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The application of Bayesian methods to the problem of fatigue crack growth prediction has been growing in recent years. In particular, sequential
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rely on the availability of a relatively dense sequence of crack length measures during damage evolution, made in most cases impr
sequent maintenance costs. Thus, real-time damage diagnosis is a requirement to enable prognostic health management.

This work focuses on the application of sequential Monte-Carlo sampling to estimate the probabilistic residual life of a structural co
to fatigue crack propagation, while real-time estimation of crack length is provided through a committee of artificial neural networks

element simulated strain patterns. Multiple crack length observations are available at each discrete time and are provided as the input to the pro
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system, based on a sequential importance resampling algorithm. Each time a new set of measures is available, the algorithm evaluates the posterior 
distribution of the augmented state vector, including the crack length and a material parameter governing damage evolution. This filtered information is 
used to numerically update the probability density functions of the residual life of the component. The methodology is applied first to a simulated crack 
and then to a metallic stiffened panel specimen subject to fatigue crack growth.
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function (PDF) estimate. At a specific point in time and for a partic-
ular observation of the condition of a component, a posterior PDF 
for the residual life (conditional on the observation) can be evalu-
ated based on the availability of a prognostic model. This approach 
is particularly well described in the Bayesian updating framework 
[6,7], in which the a priori information on the RL is updated accord-
The increase of safety requirements and the necessity of advanced 
maintenance strategies (e.g. the condition based mainte-nance 

Recent advances on sequential Monte-Carlo methods, specifi-
cally Sequential Importance Sampling/Resampling (SIS–SIR) algo-
approach) [4] give rise to the adoption of stochastic approaches to 
improve the reliability of the predictions with respect to design 
expectations [5]. As a matter of fact, a more precise estimate of the 
residual life at a specific time can be provided by the observation of 
the current condition of the component. This gives rise to the 
conditional residual life (RL) probability density
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rithms, allowed integrating multiple uncertainties related to the 
measurement system and the intrinsic randomness of the degrada-
tion phenomenon with the mathematical FCG formulations [7–9]. 
Their suitability for the prediction of evolving phenomena by 
sequentially updating of the system state estimation has already 
been demonstrated [8,9]. However, these algorithms require (i) a 
probabilistic model describing the system evolution, (ii) a stochas-
tic measurement model relating the measure to the system state 
and (iii) a sufficient number of measures to guarantee the
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convergence of the algorithm state estimation to the target process 
evolution [10]. The assumption that a sufficient number of mea-
sures are available from any non-destructive testing (NDT) mea-
suring apparatus is widely made [9–11]. This assumption is 
however only applicable to cases in which maintenance costs are 
not a primary issue and a maximum exploitation to RL estimation 
can only be obtained when coupled to a real-time diagnostic sys-
tem providing automatic crack length measures [12], thereby 
entering the field of structural health monitoring (SHM) [13]. The 
aim of this paper is to monitor the damage evolution and to make 
prognosis on a relatively complex metallic structure with a riveted 
skin–stringer construction, where diagnosis is made by using an 
SHM system based on a sensor network and a committee of artifi-
cial neural networks (ANNs). This work is an initial step towards 
the on-line condition monitoring of aeronautical structures, 
including a prognostic system able to filter multiple information 
from the SHM diagnostic unit.

Focusing on the diagnostic problem, the algorithm for damage 
identification requires extensive investigations. In [12], the authors 
described the optimisation procedure for a diagnostic algorithm 
based on ANNs, trained on finite element simulated strain patterns. 
This algorithm is able to generalise to the experimental measures 
well, providing damage detection, localisation and crack length 
quantification. A sufficient level of generalisation is especially 
important for the ANN when using simulation for algorithm train-
ing. In addition to some typical regularisation techniques such as 
cross validation and early stopping, the authors grouped multiple 
ANN models trained on Bootstrap datasets into one committee [14], 
obtaining further algorithm regularisation. In practice, each time a 
strain pattern is provided as the input to the diagnostic algo-rithm, 
the diagnostic output is not a single indication but a series of NANN 

outputs, being NANN the number of ANNs belonging to the 
committee. Such distribution is related to the uncertainty intrinsic 
to the diagnostic model training procedure [14]. Various methods 
studying how to combine the outputs from multiple models are 
present in the literature [15], the simplest way consists in 
averaging the prediction of the set of individual models [12,15]. 
This com-bined observation can be used as the input to the 
prognostic algo-rithm. However, by simply averaging the 
observations the information regarding the diagnostic model 
uncertainty related to a particular measure is lost. A thorough 
method to combine the multiple outputs from a diagnostic system 
into the prognostic SIR framework is needed and is the objective of 
the present study.

In this work, at each discrete time step, the dispersion related to 
the entire set of multiple observations is combined with the ran-
domness intrinsic to the FCG process, usually described within a 
dynamic state space (DSS) [7], and a SIR algorithm is adopted to fil-
ter the total uncertainty. This filtered information is then used to 
numerically update the posterior distribution of the residual life. In 
order to filter also the uncertainty related to the FCG model 
parameters [16–18], a SIR algorithm with an augmented state vec-
tor [19–22] has been implemented. One FCG model parameter typ-
ically associated with material properties in linear elastic fracture 
mechanics is inserted into the state vector and its PDF is sequen-
tially updated in real time. This additional complexity is necessary 
due to the very high FCG variability one can expect during repeated 
tests [10,16]. The methodology is applied first to the identification 
of a simulated crack growth process and then to a real metallic 
stiffened panel specimen subjected to fatigue crack growth. 
According to the recent literature, the validation of such a SHM tool 
on realistic structures (i.e. the portion of a helicopter fuselage) con-
stitutes a novelty in the aeronautics panorama.

The paper is structured as follows: the theory of SIR algorithm is 
shortly introduced in Section 2, with focus on the extension for 
diagnostic output filtering as well as for the parameter estimation 

with an augmented state vector. The critical aspects regarding the
SIR implementation for FCG prognosis are detailed in Section 3. The 
results of the simulated FCG are presented in Section 4. Section 5 is 
dedicated to the verification of the algorithm performance during 
one FCG test, showing the overall prognostic system performances. 
A critical discussion of the work and some possible future exten-
sions of the method are provided in the conclusive section.

2. Theory and methods

Extensive literature is available concerning the mathematical 
aspects of sequential Monte-Carlo filters (two remarkable exam-
ples are [6,7]), therefore this section only summarises the primary 
aspects of the algorithm procedure and the input requirements. In 
particular, the basic formulation of system state filtering by SIR 
algorithm is reported in Section 2.1, followed by its extension for 
augmented state vector filtering in Section 2.2. The algorithm mod-
ification to receive multiple observations as the input is reported in 
Section 2.3.

2.1. Basics on sequential importance resampling strategy

The definition of a DSS [7], including the model evolution Eq. (1)
(consisting of a hidden Markov process of order one) and the 
observation Eq. (2) (linking the measures with the system state) is 
considered.

xk ¼ f ðxk�1; #;xk�1Þ ð1Þ

zk ¼ hðxk;gkÞ ð2Þ

k

where xk is the system state at k-th discrete time, # is a vector col-
lecting the model parameters supposed to be constant during the 
process evolution, xk�1 is the artificial process noise and gk is the 
uncertainty affecting the observation zk. In a Bayesian updating 
framework, the objective is to calculate the posterior PDF of the sys-
tem state at discrete time k, conditioned on the observations, indi-
cated as pðxk z1:kj Þ. This can be evaluated with the well-known 
prediction and updating steps, respectively performed through the 
Chapman–Kolmogorov equation and the Bayes’ rule [7]. 
Nevertheless the analytical solution of this problem is only possible 
if the model is linear and each random process involved is Gaussian. 
The SIR algorithm is a recursive Bayesian filter, commonly used to 
approximate the state posterior distribution by a series of samples 
(often referred to as particles). At each k-th discrete time, Ns parti-

cles xðiÞ [i = 1, . . ., Ns) approximate the posterior PDF of the system
state, pðxkjz1:kÞ. Each of these particles has a linked weight (3)

depending on the weight at the previous time step wðiÞk�1 and the
likelihood of that particle given the measure. After a normalisation

of the weights is performed in a way that
PNS

i¼1
~wðiÞk ¼ 1, the posterior

PDF of the system state can be calculated (4). To limit sample 
degeneracy, particles are resampled according to the actual poste-
rior distribution, as indicated in Eq. (5).

wðiÞk ¼ wðiÞk�1p zk xðiÞk

���� �
ð3Þ

p xk z1:kjð Þ �
XNs

i

~wðiÞk d xk � xðiÞk

� �
ð4Þ

xðiÞk � pðxk z1:kj Þ ð5Þ

The procedure described through Eqs. 3–5 is repeated each time 
a new observation is provided by a measuring system.

Having applied the SIR algorithm to filter the state vector based 
on diagnostic observations, the prognosis consists in projecting the 
filtered particle population in time, up to the failure region that is 
identified for the specific use case (this may be a critical crack



length in the present study). Similarly to Eq. (4), the posterior PDF 
of the number of remaining load cycles Nr;k can be estimated at dis-
crete time k as reported in Eq. (6) [9].

p Nr;k z1:kj
� �

�
XNs

i

~wðiÞk d Nr;k � NðiÞr;k

� �
ð6Þ

where NðiÞr;k is the number of remaining load cycles associated to the
i-th particle trajectory, calculated based on the evolution model f in 
(1).

2.2. State vector extension for parameter updating

As anticipated in Section 1 and discussed in detail in [10], the 
prognosis of degradation processes is strictly dependent on the 
identification of the model parameters for the damage evolution. 
The SIR algorithm offers a straightforward method to update the 
PDF of constant model parameters, based on the available sequence 
of measures. The state vector (xk) is extended to the aug-mented 
state vector (yk) which contains both the damage state and the 
model parameter variables yk ¼ ½xk; #k�. The subscript k associ-ated 
to the model parameter vector # indicates its estimation at a 
discrete time k and is not a time dependence.

The Chapman–Kolmogorov equation for the augmented state 
vector prediction and the Bayes’ updating step can be expressed 
through the Eqs. (7) and (8) respectively [22].

p yk z1:k�1jð Þ ¼
Z

yk�1

p yk yk�1jð Þp yk�1 z1:k�1jð Þdyk�1 ð7aÞ

p yk z1:k�1jð Þ ¼
Z

xk�1

Z
#k�1

p xk xk�1; #k�1jð Þp #k xk�1; #k�1jð Þ

p xk�1; #k�1 z1:k�1jð Þd#k�1dxk�1 ð7bÞ

p ykjz1:kð Þ/ p zkj½xk;#k�ð Þp xkj½xk�1;#k�1�ð Þp #kj#k�1ð Þp ½xk�1;#k�1�jz1:k�1ð Þ
ð8Þ

where pðzkj½xk; #k�Þ is the likelihood of the state vector with respect 
to the last observation, p xkj½xk�1; #k�1�ð Þ is the proposal density 
for the state, p #kj#k�1ð Þ is the proposal density for the model 
parameters (assumed to be independent from the state) and 
p ½xk�1; #k�1�jz1:k�1ð Þ is the prior state vector probability.

The sequential prediction–updating–resampling procedure 
described in Section 2.1 can be reformulated for the combined 
state-parameter PDF estimation; the weight updating Eq. (3) is 
modified as shown in Eq. (9).

wðiÞk ¼ wðiÞk�1p zk yðiÞk

���� �
¼ wðiÞk�1p zk xðiÞk ; #

ðiÞ
k

���� �
ð9Þ

Eq. (8) clearly shows that a proposal distribution from which 
samples of the parameter vector # are drawn has to be considered 
in the SIR algorithm. While some more advanced techniques are 
available in the literature [19], the approach followed in this work 
is based on artificial dynamics [22]; the choice is mainly related to 
its simplicity, nevertheless demonstrating its suitability to the 
problem under investigation.

According to the theory of artificial dynamics, a random noise n 
is added to the particles to avoid the sample degeneracy, as in Eq. 
(10). The random noise has a zero mean and a variance that 
decreases with time [22].

#k ¼ #k�1 þ nk�1 ð10Þ

Regardless of the simplicity of the method, it requires the selec-
tion of the initial variance of n (rn

2
0) and the decreasing rate of arti-

ficial dynamics variance f nðkÞ, as discussed below in Section 3.2.
k

2.3. Integration of multiple observations

It is widely stated in the literature [14] that the diagnostic per-
formance can be improved by a combination of multiple diagnostic 
models instead of using a single model in isolation, including the 
adoption of committees or ensembles. In this paper, the aim is to 
include a vector of NANN state observations provided in real-time 
by NANN models for the degradation measure (organised in a com-
mittee) into the SIR algorithm. Each ANN receives a pattern of 
real-time strain measures as the input and provides an indication 
of the crack length as the output. The main algorithm modification 
to combine the SIR algorithm with multiple outputs from the ANN 
committee is related to the calculation of particle likelihood 
p zkj½xk; #k�ð Þ and it has been described in detail in this section.

Likelihood calculations require a probabilistic measurement 
model which links the measure z with the system degradation 
state x, as expressed through Eq. (2). Such a model is assumed to 
be available in most of the studies present in the literature; when 
a classical NDT is used for damage diagnosis, it can be retrieved by 
means of dedicated test programs that act to identify sensor cali-
bration curves and their associated uncertainties. A remarkable 
novel approach has been presented in [23], where the authors 
use a committee of ANNs to estimate this model based on a series 
of pairs made by the real state x and the corresponding measure-
ment z; however, a single observation is still assumed to be avail-
able at each discrete time from a traditional NDT system.

Moving to multiple observations, suppose NANN observations of

a generic damage feature are available at kth discrete time zðjÞ,
j ¼ 1; . . . ;NANN from a committee of NANN diagnostic ANN models
and are organised in the vector zk. Each ANN acts as a measure-
ment system and is characterised by an error. Two main sources
of uncertainty are related to the committee measurement.

(1) The committee dispersion (Yd) is an index of diagnostic preci-
sion and is intended here as a non-Gaussian zero-mean PDF,
based on the NANN outputs that are available at each discrete
time k, upon removal of their mean value. In the most gen-
eral case, it is a function of the degradation state, thus
Yd ¼ YdðxÞ.

(2) The committee bias (Yb) is intended as the error between the
averaged committee output (�zk) and the target. This is an
index of the diagnostic accuracy and has been modelled here
as a stochastic Gaussian variable with expectation gðxÞ and
variance r2

bðxÞ, also described as a function of the degrada-
tion state, YbðxÞ � N gðxÞ;r2

bðxÞ
�

[23]
�

.

Both stochastic variables are combined in the probabilistic mea-
surement model, as in Eq. (11).

zk ¼ xk þ tbðxkÞ þ tdðxkÞ ð11Þ

tbðxkÞ is a sample of the stochastic variable Yb and tdðxkÞ is a

vector containing the NANN samples tðd
jÞðxkÞ of the stochastic vari-

able Yd. A schematic representation of the committee dispersion 
and bias has been presented in Fig. 1a.

The motivations that lead to the inclusion of both stochastic 
variables in the measurement model are discussed hereafter, 
focussing on the related uncertainties.

In this study the committee dispersion is related to the random-
ness intrinsic to the ANN training. To guarantee a sufficient level of 
regularisation for the ANN, the database is divided into at least two 
sets, one for training and one for validation, further cross-validation 
with early stopping can be used to avoid over-fitting [14,15]. 
However, it is difficult to completely avoid over-fitting and differ-
ent optimal synapse weights are found each time a new training is 
performed by randomly dividing the input space into two



Fig. 1. Schematic representation of (a) committee bias and committee dispersion and (b) the likelihood evaluation.
domains: the training and the validation domain [15]. Thus, it is 
difficult to define a priori which ANN model has the best diagnostic 
performance in the real application. The prediction performance of 
the diagnostic model is increased by grouping multiple models into 
one committee. While in the most general approach, there are no 
restrictions for the type and structure of the diagnostic models that 
are combined together, in this study, different ANN models with 
the same structure but trained on a different dataset (Bootstrap 
datasets [14]) have been grouped into one committee to provide 
multiple observation outputs at each discrete time k. Each 
observation from a different model is considered as a sample of the 
stochastic variable Yd. Thus, NANN samples of Yd are naturally avail-
able at each discrete time as a function of the system state.

The committee bias is related to two main sources of error. The 
first is associated to a model approximation, which can produce in 
some cases a persistent bias among the models included in the 
committee. The second is connected to a bias in the training data-
base. When experimental or operative data are used for diagnostic 
model training, the environmental or the operative conditions (e.g. 
the applied load) can be different from those encountered during 
training. Furthermore, if simulated data are used for model train-
ing, any error in the simulation of the input–output variables is 
reflected in a bias when the diagnostic model is tested with real 
data. It is very difficult to estimate the committee bias in real appli-
cations, especially for real-time diagnostic systems based on dis-
tributed sensing like the one described in the Section 5. In a FCG 
framework, this would require the execution of repeated fatigue 
tests for the estimation of the committee bias mean gðxÞ and vari-
ance rb

2ðxÞ; as a function of the damage extent, for the specific 
structure and sensor network. In this work, Yb is preliminarily 
assumed to be a known input to the system; in particular gðxÞ
has been fixed to zero and rb

2ðxÞ has been heuristically selected 
based on the experience, which constitutes the main simplification 
for this study. A further extension of the method would be to apply 
the technique in [23] to provide also an estimation of YbðxÞ, based 
on some sample test cases.

The multiple observations available at a discrete time k from 
NANN diagnostic models (dispersed as Yd around their average) 
need to be combined, taking into account the bias associated with 
the average committee output and for this purpose a probabilistic 
framework for model combination leveraging on Gaussian mixture 
[14] has been adopted hereafter.
Consider first a single diagnostic model output zðjÞk , where the
superscript j indicates the jth ANN model inside the committee. 
If the bias of the average committee output is described as a 
Gaussian stochastic variable with the expectation gðxÞ and the
variance rb

2ðxÞ, the likelihood of each ith particle of the evolution 
model is calculated through Eq. (11),

p zðjÞk yðiÞk

���� �
/ L yðiÞk zðjÞk

���� �
¼ N yðiÞk zðjÞk � g �xk�1ð Þ;r2

b
�xk�1ð Þ

���� �
ð11Þ

where �xk�1 is the expected value of the system state at a previous

discrete time and N yðiÞk zðjÞk � g �xk�1ð Þ;r2
b

�xk�1ð Þ
���� �

is the probability of

the state vector particle yðiÞk according to a Gaussian distribution

centred in zðjÞk � g �xk�1ð Þ, with the variance r2
b

�xk�1ð Þ. A schematic rep-

resentation of the likelihood of yðiÞk with respect to the observation

zðjÞk is shown in Fig. 1b. It has to be noted that, if a systematic bias
gðxÞ is encountered during repeated tests for the bias calibration,
this is taken into account to adjust the likelihood calculation.

If the entire set of observations at discrete time k is considered,
the expression for the likelihood estimation will depend on a mix-
ture of the NANN Gaussian components associated to the NANN

observations zðjÞk , j ¼ 1; . . . ;NANN: A reformulation of the most gen-
eral expression for the superposition of Gaussian densities [14] 
specifically addressing the problem at issue is reported in Eq. (12),

p zk yðiÞk

���� �
¼
XNANN

j¼1

pj � p zðjÞk yðiÞk

���� �
ð12Þ

where the summation is derived from the model combination the-
ory [14] and pj represent the mixing coefficients, considered as 

independent from the state and defined in a way that 
P

j
N
¼1

ANN pj ¼ 1
and pj � 0 for all j, thus satisfying the requirement of mixing coef-
ficients to be probabilities. In this study the authors assume the 
mixing coefficients as equal for all j, thus pj ¼ p ¼ 1=NANN. Eq.
(12) can thus be simplified as Eq. (13),

p zk yðiÞk

���� �
/
XNANN

j¼1

p zðjÞk yðiÞk

���� �

/
XNANN

j¼1

N yðiÞk zðjÞk � g �xk�1ð Þ;r2
b

�xk�1ð Þ
���� �

ð13Þ



where the mixing coefficients have been omitted, however consid-
ering a proportionality exists between the first and second term. 
Proportionality is sufficient here because a weight normalisation 
procedure is operated at each updating iteration as part of the SIR 
routine. The bias is a property of the committee, thus the same bias
expectation gðxÞ and variance rb

2ðxÞ are used in each mixture com-
ponent, independently of j. Finally the weight updating formula in 
Eq. (9) can be rewritten as Eq. (14) to take multiple observations 
into account.

wðiÞk ¼ wðiÞk�1 �
XNANN

j¼1

N yðiÞk zðjÞk � g �xk�1ð Þ;r2
b

�xk�1ð Þ
���� �

ð14Þ
3. Algorithm implementation for fatigue crack growth 
monitoring

3.1. FCG model

The SIR algorithm described in Section 2 is applied in this study 
to the problem of the fatigue crack growth prediction. The selec-
tion of a FCG model is the first requirement of the SIR algorithm. 
Though much more sophisticated models are available in the liter-
ature [3], the Paris–Erdogan law [1] has been selected for the val-
idation of the method. Considering the NASGRO model as an 
example [2], it allows the FCG description also in the threshold 
zone and near the limit for unstable crack propagation. However, 
according to the literature describing the performances of auto-
mated real-time diagnostic systems, no reliable crack length mea-
sures would be available near the threshold zone. Moreover, safety 
regulations usually impose a system or a component to be dis-
missed before the damage becomes critical. For this reasons, in this 
study the attention is focused on the log-linear zone of the FCG 
problem, and a stochastic Paris law (15) has been selected as a 
model for damage evolution.

dx
dN
¼ C½DKðxÞ�m �X ð15Þ

Eq. (13) describes the FCG rate per unit load cycle as a function 
of the Stress Intensity Factor (SIF) range DKðxÞ at the crack tips and 
two empirical constants (C and m) indicated as material-dependent 
parameters. X is a lognormal random process altering the growth 
rate and representing all the sources of intra-specimen variability 
[18,24]. Under the assumption of a linear damage accumulation, Eq. 
(15) can be formulated as Eq. (16), which is the core formula used 
to define the evolution Eq. (1) above.

xk ¼ xk�1 þ DN � dx
dN

����
k�1
¼ xk�1 þ DN � C½DKðxk�1Þ�mxk�1 ð16Þ

where xk�1 is a sample of the random process noise X, whose selec-
tion is discussed separately in Section 3.2, and DN is the discretisa-
tion step. While Eqs. (15) and (16) remain generally valid, the 
calculation of SIFs depends on the load and the geometry of the 
problem under investigation; thus it is separately described below 
for each application. Eq. (16) is used as the proposal density for 
the state prediction, as illustrated in Fig. 2.

A primary problem to be addressed is the large uncertainty 
associated to the FCG process [16]. This uncertainty is reflected in a 
large scatter of the FCG data, as was described by the authors in 
[10,16]. The model parameter updating procedure described in 
Section 2.2 is implemented in this study to adapt model predic-
tions, by filtering the uncertainties related to model parameters 
based on the available sequence of measures. The C parameter is 
inserted in the state vector to be sequentially updated, while m has 
been considered deterministic. One drawback of such an approach 
is that, if a bias is present due to any error in the
estimation of the SIFs, it is included in the C estimation during

the updating step. In practice, a new parameter C~ is estimated 
including all the sources of inter-specimen variability [18,24]. The 
augmented state vector described in Section 2.2 can now be formu-
lated as Eq. (17).
yk ¼ ½xk; #k� ¼ ½xk; ~Ck� ð17Þ

Some prior information regarding ~C parameter distribution is
necessary to initialise the algorithm. In view of the final validation
of the methodology on a panel specimen made of aluminium alloy
Al2024-T6, the expected values for C and m have been selected
based on literature data [2]. In particular: ~C ¼ 2:382e� 12 and
m ¼ 3:2: ~C is assumed to have a lognormal distribution with prior
variance calculated from Virkler’s data [17], keeping the coefficient
of variation CoV ¼ r=jlj constant (Virkler’s data are related to alloy
Al2024-T3). The prior probability density function of log ~C becomes

log ~C � N llog ~C ;r2
log ~C

� �
¼ N �26:763; 0:9966ð Þ:

As described in Section 2.1, the RL distribution is sequentially 
updated each time a new observation is available by evaluating 
the residual life for each particle, then creating the RL posterior 
probability density function based on Eq. (6). This is a critical 
aspect of the algorithm due to the computational requirements 
of the numerical integration. Instead of using a step-by-step parti-
cle propagation from xk state condition to failure (xlim), a method of 
stochastic integral resolution just used in a SIR framework in [18] 
is proposed here. The technique consists of the numerical resolu-
tion of (13) taking the presence of the stochastic process X into 
account. Further details of the method are not provided for the 
sake of brevity. The interested reader can refer to [18,25] for a 
detailed description of the method.
3.2. Algorithm parameters

Two main variables are involved in the algorithm procedure and 
require the correct setting to make the algorithm work properly. 
These are the random processes involved in the definition of the 
proposal PDF, namely X and n, for the state x and the parameter C~, 
respectively.

Focusing on X, a lognormal distribution is often selected to 
define the random process. Mean and variance of the distribution 
must be linked in order to guarantee an unbiased estimation of the 
mean crack growth evolution [10]. In addition, the selection of a 
proper variance strongly influences the algorithm performance 
[18]. If it is too small, the algorithm is unable to follow the state 
dynamics, while too large a value will strongly reduce the filtering 
capability of the algorithm, resulting in a less accurate estimation 
of both the parameters and the residual life PDF. In the present 
study, a value based on preliminary sensitivity analyses was 
selected.

Similar considerations can be provided for the artificial noise n. 
If it is too small, the algorithm suffers from sample impoverish-
ment and is also unable to efficiently adjust the parameter PDF. If it 
is too large, the loss of information between two consecutive 
iterations causes a distortion of the actual posterior PDF of param-
eters. Furthermore, a relatively large artificial dynamic component 
is needed at the beginning of the sequential filtering process to 
permit the algorithm to include samples that are outside the prior 
expectation; nevertheless this artificial term should be reduced to a 
minimum after the convergence on the correct parameter value is 
reached. In this study, the process n is described by a Gaussian 
distribution with zero mean and a variance that decreases expo-
nentially during algorithm iterations, as expressed through Eq.(18).



Fig. 2. SIR algorithm filtering procedure for one iteration.
r2
nðkÞ ¼ r2

n0 � f nðkÞ ¼ r2
n0 �

1
ka ð18Þ

where r2
n0 is selected as a percentage of the prior parameter vari-

ance available from literature data. 25% was selected in this study
as a compromise to allow relatively large movements in the param-
eter domain while limiting the initial explosion of particle parame-
ter variance, thus r2

n0 ¼ 0:25r2
log ~C

. The exponent a has been tuned in

order to keep a minimum variance at the end of the system opera-
tion, supposing a reasonable number of observations from the ANN 
dictated by the authors’ experience.

The following points summarise the algorithm operations, 
while specific values of the algorithm parameter settings have 
been separately provided in the following sections. A schematic 
representation of the filtering procedure for one step of the SIR 
algorithm is shown in Fig. 2.

1. Algorithm initialization:

Collect z j
0; j ¼ 1; . . . ;NANN (committee output at k = 0)
8i ¼ 1; . . . ;Ns
� �

~CðiÞ0 � p ~C0;r2

log ~C
xðiÞ0 � pðz0Þ
wðiÞ0 � 1=Ns
2. Prediction step:
r2
n;k ¼ r2

n0 �
1
ka
8i ¼ 1; . . . ;Ns
�� �

~CðiÞk � p ~Ck

~CðiÞk�1
�� ;r2

n;k
h i�� �

xðiÞk � p xk xðiÞk�1;

~CðiÞk
�� ;r2

K

3. Acquire new set of observations

Collect z j
k; j ¼ 1; . . . ;NANN

4. Updating step
wðiÞk ¼ ~wðiÞk�1 �
XNANN

j¼1

N yðiÞk

���zðjÞk � gð�xk�1Þ;r2
bð�xk�1Þ

� �
.X

~wðiÞk ¼ wðiÞk

i

wðiÞk
X � �

pðyk z1:kj Þ ¼

i

~wðiÞk d yk � yðiÞk
5. Resampling procedure

8i ¼ 1; . . . ;Ns
yðiÞk ¼ ½x
ðiÞ
k ;

~CðiÞk � � pðyk z1:kj Þ
~wðiÞk ¼ 1=Ns
6. Residual Life posterior PDF updating

8i ¼ 1; . . . ;Ns
– Estimate the RL for each particle NðiÞr;k according to the method in
[18]

– Calculate the RL posterior PDF

X � �

pðNr;k z1:kj Þ /

i

d Nr;k � NðiÞr;k
7. Repeat the steps 2–6 at each k-th discrete time.

4. Performance analysis on a simulated case

The SHM system with ANN committee-based diagnosis and 
embedded SIR algorithm is applied to simulated crack propaga-
tions. The main features of the FCG simulation and the virtual 
observations have been described and the performances of the 
algorithm have been evaluated based on a set of performance 
indices defined in [26].

4.1. Target FCG and algorithm parameters

A simple mechanical structure is considered in this section to 
highlight the algorithm performances. The simulated specimen is 
shown in Fig. 3a. It consists of an aluminium plate with a crack 
damage positioned on the left side with a crack length x propagat-
ing under constant amplitude sinusoidal load. Eqs. (15) and (16) 
allow generating the target damage evolution (reported in



Table 1
Features of the crack simulation.

Parameter Description Value

C Empirical constant (mm/cycle � 1/MPa
p

mm) 2.382e�12
m Empirical constant (–) 3.2
F Crack shape function (–) 1.12
Dr Fatigue load (MPa) 40
x0 Initial crack length (mm) 3
xlim Limit crack length (mm) 120
DNs Load cycle step for FCG simulation (cycles) 100
X Random noise (–) 0
Fig. 3b). The analytical formulation of the stress intensity factor 
variation (DK) within one load cycle is available for this simple test 
case, as indicated in Eq. (19).

DK ¼ FDr
ffiffiffiffiffiffi
px
p

ð19Þ

F is the shape function (assumed constant), Dr is the stress vari-
ation within one load cycle and x is the crack length, hereafter 
referred to as the state or health condition. At this stage, no ran-
dom process noise (X) is activated during target FCG generation 
to better highlight algorithm convergence on the target simulation. 
Nevertheless the lognormal process noise in Eqs. (15) and (16) has 
always been used in the SIR routine for the correct approximation 
of the posterior PDF of the state vector conditioned on the observa-
tions. The FCG parameters used to simulate the target crack evolu-
tion are reported in Table 1.

If a sequence of virtual real-time observations of the target state is 
available as indicated in Section 4.2, the system target state

(including the crack length and the C~ parameter) and the residual 
life are sequentially estimated. A summary of the input parameters 
for algorithm implementation is reported in Table 2, including 
the transition density variables and the initialisation parameters. 
Though the simulated target FCG has been initialised at 
x0 ¼ 3 mm, the SIR algorithm has been activated after the averaged 
committee output exceeded a detection threshold (xdet ), here 
heuristically set to 5 mm. Moreover, the mean value of prior

log C~ distribution has been arbitrarily modified with respect to the 
target in order to verify the convergence of the parameter esti-
mation to the target.
4.2. Virtual real-time crack length observations

    The virtual real-time multiple observations have been simu-lated 
considering the model of uncertainty proposed in Section 2.3 for 
the diagnostic system based on the ANN committee. First, the 
committee bias (Yb) has been modelled as a Gaussian distribution 
with a constant zero mean and a variance that increases as a 
function of the damage dimension. Concerning the bias expectation 
gðxÞ, this has been set to zero in order to evaluate the global 
algorithm performances for an unbiased (on average) measurement 
system. An increasing variance has been adopted due to the 
behaviour of the Artificial Neural Networks that are used in Section 
5 for the real-time damage diagnosis [12,27]. The uncertainty rb

2ðxÞ 
on the definition of the committee bias often increases
Fig. 3. (a) Virtual specimen for the FCG test and (b) target c
while approaching and exceeding the limit boundaries of the algo-
rithm training domain, due to the inadequacy of the ANNs to per-
form extrapolation. Nevertheless it is sometimes possible to 
estimate a priori the limit damage dimensions based on the safety 
requirements and to design a proper damage database to limit this 
effect. A variance linearly dependent on the damage state has been 
adopted, as indicated in the Eq. (20).

YbðxÞ � N 0;r2
bðxÞ

� �
¼ N 0;r2

b;0
x
x0

� 	
ð20Þ

where r2
b;0 is the committee bias variance in correspondence of the

initial crack length x0: A sample of Yb has been extracted from
N 0;r2

bðxÞ
� �

at each discrete time k, indicating the bias of the average
committee output (�zk) with respect to the target state. It is impor-
tant to remark that the uncertainty model for the committee bias 
has to be provided as the input to the algorithm for the calculation 
of particle likelihood, as specified by Eq. (13). In this preliminary 
application, the same model for the committee bias is used to both 
simulate the observations and to calculate the likelihood.

Second, though not strictly Gaussian in general, the committee 
dispersion (Yd) has also been assumed in this application as a 
Gaussian distribution with a constant zero mean and a variance 
that increases with the damage dimension. As a matter of fact, a 
typical increase of the committee dispersion is encountered during 
the damage propagation, especially when a model based training is 
performed as in [12,27], due to the rise of non-linearity and the 
influence of the damage on the signal of a multitude of sensors, 
thus increasing the possibility to make errors in the data fusion 
[27]. Again, a variance linearly dependent on the damage state has 
been adopted, as indicated in the Eq. (21).
rack propagation with virtual committee observations.



Table 2
Input parameters for algorithm implementation.

Parameter Description Value

r2
K

Variance of the process noise (proposal variance) 0.1

r2
n0

Initial value of artificial dynamics’ variance 0.2491

a Decrease exponent for artificial dynamics’ variance 1.86
xdet Detection crack length (mm) 5
r2

log ~C Variance of prior log ~C distribution 0.9966

log ~C0 Mean value of prior log ~C distribution �27.63

Ns Number of particles 2000
YdðxÞ � N 0;r2
dðxÞ

� �
¼ N 0;r2

d;0
x
x0

� 	
ð21Þ

where r2
d;0 is the committee dispersion variance in correspondence

of the initial crack length x0: NANN samples of Yd have been extracted
from N 0;r2

dðxÞ
� �

at each discrete time k, indicating the committee
dispersion around the average committee output (z�k).

The vector of the committee measures zk is thus defined as Eq. 
(11) at discrete time k. A new committee measure is supposed to be 
available every DN = 1000 load cycles. The simulated real-time 
observations are reported in Fig. 3b, where the average committee 
output, affected by bias with respect to the target crack length, and 
the committee dispersion are shown. The relevant parameters used 
to simulate the observations are reported in Table 3, heuristically 
selected based on the author’s experience.
4.3. Algorithm performances on a simulated FCG

The SIR output results are illustrated in Fig. 4. The posterior

state PDF estimation is shown in (a), the posterior PDF of log C~ in 
(b) and the residual life posterior PDF is reported in (c). Up to
approximately 0:8 � 105 cycles the sequential filter is unable to 
refine the posterior estimation of the RL due to the fact that the 
evolution trends are entirely hidden in the observation noise. In 
particular, this is reflected in the large uncertainty affecting the 
parameter estimation, which produces wrong RL predictions as a 
consequence. Nevertheless the state posterior estimation appears 
to be correct after a few iterations. When a significant trend is
identified within the observations, after 1 � 105 cycles, the SIR algo-
rithm is able to provide very efficient filtering of the system evolu-
tion as well as good estimation of the RL. This is reflected in the 
convergence of the parameter estimation on the target value, with

narrower confidence boundaries. After 1:5 � 105 cycles, a very small

error is obtained between the target log C~ and the expected value 
of its posterior PDF. This produces a very accurate estimation of 
the RL, as visible in Fig. 4c.

Focusing on the state estimation (Fig. 4a), after the SIR algo-
rithm is activated the confidence boundary associated to the esti-
mated state reflects the levels of uncertainty that have been 
selected for committee bias and dispersion. This uncertainty is 
strongly reduced after a few iterations of the algorithm, even 
though it gradually increases with the uncertainties inherent to the 
observations. As a matter of fact, the increase of the committee 
dispersion and the bias uncertainty as a function of crack length
Table 3
Features for the simulation of observations.

Parameter Description Value

r2
b;0

Initial committee bias variance (mm2) 2

r2
K;0

Initial committee dispersion variance (mm2) 2

NANN Number of ANNs belonging to the committee 100
DN Load cycle step for measure acquisition (cycles) 1000
allows for an enlargement of the particle swarm after resampling, 
which is reflected in the widening of the 95% confidence boundary 
of the state prediction. Furthermore, the state prediction converges 
noticeably towards the target state with very high accuracy after a 
few iterations. This has been obtained under the hypothesis that 
the observations have been generated with the exact same mea-
surement model that is embedded into the SIR routine. In a real 
application, this is only possible if the bias variables, e.g. the bias
expectation gðxÞ and variance rb

2ðxÞ, for particle likelihood calcula-
tion are known.

Additional comments arise referring to Fig. 4b. Due to both the 
absence of the process noise and the consideration of a determin-

istic value for log C~ in the target damage evolution, convergence of
Fig. 4. SIR output in a simulated test. Posterior PDF estimation for (a) the crack
length state, (b) the log ~C parameter and (c) the residual life.



Fig. 5. Representation of the input parameters for the RL performance calculation.

Table 4
Parameter setup for prognostic performance evaluation.

Parameter Value

aPH 20%
bPH 50%
aAL;0 20%
bAL 50%
p0 0.1
pend 1
the parameter estimation on the target with very narrow confi-
dence boundaries has to be expected, if a sufficient number of 
observations have been provided. After convergence, a very small

bias exists for the expected value of log C~ posterior PDF. This bias 
depends on many factors. First, the number of observations is obvi-
ously limited in practical applications. Second, artificial dynamics 
cause a small loss of information between two consecutive steps, 
thus preventing further reduction of the confidence boundaries. 
Third, the process noise, coupled with artificial dynamics, causes a 
very large dispersion of the particles in the state-space, thus 
making the filtering procedure more difficult. However, the latter 
can be avoided by optimisation of the process noise variances (for 
both state and parameter(s)).

4.4. Focus on residual life estimation performance

Four metrics developed in [26] to evaluate the algorithm perfor-
mance in the RL estimation have been used to assess the perfor-
mance of the SIR algorithm in repeated simulated tests. Only a 
brief description of each metric with its input parameters is pro-
vided below, while the interested reader can refer to [26] for a 
detailed treatment.

The Prognostic Horizon (PH) is defined as the difference between 
the time index for the end of life and the time index when the RL 
posterior PDF first meets the specified performance criteria. These 
performance requirements are specified in terms of an allowable 
error bound around the target RL (aPH) and a threshold probability 
mass (bPH) that is required to fall within the aPH-bounds (Fig. 5). It 
can be calculated in cycle units when a constant amplitude load is 
considered.

a � k accuracy (AL) is a binary metric which evaluates, at a 
specific time k, if the RL posterior PDF falls within specified aAL-
bounds that shrinks as time passes by (Fig. 5). A cumulative a � k 
accuracy (CAL) is used hereafter, averaging the a � k accuracy 
values calculated at each discrete time within the PH interval (Fig. 
5). Being a � k accuracy a binary variable, its cumulative version 
can be expressed in terms of a percentage of success. It requires the 
definition of aAL;0 (aAL-bound at the beginning of the PH interval) 
and bAL.

Relative accuracy is defined as a measure of the error of RL 
expectation relative to the target RL. Cumulative relative accuracy 
(CRA) is adopted here, defined as a normalised weighted sum of the 
relative accuracies calculated at discrete times within the PH 
interval (Fig. 5). Linearly varying weights have been assigned as a
function of the distance from the end of life, being p0 and pend 
the weights at the beginning and the end of the PH interval, 
respectively.

Convergence (CM) is a parameter used to quantify the rate at 
which a selected metric (M) improves with time. In particular it 
is calculated as the distance between the origin and the centroid 
of the area under the curve evaluated for the selected metric. 
Here, it is calculated based on the relative error between the target 
and the RL posterior PDF expectation.

A summary of the parameters necessary for the calculation of 
the selected indices is provided in Table 4. Furthermore, computa-
tional time (CT) is an additional metric that has to be considered for 
the real-time application of PHM systems. Here it is evaluated as 
the average CT required to perform one iteration of the algorithm.

The performance indices have been evaluated based on the 
results in Fig. 4c and are reported in Table 5. The average perfor-
mance and the standard deviations have been estimated for 39 
FCG simulations. Particularly, three different levels of detection 
threshold have been used (5 mm, 10 mm, and 15 mm); 13 repeti-
tions have been performed at each level. Even though the same tar-
get damage evolution has been considered in each repetition, the 
randomness intrinsic to the measurement model and to the SIR
5. System verification on a real application

routine induces a slightly different result each time the algorithm is 
run. The standard deviations reported in Table 5 clearly show the 
prognostic algorithm robustness to system uncertainties, however 
for a simulated FCG and specifically for the problem under consid-
eration. These results have not been compared with any other real-
time prognostic algorithm in this study, due to the lack of sim-ilar 
prognostic applications in the literature. However, they become 
useful for future comparisons with other algorithms for the 
residual life estimation. The same performance indices are used in 
Section 5 for the validation of the method on the real scenario.

In this section the SHM system is verified on a relevant aero-
nautical structure. A metallic panel representative of the rear fuse-
lage of a medium-heavy weight helicopter constitutes the test 
structure. It is subjected to a real FCG artificially initiated at a rivet 
hole. The entire PHM system, based on strain pattern acquisition, is 
described hereafter, including the presentation of the experimental 
test rig in Section 5.1, the output of the diagnostic system trained 
on simulated data in Section 5.2, the implementation of the SIR fil-
ter to the experimental case in Section 5.3 and the results in Section 
5.4. Only a brief overview of the diagnostic system is pro-vided and 
the interested reader can refer to [12] for a detailed description of 
the optimisation and feature extraction techniques that have been 
adopted.

5.1. Experimental test rig

The metallic panel specimen used to verify the applicability of 
the methodology is shown in Fig. 6. Its dimensions are 
600 mm � 500 mm and it is characterised by a typical aeronautical 
riveted skin–stringer construction, where the skin and the strin-
gers are made of Al2024-T6 and Al7475-T76 respectively. The 
lower edge of the panel is designed to permit connection to the 
ground, thereby simulating the skin–stringer-frame connection in 
real structures. The upper region is designed to receive the load 
from the actuator. The entire test rig is shown in Fig. 6. A sinusoidal



Table 5
Performance of the RL estimation for the SIR algorithm with an augmented state
vector (virtual test).

Index Units Average performance Std. deviation of performance

PH (cycles) 178,000 20,150
CAL (%) 97.7 7.68
CRA (%) 82.0 5.7
CM (cycles) 52,556 4079
CT (s) 0.12 /
load with a constant amplitude is applied vertically, with a peak 
load of 35 kN and a load ratio R = 0.1. A similar load is associated to 
manoeuvres and in real applications occurs at a relatively low 
frequency. Nevertheless a 12 Hz load frequency is considered in 
this study to allow a more rapid test execution, without affecting 
the validity of the final description of algorithm results.

A sensor network for strain pattern acquisition based on fibre 
Bragg grating technology was installed on the specimen. Five sen-
sors are deployed on each stringer, as shown in Fig. 6, thus 20 strain 
measures have been simultaneously acquired with an opti-cal 
interrogator HBM-DI410. Strain acquisition has been automat-
ically activated every 500 load cycles, saving the data relative to the 
last 30 cycles at a scan rate of 1 kHz. The strain pattern is gen-
erated by averaging the 30 strain peaks measured by each of the 20 
sensors. The strain patterns are always relative to the 35 kN peak 
load. Furthermore, a temperature sensor is used to compensate 
temperature fluctuations.

An artificial notch was created by cutting the panel skin next to 
a rivet hole, as shown in Fig. 6, to control the location of the fatigue 
crack initiation. The total width of the artificial notch is 10 mm. 
After a baseline strain pattern has been acquired from the artifi-
cially notched panel, necessary to calibrate the numerical model (in 
particular eliminating the error of numerical strain prediction for 
the baseline condition), a fatigue crack is propagated under 
sinusoidal load with constant amplitude up to a total length of 100 
mm. Reference crack length measures (hereafter referred to as 
target crack propagation) have been taken with a calliper at
Fig. 6. Experimental setup, with focus on the panel specimen with 20 fibre Bragg gr
some discrete times during the FCG. Differently from the case 
study of Section 4, in which the target FCG was simulated without 
a process noise addition, here the target crack propagation is nat-
urally affected by its inherent variability. The results are therefore 
affected by this additional source of uncertainty.

5.2. Real-time crack length observations

A brief overview of the diagnostic system based on strain field 
pattern acquisition is provided hereafter to clarify how the com-
mittee output is generated. The authors stress the fact that no 
direct measure of crack length is provided as an observation to the 
SIR algorithm, nevertheless its estimation is generated through a 
supervised machine learning algorithm trained on simulated data, 
exploiting the same methodology previously described in [12,27]. 
Briefly, a numerical finite element model (FEM) has been built to 
predict the strain variation occurring on the panel speci-men due to 
the presence of a rivet crack. A database of simulated strain 
patterns is generated varying the position and the dimension of the 
damage. These simulated data are then used to train a com-mittee 
of ANN models for crack length estimation. The description of the 
FEM used to train the ANN is beyond the scope of this paper and its 
details have been provided in [12,28]. A brief overview of the 
diagnostic system based on a committee of ANN is provided 
hereafter, focussing on the aspects relevant to this study.

Summarising the operation of the diagnostic algorithm, each 
ANN receives as the input the pattern of the strains collected from 
the 20 sensors installed on the structure, and gives as the output an 
estimation of the current crack length affecting the helicopter 
panel. The strain values used as the inputs of the ANNs are divided 
by the mean of all the 20 sensors in order to mitigate the load 
effect. Such normalised strains are defined damage indices hence-
forth, as recently applied in [12]. A multilayer perceptron with sin-
gle hidden layer is used, with 20 input nodes (corresponding to the 
20 damage indices relative to each sensor), one output node (indi-
cating crack length) and 39 hidden nodes. The latter has been opti-
mised as described in [27]. Error back-propagation based on Scaled 
Conjugate Gradient algorithm is used to adjust the ANN weights
ating sensors installed and the artificial notch for rivet crack damage initiation.



Fig. 7. Output of the diagnostic system for the crack damage quantification. 100 
ANNs provide an estimation of the crack length at each discrete time.
during the training procedure. The numerical database has been 
divided into the training and the validation sets and cross-validation 
with early stopping is used to avoid over-fitting [14,15]. This is 
sufficient in some applications in which the ANN training is based 
on experimental measures; however, if a model-based training is 
performed, additional techniques can be adopted to increase the 
generalisation capability of the ANN. In this study, different ANN 
models have been grouped into one com-mittee to provide 
multiple observation outputs. The authors remark that each model 
has the same structure but is trained on a different Bootstrap 
dataset [14], randomly dividing the input space into the training 
and validation domains, corresponding to 70% and 30% of the total 
available cases, respectively. Furthermore, random weight 
initialisation is assigned at the begin-ning of the training. This 
results in different optimal weight values each time a new training 
is performed. In particular, NANN = 100 is considered in this study, 
where each ANN is selected as the best among five training trials, 
based on the root mean square error cal-culated on the validation 
set.

Diagnostic results have been reported in Fig. 7, where the target 
crack propagation (corresponding to the measure by the calliper) is 
compared with the damage assessment performed by the commit-
tee of ANNs. The committee output is presented, together with its 
average. The committee bias for the specific test is the distance 
between the average of committee outputs (�zk) and the target, 
while the scattering of the single ANN outputs at each discrete time 
indicates the committee dispersion.

Focussing on the bias, the diagnostic system appears to be 
insensitive to relatively small damage (crack length below 25 mm), 
which is reflected in the constant average committee out-
put up to 2:2 � 105 cycles. The average committee output remains 
centred around 10 mm, which is the reference baseline condition
used for numerical model calibration. After 2:2 � 105 cycles the 
average of the committee output approaches the target crack prop-
agation and an efficient damage assessment is performed up to
7 � 105 cycles. After 7 � 105 cycles, a larger bias of the average com-
mittee output has been found. Two main reasons are responsible 
for this behaviour: (i) the crack length approaches the boundaries 
of the training domain and the ANN approximation is usually less 
accurate [12,27] and (ii) the strain prediction with the FEM has a 
bias with respect to the experimental strain when the structure
is damaged. The spike around 6:5 � 105 cycles is due to uncontrolled 
environmental influences.

Concerning the committee dispersion, though not explicitly 
indicated in the figure for simplicity, the expected value and the 
mode of the committee output at a specific discrete time practi-
cally overlap each other, thus highlighting the Gaussian nature of 
the committee dispersion for this application [12,27] and justifying 
the assumption made in Section 4. A gradual increase of the com-
mittee dispersion can be appreciated as a function of damage 
dimension, for the same reasons expressed in Section 4.

The committee output is passed as input to the SIR routine for 
the posterior estimation of the state vector and the residual life 
PDFs. Different from Section 4, in this application the committee 
dispersion is inherent to the NANN diagnostic models organised in a 
committee. Nevertheless, a model for the committee bias still has 
to be provided to integrate the committee observations within the 
SIR routine, according to the input requirements defined in Section 
2.3. The evaluation of error models for real-time systems is 
absolutely non-trivial and continues to be studied by the research 
community [23]. It has to be noticed that, if repeated FCG tests had 
been available and a common bias had been encoun-tered among 
the tests (e.g. the underestimation of damage dimen-sion when the 
crack approaches the boundaries of the training domain, as in Fig. 
7), it would have been possible to calculate the
average bias gðxÞ and compensate for it in likelihood calculation, 
as in Eq. (13). For this single laboratory application, the committee 
bias model has been heuristically selected and described as Eq.
(20). A summary of the parameters relative to the observations is 
presented in Table 6.

5.3. Application of the SIR filter to the real case

Once the measurement model has been defined in the previous 
Section 5.2, the attention is directed towards the definition of the 
SIR algorithm parameters for the application to the experimental 
use case. The Paris equation is still adopted in its discretised form, 
as represented in Eq. (16). The additional complexity lies in the cal-
culation of the stress intensity factor, as the crack shape function 

depends on the crack length itself, i.e. DK ¼ FðxÞDr
p
p
ffiffiffiffiffi

x
ffi
. 

Particularly, the crack shape function F(x) has been defined through 
the simplified analytical formulation proposed in [29] for a skin–
stringer structure with a crack extending on both sides from a rivet 
hole.

The crack length limit xlim for the RL calculation has been set to 
100 mm. In a real application, it is reasonable to expect that the 
anomaly detection is provided after a significant distance from the 
baseline measure has been recorded [12]. However, since an 
anomaly detection system is not employed in this application for 
simplicity, a heuristic detection threshold xdet has been set to 25 
mm.

A summary of the features selected to define the transition den-
sities (the process noise and the artificial dynamics for state and 
parameter prediction, respectively) has been provided in Table 7, 
together with other parameters necessary for the algorithm imple-
mentation. In particular, the stress range Dr, required to calculate 
SIF variation in one load cycle, has been evaluated as the ratio 
between the applied load range and the transversal area of the panel.

5.4. Results

The SIR algorithm has been activated after the average commit-
tee output exceeded the detection threshold (xdet ) and the results 
are reported in Fig. 8a–c for the state, the parameter and the resid-
ual life posterior PDF evaluation, respectively.

Focussing on the state (x) filtering (Fig. 8a), the very wide uncer-
tainty associated to the committee output is strongly reduced and a 
very precise description of the damage evolution is provided. The 
SIR algorithm is able to filter the strong fluctuations due to envi-
ronmental influences around 6:5 � 105 cycles, due to the fact that 
they are not compatible with the crack growth model, the current

parameter log C~, and the artificial noise(s) describing the DSS.



Table 6
Features for the real-time observations.

Parameter Description Value

r2
b;0

Initial committee bias variance (mm2) 9

NANN Number of ANNs belonging to the committee 100
DN Load cycle step for measure acquisition (cycles) 500

 
 
 
 

f 

 
f 

f 
l 
 
, 

 
 

 

, 
 

 
 

 

 

 Fig. 8. SIR output in a real application. Posterior PDF estimation for (a) the crack
length state, (b) the log ~C parameter and (c) the residual life.
Furthermore, the expected value of the state posterior PDF after
7 � 105 cycles is noticeably affected by a reduced error if compared
with the average committee output (Fig. 7). This is possible (i) if a
correct identification of the FCG model parameter is obtained and
(ii) if the measurement model takes the possibility of sufficiently
large committee biases into account. Thus, an improved accuracy o
the state evolution description is obtained. It is however impor-
tant to remark that if the algorithm is evaluated after 8 � 105 cycles
the wrong estimation of the crack length by the committee o
ANNs will produce a biased estimation of the system state.

The parameter (log C~) posterior PDF approximation is compared
in Fig. 8b with the prior log C~ expectation and the estimation of
log C~ through a non-linear regression based on the entire history o
the average committee output �zk. Even though the wide initia
uncertainty in the prior log C~ is related to literature data [17], it  is
strongly reduced during the algorithm operation. As a matter of fact
once a trend is identified within the observations, the con-

fidence boundaries associated with log C~ posterior PDF are much
reduced. However, the algorithm is driven by the ANN committee
observations. Thus, if the measure is affected by an error, a wrong

log C~ posterior expectation is induced, unless this error is included
in the model for the observation bias in terms of gðxÞ. It is impor-

tant to remark that the posterior PDF expectation of log C~ calcu-
lated by the SIR algorithm approaches the value of log C~
evaluated by a non-linear regression on the average committee
output, thus validating the SIR output in terms of parameter esti-

mation. The distance between the prior log C~ expectation and the
expectation of the posterior log C~ PDF is associated to (i) sources
of inter-specimen variability, as anticipated in Section 3.1 and (ii)
the fact that the m parameter of the Paris equation is considered

as fixed and only log C~ is used as fitting variable.
Finally, concerning the RL posterior PDF estimation (Fig. 8c), the

initial uncertainty associated with the state vector (crack length

and log C~) provokes a very wide posterior PDF of the residual life
up to 3:3 � 105 cycles. Convergence in the state vector estimation
guarantees a more precise indication of the expected RL. As antic-
ipated above, any error in the state vector estimation is reflected in a
bias in the RL expectation; the overestimation of the crack length
Table 7
Summary of input parameters for algorithm implementation in real FCG.

Parameter Description Value

xdet Detection crack length (mm) 25
xlim Limit crack length (mm) 100
r2

K
Variance of the process noise 0.1

r2
n0

Initial value of artificial dynamics’ variance 0.2491

a Decrease exponent for artificial dynamics 1.32
r2

log ~C Variance of prior log ~C distribution 0.9966

log ~C0 Mean value of prior log ~C distribution �26.76

m Empirical deterministic constant 3.2
Dr Stress range in one load cycle (MPa) 40.7
Ns Number of particles 2000

Table 8
Performance in the RL estimation through a SIR algorithm with an augmented state
vector (experimental test).

Index Units Performance

PH (cycles) 448,500
CAL (%) 35.2
CRA (%) 77.8
CM (cycles) 208,810
CT (s) 0.93
coupled with the overestimation of log ~C (with respect to the one
calculated by non-linear regression for the entire sequence of
observations) provoke the underestimation of the RL expectation



between 4 � 105 and 7 � 105. The prognostic performance indices 
introduced in Section 4.4 are used here to describe the prognostic 
performances in a real environment and results are reported in 
Table 8. The same parameter setup presented in Table 4 has been 
used here for prognostic performance evaluation. The significant 
reduction in the CAL parameter was expected and is related to the 
error in the crack length observations by the diagnostic system. A 
higher CT is required at each iteration to numerically approxi-mate 
the Paris’s integral for the RL calculation.
6. Conclusions

A methodology for the integration of the real-time observations 
generated by a committee of artificial neural networks in a sequen-
tial importance resampling algorithm has been described in the 
paper. The algorithm, based on Monte-Carlo sampling, is aimed to 
approximate the posterior PDF of the state vector (including the 
crack length and a parameter of the FCG model) and the residual 
life. The availability of multiple models for real-time diagnosis gen-
erates multiple observations as the input to the SIR algorithm. The 
observations are characterised by a dispersion and an average bias, 
denominated as the committee dispersion and the committee bias, 
respectively. The likelihood formulation for posterior distribution 
updating has been modified to consider the availability of multiple 
observations as the input. The method has been applied first to the 
identification of a simulated fatigue crack growth, then to a labora-
tory test during a real fatigue crack growth test on a metallic spec-
imen consisting of a riveted skin–stringer panel representative of 
the rear fuselage of a medium-heavy weight helicopter.

The results obtained in the preliminary virtual test demonstrate 
the potentiality of the approach for real-time applications. As a 
matter of fact, the SIR capabilities to filter the combined uncer-
tainty related to the measure of the crack length and the prior 
knowledge of FCG model parameters are well-known, as proven by 
the extensive literature on the method. A robust identification of 
the residual life posterior PDF is obtained with a limited compu-
tational time. The most innovative step consists in the implemen-
tation of the entire methodology composed by an ANN-based SHM 
system with an embedded SIR algorithm in a simplified, though 
rather complex, laboratory scenario. A machine learning algorithm 
based on a network of optical strain gauges is trained with simu-
lated strains and can generalise efficiently to the real data, provid-
ing real-time structural diagnosis in terms of crack length. Multiple 
artificial neural network models are combined in a committee thus 
providing a crack length distribution as the output. These multiple 
observations are then fused providing the estimation of the 
required posterior PDFs. Promising results have been obtained also 
in the laboratory application, still with a limited computational 
time requirement. The final prognostic performance is evidently 
strictly dependent on the quality of the diagnostic output; the sys-
tem can efficiently filter the fluctuations due to environmental 
influences, even though if the diagnosis is affected by a bias, this 
will be reflected in a wrong FCG parameter estimation and conse-
quently also in a wrong residual life estimation. However, if the 
measurement model is correctly determined and assigned as the 
input to the algorithm, it can mitigate the effect of a wrong damage 
assessment. Furthermore, as anticipated in [10,16], reliable prog-
nosis is only possible if the correct estimation of the FCG model 
parameter(s) is obtained. In this study, emphasis is given also to the 
parameter identification. In particular, a parameter of the FCG 
model usually associated with material properties is inserted in the 
state vector and its posterior PDF has been sequentially updated 
through the SIR algorithm.

Focusing on the introduction of the ANN-based diagnosis within 
the SIR algorithm, some weaknesses have been identified as topics
for future research by the authors. The parameters describing the 
bias within the measurement model for a committee of diagnostic 
systems are currently based on heuristic selection, while a rigorous 
methodology is mandatory to calibrate the committee bias, e.g. the 
one described in [23], thus allowing the application of the system in 
real scenarios. However this will require the execution of repeated 
FCG tests or the definition of model-assisted methods. Drawbacks 
and unanswered matters specifically related to SIR algorithms are 
well-known. The tuning of the PDF parameters involved in the 
transition process remains heuristic so far. A defi-nition a priori of 
the process noise is often difficult. Moreover, aeronautical 
structures (like the one presented in this work), as well as civil and 
mechanical structures, are often subject to vari-able amplitude and 
random loads, which are in most cases unknown. The applicability 
of SIR algorithm in the presence of variable and unknown load 
histories is another mandatory aspect to be considered in future 
research.
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