menten equation

[P]eq ' [P]∞

(
1 +

α

[Ca2+]i

)−1

, [P]∞ =
Q

1 +Q
, α =

kd

1 +Q
. (29)

Unfortunately, experimental measurements are in contrast with (29). In fact, the experimentally
measured steady-state force-calcium curve does not feature the hyperbolic shape of (29), but rather
it shows a good fit with the sigmoidal curve

[P]eq ' [P]∞

(
1 +

(
α

[Ca2+]i

)nH
)−1

, (30)

for nH (Hill coefficient) ranging between 4 and 6 [9]. The Hill equation (30) (originally formulated
by A. V. Hill to describe binding of oxygen to hemoglobin [38]) models the binding of a ligand to
a macromolecule under the hypothesis of cooperative binding. In biochemistry, cooperativity is the
phenomenon by which the binding affinity changes when other ligands are already bound to the
same macromolecule, thus generating the steep response of (30) near α. Cooperativity is of pivotal
importance for the function of cardiomyocytes, as it guarantees a rapid and large generation of
force in response to small changes in calcium concentration. Without cooperativity, an increase of
force from 10% to 90% of maximal force would require an 81-fold increase of [Ca2+]i; with an Hill
coefficient nH = 5, to obtain the same force increment, just a factor 2.4 in calcium concentration is
enough.

Several hypotheses on the mechanisms leading to the observed cooperative behavior have given
rise to mathematical models [22, 24, 27, 78, 80, 84], but the most likely hypothesis lies in the
end-to-end interactions of tropomyosin units [36, 64, 82]. Following [77], let us assume that the
configuration with two consecutive tropomyosin units in the same state (either N–N or P–P) is
energetically more favorable than the case of different state (either N–P or P–N ). If we denote by
∆Gnn the difference in free energy between the former and the latter case, by proceeding as above
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(see (22)), the transitions N −⇀↽− P in (26) are redefined as

BN
γnkTQ−−−−−⇀↽−−−−−
γ2−nkT

BP, UP
γ2−nkT−−−−−−⇀↽−−−−−−
γnkTQ/µ

UN , (31)

where we have defined γ := exp(2∆Gnn

kB T ) and n as the number of adjacent units in permissive state
(we have n = 0, 1, 2).

The steady-state solution of the Markov Chain model after the modification (31) (computed in
[77] by exploiting the mathematical analogy with the Ising model [17]) is well fitted by the sigmoidal
Hill function (30), thus showing a remarkably good agreement with experimental measurements.
Moreover, as for the Markov Chain model (26), the time evolution of the probability of each state
can be described by the FKE, a linear system of ODEs written in the form (27). However, because
of the dependence of the transition rates on the state of the neighboring units, one cannot write
an equation for the dynamics of a unit independently of the others, but the vector p(t) should
contain the joint probability of the state of all the units. If we consider a filament with N = 32
units, this would amount to 4N ' 2 · 1019 variables. Hence, when we face the numerical solution
of the FKE, more than 105 petabytes would be required just to store the state vector p(t) in the
computer memory, corresponding to more than 30000 times the storage capacity of the largest
supercomputer in the world (June 2020). This clearly hinders the possibility of numerically solving
the FKE associated with such models.

This situation is not uncommon: a mathematical model is available, although its practical interest
is very limited, because of the overwhelming computational cost of its numerical approximation. In
these cases, suitable modeling assumptions and/or mathematical tools are employed to derive an
approximate, yet computationally feasible, reduced mathematical model. In the case considered
in this section, in order to capture the cooperative effects without explicitly tracking the joint
probability of the regulatory units of the whole filament, several strategies have been proposed in
the literature. Among these, we mention Monte Carlo sampling techniques [94, 95] and the reduction
of the number of degrees of freedom obtained by grouping together suitable subsets of the states
[12, 53, 93]. Alternatively, in [79] the transition rates of (31) were expressed as nonlinear functions
of the calcium concentration, to phenomenologically reproduce the cooperative behavior. In [69],
we introduced a physically motivated assumption of conditional independence of the stochastic
processes associated with units that are far from each other along the filament, given the state of
the intermediate units. With this assumption, the FKE reduces to a nonlinear system of nearly 2000
ODEs, thus allowing to numerically approximate the solution of one heartbeat in just a few seconds
of computational time.

3.2 Modeling the crossbridge cycling

The long-standing hypothesis that muscle contraction was led by folding of elongated protein fila-
ments was challenged by the discovery that the filaments length remains constant during contraction
and that it is instead the mutual sliding between two families of filaments (thin and thick) what
makes the muscle contract [44, 47]. The latter theory, known as sliding filaments theory, was dis-
covered independently by two research teams: on one hand, the British biologist H. Huxley and
biophysicist J. Hanson, working at MIT; on the other, the British physiologist A. F. Huxley (Nobel
prize winner in 1963 for his work on the action potential) and the German physician R. Niederg-
erke, working at the University of Cambridge. The two teams decided to publish their work in two
consecutive articles in the same issue of Nature [44, 47].

The TOP500 Project, https://www.top500.org (URL consulted in date January 4th, 2020).
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The sliding of filaments is caused by the interaction between myosin and actin, which mutually
bind by forming the so-called crossbridges. Successively, the head of myosin rotates, pulling the thin
filaments and making the muscle fiber contract. The crossbridge is then broken, myosin reattaches at
a different position, and the cycle is repeated [9]. As we mentioned in Sec. 3.1, this interaction is only
possible when the tropomyosin regulating a given actin binding site is in permissive configuration.

In 1957, A. F. Huxley proposed a celebrated model [46] to describe this subcellular attachment-
detachment process. In this model, myosin is described as a two-state element (either attached or
detached), whose transition rates depend on the distance between actin and myosin, denoted by x
(see Fig. 2b). We remark that, when the crossbridge is attached, x corresponds to the distortion of
the myosin arm, modeled as a linear spring with stiffness kXB. By convention, x is positive when
attachment leads to a positive tension. Huxley considered a population of myosin and actin pairs,
so large that the probability of finding a pair at distance x is constant within an interval sufficiently
close to x = 0, and he defined n(x, t) the probability that a pair with distance x is attached at time
t. Under these hypotheses, he derived the following conservation law, for x ∈ R and t ≥ 0:

∂n(x, t)

∂t
− vhs

∂n(x, t)

∂x
= (1− n(x, t))f(x)− n(x, t)g(x), (32)

where f(x) and g(x) denote the attachment and detachment rates, respectively. In the Huxley
model, the probability density n(x, t) is convected by vhs = − 1

2
d
dtSL(t), that corresponds to the

sliding velocity of the thin filaments relative to the thick filaments (SL(t) denotes the sarcomere
length at time t). The terms at the right-hand side account for the formation and dissolution of
crossbridges. Since myosin arms are modeled as linear springs, each attached crossbridge generates
an active force of magnitude kXB x. Hence, denoting by ρAM the linear density of actin-myosin pairs
along a filament and by σhf the area density of pairs of interacting thin and thick filaments, the
tissue-level active tension Ta(t) can be obtained as

Ta(t) = σhf ρAM kXB

∫ +∞

−∞
xn(x, t)dx, (33)

by assuming an infinite length of the filaments. To fully define the model, we only need to assign
the transition functions f(x) and g(x). In [46], they are phenomenologically set as:

f(x) = f1
x

h
χ[0,h](x), g(x) = g2χ(−∞,0](x) + g1

x

h
χ(0,+∞)(x), (34)

where f1, g1 and g2 are positive constants and where χ is the indicator function. We remark
that attachment can occur only in the interval x ∈ [0, h], that is for positive displacement: such
symmetry-breaking feature is what makes the muscle contract. For x < 0 the detachment rate is
very high, in order to prevent the crossbridges to generate force in the opposite direction.

The Huxley model is able of reproducing several experimentally observed features of the phe-
nomenon of active force generation, including the so-called force-velocity relationship, discovered by
A. V. Hill, Nobel Prize winner for his work on the heat production and mechanical work in muscles
[37]. Specifically, the steady-state solution of the Huxley model for a constant shortening velocity
vhs is such that the active tension is a decreasing function of vhs. However, the Huxley models
fails in reproducing some other experimentally observed phenomena, such as the fast-scale response
(∼ 1 ms) to steps either in length or in tension. The reason is that these effects are associated to
phenomena (such as the rotation of the myosin heads) that are not explicitly represented in the
model. Several generalizations of the Huxley model have been proposed to reproduce also these phe-
nomena, by introducing additional elements to track to rotation of the myosin heads, represented
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either as a discrete variable [21, 45, 65, 83] or as a continuous one [13, 15, 16, 58, 59]. Nonetheless,
we remark that the difference between the classic Huxley models and its generalizations can only be
appreciated at tie scales much smaller than those of interest in organ-level simulations [70]. For this
reason, these refinements are typically disregarded in multiscale cardiac simulation.

3.3 Modeling the whole force generation process

Mathematical models of active force generation in the cardiac tissue include a description of both
the calcium-driven activation (see Sec. 3.1) and the crossbridge dynamics (see Sec. 3.2). These two
aspects are not independent: only the binding sites associated with a permissive unit are available
for crossbridge formation. As a first approximation, this can be taken into account by replacing, in
the Huxley model (32), the term (1−n(x, t)) with the term ([P](t)−n(x, t)), where [P](t) denotes the
overall permissivity (see Sec. 3.1). In [71, 75] a more rigorous coupling between the regulatory units
and the crossbridge dynamics is studied: the population of crossbridges is split into two families –
according to the permissivity state of the associated regulatory unit – and by introducing additional
terms accounting for the probability fluxes between the two families. Another model of the whole
force generation process is proposed in [51].

A different family is that of phenomenological models [42, 54, 55, 61, 79]: these do not derive
equations from first principle, rather they are built by fitting the measured data with simple laws, a
priori chosen by the modeler. The numerical solution of these models, typically expressed as systems
of a few ODEs, feature a lower computational cost than physics-based models, similarly to what
happens with cell membrane phenomenological models (Sec. 2.2).

In general terms, force generation models are written in the form

dzact

dt
= Φact

(
zact, [Ca2+]i, SL,

d SL

dt

)
, Ta = q(zact), (35)

where zact(t) ∈ RNact denotes a vector collecting the state variables associated with the dynamics
of regulatory units and crossbridges.

A family that cannot be strictly written in the form (35) is that of Markov Chain models [43,
94, 95], where the force generation mechanism is described by a unique Markov Chain, including
regulatory proteins and crossbridges. Due to the overwhelming dimension of the associated FKE,
their numerical approximation is typically based on Monte Carlo techniques.

4 Modeling cardiac mechanics

During its normal activity, the heart muscle undergoes large deformations, of the order of few
centimeters. To model the myocardium displacement, the strain of the tissue must be related to the
internal stress induced by cardiomyocytes’ contraction and to the pressure exerted by the blood onto
the endocardium. The conceptual framework to describe this phenomenon is continuum mechanics,
of which we recall basic notions in the following. For more details, we refer the interested readers
to, e.g., [5, 63].

4.1 Kinematics

We consider an open connected set Ω0 ⊂ Rd, where d = 3, representing the region of space occupied
by an elastic body at rest. We denote Ω0 as the reference (or undeformed) configuration. We
then consider a deformation map ϕ : Ω0 × [0, T ] → Rd, such that x = ϕ(X, t) (spatial coordinate)
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represents the position occupied by the point X ∈ Ω0 (material coordinate) at time t. Furthermore,
we define the displacement field d(X) := ϕ(X)−X and the deformation gradient tensor F(X, t) =
∇ϕ(X, t) = I + ∇d, ∇ being the gradient operator in the reference (material) coordinate and I
being the identity tensor. The time-dependent deformation map is assumed to be smooth enough
(typically one assumes twice continuously differentiablility, but weaker regularity can be assumed).
Moreover, the deformation map is assumed to be injective and orientation preserving, that is its
Jacobian satisfies J = det F > 0.

By denoting by Lin the vector space of the linear transformations from Rd into itself, let us
introduce the following subsets:

Lin+ := {A ∈ Lin s.t. det A > 0}, Orth+ := {A ∈ Lin+ s.t. AT = A−1}.

4.2 Stress tensors and the momentum equilibrium equation

By the Cauchy stress theorem [5, 63], based on the action-reaction principle (third Newton law),
there exists a second-order symmetric tensor (more precisely, a tensor field), the Cauchy stress tensor
T, such that the internal stress across a surface A intersecting the body in the current configuration
(possibly belonging to its boundary) equals

t =

∫
A

Tn dA =

∫
A0

JTF−TN dA0 =

∫
A0

PN dA0, (36)

where n denotes the unit vector normal to the surface, being A0 the counter-image of A with respect
to the deformation map ϕ(·, t) and P := JTF−T the first Piola-Kirchhoff stress tensor (or simply
Piola stress tensor). By the Newton second law, the time derivative of the momentum associated
with the mass contained in a volume V0 ⊂ Ω0 is balanced by the total force acting on it, given by
the sum of internal stresses and of an external distributed load h (force per unit volume):

d

dt

∫
V0

ρ
∂d

∂t
dV0 =

∫
V0

h dV0 −
∫
∂V0

PN dA0, (37)

where ρ is the body density. By the divergence theorem and by the arbitrariness of V0, the balance
of momentum equation for the continuum body Ω0 reads

ρ
∂2d

∂t2
−∇ ·P = h in Ω0 × (0, T ]. (38)

4.3 Hyperelasticity

To complete the model, (38) must be supplemented with suitable initial and boundary conditions
and with a material constitutive law, that is to say a relationship linking the state of strain of
the body with its state of stress. The constitutive law can possibly depend on the rate of strain
(e.g. in the case of visco-elastic materials), but for simplicity we consider only the case of elastic
materials, thus assuming that the stress tensors can be written in terms of the strain tensor as, i.e.,
T = TF(F) and P = PF(F). In particular, we focus on hyperelastic materials, characterized by a
strain energy density W, such that

∫
Ω0
W(X)dV0 gives the total elastic energy stored by the body

as a consequence of the deformation, where W(X) =WF(F(X)) for some WF : Lin+ → R ∪ {+∞}.
By definition, hyperelastic materials are such that

P =
∂W
∂F

. (39)
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Not every material whose Piola stress tensor can be written as in (39) is physically meaningful. Ad-
ditionally, some minimal requirements should be satisfied. First, by requiring the material response
to be independent of the frame of reference used for its description, we get the property stated in
the following definition.

Definition 1. We say that a constitutive law is frame-indifferent if the following equivalent proper-
ties hold for any Q ∈ Orth+,F ∈ Lin+:

TF(QF) = Q TF(F) QT , PF(QF) = Q PF(F), WF(QF) =WF(F).

Moreover, a reasonable assumption is that an increase in a component of strain should yield
an increase in the corresponding component of stress (see e.g. [5]). Such order-preserving (or
monotonicity) property can be stated in different forms. Let us consider the following definitions.

Definition 2. We say that the constitutive relationship PF : Lin+ → Lin is strongly order-preserving
if

H :
∂PF

∂F
H > 0 (40)

holds for any F ∈ Lin+ and H ∈ Lin. Moreover, we say that it is rank-one order-preserving if (40)
holds for any F ∈ Lin+ and H of rank one. Finally we say that it is non-strictly strongly order-
preserving or non-strictly rank-one order-preserving, if the corresponding non-strict inequalities (≥)
hold.

We remark that a second order tensor H is of rank one whenever it can be written as H = a⊗b for
some a,b ∈ Rd. For hyperelastic materials with twice differentiable strain energy density, this strong
order-preserving property is equivalent to the convexity of the strain energy density itself. However,
this requirement is too strong to develop a physically meaningful theory of elasticity. First, it is
incompatible with frame-indifference [5]. Moreover, it entails uniqueness of the equilibrium under
any given load, even if it may neglect physical admissible solutions, as those featuring buckling.
Conversely, the rank-one order-preserving property circumvents the above mentioned drawbacks
and, additionally, such materials can be characterized by traveling pressure waves with real velocity
[5].

Besides the strong and the rank-one order-preserving properties, intermediate notions have been
proposed in the literature, such as that of quasi-convexity and of polyconvexity of the strain energy
density, which, together with suitable growth and regularity conditions, allows proving existence of
equilibria [6, 60]. The latter results, due to J. Ball, are based on the Direct Method of Calculus of
Variation [19]. We notice that quasi-convexity and polyconvexity are stronger conditions than the
rank-one order-preserving, but weaker than the strong order-preserving property.

4.4 Cardiac constitutive relationships

The passive mechanical response of the heart is significantly anisotropic, due to the presence of
fibers. This property is formalized by introducing the material-symmetry group as the class of
rotations that do not affect the material response (see [5] for more details). Transversely isotropic
materials, for instance, have a symmetric response in the plane orthogonal to a preferential direction,
while orthotropic material have three mutually orthogonal preferential directions. Many transversely
isotropic or orthotropic constitutive laws have been proposed in the literature to describe the cardiac
tissue (see e.g. [34, 35, 41, 91]), accounting for the different elastic response along the directions f0,
s0 and n0. These energies typically feature an exponential dependence on the strain to model the

15



large stiffening of the tissue when it is over-stretched. As an example, the material model of [91] is
defined by the strain energy density function

W =
C

2

(
eQ − 1

)
+
B

2
(J − 1) log J, (41)

where

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + 2bfsE

2
fs + 2bfnE

2
fn + 2bsnE

2
sn,

and where Eab = E a0 · b0, for a, b ∈ {f, s,n}, are the entries of the Green-Saint Venant tensor
E = 1

2 (FTF − I) in the (f0, s0,n0) frame of reference. The constant B > 0 is called bulk modulus
and weighs the volumetric term 1

2 (J−1) log J by penalizing those deformations that would lead to a
change of the volume occupied by the tissue (J 6= 1). The latter term leads to a quasi-incompressible
formulation, as little volume variations are allowed. The strongly incompressible formulation is an
alternative, in which the balance of momentum equation (38) is coupled with the constraint J = 1,
and the Piola stress tensor is redefined as P = ∂W

∂F − p J F−T , thus yielding a saddle-point problem,
wherein the pressure p acts as Lagrange multiplier.

4.5 Cardiac active mechanics

As a metter of fact, the cardiac tissue is an active material. This means that its internal stress is not
uniquely identified by strain, but rather it can be produced by microscopic mechanisms that turn the
chemical energy of ATP into mechanical work. The models presented in Sec. 3 describe this process
at the microscale and allow to obtain Ta, a scalar that represents the magnitude of active force per
unit area. This quantity should be related to the macroscopic balance of momentum equation (38),
by writing the Piola stress tensor as

P = Ppass + Pact, (42)

namely as the sum of a passive term (given by Ppass = ∂W
∂F ) and an active term Pact, that must be

consitutively defined by suitably upscaling the microscopically generated stress. Alternative to the
active stress approach (42) is the active strain one, wherein activation is modeled as a prescribed
strain [2, 3]. in this paper, we only consider the active stress approach, which is by far the most
used in the literature.

If we suppose that cardiac muscle fibers, aligned along f0, generate a force per unit area of
magnitude Ta, directed as the fibers direction in the current configuration f := Ff0/|Ff0|, we get

Pact = Ta
Ff0 ⊗ f0
|Ff0|

. (43)

In an alternative upscaling procedure, proposed in [76], the active Piola stress tensor is derived
by means of an energetic analysis of the microscopic force generation processes. Specifically, it is
obtained by differentiating with respect to F an energy density function associated with attached
crossbridges, thus leading to

Pact =
(
T 0

a +Kaλ
) Ff0 ⊗ f0
|Ff0|

, (44)

where λ = |Ff0| − 1 is the fibers stretch, T 0
a denotes the active tension for λ = 0 and Ka ≥ 0 is

the active stiffness, i.e. the homogenized overall stiffness of attached crossbridges. Eq. (43) is in
the form of (44) as Ta = T 0

a + Kaλ gives the active tension per unit area in the fibers direction.

16



However, in (44) the dependence of the microscopic active force on the tissue stretch is explicit, thus
accounting for the fact that crossbridges are modeled as microscopic springs. We remark that, both
in (43) and (44), the active part of the Piola stress tensor can be written as

Pact = Pact
F (F) = ψ(λ)

Ff0 ⊗ f0
1 + λ

, (45)

for a suitable function ψ(λ).
We have the following result, whose simple proof is left to the reader.

Proposition 1. Any constitutive law in the form (45) is frame-indifferent.

In virtue of the additive decomposition (42), if the passive constitutive behavior of the material
is wither strongly or rank-one order-preserving, then it is sufficient for the total Piola stress tensor
to fulfill the same notion that the active part satisfies its non-strict counterparts. Motivated by this
observation, we study the order-preserving properties of the active Piola stress tensors belonging to
the family of (45). Such properties are fully characterized by the following result.

Proposition 2. Let us consider the Piola stress tensor (45), where ψ is a differentiable function.
Then, if

ψ(λ) ≥ 0, ψ′(λ) ≥ 0 ∀λ ∈ (−1,+∞), (46)

Pact
F is non-strictly rank-one order-preserving and is guaranteed to be non-strictly strongly order-

preserving.

Proof. First, we notice that

H :
∂Pact

F

∂F
H =

ψ(λ)

1 + λ
|Hf0|2 +

ψ′(λ)(1 + λ)− ψ(λ)

(1 + λ)3
(Ff0 ·Hf0)

2
.

Let us suppose that the non-strict rank-one order-preserving property holds. Let us first consider
H = a ⊗ b, where b = f0 and a is a unit vector orthogonal to Ff0. Then, |Hf0|2 = |a|2 = 1 and
Ff0 ·Hf0 = Ff0 · a = 0 and the sign of the result is that of ψ(λ). Thus ψ(λ) ≥ 0 is a necessary
condition for the non-strict rank-one order-preserving property. On the other hand, let us take
b = f0 and a = Ff0. In this case Hf0 = Ff0 and the result is ψ′(λ)(1 + λ)2, whose sign is that of
ψ′(λ). Thus ψ′(λ) ≥ 0 is a necessary condition for the non-strict rank-one order-preserving property
too.

To show the other implication, we suppose that the inequalities of (46) are satisfied and we
consider two cases. First, if ψ′(λ)(1 + λ) − ψ(λ) ≥ 0, under the hypothesis ψ(λ) ≥ 0 all the terms

are nonnegative, giving the thesis. Instead, if the ψ′(λ)(1 + λ) − ψ(λ) < 0, since (Ff0 ·Hf0)
2 ≤

|Ff0|2|Hf0|2, we have

H :
∂Pact

F

∂F
H ≥ ψ(λ)

1 + λ
|Hf0|2 +

ψ′(λ)(1 + λ)− ψ(λ)

(1 + λ)3
|Ff0|2|Hf0|2 = ψ′(λ)|Hf0|2 ≥ 0,

whence the thesis.

Hence, (46) are also necessary and sufficient conditions for quasi-convexity, that allows to prove
existence of equilibria, thanks to the results of J. Ball [6, 19]. As simple corollaries of Prop. 2, we can
derive conditions for which the Piola stress tensors (43) and (44) are compliant with order-preserving
properties. In the case of (43), we have ϕ(λ) = Ta, that is a constant. Therefore, the Piola tensor
is strongly order-preserving whenever Ta ≥ 0. Conversely, the active Piola tensor (44) satisfies the
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order-preserving property just on the set of deformation F ∈ Lin+ such that ψ(λ) = T 0
a +Kaλ ≥ 0.

Indeed, we have ψ′(λ) = Ka ≥ 0 by definition. As noticed above, the quantity (T 0
a +Kaλ) corresponds

to the generated active force per unit area. Therefore, both (43) and (44) are non-strictly strongly
order-preserving as soon as the generated tension is nonnegative. We notice that, for physical
meaningfulness, this is always true (unless the tissue is quickly compressed by an external agent,
leading to a negative average elongation of attached crossbridges; however, this never happens in a
beating heart). In conclusion, both models (43) and (44) are suitable for cardiac modeling, as they
satisfy both the frame-indifference and the strain-stress monotonicity requirements.

5 Modeling blood circulation

The four heart cavities are filled by blood. A further mathematical model should then ideally be
used to describe the complex blood dynamics during the different phases of the heartbeat. Blood is
a suspension of particles (red blood cells, leukocytes, and platelets) in a fluid bed, the plasma. Its
behavior in large arterial vessels as well as in the heart chambers, however, can be assimilated to that
of a continuum viscous incompressible flow, that can be modeled by means of the classical Navier-
Stokes equations. The intricacy here is due to the fact that the mathematical domain wherein these
equations have to be solved is changing in time according to a dynamics that is itself unknown. Take
for instance the case of the left ventricle. The internal cavity represents the mathematical domain
for the Navier-Stokes equations. Its boundaries can be regarded as given by the endocardium surface
(i.e.the internal membrane of the myocardium), and the cross areas of the two valves that regulate
the inflow and outflow of the blood in the left ventricle: the mitral valve, connecting left ventricle and
left atrium, and the aortic valve, whose opening allows blood to be ejected into the ascending aorta.
The dynamical change of the endocardium during the heartbeat is governed by the deformation
of the myocardium, and thus is a result of the electromechanical model that we have derived in
the previous section. More precisely, what really governs the blood dynamics is the result of the
physical interaction between the two models, the fluid dynamics one and the electromechanical model
(actually, it is the mechanical part that matters here). From a mathematical standpoint, this is a
fluid-structure interaction (FSI) problem: the fluid is the blood, the structure is represented by the
myocardium. Its mathematical conceptualization is as follows: at any time t, in one domain (the
volume occupied by the fluid at that time) we solve the fluid dynamics equations, in the adjoining
domain (the one corresponding to the position occupied by the myocardium at the same time t)
we solve the mechanical problem, while at their interface we need to enforce appropriate coupling
conditions. The latter represent the continuity of the velocity fields (this is the kinematic condition)
and the equilibrium of dynamical forces (this is the dynamic condition). See [67].

Solving FSI problems numerically is very demanding in terms of computational resources. As
a matter of fact, since fluid dynamics equations are typically formulated in an Eulerian frame of
reference and solid mechanics equations in a Lagrangian setting, their coupling needs to be accom-
modated appriopriately. One possible strategy in this respect is to adopt a so-called ALE (arbitrary
Lagrangian Eulerian) viewpoint, according to which the Navier-Stokes equations are modified by
replacing the temporal derivative of the velocity (the acceleration term in the momentum equations)
by a time derivative taken in a reference domain (such as the one corresponding at the fluid at the
end diastolic phase) plus a new convective velocity that represents the rate of deformation of the
fluid domain itself. This latter term introduces in fact a further unknown in the coupled system.
Its determination can be achieved via the solution of a further PDE (e.g. a vector Laplacian) that
allows the reconstruction of the domain transformation map in terms of the interface displacement
[29].
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With the aim of reducing the computational burden of FSI coupled problems, several strategies
can be envisaged. The perhaps cheapest one consists in barely dropping the fluid equations and
using as their surrogate the “force” that the fluid exerts on the solid (the myocardium) at the
endocardium interface. This force in fact represents a Neumann boundary condition that must be
supplemented to the balance of momentum equation (38). On its end, the blood dynamics in the
chambers is tightly related to that of the whole vascular network. This calls for the development of
models that are suitable to describe the blood dynamics of the entire circulatory system. Several
blood circulation models, featuring different degrees of accuracy, have been proposed. They range
from three-dimensional FSI models to be used for large arteries [67, 85, 86], to zero-dimensional
models (whose variables only depend on time, but not on spatial coordinates) [67]. See [28, 68] for
a thorough review on the coupling between 3D, 1D and 0D blood dynamics models. In the latter
family of models, also known as lumped parameters models, the circulatory system is split into a
finite number of compartments and an average pressure and an average flow rate is associated with
each of them. The corresponding equations are derived by the principles of conservation of mass
and momentum to be satisfied in every compartment. Lumped parameter models may describe the
whole closed-loop, cardio-circulatory system [10, 39, 73] models or they may be limited to a subset
of the circulatory systems [14, 32] In general terms, they are written as systems of ODEs, in the
form

dzcirc

dt
= Φcirc (zcirc, t) , (47)

where the vector zcirc(t) ∈ RNcirc collects the state variables (pressure and volumes). The right-hand
side may depend on the time variable, to account for the different phases of the cardiac cycle.

An intermediate class of models for vessel circulation consists of 1D models, in which only the
main direction of blood flow is explicitly represented and the equations are mediated along the
orthogonal cross section. For the sake of space, 3D and 1D circulation models will not be further
discussed in this paper.

6 A fully coupled cardiac electromechanics model

In Secs. 2, 3, 4 and 5 we presented mathematical models describing different physical phenomena
occurring, at different spatio-temporal scales along each heartbeat. These phenomena, however,
cannot however be understood independently of one another. Indeed they are interconnected by
means of a complex and fascinating web of interactions, feedback loops and self-regulation mecha-
nisms aimed at preserving the physiological working regime of the heart and at responding in the
most advantageous manner to external stimuli. In Fig. 3 the physical quantities at the basis of
these interactions are schematically represented. In mathematical terms, in order to describe the
whole cardiac function, the models describing the different physics must be coupled to yield a unique
system of PDEs and ODEs.

Let us consider for simplicity a single chamber, namely the left ventricle. Let Ω0 ⊂ R3 be the
region of space occupied by the left ventricle at rest (e.g. at the end of the diastole), whose boundary

is split into three mutually disconneted parts, namely Γendo
0 , Γepi

0 and Γbase
0 , denoting endocardium,

epicardium and ventricular base, respectively (see Fig. 3). Then, the fully coupled electromechanical
problem consists in finding

v : Ω0 × [0, T ]→ R, d : Ω0 × [0, T ]→ R3, zion : Ω0 × [0, T ]→ RNion ,

zact : Ω0 × [0, T ]→ RNact , zcirc : [0, T ]→ RNcirc , pLV : [0, T ]→ R
(48)

19



such that, we have:

χmCm
∂v

∂t
−∇ ·

(
JF−1DF−T ∇v

)
+ χmIion(v, zion) = Iapp in Ω0 × (0, T ]

∂zion

∂t
= Φion(v, zion) in Ω0 × (0, T ](

JF−1DF−T ∇v
)
·N = 0 on ∂Ω0 × (0, T ]

∂zact

∂t
= Φact

(
zact, [Ca2+]i(zion), SL(d),

∂SL(d)

∂t

)
in Ω0 × (0, T ]

ρ
∂2d

∂t2
−∇ ·P = 0, P =

∂W
∂F

+ Ta(zact)
Ff0 ⊗ f0
|Ff0|

in Ω0 × (0, T ]

PN +Kepid + Cepi
∂d

∂t
= 0 on Γepi

0 × (0, T ]

PN = −pLVJF−TN on Γendo
0 × (0, T ]

PN = pLV |JF−TN|vbase(t) on Γbase
0 × (0, T ]

dzcirc

dt
= Φcirc (zcirc, pLV, t) in (0, T ]

V3D
LV (d) = V0D

LV (zcirc) in (0, T ]

(49)

with initial conditions (in Ω0 × {0})

v = v0, d = d0,
∂d

∂t
= 0, zion = zion,0, zact = zact,0, zcirc = zcirc,0. (50)

In (48)–(50), the electrophysiological activity is described through the monodomain equations. Since
the displacement of the myocardium (described through the variable d) affects the conductivity prop-
erties of the tissue (mechano-electrical feedback), Eq. (14) is rephrased in the deformed configuration
as

D = σf
Ff0 ⊗ Ff0
|Ff0|2

+ σs
Fs0 ⊗ Fs0

|Fs0|2
+ σn

Fn0 ⊗ Fn0

|Fn0|2
; (51)

then, the pull-back of D in the reference configuration Ω0 is replaced into (18).
The calcium concentration [Ca2+]i at each point of the computational domain and at each time

t (encoded in the state variable of the ionic model, i.e. zion) is an input for the force generation
model. The latter is solved at each point in Ω0. To provide the missing input to the latter model,
namely the sarcomere length and its time derivative, we observe that the elongation of sarcomeres
can be obtained as SL(d) = SL0|Ff0|, where SL0 is the reference sarcomere length (also known as
sarcomere slack length.

The force generation model, on its turn, provides the magnitude of Ta, the active force generated
at a given point of Ω0 and at a given time t ∈ [0, T ], which is employed in the equation describing
the mechanics of the myocardium. The associated boundary conditions model the interaction of
the cardiac muscle tissue with the surrounding tissue. Specifically, the boundary condition enforced
on Γendo

0 models the stress exerted by the blood contained in the ventricle, whose pressure – corre-
sponding to the variable pLV – is assumed constant in space. Conversely, the boundary condition
imposed on Γepi

0 encodes an elastic (Kepi) and viscous (Cepi) interaction with the pericardium, a
thin membrane enclosing the heart [32]. Finally, on the ventricular base we enforce the so-called
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Figure 3: Cardiac electromechanics: computational domain Ω0 and corresponding boundaries Γepi
0 ,

Γendo
0 , Γbase

0 (left); core models and cpuling quantities (right).

energy-consistent boundary condition, originally proposed in [72], where we have defined the vector

vbase(t) =

∫
Γendo
0

JF−TNdΓ0∫
Γbase
0
|JF−TN|dΓ0

.

This condition encodes the effects of the muscle tissue which is not explicitly represented by the
computational domain, in an energetically consistent manner.

To couple the three-dimensional model of cardiac electromechanics with the zero-dimensional
model of blood circulation, we require that the volume enclosed by the ventricular cavity when the
domain Ω0 is moved by the displacement d – denoted by V3D

LV (d) – is equal to the blood volume
contained by the left ventricle within the circulation model – denoted by V0D

LV (zcirc). The pres-
sure variable pLV plays the role of Lagrange multiplier, associated with the condition of geometric
compatibility V3D

LV (d) = V0D
LV (zcirc).

7 Finite Element approximation

Let us introduce a hexaedral mesh Th (tetrahedral meshes are also very common) over the com-
putational domain Ω0 (the left ventricle), where h stands as the maximum diameter of each mesh
element K ∈ Th. Then, let us introduce the set of tensor-products of polynomials with degree
smaller than or equal to r ≥ 1 over the mesh element K ∈ Th, say Q̃r(K), which are obtained as
images on K of the space Qr(Kref) of functions that are polynomials of degree r in each cartesian
coordinate over the reference hexaedron Kref. This allows building the finite dimensional, FE space
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Xr
h =

{
vh ∈ C0(Ω0) : vh|K ∈ Q̃r(K) ∀K ∈ Th

}
. For the sake of simplicity, we consider in this

paper the case r = 1, leading to the so called “linear” FE method, for which degrees of freedom
are located at the vertexes of the hexaedra; higher order FE approximations (r ≥ 2) are however
customary in several applications, including cardiac mechanics and electrophysiology. We indicate
with Nh = dim

(
X1
h

)
the dimension of the former FE space, which is endowed with a Lagrangian

FE basis over Th, say {ϕi}Nh
i=1.

In view of the FE approximation of the EM model (48)–(50), we indicate with vh(t) ≈ v(t) the

semidiscrete FE approximation of the transmembrane potential v(t), that is vh(X, t) =
∑Nh

i=1 ϕi(X) vi,h(t),

where vh(t) = (v1,h(t), . . . , vNh,h(t))
T ∈ RNh for all t ∈ [0, T ]. Similarly, for the displacement vari-

able, we have dh(t) ≈ d(t), where for this vector field, we need to introduce the vector-valued

Lagrangian basis {ϕi}
Nh

i=1 of the FE space
[
X1
h

]3
. Correspondingly, we express dh(t) through the

vector of time dependent coefficients dh(t) = (d1,h(t), . . . ,dNh,h(t))
T ∈ R3Nh for all t ∈ [0, T ].

The ionic and active force generation models in (48)–(50) are formally described by sets of ODEs,
whose variables zion and zact are defined at every point X ∈ Ω0. Following the FE approximation
of the potential and displacement variables, we can similarly introduce the corresponding FE ap-
proximations zion,h(t) ∈ [X1

h]Nion and zact,h(t) ∈ [X1
h]Nact , with the notation being understood.

Thus, the former can be represented, by introducing the vector-valued Lagrangian basis {ϕi}
Nh

i=1

of the FE spaces
[
X1
h

]Nion
and

[
X1
h

]Nact
, through vectors of time dependent coefficients zion,h(t) =

(zion,1,h(t), . . . , zion,Nh,h(t))
T ∈ RNionNh and zact,h(t) = (zact,1,h(t), . . . , zact,Nh,h(t))

T ∈ RNactNh ,
respectively.

We have now all the notions in place to formulate the Galerkin FE method, which is grounded on
the weak formulation of the problem (48)–(50). The fully coupled semidiscrete EM problem consists
in finding for every t ∈ [0, T ]

vh(t) ∈ X1
h, dh(t) ∈

[
X1
h

]3
, zion,h(t) ∈

[
X1
h

]Nion
,

zact,h(t) ∈
[
X1
h

]Nact
, zcirc,h(t) ∈ RNcirc , pLV,h(t) ∈ R

(52)

such that, we have, in (0, T ]

∫
Ω0

χmCmv̇h wh dΩ0 +

∫
Ω0

(
JhF

−1
h DF−Th ∇vh

)
· ∇wh dΩ0

+

∫
Ω0

χmIion(vh, zion,h)wh dΩ0 =

∫
Ω0

Iapp wh dΩ0∫
Ω0

ρd̈h ·wh dΩ0 +

∫
Ω0

Ph : ∇wh dΩ0 +

∫
Γepi
0

(
Kepidh + Cepiḋh

)
·wh dΓ0

= −pLV,h

∫
Γendo
0

JhF
−T
h N ·wh dΓ0,

Ph =
∂W
∂F

(dh) + Ta(zact,h)
Fhf0 ⊗ f0
|Fhf0|∫

Ω0

żion,h ·wion,h dΩ0 =

∫
Ω0

Φion(vh, zion,h) ·wion,h dΩ0∫
Ω0

żact,h ·wact,h dΩ0

=

∫
Ω0

Φact

(
zact,h, [Ca2+]i(zion,h), SL(dh), ˙SL(dh)

)
·wact,h dΩ0

(53)
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for all the test functions wh ∈ X1
h, wh ∈ [X1

h]3, wion,h ∈ [X1
h]Nion and wact,h ∈ [X1

h]Nact , and coupled
with the following equations in (0, T ]

żcirc,h = Φcirc (zcirc,h, pLV,h, t) , V3D
LV (dh) = V0D

LV (zcirc,h) (54)

with initial conditions (in Ω0 × {0})

vh = v0,h, dh = d0,h, ḋh = 0, zion,h = zion,0,h,

zact,h = zact,0,h, zcirc,h = zcirc,0.
(55)

The initial data for the potential is v0,h =
∑Nh

i=1 ϕi (v0, ϕi)L2(Ω0), with the other ones being defined
similarly. We remark that zcirc,h and pLV,h do not represent the FE approximations of zcirc and
pLV, respectively; rather, the subscript h indicates that these variables are solutions of the coupled
semidiscrete problem that accounts for FE approximations of other variables. Finally, we recall that
Fh = I +∇dh and Jh = det (Fh) in (53).

The algebraic counterpart of the semidiscrete problem (52)–(55) is a system of ODEs. It is
obtained by selecting test functions equal to the basis functions of the finite-dimensional function
spaces, e.g., wh = ϕi and wi = ϕi, and then by performing integrals in the weak formulation
through suitable quadrature formulas. The latter are typically Gauss–Legendre formulas over each
mesh element K ∈ Th; see, e.g., [66]. As the ionic and active force generation models were originally
sets of ODEs, their FE approximation and assembly of FE matrices and vectors can be circumvented
by directly placing the degrees of freedom at the Nh vertexes of the mesh Th that yields the FE
space X1

h. In this manner, the algebraic version of the fully coupled semidiscrete EM problem
(52)–(55) consists in finding for every t ∈ [0, T ]

vh(t) ∈ RNh , dh(t) ∈ R3Nh , zion,h(t) ∈ RNionNh ,

zact,h(t) ∈ RNactNh , zcirc,h(t) ∈ RNcirc , pLV,h(t) ∈ R
(56)

such that, we have, in (0, T ]

M v̇h +K(dh) vh + Iion

(
vh, zion,h

)
= Iapp

Msd̈h + F ḋh + G dh + S(dh, zact,h) = −pLV,h p(dh)

żion,h = Φion

(
vh, zion,h

)
żact,h = Φact

(
zact,h, zion,h,dh, ḋh

)
żcirc,h = Φcirc (zcirc,h, pLV,h, t)

V3D
LV (dh) = V0D

LV (zcirc,h)

(57)

with the corresponding initial conditions (in Ω0 × {0}). By referring to Eq. (57), we limit to define,
e.g.,

(M)i,j =

∫
Ω0

ϕj ϕi dΩ0, (K (dh))i,j =

∫
Ω0

(
JhF

−1
h DF−Th ∇ϕj

)
· ∇ϕi dΩ0,(

Iion

(
vh, zion,h

))
i

=

∫
Ω0

χmIion(vh, zion,h)ϕi dΩ0,
(
Iapp

)
i

=

∫
Ω0

Iapp ϕi dΩ0,

by leaving the rest of the notation of this algebraic formulation understood. Regarding the nonlinear
term Iion

(
vh, zion,h

)
, a popular manner to speedup its assembly is using the so-called ionic current
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interpolation (ICI) approach [52]. ICI consists of the approximation

(
Iion

(
vh, zion,h

))
i
≈
∑
K∈Th

Nq∑
q=1

Nh∑
j=1

χmIion(vj,h, zion,j,h)ϕj(X
K
q )ϕi(X

K
q )ωKq ,

where {XK
q }

Nq

q=1 are the Nq quadrature nodes associated to the mesh element K ∈ Th and {ωKq }
Nq

k=1

are the corresponding quadrature weights.

8 Time discretization

We consider now the time discretization of the semidiscrete EM problem (56)–(57) in its algebraic
formulation. Let us partition for simplicity the time interval [0, T ] in Nt time instances tn = n∆t,
for n = 0, . . . , Nt, where the time step size is ∆t = T

Nt
. To fix the notation, let us consider,

e.g., the transmembrane potential v, for which we indicate with vnh = (vn1,h, . . . , v
n
Nh,h

)T ∈ RNh

the approximation of vh(tn) for all n = 0, . . . , Nt; in this manner, the combined FE and time

discretizations applied to v will yield the approximation v(tn) ≈
∑Nh

i=1 ϕi v
n
i,h. Similar notations

hold for the other variables.
We consider first the full discretization, both in space and time, of the EM problem (48)–(50), by

using first order accurate backward differentiation formulas (BDF) – a family of multistep methods
for the approximation of ODEs (see [66]) – by starting from the semidiscrete fully coupled EM
problem (56)–(57). This yields a fully coupled EM problem in the so called monolithic formulation,
which consists in finding, for every n = 0, . . . , Nt − 1

vn+1
h ∈ RNh , dn+1

h ∈ R3Nh , zn+1
ion,h ∈ RNionNh ,

zn+1
act,h ∈ RNactNh , zn+1

circ,h ∈ RNcirc , pn+1
LV,h ∈ R

(58)

such that, we have

(
1

∆t
M+K

(
dn+1
h

))
vn+1
h + Iion

(
vn+1
h , zn+1

ion,h

)
=

1

∆t
Mvnh + In+1

app(
1

∆t2
Ms +

1

∆t
F + G

)
dn+1
h + S

(
dn+1
h , zn+1

act,h

)
+ pn+1

LV,h p
(
dn+1
h

)
=

(
2

∆t2
Ms +

1

∆t
F
)

dnh −
1

∆t2
Ms dn−1

h

zn+1
ion,h −∆tΦion

(
vn+1
h , zn+1

ion,h

)
= znion,h

zn+1
act,h −∆tΦact

(
zn+1

act,h, z
n+1
ion,h,d

n+1
h ,

dn+1
h − dnh

∆t

)
= znact,h

zn+1
circ,h −∆tΦcirc

(
zn+1

circ,h, p
n+1
LV,h, t

n+1
)

= zncirc,h

V3D
LV (dn+1

h ) = V0D
LV (zn+1

circ,h)

(59)

with the corresponding initial conditions. We remark that the time discretization schemes used for
the former fully discrete EM formulation, written within the monolithic approach, yields a system of
nonlinear algebraic equations to be solved at each time instance tn; see, e.g., [32]. As anticipated, this
calls for repeatedly using ad hoc methods like the Newton method ([66]), which at each iteration calls
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for assembling Jacobian matrices, other than for solving gigantic, ill-conditioned linear systems. The
computational burden associated with (58)–(59) calls for using the so called partitioned or segregated
approaches; see, e.g., [20, 31].

We illustrate here an example of a partitioned approach applied to the cardiac EM model (48)–
(50) and stemming from the semidiscrete problem (56)–(57). The algorithm hereby proposed is
inspired by [74] and consists in sequentially solving the following algebraic problems, for every
n = 0, . . . , Nt − 1, as follows.

• Ionic model. Solve the algebraic problem for the ionic model by means of the implicit Euler
method (equivalent to a first order accurate BDF method) as

zn+1
ion,h −∆tΦion

(
vnh, z

n+1
ion,h

)
= znion,h, (60)

where vnh is given; the former non linear problem is solved by means of the Newton method.

• Monodomain equation. Solve the problem for the transmembrane potential by means of a
semi-implicit scheme associated to the first order accurate BDF method as(

1

∆t
M+K (dnh) +

∂

∂v
Iion

(
vnh, z

n+1
ion,h

))
vn+1
h

=

(
1

∆t
M+

∂

∂v
Iion

(
vnh, z

n+1
ion,h

))
vnh − Iion

(
vnh, z

n+1
ion,h

)
+ In+1

app ,

(61)

where dnh and zn+1
ion,h are given, and additionally the following first order approximation Iion

(
vn+1
h , zn+1

ion,h

)
≈

Iion

(
vnh, z

n+1
ion,h

)
+ ∂

∂v Iion

(
vnh, z

n+1
ion,h

) (
vn+1
h − vnh

)
has been used.

• Active force generation. Solve the algebraic problem for active force generation by means of
the explicit Euler method

zn+1
act,h −∆tΦact

(
znact,h, z

n
ion,h,d

n
h,

dnh − dn−1
h

∆t

)
= znact,h, (62)

given dnh, dn−1
h , and zn+1

ion,h.

• Circulation model. Solve the algebraic circulation model by means of the fourth order accurate,
explicit Runge-Kutta method

zn+1
circ,h = zncirc,h +

∆t

6
(K1 + 2K2 + 2K3 + K4) (63)

with

K1 = Φcirc

(
zncirc,h, p

n
LV,h, t

n
)
,

K2 = Φcirc

(
zncirc,h +

∆t

2
K1, p

n
LV,h, t

n +
∆t

2

)
,

K3 = Φcirc

(
zncirc,h +

∆t

2
K2, p

n
LV,h, t

n +
∆t

2

)
,

K4 = Φcirc

(
zncirc,h + ∆tK3, p

n
LV,h, t

n+1
)
,

(64)

given pnLV,h.
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f0 s0 n0

Figure 4: Representation of the fields f0, s0 and n0, representing the fibers, sheets and cross-fibers
directions.

• Tissue mechanics. Solve the following saddle-point, implicit problem for the displacement and
pressure variables

(
1

∆t2
Ms +

1

∆t
F + G

)
dn+1
h + S

(
dn+1
h , zn+1

act,h

)
+ pn+1

LV,h p
(
dn+1
h

)
=

(
2

∆t2
Ms +

1

∆t
F
)

dnh −
1

∆t2
Ms dn−1

h

V3D
LV (dn+1

h ) = V0D
LV (zn+1

circ,h)

(65)

given zn+1
act,h and zn+1

circ,h, by using the quasi-Newton strategy outlined in [72].

9 Numerical results

In this section we show the results of a numerical simulation obtained through the methods presented
in Secs. 7-8. Specifically, we here employ a FE discretization in space and a segregated scheme for
the numerical coupling of fully discrete core models for which the time discretization is realized by
means of BDF schemes. Further details on the numerical schemes employed to obtain the results
here presented can be found in [74]. The numerical simulation presented in this section has been car-
ried out by means of the high-performance C++ library lifex (https://lifex.gitlab.io/lifex).
To meet the significant demand of computational resources associated with the numerical approxi-
mation of multiscale and multiphysics electromechanics, we rely on the high-performance computing
resources available at MOX, Politecnico di Milano (48 Intel Xeon ES-2640 CPUs), exploiting the
parallel implementation of the lifex code.

We consider a computational domain Ω0 representing a realistic human left ventricle. The
geometry here employed is taken from the Zygote heart model [96], representing an average 21 years
old healthy caucasian man. We generate the computational mesh using vmtk (https://www.vmtk.
org)[4] and the recently proposed tools for cardiac mesh generation [25]. This computational mesh
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t = 0.02 s t = 0.04 s t = 0.06 s t = 0.08 s t = 0.10 s

Figure 5: Representation of the intracellular calcium concentration ()[Ca2+]i) in the domain Ω0 at
different times t.

Th, diaplayed in Fig. 3, is made of nearly 350 · 103 vertices. For the time discretization we employ a
time step size ∆t = 2 · 10−4 s.

The electromechanical model described in this paper requires the definition of the fibers, sheets
and cross-fibers directions (f0, s0 and n0). Since these are not explicitly available for the Zygote
heart model [96], we we use a so-called rule-based method to generate them following [7]. The
generated fields are displayed in Fig. 4.

In Fig. 5 we show the propagation of the variable representing the calcium ions concentration
(i.e of the variable [Ca2+]i) in the computational domain Ω0. The action potential is triggered by
means of an electric stimulus Iapp applied in three spherical regions located in the endocardium, to
mimic the action of the Purkinje fibers. The calcium dynamics triggers on its turn the microscopic
mechanisms of force generation, thus yielding an increase of active tension Ta. In Fig. 6 we show
the numerical approximation of this latter variable, together with the resulting displacement d of
the tissue.

An advantage of numerical simulations such as the one shown in this section is that they allow to
extract information and meaningful indicators of practical use for clinicians. For instance, in Fig. 7
we show the pressure-volume loop (aften abbreviated PV loop), that is a syntetic representation
of the left ventricle dynamics in the pressure-volume plane. The PV loop is a fundamental tool in
clinical practice, as it allows biomarkers of fundamental importance such as maximum and mean
pressures, stroke volume (i.e. identifying the amount of volume pumped by the ventricle per beat)
and ejection fraction (i.e. the volumetric fraction of blood ejected from a chamber) to be extracted
at a glance [49, 90]. Moreover, the area enclosed into the pressure-volume curve corresponds to the
total mechanical energy generated by the muscle contraction at each heartbeat [49]. In this manner,
the outcome of the numerical simulation can be represented in a compact and directly accessible
way for the medical doctor.
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t = 0 s t = 0.1 s t = 0.2 s t = 0.3 s
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Figure 6: Representation of the variable Ta (active tension) at different times t. The variable is
represented in the domain in the domain Ω(t), obtained from the reference domain Ω0 – which is
represented in trasparency – by deforming the latter according to the displacement d(t).
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Figure 7: Pressure-volume loop.
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