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Abstract
This paper provides a unified mathematical analysis of a family of non-local
diffuse interface models for tumor growth describing evolutions driven by long-
range interactions. These integro-partial differential equations model cell-to-
cell adhesion by a non-local term and may be seen as non-local variants of
the corresponding local model proposed by Garcke et al (2016). The model in
consideration couples a non-local Cahn–Hilliard equation for the tumor phase
variable with a reaction–diffusion equation for the nutrient concentration, and
takes into account also significant mechanisms such as chemotaxis and active
transport. The system depends on two relaxation parameters: a viscosity coef-
ficient and parabolic-regularization coefficient on the chemical potential. The
first part of the paper is devoted to the analysis of the system with both regular-
izations. Here, a rich spectrum of results is presented. Weak well-posedness is
first addressed, also including singular potentials. Then, under suitable condi-
tions, existence of strong solutions enjoying the separation property is proved.
This allows also to obtain a refined stability estimate with respect to the data,
including both chemotaxis and active transport. The second part of the paper is
devoted to the study of the asymptotic behavior of the system as the relaxation
parameters vanish. The asymptotics are analyzed when the parameters approach
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zero both separately and jointly, and exact error estimates are obtained. As a
by-product, well-posedness of the corresponding limit systems is established.

Keywords: tumor growth, non-local Cahn–Hilliard equation, well-posedness,
singular potentials, strong solutions, asymptotic analysis, error estimates

Mathematics Subject Classification numbers: 35K86, 35K61, 35K57, 35Q92,
92C17, 78M35, 65N15.

1. Introduction

In the last decades, a vivid interest has been devoted to the challenging project of modeling
tumor growth. The main responsible of deaths due to cancer is often the formation of metas-
tases in the late stages of the pathology, when tumor cells spread also to separate parts of the
host tissue and give rise to secondary tumor masses. Several clinical studies have confirmed
that the primary mechanism leading to this process is identified in the ability of cells to invade
adjacent tissues [81]. Invasion and metastasis have then deserved the unfortunate denomina-
tion of ‘hallmarks of cancer’ in [61]. Mathematical modeling has then become a fundamental
tool in order to describe and possibly predict these underlying processes: validation, analysis,
and simulation are crucial steps in the direction of designation of anti-tumoral therapies. Many
mathematical models have been proposed to capture the complexity of the underlying biologi-
cal and chemical phenomena: in this direction we refer to the seminal works [3, 6, 8, 9, 25, 37]
and references therein.

From the continuum diffuse-interface approach to tumor growth, the cellular adhesion is
introduced by embodying surface tension force at the tumor surface and this procedure has been
successfully employed in many instances. In these models, the tumor evolution is described by
introducing an order parameter ϕ, taking values between −1 and 1, and representing the local
concentration of tumoral cells. The regions {ϕ = 1} and {ϕ = −1} represent the pure tumor-
ous and healthy phases, respectively, whereas the diffuse interface {−1 < ϕ < 1} models the
narrow transition layer separating them. One of the major advantages of this modeling approach
is that, unlike free boundary models, it takes into account also possible delicate behaviors
such as topological changes in the tumorous regions, occurring for example during break-
up and coalescence phenomena. The second main variable employed in the diffuse-interface
description of tumor dynamics is the local concentration σ of a certain nutrient (e.g. oxygen,
glucose), in which the tissue in consideration is embedded. The tumor is supposed to prolifer-
ate by absorption of such nutrient, and reversely the evolution of the nutrient is influenced by
the consumption by the tumor cells. The key idea behind the diffuse-interface modeling con-
sists then of a non-trivial coupling of a phase-field-type equation for ϕ, usually Cahn–Hilliard
equation accounting for the phase segregation, with a reaction–diffusion equation for σ. The
proliferation and coupling terms appearing in the system vary from model to model, and may
take into account also further biological mechanisms exhibited by the tumor such as apoptosis,
cell-to-cell adhesion, proliferation, chemotaxis, and active transport.

The classical local Cahn–Hilliard equation can be obtained as the conserved dynamics in
the (H1)∗-metric generated by the variational derivative of the Ginzburg–Landau free energy
Eloc with respect to the order parameter ϕ, where

Eloc(ϕ) :=
∫
Ω

(
1
2
|∇ϕ|2 + F(ϕ)

)
.

Here, F is a so-called double-well potential, possessing two global minima, with typical choices
being, in the order, the regular potential, the logarithmic potential and the double obstacle
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potential defined as:

Fpol(r) :=
1
4

(r2 − 1)2, r ∈ R, (1.1)

Flog(r) :=
θ

2
[(1 + r) ln(1 + r) + (1 − r) ln(1 − r)] − θ0

2
r2, r ∈ (−1, 1), 0 < θ < θ0,

(1.2)

Fdob(r) :=

{
c(1 − r2) if r ∈ [−1, 1],

+∞ otherwise,
c > 0. (1.3)

In the context of tumor growth, the energy Eloc accounts for cell-to-cell adhesion. More
specifically, the term in F models the fact that tumor cells prefer to adhere to each other rather
than to non-tumor cells (hence the pure phases tend to concentrate), while the gradient term
penalizes too scattered tumor patterns (hence high oscillations ofϕ). Despite the fact that phase
segregation described by means of the local Cahn–Hilliard equation is widely accepted in lit-
erature, the local model is not effective in capturing cell-to-cell and cell-to-matrix adhesion
phenomena driven by long-range competitions. In the context of tumor growth models, neglect-
ing long-range interaction is an enormous drawback. Indeed, as we have pointed out above,
the crucial biological process responsible of the evolution of the cancer diseases are tumor-cell
invasion and the formation of metastases. The spread of secondary distant tumor masses is typ-
ically a long-range interaction process, and cannot be captured by means of the local modelling
approach. One of the possible ways to include long-range competitions and make the model
more accurate in describing cell-invasion and metastases-formation is to switch to a non-local
model instead. This fact has been widely confirmed in the applied literature on biological engi-
neering and applied analysis, for which we refer to the numerous contributions [2, 11–13, 36,
55, 74] and the references therein. In particular, the mentioned results and their subsequent
developments agree that cell-adhesion is typically a non-local-in-space phenomenon, and rep-
resent then the crucial milestone for the validation and simulation of non-local models in the
context of tumor growth dynamics.

In the framework of diffuse-interface modeling of tumor growth, long-range interactions
can be incorporated by modifying the local energy Eloc with a non-local one. By following the
ground-breaking work done by Giacomin and Lebowitz on non-local Cahn–Hilliard equations
[56–58] (see also [14, 38–40, 46]), we substitute the classical local Ginzburg–Landau free
energy functional with the corresponding non-local Helmholtz free energy given by

Enonloc(ϕ) :=
1
4

∫
Ω×Ω

J(x − y)|ϕ(x) − ϕ(y)|2 dx dy +
∫
Ω

F(ϕ).

Here J stands for a sufficiently fast decaying kernel, such as the classical Bessel or Newto-
nian potentials. Let us emphasize again that a non-local free energy as Enonloc is not motivated
here by merely mathematical interests, but it has a fundamental meaning in the modeling of
tumor growth: it previously appeared in [83] and is indeed crucial in describing the long-
range interaction processes involved in cell-invasion that would otherwise be left out in a local
model. For more details on the non-local Cahn–Hilliard equation we refer to the introduction
of [46], where a rich description concerning the state of the art on the equation is performed.
Besides, let us mention [24, 30, 59, 60] for mathematical results related to variations of the
classical Cahn–Hilliard equations with possibly singular potentials, and to the recent works
[27–29, 71] dealing with the asymptotic convergence of non-local Cahn–Hilliard equations to
the respective local ones when the kernel suitably peaks around zero.
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The goal of this paper is to introduce and investigate a class of non-local phase-field models
for tumor growth inspired by the work by Garcke et al [54]. Let ε, τ � 0, Ω ⊂ R

3 be a smooth
bounded domain, and T > 0 a fixed final time horizon. We consider a two-parameter class of
non-local models in the following form:

ε∂tμ+ ∂tϕ−Δμ = (Pσ − A)h(ϕ) in (0, T) × Ω, (1.4)

μ = τ∂tϕ+ aϕ− J ∗ ϕ+ F′(ϕ) − χσ in (0, T) × Ω, (1.5)

∂tσ −Δσ + B(σ − σS) + Cσh(ϕ) = −ηΔϕ in (0, T) × Ω, (1.6)

∂nμ = ∂n(σ − ηϕ) = 0 on (0, T) × ∂Ω, (1.7)

εμ(0) = εμ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω. (1.8)

Let us briefly review the role of the occurring symbols. The variable ϕ represents the dif-
ference in volume fractions between tumoral and healthy cells, with {ϕ = 1} being the pure
tumoral phase, and {ϕ = −1} being the pure healthy phase. The variable μ is the chemical
potential associated to ϕ, and σ represents the concentration of the unknown surrounding nutri-
ent, with the following convention: σ � 1 represents a rich nutrient concentration, whereas
σ � 0 a poor one. Furthermore, we indicate with n and ∂n the normal vector and the cor-
responding directional derivative, J is a spatial convolution kernel, with a := J ∗ 1, while F′

represents the derivative of a double-well potential F. Precise assumptions are given in section 2
below.

The parameter τ � 0 represents the viscosity coefficient associated to the Cahn–Hilliard
equation, while ε � 0 is a relaxation coefficient providing a parabolic regularization on the
chemical potential. The constants P, A, B, and C are fixed positive real numbers, taking into
account the proliferation rate of tumoral cells by consumption of nutrient, the apoptosis rate,
the consumption rate of the nutrient with respect to a pre-existing concentration σS, and the
nutrient consumption rate, respectively. Moreover, χ and η are fixed non-negative constants,
modeling the chemotaxis and active transport effects, respectively. For further insights con-
cerning the modeling aspects, let us refer to [54] (see also [48, 49]), where the authors,
after deriving some models from thermodynamic principles, underline how it is possible to
decouple the chemotaxis by the active transport mechanism. It is worth mentioning that, at
least formally, by setting ε = τ = 0 and by substituting the non-locality aϕ − J∗ϕ with the
‘corresponding local term’ −Δϕ, we obtain exactly a particular case of the setting analyzed
in [54]. Here, we highlight that Sherratt et al point out in [74] that cell adhesion is intrinsi-
cally a non-local in space phenomenon, whereas the chemotaxis mechanism is on the other
hand of local nature (see [65]). This motivates the medical and modeling relevance of sys-
tem (1.4)–(1.8) in which a non-local term is considered in equation (1.5), capturing long-
term interaction processes occurring in cell-invasion, but still keeping the terms related to
chemotaxis of local nature in (1.5) and (1.6). For a situation in which non-local chemotaxis is
addressed, we refer to [7].

Let us comment further on the structure of the parameters in system (1.4)–(1.8). As far as the
coefficients are concerned, one can identify two main classes. The parameters P, A, B, C,χ, η
are structural coefficients of the model itself: they arise directly from the practical description
of the tumor dynamics, and each one is linked to an exact undergoing biological process. For
example, P and A take into account proliferation and death of tumor cells, B and C calibrate
diffusion of nutrient with respect to a pre-existing concentration σS, and, more importantly,
χ and η render the tendency of tumor cells to attract nutrient and to move towards regions
with high levels of nutrient, respectively. The second group of parameters, namely ε and τ , are
connected on the other hand to specific mathematical regularizations of the model, and have
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to be considered as small perturbations acting on the original limit system (i.e., (1.4)–(1.8)
with ε = τ = 0). In this perspective, it is of upmost importance to stress that the introduction
of ε and τ is not aimed at a mere mathematical technical virtuosity, but is finalized instead
to the inclusion in the model of specific biological/physical mechanisms that are relevant to
the tumor growth description. For instance, the coefficient ε > 0 is necessary in order to deal
with possible singular potentials F due to the presence of a mass source in the Cahn–Hilliard
equation. As such, bearing in mind that singular potentials are actually more relevant in phase-
segregation, the choice of analyzing the case ε > 0 has then to be interpreted as an additional
possibility to include thermodynamically–relevant potentials in the analysis, and not as a blunt
mathematical exercise. In the same spirit, the introduction of the parameter τ in the model is not
end in itself, but is aimed at keeping the relevant cross-diffusion mechanisms of chemotaxis and
active transport, which otherwise could not be covered by the model. This being stressed, the
regularized system (1.4)–(1.8) that we propose is purposely very general, in order to provide
a larger variety of frameworks that could be covered by the model and that could adapt to
different practical scenarios.

Up to the author’s knowledge, there are still few contributions devoted to the mathemat-
ical analysis of non-local tumor growth models: we recognize [42, 44, 45]. By contrast, the
local situation has been the subject of intensive studies. At first, let us point out some mod-
els which neglect velocity contribution which are somehow variations of the model intro-
duced by Hawkins-Daarud et al in [63] (see also [62, 64]). In this direction, we mention
[41], where the well-posedness of the system is shown under general polynomial growth
type assumptions for the involved potentials. In [15] (along with the related works [17, 18]),
the authors consider some regularized version compared to [41], by adding the same regu-
larization that we have introduced here on the viscosity and the dissipation of the chemical
potential. Owing to these terms the authors were able to extend the setting of some analytic
results including in the investigation also singular and possibly non-regular potentials like
the logarithmic (1.2) or the double obstacle one (1.3). Moreover, the authors established in
which sense it is possible to let these regularizations parameters to zero, recovering some
of the results already proved in [41]: in this sense, our work is somehow inspired by these
contributions. Let us also refer to [21, 22], where a similar investigation was performed for
fractional models. Furthermore, in order to better emulate in-vivo tumor-growth, other authors
have proposed to include fluid motion by further coupling previous systems with a velocity
law of Darcy’s or Brinkmann’s-type; we refer in particular to [1, 31, 32, 35, 45, 47–50, 54,
66, 83]. We point out the recent work [53] (see also [69, 70]) wrote by the second-named
author in collaboration with Garcke and Lam, where elasticity effects are taken into account
as physical evidence have shown that the presence of the extracellular matrix or rigid bone can
assert significant influences on tumor proliferation. For multi-species tumor growth models,
we point out [26, 43, 51].

Moreover, a wide number of results concerning further analysis on these models have been
performed. In this direction, we mention the optimal control problems addressed by [16, 19, 20,
33, 34, 52, 67, 82]. In particular, we mention [23] which deals with the optimal control problem
for the corresponding local version of system (1.4)–(1.8), and we also point out [20, 75–79],
where similar relaxed models have been investigated from the optimal control viewpoint. Let
us also point out [10, 15, 72], where some long-time behavior for similar models is addressed.
To conclude the overview, let us mention the work [73], where a phase-field model for tumor
growth has been analyzed also taking into account possible stochastic perturbations of the
system. The paper, written by the first-named author in collaboration with Orrieri and Rocca,
focuses on well-posedness and optimal control of treatment when two Wiener-type noises act
on the proliferation of tumor cells and evolution of nutrient.
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Let us present now the main results of the present paper.
The first part of the work is devoted to the analysis of the system (1.4)–(1.8) when both reg-

ularizations are present, i.e. with ε, τ > 0. In this setting, we first investigate existence of weak
solutions, even when singular potentials as (1.2) or (1.3) are present, also including chemotaxis
and active transport. Secondly, we show that without active transport (i.e. η = 0) continuous
dependence on the data (hence uniqueness) holds for weak solutions. Furthermore, we inves-
tigate regularity properties of the solutions, and prove existence of strong solutions as well as
separation results from the potential barriers. For strong solutions, we are finally able to refine
the stability estimate with respect to the data, also including the case of chemotaxis and active
transport.

The second part of the work is focused on the study of the asymptotic behavior of the system
as ε ↘ 0 and/or τ ↘ 0. These are performed both separately (i.e. ε ↘ 0 with τ > 0, and τ ↘ 0
with ε > 0) and jointly (i.e. ε, τ ↘ 0). In each of these cases, under suitable conditions we
are able to show convergence of the system to the respective limit problem, hence also the
corresponding well-posedness. Also, we give the exact rates of convergence through precise
error estimates.

Let us briefly mention here the mathematical challenges that we have to overcome in these
asymptotics.
Passage to the limit as ε ↘ 0. In this first asymptotic study the parabolic regularization on
μ is ‘removed’, resulting in lack of regularity on the chemical potential. As a consequence,
due to the presence of proliferation terms in the Cahn–Hilliard equation, a very natural growth
condition on the potential has to be required (cf (2.22)), allowing for any polynomial or first-
order exponential potentials. The passage to the limit, hence the existence for the limit problem
with ε = 0, is proved in the setting of no active transport term (i.e. η = 0), due to the need of a
maximum principle argument for σ. As for the error estimate (and therefore the uniqueness for
the limit system), a rate of convergence of order ε1/4 is obtained by showing refined estimates
on the solutions and exploiting a locally-Lipschitz assumption on the potential (still including
the classical case (1.1) for example).
Passage to the limit as τ ↘ 0. In the second passage to the limit, the viscosity of the
Cahn–Hilliard equation vanishes, and this results is a loss of regularity on the phase-variable.
The presence of ε > 0 still allows passing to the limit in very general settings, such as singu-
lar potentials, chemotaxis, and active transport, only requiring some compatibility conditions
(smallness-type assumptions) on the constants. The separation from the potential barriers is
not preserved though, as it is naturally expectable. Moreover, a corresponding error estimate
showing a convergence rate of order τ 1/2 is obtained (and therefore the uniqueness for the limit
system).
Passage to the limit as ε, τ ↘ 0. In the last passage to the limit, the parameters ε and τ
vanish simultaneously. Here, the convergence is proved by proving some refined estimates on
the solutions, depending on both parameters, and combining the assumptions above on the
potential and the coefficients. Moreover, the error estimate (and the resulting well-posedness
of the limit problem) is obtained with a rate of convergence of ε1/4 + τ 1/2, under a suitable
scaling on the two parameters.

The plan of the rest of the paper is as follows. In section 2 we set our notation and present the
obtained results. The weak and strong well-posedness of (1.4)–(1.8) for ε, τ > 0 is addressed
in section 3. Then, sections 4–6 are completely devoted to the asymptotic analysis of the system
as ε and τ approach zero, first separately and then jointly.
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2. Setting, assumptions, and main results

Throughout the paper, Ω ⊂ R
3 is a smooth bounded domain and T > 0 is a fixed final time.

We set for convenience the spatiotemporal cylinders

Q := (0, T) × Ω, Σ := (0, T) × ∂Ω, Qt := (0, t) × Ω, t ∈ (0, T),

and we introduce the functional spaces

H :=L2(Ω), V :=H1(Ω), W :=
{

y ∈ H2(Ω) : ∂ny = 0 a.e. on ∂Ω
}

endowed with their natural norms ‖·‖H , ‖·‖V , and ‖·‖W , respectively. Likewise, we use ‖·‖p

to indicate the standard norm of the space Lp(Ω), for all p ∈ [1,∞]. As usual, H is identified
with its dual H∗ through its Riesz isomorphism, so that

W ↪→ V ↪→ H � H∗ ↪→ V∗ ↪→ W∗,

where all inclusions are dense, continuous, and compact. The duality pairing between V∗ and
V , and the scalar product in H will be denoted by the symbols 〈·, ·〉 and (·, ·), respectively.

Moreover, for every v ∈ V∗ we set vΩ := 1
|Ω| 〈v, 1〉 for the generalised mean value of v. Let

us also recall the Poincaré–Wirtinger inequality

‖v‖2
V � CΩ

(
‖∇v‖2

H + |vΩ|2
)

, ∀ v ∈ V , (2.1)

where the constant CΩ > 0 depends only on Ω. Let us recall that the Laplace operator with
homogeneous Neumann conditions may be seen as a variational operator

−Δ : V → V∗, 〈−Δv, ζ〉 :=
∫
Ω

∇v · ∇ζ, ∀ v, ζ ∈ V.

It is well know, as a consequence of the Poincaré–Wirtinger inequality (2.1), that the restriction
of −Δ to the subspace of null-mean elements of V is injective, and that it possesses a well
defined inverse

N : {v∗ ∈ V∗ : v∗Ω = 0}→ {v ∈ V : vΩ = 0}.

Lastly, let R = I −Δ : V → V∗ be the Riesz isomorphism of V , i.e. the map

〈Ru, v〉 :=
∫
Ω

(∇u · ∇v + uv), ∀ u, v ∈ V.

It is well-known that R|W yields an isomorphism from W to H with well-defined inverse R−1 :
H → W. In addition, for all v ∈ V , and v∗,w∗ ∈ V∗, the following properties hold

〈Rv,R−1v∗〉 = 〈v∗, v〉, 〈v∗,R−1w∗〉 = (v∗,w∗)∗,

where the symbol (·, ·)∗ denotes the inner product of V∗. Furthermore, for every f ∈ V it holds
that

‖ f ‖2
H = 〈 f , f 〉 = 〈R f ,R−1 f 〉 � ‖ f ‖V‖R−1 f ‖V � ‖ f ‖V‖ f ‖V∗ .

Besides, if v∗ ∈ H1(0, T; V∗), we have for a.e. t ∈ (0, T) that

〈∂tv
∗(t),R−1v∗(t)〉 = 1

2
d
dt
‖v∗(t)‖2

∗.
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The following structural assumptions on the data will be in order in the paper.

A1 P, A, B, C,χ, η are non-negative constants.
A2 h : R→ [0,+∞) is bounded and Lipschitz continuous.
A3 σS ∈ L∞(Q) and

0 � σS(t, x) � 1 for a.e.(t, x) ∈ Q.

A4 F :=F1 + F2 � 0, where

F1 : R→ [0,+∞] is proper, convex, and lower semicontinuous,

and

F2 ∈ C1(R), F′
2 : R→ R is Lipschitz continuous, F′

2(0) = 0.

In particular, the subdifferential ∂F1 : R→ 2R is well defined in the sense of convex anal-
ysis, and we assume that 0 ∈ ∂F1(0). The Moreau regularization of F1 and the Yosida
approximation of ∂F1 are defined, respectively, as

F1,λ : R→ [0,+∞), F1,λ(r) :=F1(0) +
∫ r

0
F′

1,λ(s) ds, r ∈ R,

and

F′
1,λ : R→ R, F′

1,λ :=
I − (I + λ∂F1)−1

λ
, λ > 0,

where I stands for the identity operator. We recall that F′
1,λ is 1

λ -Lipschitz continuous and
we set

Fλ :=F1,λ + F2.

A5 The kernel J ∈ W1,1
loc (R3) is such that J(x) = J(−x) for a.e. x ∈ R

3. For any measurable
v : Ω→ R we use the notation

(J ∗ v)(x) :=
∫
Ω

J(x − y)v(y) dy, x ∈ Ω,

and set a := J ∗ 1. Moreover, we assume that

a∗ := inf
x∈Ω

∫
Ω

J(x − y) dy = inf
x∈Ω

a(x) � 0,

a∗ := sup
x∈Ω

∫
Ω

|J(x − y)| dy < +∞, b∗ := sup
x∈Ω

∫
Ω

|∇J(x − y)| dy < +∞,

and we set ca := max{a∗ − a∗, 1}. Finally, we suppose that there exists a positive constant
C0 such that
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a∗ +
w1 − w2

r1 − r2
� C0, ∀ ri ∈ D(∂F1), ∀ wi ∈ ∂F1(ri) + F′

2(ri),

i = 1, 2, r1 �= r2.

Note that if F is of class C2, the last condition is equivalent to the classical one

a∗ + F′′(r) � C0 ∀ r ∈ D(F′),

where D(F′) denotes the domain of F′.

For convenience, we introduce the following upper bounds for the coefficients ε and τ

ε0 := min

{
1

4ca
,

1
max{1, a∗ − min{a∗, C0}}

,
2C0

3(a∗ + b∗)2K2
0

}
, τ0 := 1,

where K0 denotes the norm of the continuous inclusion H ↪→ V∗. This is only a technical
requirement on the coefficients, which is clearly not restrictive as ε and τ have to be considered
as small perturbations.

The first main result deals with existence of global weak solutions to the system (1.4)–(1.7)
under very general assumptions on the data. In particular, any type of potential as in (1.1)–(1.3)
is included in this first result.

Theorem 2.1 (Existence of weak solutions: ε, τ > 0). Assume A1–A5, and let ε ∈
(0, ε0) and τ ∈ (0, τ0). Moreover, let the triple of initial data (ϕ0,μ0, σ0) satisfy

ϕ0 ∈ V , F(ϕ0) ∈ L1(Ω), μ0, σ0 ∈ H. (2.2)

Then, there exists a quadruplet (ϕ,μ, σ, ξ) such that

ϕ ∈ H1(0, T; H) ∩ L∞(0, T; V), (2.3)

μ, σ ∈ H1(0, T; V∗) ∩ L2(0, T; V), (2.4)

ξ ∈ L2(0, T; H), (2.5)

where

μ = τ∂tϕ+ aϕ− J ∗ ϕ+ ξ + F′
2(ϕ) − χσ, ξ ∈ ∂F1(ϕ) a.e. in Q, (2.6)

with ϕ(0) = ϕ0, μ(0) = μ0, σ(0) = σ0 in H, and such that

〈∂t(εμ+ ϕ), ζ〉+
∫
Ω

∇μ · ∇ζ =

∫
Ω

(Pσ − A)h(ϕ)ζ, (2.7)

〈∂tσ, ζ〉 +
∫
Ω

∇σ · ∇ζ +

∫
Ω

(B(σ − σS) + Cσh(ϕ)) ζ = η

∫
Ω

∇ϕ · ∇ζ, (2.8)

for every ζ ∈ V, almost everywhere in (0, T). Furthermore, if η = 0 and

0 � σ0(x) � 1 for a.e.x ∈ Ω, (2.9)

then σ(t) ∈ L∞(Ω) for all t ∈ [0, T] and

0 � σ(t, x) � 1 for a.e.x ∈ Ω, ∀ t ∈ [0, T]. (2.10)

It is worth mentioning that, in the case of singular potentials such as (1.2) and (1.3),
the assumption F(ϕ0) ∈ L1(Ω) entails that ϕ0 ∈ L∞(Ω) and that |ϕ0(x)| � 1 for almost every
x ∈ Ω.
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The second result concerns continuous dependence of the data for weak solutions. This
result applies again to any choice of the potential F, but we are forced (so far) to restrict
ourselves to the case without active transport (i.e. η = 0).

Theorem 2.2 (Continuous dependence: ε, τ > 0). Assume A1–A5, and let η = 0,
ε ∈ (0, ε0) and τ ∈ (0, τ0). Then there exists a constant K > 0 independent of τ such that,
for any pair of initial data {(ϕi

0,μi
0, σi

0)}i, i = 1, 2, satisfying (2.2) and (2.9), and for any
respective solutions {(ϕi,μi, σi, ξi)}i, i = 1, 2, satisfying (2.3)–(2.10), it holds that

‖(εμ1 + ϕ1) − (εμ2 + ϕ2)‖L∞(0,T;V∗) + ‖μ1 − μ2‖L2(0,T;H)

+ τ 1/2‖ϕ1 − ϕ2‖C0([0,T];H) + ‖ϕ1 − ϕ2‖L2(0,T;H)

+ ‖σ1 − σ2‖C0([0,T];H)∩L2(0,T;V)

� K
(∥∥(εμ1

0 + ϕ1
0) − (εμ2

0 + ϕ2
0)
∥∥

V∗ + τ 1/2
∥∥ϕ1

0 − ϕ2
0

∥∥
H
+
∥∥σ1

0 − σ2
0

∥∥
H

)
. (2.11)

As a consequence of the above result, we infer the uniqueness of the weak solution obtained
in theorem 2.1 under the only additional requirement that η = 0. The next result deals with the
regularity of weak solutions with respect to the data.

Theorem 2.3 (Regularity: ε, τ > 0). Assume A1–A5, ε ∈ (0, ε0), and τ ∈ (0, τ 0). More-
over, let the triple of initial data (ϕ0,μ0, σ0) satisfy (2.2) and also

∃ ξ0 ∈ H : ξ0 ∈ ∂F1(ϕ0) a.e. inΩ, μ0, σ0 ∈ V , (2.12)

and suppose that t = 0 is a Lebesgue point for σS with

σS(0) ∈ H. (2.13)

Then, the solution (ϕ,μ, σ, ξ) to (2.3)–(2.8) given by theorem 2.1 satisfies

ϕ ∈ W1,∞(0, T; H) ∩ L∞(0, T; V), (2.14)

μ, σ − ηϕ ∈ H1(0, T; H) ∩ L∞(0, T; V) ∩ L2(0, T; W), (2.15)

σ ∈ H1(0, T; H) ∩ L∞(0, T; V). (2.16)

Our next result is concerned with the separation property, magnitude regularity, and exis-
tence of strong solutions. In this direction, we postulate the following assumptions for F and J.

A6 Setting (−�, �) := Int D(∂F1), with � ∈ [0,+∞], we assume that

F ∈ C4(−�, �), lim
r→(±�)∓

[
F′(r) − χηr

]
= ±∞.

It is worth pointing out that A6 excludes potentials F of double-obstacle type as in (1.3). Nev-
ertheless, the logarithmic potential (1.2) and any polynomial super-quadratic potential as (1.1)
is allowed. Let us also remark that assuming the effective domain of ∂F1 to be symmetric with
respect to zero is mainly a matter of convenience, so to allow (1.1) and (1.2) to be included.
In general, the symmetry condition for the domain of ∂F1 it is not necessary from the analysis
viewpoint, and one can always reconstruct this situation by renormalization of F.

As for the kernel, a natural requirement from the analytical point of view is to require

J ∈ W2,1(BR), where BR := {x ∈ R
3 : |x| < R := diam(Ω)}, R > 0. (2.17)
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However, this condition prevents some relevant cases of kernels such as the Newtonian or
the Bessel potential from being considered. Following the ideas of [38, 46] (see also [5,
definition 1]), it is possible to cover also these situations by replacing the above condition
by assuming that J is admissible in the following sense.

Definition 2.4. A convolution kernel J ∈ W1,1
loc (R3) is admissible if it satisfies:

• J ∈ C3(R3 \ {0}).
• J is radially symmetric, i.e. J(·) = J̃(| · |) for a non-increasing J̃ : R+ → R.
• There exists R0 > 0 such that r �→ J̃′′(r) and r �→ J̃′(r)/r are monotone on (0, R0).
• There exists Cd > 0 such that |D3J(x)| � Cd|x|−4 for every x ∈ R

3 \ {0}.

Thus, we require

A7 J satisfies (2.17) or it is admissible in the sense of definition 2.4.

Theorem 2.5 (Existence of strong solutions, separation property: ε, τ > 0).
Assume conditions A1–A7, and let ε ∈ (0, ε0) and τ ∈ (0, τ0). Let the initial data (ϕ0,μ0, σ0)
satisfy (2.2), (2.12), and also

ϕ0 ∈ H2(Ω), μ0, σ0 ∈ L∞(Ω), ∃ r0 ∈ (0, �) : ‖ϕ0‖L∞(Ω) � r0. (2.18)

Then, the solution (ϕ,μ, σ, ξ) to (2.3)–(2.8) given by theorems 2.1 and 2.3 satisfies

ϕ ∈ W1,∞(0, T; V) ∩ H1(0, T; H2(Ω)), ∂tϕ ∈ L∞(Q),

ηϕ ∈ L2(0, T; W), (2.19)

∃ r∗ ∈ (r0, �) : sup
t∈[0,T]

‖ϕ(t)‖L∞(Ω) � r∗, (2.20)

μ, σ ∈ H1(0, T; H) ∩ L∞(0, T; V) ∩ L2(0, T; W) ∩ L∞(Q). (2.21)

In particular, equations (1.4)–(1.6) hold almost everywhere in Q.

Remark 2.6. (i) Note that the equation (1.5) at time 0 reads

μ0 = τϕ′
0 + aϕ0 − J ∗ ϕ0 + F′(ϕ0) − χσ0,

where ϕ′
0 ‘represents’ the initial value of the time-derivative of ϕ. Under the assumptions

(2.2), (2.12), and (2.18) we have that ϕ′
0 ∈ V ∩ L∞(Ω), hence the improved regularities

∂tϕ ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)) and ∂tϕ ∈ L∞(Q) obtained in theorem 2.5 are naturally
expectable.

(ii) Let us point out that (2.18), in the case (1.2), prevents the initial tumor distribution ϕ0

to possess any region occupied by solely tumorous cells as r0 < �.

Relying on the extra-regularity and the separation property, we are able to show a refined
continuous dependence result for strong solutions, where the stability estimates are verified in
stronger topologies. Let us stress that in this case we are able to cover also the scenarios of
chemotaxis and active transport, complementing thus the previous theorem 2.2.

Theorem 2.7 (Refined continuous dependence: ε, τ > 0). Assume A1–A7, let ε ∈
(0, ε0), and τ ∈ (0, τ0). Then for any pair of initial data {(ϕi

0,μi
0, σi

0)}i, i = 1, 2, satisfying
(2.2), (2.12), and (2.18), there exists a constant K > 0 such that, for any respective solutions
{(ϕi,μi, σi, ξi)}i, i = 1, 2, satisfying (2.3)–(2.8) and (2.19)–(2.21), it holds that
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‖μ1 − μ2‖H1(0,T;H)∩L∞(0,T;V)∩L2(0,T;W) + ‖ϕ1 − ϕ2‖W1,∞(0,T;V)∩H1(0,T;H2(Ω))

+ ‖σ1 − σ2‖H1(0,T;H)∩L∞(0,T;V)∩L2(0,T;W)

� K
(∥∥μ1

0 − μ2
0

∥∥
V
+
∥∥ϕ1

0 − ϕ2
0

∥∥
H2(Ω)

+
∥∥σ1

0 − σ2
0

∥∥
V

)
,

where K only depends on Ω, T, ε, τ , P, A, B, C, C0, a∗, a∗, b∗, r∗, ‖F‖C4([−r∗ ,r∗]) and
{(ϕi

0,μi
0, σi

0)}i=1,2.

In particular, under the assumptions (2.2), (2.12), and (2.18) on the data, we deduce that the
uniqueness of strong solutions in the sense of theorem 2.5 holds.

We now will present the results concerning the asymptotic analysis of (1.4)–(1.8) with
respect to the parameters ε and τ . To begin with, we consider the case ε ↘ 0, assuming τ > 0
to be fixed. In this direction, we need to enforce the conditions on the potential F. In fact, pro-
ceeding with classical estimates, just a bound of ∇μ in L2(0, T; H) can be proved, having no
information on the behavior of μ in L2(0, T; H). This gap is usually bridged via the application
of a Poincaré-type inequality, which yields the control of μ in L2(0, T; V). To this end, some
control on the spatial mean of μ is necessary: if ε > 0 is fixed, this follows automatically from
the estimates, whereas in the limit ε ↘ 0 it has to be obtained from a suitable prescription on
the potential. Namely, the assumption

D(∂F1) = R, ∃ CF > 0 : |∂F0
1(r)| � CF(F1(r) + 1) ∀ r ∈ R, (2.22)

have to be prescribed for F, where ∂F0
1(r) stands for the element of ∂F1(r) having minimum

modulus. This implies that for every z ∈ H and w ∈ ∂F1(z) it holds∫
Ω

|w| � CF

∫
Ω

(F1(z) + 1).

Let us point out that the above requirement is met by all the regular potentials, everywhere
defined on the real line, with polynomial or first-order exponential growth-rate. The next two
results deal with the asymptotic behavior as ε ↘ 0 and the respective error estimate: as a by-
product, these yield existence and uniqueness of solutions, as well as continuous dependence
on the data, for the system (1.4)–(1.8) with ε = 0.

Theorem 2.8 (Asymptotics: ε↘ 0). Assume A1–A5, (2.22), and let τ ∈ (0, τ 0), and
η = 0. Suppose also that

ϕ0,τ ∈ V , F(ϕ0,τ ) ∈ L1(Ω), σ0,τ ∈ H. (2.23)

For every ε ∈ (0, ε0), let the initial data (ϕ0,ετ ,μ0,ετ , σ0,ετ ) satisfy assumptions (2.2) and (2.9),
and denote by (ϕετ ,μετ , σετ , ξετ ) the respective unique weak solution to the system (1.4)–(1.8)
obtained from theorem 2.1. In addition, we assume that, as ε ↘ 0,

ϕ0,ετ ⇀ ϕ0,τ in V , σ0,ετ → σ0,τ in H, (2.24)

and

∃ M0 > 0 : ε1/2‖μ0,ετ‖H + ‖F(ϕ0,ετ )‖L1(Ω) � M0 ∀ε ∈ (0, ε0) . (2.25)

Then, there exists a quadruplet (ϕτ ,μτ , στ , ξτ ), with
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ϕτ ∈ H1(0, T; H) ∩ L∞(0, T; V), μτ ∈ L2(0, T; V),

στ ∈ H1(0, T; V∗) ∩ L2(0, T; V) ∩ L∞(Q), 0 � στ (t, x) � 1

for a.e.x ∈ Ω, ∀ t ∈ [0, T],

ξτ ∈ L2(0, T; H),

such that

〈∂tϕτ , ζ〉+
∫
Ω

∇μτ · ∇ζ =

∫
Ω

(Pστ − A)h(ϕτ )ζ,

〈∂tστ , ζ〉+
∫
Ω

∇στ · ∇ζ + B
∫
Ω

(στ − σS)ζ + C
∫
Ω

στh(ϕτ )ζ = 0,

for every ζ ∈ V, almost everywhere in (0, T), and

μτ = τ∂tϕτ + aϕτ − J ∗ ϕτ + ξτ + F′
2(ϕτ ) − χστ , ξτ ∈ ∂F1(ϕτ ) a.e. in Q,

ϕτ (0) = ϕ0,τ , στ (0) = σ0,τ a.e. inΩ.

Moreover, as ε ↘ 0, along a non-relabelled subsequence it holds that

ϕετ
∗−⇀ϕτ in H1(0, T; H) ∩ L∞(0, T; V), (2.26)

μετ ⇀ μτ in L2(0, T; V), (2.27)

σετ
∗−⇀στ in H1(0, T; V∗) ∩ L2(0, T; V) ∩ L∞(Q), (2.28)

ξετ ⇀ ξτ in L2(0, T; H), (2.29)

εμετ → 0 in C0([0, T]; H) ∩ L2(0, T; V), (2.30)

hence in particular that

ϕετ → ϕτ in C0([0, T]; H), σετ → στ in C0([0, T]; V∗) ∩ L2(0, T; H). (2.31)

Theorem 2.9 (Error estimate: ε ↘ 0). In the setting of theorem 2.8, if also

F ∈ C1(R), |F′(r) − F′(s)| � CF(1 + |r|2 + |s|2)|r − s| ∀ r, s ∈ R, (2.32)

then the solution (ϕτ ,μτ , στ , ξτ ) to the system (1.4)–(1.8) with ε = 0 is unique. Moreover,
suppose that there exists M0 > 0 such that

ε1/4
(
‖μ0,ετ‖V + ‖σ0,ετ‖V + ‖F′(ϕ0,ετ )‖H

)
� M0 ∀ ε ∈ (0, ε0) . (2.33)

Then, the convergences obtained in theorem 2.8 hold along the entire sequence ε ↘ 0, and
there exists Kτ > 0, independent of ε, such that the following error estimate holds:

‖ϕετ − ϕτ‖L∞(0,T;H) + ‖μετ − μτ‖L2(0,T;V) + ‖σετ − στ‖L∞(0,T;H)∩L2(0,T;V)

� Kτ

(
ε1/4 + ‖ϕ0,ετ − ϕ0,τ‖H + ‖σ0,ετ − σ0,τ‖H

)
.
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Remark 2.10. Note that given (ϕ0,τ , σ0,τ ) satisfying (2.23), a natural choice for the approx-
imating sequence of initial data (ϕ0,ετ , σ0,ετ ) satisfying (2.24), (2.25) and (2.33) is given by the
solutions to the elliptic problems

ϕ0,ετ + ε1/2Rϕ0,ετ = ϕ0,τ , σ0,ετ + ε1/2Rσ0,ετ = σ0,τ .

In this case, if for example σ0,τ ∈ V , it is immediate to check that

‖ϕ0,ετ − ϕ0,τ‖H + ‖σ0,ετ − σ0,τ‖H � M0ε
1/4

for a certain M0 > 0, so that the rate of convergence given by theorem 2.9 is exactly 1/4.

The second asymptotic study that we are going to address is the one as τ ↘ 0, when ε > 0
is fixed. In this case, the presence of the parabolic regularization on μ provided by ε > 0 allows
considering also very general potentials and to avoid assumptions as (2.22). The limit as τ ↘ 0
corresponds instead to a vanishing viscosity argument on the system in consideration. We
expect then to lose, at the limit τ = 0, time regularity on the solutions, as well as the separation
principle. The next two results deal with the asymptotic behavior as τ ↘ 0 and the respective
error estimate: again, as a by-product, these yield existence and uniqueness of solutions for the
system (1.4)–(1.8) with τ = 0.

Theorem 2.11 (Asymptotics: τ ↘ 0). Assume A1–A5, ε ∈ (0, ε0), and

0 � χ <
√

ca, (χ+ η + 4caχ)2 < 8caC0 + 4χη. (2.34)

Moreover, let us suppose that

ϕ0,ε,μ0,ε, σ0,ε ∈ H, F(ϕ0,ε) ∈ L1(Ω). (2.35)

For every τ ∈ (0, τ 0), let the initial data (ϕ0,ετ ,μ0,ετ , σ0,ετ ) satisfy (2.2), and denote by
(ϕετ ,μετ , σετ , ξετ ) the corresponding weak solution to (1.4)–(1.8) obtained from theorem 2.1.
Suppose also that, as τ ↘ 0,

ϕ0,ετ → ϕ0,ε in H, μ0,ετ → μ0,ε in H, σ0,ετ → σ0,ε in H, (2.36)

and

∃ M0 > 0 : τ 1/2‖ϕ0,ετ‖V + ‖F(ϕ0,ετ )‖L1(Ω) � M0 ∀ τ ∈ (0, τ0). (2.37)

Then, there exists a quadruplet (ϕε,με, σε, ξε), with

ϕε,με ∈ L∞(0, T; H) ∩ L2(0, T; V), εμε + ϕε ∈ H1(0, T; V∗) ∩ L2(0, T; V),

σε ∈ H1(0, T; V∗) ∩ L2(0, T; V), ξε ∈ L2(0, T; V),

such that

〈∂t(εμε + ϕε), ζ〉+
∫
Ω

∇με · ∇ζ =

∫
Ω

(Pσε − A)h(ϕε)ζ,

〈∂tσε, ζ〉+
∫
Ω

∇σε · ∇ζ + B
∫
Ω

(σε − σS)ζ + C
∫
Ω

σεh(ϕε)ζ = η

∫
Ω

∇ϕε · ∇ζ,

for every ζ ∈ V, almost everywhere in (0, T), and
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με = aϕε − J ∗ ϕε + ξε + F′
2(ϕε) − χσε, ξε ∈ ∂F1(ϕε) a.e. in Q,

ϕε(0) = ϕ0,ε, σε(0) = σ0,ε a.e. inΩ.

Moreover, as τ ↘ 0, along a non-relabelled subsequence it holds that

ϕετ
∗−⇀ϕε in L∞(0, T; H) ∩ L2(0, T; V), (2.38)

μετ
∗−⇀με in L∞(0, T; H) ∩ L2(0, T; V), (2.39)

εμετ + ϕετ ⇀ εμε + ϕε in H1(0, T; V∗) ∩ L2(0, T; V), (2.40)

σετ ⇀ σε in H1(0, T; V∗) ∩ L2(0, T; V), (2.41)

ξετ ⇀ ξε in L2(0, T; H), (2.42)

τϕετ → 0 in H1(0, T; H) ∩ L∞(0, T; V), (2.43)

and also that

ϕετ → ϕε in L2(0, T; H), μετ → με in L2(0, T; H), (2.44)

σετ → σε in C0([0, T]; V∗) ∩ L2(0, T; H). (2.45)

Furthermore, if η = 0 and σ0,ετ satisfies (2.9) for all τ > 0, then the limit σε satisfies (2.10)
as well, and

σετ
∗−⇀σε in L∞(Q).

Theorem 2.12 (Error estimate: τ ↘ 0). In the setting of theorem 2.11, suppose that
η = 0. Then the solution (ϕε,με, σε, ξε) to the system (1.4)–(1.8) with τ = 0 is unique, the
convergences obtained in theorem 2.11 hold along the entire sequence τ ↘ 0, and there exists
Kε > 0, independent of τ , such that the following error estimate holds:

‖(εμετ + ϕετ ) − (εμε + ϕε)‖L∞(0,T;V∗) + ‖ϕετ − ϕε‖L2(0,T;H)

+ ‖μετ − με‖L2(0,T;H) + ‖σετ − σε‖L∞(0,T;H)∩L2(0,T;V)

� Kε

(
τ 1/2 + ‖(εμ0,ετ + ϕ0,ετ ) − (εμ0,ε + ϕ0,ε)‖V∗ + ‖σ0,ετ − σ0,ε‖H

)
.

Remark 2.13. Note that given (ϕ0,ε,μ0,ε, σ0,ε) satisfying (2.35), a natural choice for the
approximating sequence (ϕ0,ετ ,μ0,ετ , σ0,ετ ) is given by the solutions to the elliptic problems

ϕ0,ετ + τRϕ0,ετ = ϕ0,ε, μ0,ετ + τRμ0,ετ = μ0,ε, σ0,ετ + τRσ0,ετ = σ0,ε.

In such a case, hypotheses (2.36) and (2.37) are readily satisfied. Moreover, if for example
ϕ0,ε,μ0,ε, τ 0,ε ∈ V , it is immediate to check that, there is M0 > 0, independent of τ , such that

‖ϕ0,ετ − ϕ0,ε‖H + ‖μ0,ετ − μ0,ε‖H + ‖σ0,ετ − σ0,ε‖H � M0τ
1/2,

so that the rate of convergence given by theorem 2.12 is exactly 1/2.
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The last two results we present deal with the asymptotic study of the system (1.4)–(1.8) as
the parameters ε and τ go to 0 simultaneously. Again, as a by-product, these yield existence
and uniqueness of solutions for the limit system (1.4)–(1.8) with ε = τ = 0.

Theorem 2.14 (Asymptotics: ε, τ ↘ 0). Assume A1–A5, (2.22), (2.34), η = 0, and
suppose that

ϕ0, σ0 ∈ H, F(ϕ0) ∈ L1(Ω). (2.46)

For every ε ∈ (0, ε0) and τ ∈ (0, τ0), let the initial data (ϕ0,ετ ,μ0,ετ , σ0,ετ ) satisfy (2.2) and
(2.9), and denote by (ϕετ ,μετ , σετ , ξετ ) the respective unique weak solution to the system
(1.4)–(1.8) obtained from theorem 2.1. Suppose also that, as (ε, τ ) → (0, 0),

ϕ0,ετ → ϕ0 in H, σ0,ετ → σ0 in H, (2.47)

and that there exists M0 > 0 such that

τ 1/2‖ϕ0,ετ‖V + ε1/2‖μ0,ετ‖H + ‖F(ϕ0,ετ )‖L1(Ω) � M0 ∀ (ε, τ ) ∈ (0, ε0) × (0, τ0).

(2.48)

Then, there exists a quadruplet (ϕ,μ, σ, ξ), with

ϕ ∈ H1(0, T; V∗) ∩ L2(0, T; V),

μ = aϕ− J ∗ ϕ+ ξ + F′
2(ϕ) − χσ ∈ L2(0, T; V),

σ ∈ H1(0, T; V∗) ∩ L2(0, T; V) ∩ L∞(Q),

0 � σ(t, x) � 1 for a.e. x ∈ Ω, ∀ t ∈ [0, T],

ξ ∈ L2(0, T; V), ξ ∈ ∂F1(ϕ) a.e. in Q,

ϕ(0) = ϕ0, σ(0) = σ0 a.e. inΩ,

such that, for every ζ ∈ V, almost everywhere in (0, T), it holds

〈∂tϕ, ζ〉+
∫
Ω

∇μ · ∇ζ =

∫
Ω

(Pσ − A)h(ϕ)ζ,

〈∂tσ, ζ〉+
∫
Ω

∇σ · ∇ζ + B
∫
Ω

(σ − σS)ζ + C
∫
Ω

σh(ϕ)ζ = 0.

Moreover, as (ε, τ ) → (0, 0), along a non-relabelled subsequence it holds that

ϕετ
∗−⇀ϕ in L∞(0, T; H) ∩ L2(0, T; V), (2.49)

μετ ⇀ μ in L2(0, T; V), (2.50)

εμετ + ϕετ ⇀ ϕ in H1(0, T; V∗) ∩ L2(0, T; V), (2.51)

σετ
∗−⇀σ in H1(0, T; V∗) ∩ L2(0, T; V) ∩ L∞(Q), (2.52)

εμετ → 0 in C0([0, T]; H) ∩ L2(0, T; V), (2.53)

τϕετ → 0 in H1(0, T; H) ∩ L∞(0, T; V), (2.54)
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hence in particular that

ϕετ → ϕ in L2(0, T; H), σετ → σ in C0([0, T]; V∗) ∩ L2(0, T; H). (2.55)

Theorem 2.15 (Error estimate: ε, τ ↘ 0). In the setting of theorem 2.14, assume (2.32),
and suppose also that there exist constants cF, M0 > 0 such that

F(r) � cF|r|4 − c−1
F ∀ r ∈ R. (2.56)

Then, the solution (ϕ,μ, σ, ξ) to the system (1.4)–(1.8) with ε = τ = 0 is unique. Moreover,
let the approximating initial data verify (2.48) and, for every (ε, τ ) ∈ (0, ε0) × (0, τ0),

ε1/4

τ 1/2

(
‖μ0,ετ‖H + ‖F′(ϕ0,ετ )‖H

)
+ ε1/4

(
‖μ0,ετ‖V + ‖σ0,ετ‖V

)
� M0. (2.57)

Then, the convergences obtained in theorem 2.14 hold along every subsequence (εk, τk)k

satisfying

lim sup
k→∞

ε
1/2
k

τk
< +∞, (2.58)

and in this case, there exists K > 0, independent of k, such that the following error estimate
holds:

‖ϕεkτk − ϕ‖C0([0,T];V∗)∩L2(0,T;H) + ‖σεkτk − σ‖C0([0,T];H)∩L2(0,T;V)

� K
(
ε

1/4
k + τ

1/2
k +

∥∥ϕ0,εkτk − ϕ0

∥∥
V∗ +

∥∥σ0,εkτk − σ0

∥∥
H

)
.

Throughout the paper we convey to use the symbol M to indicate constants depending only
on structural data. So, its meaning may change from line to line without further comments.
Moreover,we will sometimes add a self-explanatory subscript to stress its possible dependence.

3. Analysis of the system with ε, τ > 0

This section is devoted to the proof of the results concerning the behavior of the system with
ε, τ > 0, namely the existence of weak solutions contained in theorem 2.1, the continuous
dependence result contained in theorem 2.2, the regularity property of theorem 2.3, the exis-
tence of strong solution and separation in theorem 2.5, and the refined continuous dependence
result in theorem 2.7. Let us recall that throughout this section ε, τ > 0 are fixed.

3.1. The approximation

To prove the existence of solutions we rely on an approximation procedure based on the two
parameters n ∈ N and λ > 0, involving a Faedo–Galerkin approximation on the functional
spaces and the Yosida approximation on the potential (cf A4), respectively.

Let (e j) j∈N and (l j) j∈N be the sequences of eigenfunctions and eigenvalues of the operator
−Δwith homogeneous Neumann conditions, renormalized in such a way that ‖e j‖H = 1 for all
j ∈ N. Then it is well known that (e j) j is a complete orthonormal system in H, and orthogonal
in V. For every n ∈ N, let Wn := span{e1, . . . , en}, and define Πn : H →Wn as the orthogonal
projection onWn with respect to the scalar product of H. Then, as n →∞, it holds thatΠnv → v
in H (resp. V or W) for every v ∈ H (resp. V or W). We consider the following approximated
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problem: we then consider the following approximated system: find a triplet (ϕλ,n,μλ,n, σλ,n)
such that

ε∂tμλ,n + ∂tϕλ,n −Δμλ,n = Πn[(Pσλ,n − A)h(ϕλ,n)] in Q, (3.1)

μλ,n = τ∂tϕλ,n + aϕλ,n − J ∗ ϕλ,n +ΠnF′
λ(ϕλ,n) − χσλ,n in Q, (3.2)

∂tσλ,n −Δσλ,n + B(σλ,n − σS,n) +Πn[Cσλ,nh(ϕλ,n)] = −ηΔϕλ,n in Q, (3.3)

∂nμλ,n = ∂n(σλ,n − ηϕλ,n) = 0 on Σ, (3.4)

μλ,n(0) = Πnμ0, ϕλ,n(0) = Πnϕ0, σλ,n(0) = Πnσ0 in Ω, (3.5)

where σS,n :=ΠnσS, in the form

ϕλ,n(t, x) :=
n∑

j=1

αλ,n
j (t)e j(x), μλ,n(t, x) :=

n∑
j=1

βλ,n
j (t)e j(x),

σλ,n(t, x) :=
n∑

j=1

γλ,n
j (t)e j(x),

for t ∈ [0, T], x ∈ Ω, and j ∈ {1, . . . , n}. Moreover, let us introduce the vectors

αλ,n,βλ,n,γλ,n : [0, T] → R
n,

by

αλ,n := (αλ,n
1 , . . . ,αλ,n

n )T, βλ,n := (βλ,n
1 , . . . , βλ,n

n )T, γλ,n := (γλ,n
1 , . . . , γλ,n

n )T.

Plugging these expression in (3.1)–(3.5) and taking arbitrary ei ∈ Wn as test functions, for
i = 1, . . . , n, we deduce that (ϕλ,n,μλ,n, σλ,n) solves the approximated system if and only if
(αλ,n,βλ,n,γλ,n) solves the following system of ODEs, for i = 1, . . . , n:

ε∂tβ
λ,n
i + ∂tα

λ,n
i + liβ

λ,n
i =

∫
Ω

⎛⎝P
n∑

j=1

γλ,n
j e j − A

⎞⎠ h

⎛⎝ n∑
j=1

αλ,n
j e j

⎞⎠ ei,

βλ,n
i = τ∂tα

λ,n
i +

n∑
j=1

αλ,n
j

∫
Ω

ae jei −
n∑

j=1

αλ,n
j

∫
Ω

(J ∗ e j)ei

+

∫
Ω

F′
λ

⎛⎝ n∑
j=1

αλ,n
j e j

⎞⎠ ei − χγλ,n
i , ∂tγ

λ,n
i + liγ

λ,n
i +B

(
γλ,n

i −
∫
Ω

σS,nei

)

+ C
n∑

j=1

γλ,n
j

∫
Ω

h

(
n∑

m=1

αλ,n
m em

)
e jei = ηliα

λ,n
i ,

αλ,n
i (0) = (ϕ0, ei)H , βλ,n

i (0) = (μ0, ei)H , γλ,n
i (0) = (σ0, ei)H.

Since h, F′
λ : R→ R are Lipschitz continuous and h is bounded, such initial value system can

be written in the form
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⎧⎨⎩∂t(αλ,n,βλ,n,γλ,n) = gλ,n(αλ,n,βλ,n,γλ,n),

(αλ,n,βλ,n,γλ,n)(0) = ((ϕ0, ei)H , (μ0, ei)H, (σ0, ei)H),

where gλ,n : R3n → R
3n is locally Lipschitz continuous and linearly bounded. Hence, by the

Cauchy–Peano theorem, the system above admits a unique global solution αλ,n,βλ,n,γλ,n ∈
C1([0, T];Rn), implying that

ϕλ,n,μλ,n, σλ,n ∈ C1([0, T];Wn)

are the unique solutions to the approximated problem (3.1)–(3.5).

3.2. Uniform estimates

We prove uniform estimates independent of λ and n, still keeping ε, τ > 0 fixed.
Testing (3.1) by μλ,n, (3.2) by −∂tϕλ,n, (3.3) by σλ,n, taking the sum and integrating over

(0, t), yields by symmetry of the kernel J, for every t ∈ [0, T],

ε

2
‖μλ,n(t)‖2

H +

∫
Qt

|∇μλ,n|2 + τ

∫
Qt

|∂tϕλ,n|2 +
1
4

∫
Ω×Ω

J(x − y)|ϕλ,n(t, x) − ϕλ,n(y, t)|2 dx dy

+

∫
Ω

Fλ(ϕλ,n(t)) +
1
2
‖σλ,n(t)‖2

H

+

∫
Qt

|∇σλ,n|2 +
∫

Qt

(
B + Ch(ϕλ,n)

)
|σλ,n|2

=
ε

2
‖Πnμ0‖2

H +
1
4

∫
Ω×Ω

J(x − y)|Πnϕ0(x) −Πnϕ0(y)|2 dx dy

+

∫
Ω

Fλ(Πnϕ0) +
1
2
‖Πnσ0‖2

H +

∫
Qt

(Pσλ,n − A)h(ϕλ,n)μλ,n

+ χ

∫
Qt

σλ,n∂tϕλ,n + B
∫

Qt

σS,nσλ,n + η

∫
Qt

∇ϕλ,n · ∇σλ,n.

Now, note that by assumption A5 we have

1
4

∫
Ω×Ω

J(x − y)|ϕλ,n(t, x) − ϕλ,n(t, y)|2 dx dy

=
1
2

∫
Ω

[
a(x)|ϕλ,n|2 − (J ∗ ϕλ,n)ϕλ,n

]
(t, x) dx

� a∗
2
‖ϕλ,n(t)‖2

H − 1
2
‖J ∗ ϕλ,n(t)‖H‖ϕλ,n(t)‖H � a∗ − a∗

2
‖ϕλ,n(t)‖2

H , (3.6)

and similarly

1
4

∫
Ω×Ω

J(x − y)|Πnϕ0(x) −Πnϕ0(y)|2 dx dy

=
1
2

∫
Ω

[
a|Πnϕ0|2 − (J ∗ Πnϕ0)Πnϕ0

]
(x) dx

� a∗ + a∗

2
‖Πnϕ0‖2

H � a∗‖ϕ0‖2
H.
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Using that Fλ � 0, (3.6) along with the definition of ca, recalling also that h is non-negative
and bounded and that Πn is a contraction on H, owing to the Young inequality we infer that

ε

2
‖μλ,n(t)‖2

H +

∫
Qt

|∇μλ,n|2 + τ

∫
Qt

|∂tϕλ,n|2 +
1
2
‖σλ,n(t)‖2

H +

∫
Qt

|∇σλ,n|2

� ε

2
‖μ0‖2

H + a∗‖ϕ0‖2
H + ‖Fλ(Πnϕ0)‖L1(Ω) +

1
2
‖σ0‖2

H +
ca

2
‖ϕλ,n(t)‖2

H

+

∫
Qt

(Pσλ,n − A)h(ϕλ,n)μλ,n +
1
4

∫
Qt

|σλ,n|2 + |Q|B2‖σS,n‖2
L∞(Q)

+ χ

∫
Qt

σλ,n∂tϕλ,n + η

∫
Qt

∇ϕλ,n · ∇σλ,n. (3.7)

Here, we recall that a∗ − a∗ � 0 which entails that ca = max{a∗ − a∗, 1} > 0. Then, we test
equation (3.1) by 4ca(εμλ,n + ϕλ,n) and (3.2) by −4caΔϕλ,n, add the resulting equalities and
integrate over (0, t) and by parts, getting, thanks to assumption A5,

2ca‖(εμλ,n + ϕλ,n)(t)‖2
H + 4caε

∫
Qt

|∇μλ,n|2 + 2caτ‖∇ϕλ,n(t)‖2
H

+ 4caC0

∫
Qt

|∇ϕλ,n|2 � 2ca‖Πn(εμ0 + ϕ0)‖2
H + 2caτ‖∇Πnϕ0‖2

H

+ 4ca

∫
Qt

(Pσλ,n − A)h(ϕλ,n)(εμλ,n + ϕλ,n)

+ 4caχ

∫
Qt

∇σλ,n · ∇ϕλ,n + 8cab∗‖ϕλ,n‖L2(Qt)
‖∇ϕλ,n‖L2(Qt)

,

from which we infer, thanks to the Young inequality and the boundedness of h, that

2ca‖(εμλ,n + ϕλ,n)(t)‖2
H + 4caε

∫
Qt

|∇μλ,n|2 + 2caτ‖∇ϕλ,n(t)‖2
H

+ 2caC0

∫
Qt

|∇ϕλ,n|2 � 4caε
2‖μ0‖2

H + 4ca‖ϕ0‖2
H + 2caτ‖∇ϕ0‖2

H + 4caχ

∫
Qt

∇σλ,n · ∇ϕλ,n

+ M

(
1 +

∫
Qt

|εμλ,n + ϕλ,n|2 +
∫

Qt

|ϕλ,n|2 +
∫

Qt

|σλ,n|2
)
. (3.8)

for a constant M > 0, independent of λ, n, ε, and τ . Summing (3.7) and (3.8), we infer that,
possibly updating M,

ε

2
‖μλ,n(t)‖2

H + (1 + 4caε)
∫

Qt

|∇μλ,n|2 + τ

∫
Qt

|∂tϕλ,n|2 +
1
2
‖σλ,n(t)‖2

H

+

∫
Qt

|∇σλ,n|2 + 2ca‖(εμλ,n + ϕλ,n)(t)‖2
H + 2caτ‖∇ϕλ,n(t)‖2

H

+ 2caC0

∫
Qt

|∇ϕλ,n|2 �
(ε

2
+ 4caε

2
)
‖μ0‖2

H + (a∗ + 4ca)‖ϕ0‖2
H + 2caτ‖∇ϕ0‖2

H

+ ‖Fλ(Πnϕ0)‖L1(Ω) +
1
2
‖σ0‖2

H +
ca

2
‖ϕλ,n(t)‖2

H + χ

∫
Qt

σλ,n∂tϕλ,n
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+ (η + 4caχ)
∫

Qt

∇σλ,n · ∇ϕλ,n + M

(
1 +

∫
Qt

|εμλ,n + ϕλ,n|2

+

∫
Qt

|ϕλ,n|2 +
∫

Qt

|σλ,n|2
)
+

∫
Qt

(Pσλ,n − A)h(ϕλ,n)μλ,n. (3.9)

Note that

ca

2
‖ϕλ,n(t)‖2

H � ca‖(εμλ,n + ϕλ,n)(t)‖2
H + caε

2‖μλ,n(t)‖2
H ,

where the two terms on the right-hand side can be incorporated in the left-hand side of (3.9)
as 2ca − ca = ca > 0 and ε

2 − caε
2 � ε

4 (since ε ∈ (0, 1
4ca

)). Furthermore, using the Young
inequality we have

χ

∫
Qt

σλ,n∂tϕλ,n + (η + 4caχ)
∫

Qt

∇σλ,n · ∇ϕλ,n

� τ

2

∫
Qt

|∂tϕλ,n|2 +
χ2

2τ

∫
Qt

|σλ,n|2 +
1
2

∫
Qt

|∇σλ,n|2 +
(η + 4caχ)2

2

∫
Qt

|∇ϕλ,n|2.

Collecting the above estimates, we infer that

ε

4
‖μλ,n(t)‖2

H + (1 + 4caε)
∫

Qt

|∇μλ,n|2 +
τ

2

∫
Qt

|∂tϕλ,n|2

+
1
2
‖σλ,n(t)‖2

H +

∫
Qt

|∇σλ,n|2 + ca‖(εμλ,n + ϕλ,n)(t)‖2
H

+ 2caτ‖∇ϕλ,n(t)‖2
H + 2caC0

∫
Qt

|∇ϕλ,n|2

� 3
2
ε‖μ0‖2

H + (a∗ + 4ca)‖ϕ0‖2
H + 2caτ‖∇ϕ0‖2

H + ‖Fλ(Πnϕ0)‖L1(Ω)

+
1
2
‖σ0‖2

H + M

(
1 +

∫
Qt

|εμλ,n + ϕλ,n|2 +
∫

Qt

|ϕλ,n|2 +
∫

Qt

|σλ,n|2
)

+
χ2

2τ

∫
Qt

|σλ,n|2 +
1
2

∫
Qt

|∇σλ,n|2 +
(η + 4caχ)2

2

∫
Qt

|∇ϕλ,n|2

+

∫
Qt

(Pσλ,n − A)h(ϕλ,n)μλ,n. (3.10)

Moreover, the last term on the right-hand side can be easily bounded owing to Young’s
inequality.

Then, we fixλ > 0, and since Fλ has at most quadratic growth (depending onλ) andϕ0 ∈ H,
we have that ‖Fλ(Πnϕ0)‖L1(Ω) � Mλ uniformly in n ∈ N, for a certain Mλ > 0 independent of
n. Therefore, Gronwall’s lemma yields that

‖μλ,n‖2
L∞(0,T;H)∩L2(0,T;V) + ‖ϕλ,n‖2

H1(0,T;H)∩L∞(0,T;V) + ‖σλ,n‖2
L∞(0,T;H)∩L2(0,T;V) � Mλ,

(3.11)
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where the constant Mλ is independent of n (but not of τ and ε). Furthermore, by comparison
in equations (3.1) and (3.3), we deduce that

‖∂t(εμλ,n + ϕλ,n)‖2
L2(0,T;V∗) + ‖∂tμλ,n‖2

L2(0,T;V∗) + ‖∂tσλ,n‖2
L2(0,T;V∗) � Mλ. (3.12)

3.3. Passage to the limit

We pass now to the limit, keeping ε, τ > 0 fixed, first as n →∞ and then as λ ↘ 0. From
the estimates (3.11)–(3.12) and the Aubin–Lions compactness theorems (see, e.g., [80,
corollary 4]), we deduce that the exists a triplet (ϕλ,μλ, σλ), with

ϕλ ∈ H1(0, T; H) ∩ L∞(0, T; V), μλ, σλ ∈ H1(0, T; V∗) ∩ L2(0, T; V),

such that, as n →∞,

ϕλ,n
∗−⇀ϕλ in H1(0, T; H) ∩ L∞(0, T; V), ϕλ,n → ϕλ in C0([0, T]; H),

μλ,n ⇀ μλ in H1(0, T; V∗) ∩ L2(0, T; V), μλ,n → μλ in C0([0, T]; V∗) ∩ L2(0, T; H),

σλ,n ⇀ σλ in H1(0, T; V∗) ∩ L2(0, T; V), σλ,n → σλ in C0([0, T]; V∗) ∩ L2(0, T; H).

Since F′
λ is Lipschitz continuous and h is Lipschitz continuous and bounded, it is a standard

matter to pass the limit in the approximated problem (3.1)–(3.5) as n →∞ to obtain, for every
test function ζ ∈ V,

〈∂t(εμλ + ϕλ), ζ〉+
∫
Ω

∇μλ · ∇ζ =

∫
Ω

(Pσλ − A)h(ϕλ)ζ, (3.13)

μλ = τ∂tϕλ + aϕλ − J ∗ ϕλ + F′
λ(ϕλ) − χσλ, (3.14)

〈∂tσλ, ζ〉+
∫
Ω

∇σλ · ∇ζ +

∫
Ω

[B(σλ − σS) + Cσλh(ϕλ)] ζ = η

∫
Ω

∇ϕλ · ∇ζ, (3.15)

almost everywhere in (0, T), and

μλ(0) = μ0, ϕλ(0) = ϕ0, σλ(0) = σ0 a.e. inΩ (3.16)

meaning that (ϕλ,μλ, σλ) satisfy the analogous of conditions (2.6)–(2.8) at level λ.
Clearly, by weak lower semicontinuity of the norms and the convex integrands, passing to

the lim inf as n →∞ in the estimates (3.11) and (3.12), and recalling that Fλ � F, we infer
that there exists M > 0, independent of λ (but not of ε and τ ), such that

‖μλ‖2
H1(0,T;V∗)∩L2(0,T;V) + ‖ϕλ‖2

H1(0,T;H)∩L∞(0,T;V)

+ ‖σλ‖2
H1(0,T;V∗)∩L2(0,T;V) � M. (3.17)

Furthermore, the estimate (3.17) readily implies, by comparison in (3.14), that∥∥F′
1,λ(ϕλ)

∥∥2

L2(0,T;H) � M. (3.18)

Hence, there exists a quadruplet (ϕ,μ, σ, ξ), with

ϕ ∈ H1(0, T; H) ∩ L∞(0, T; V),

μ, σ ∈ H1(0, T; V∗) ∩ L2(0, T; V), ξ ∈ L2(0, T; H),
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such that, as λ→ 0,

ϕλ
∗
⇀ϕ in H1(0, T; H) ∩ L∞(0, T; V), ϕλ → ϕ in C0([0, T]; H),

μλ ⇀ μ in H1(0, T; V∗) ∩ L2(0, T; V), μλ → μ in C0([0, T]; V∗) ∩ L2(0, T; H),

σλ ⇀ σ in H1(0, T; V∗) ∩ L2(0, T; V), σλ → σ in C0([0, T]; V∗) ∩ L2(0, T; H),

F′
1,λ(ϕλ) ⇀ ξ in L2(0, T; H).

The graph convergence of F′
1,λ to ∂F1, as λ→ 0, implies that ξ ∈ ∂F1(ϕ) almost everywhere

in Q. Moreover, by the Lipschitz continuity of F′
2 and h, and the boundedness of h, we have

that

h(ϕλ) → h(ϕ) in Lp(Q) ∀ p � 1, F′
2(ϕλ) → F′

2(ϕ) in L2(0, T; H).

Consequently, letting λ→ 0 in the variational formulation of (3.13)–(3.16), we obtain exactly
(2.6)–(2.8) completing the proof concerning the existence of weak solutions in theorem 2.1.

3.4. Maximum principle for σ

We prove here the last assertion of theorem 2.1, concerning a maximum principle for σ under
the additional requirement that η = 0. Testing equation (2.8) by f+(σ) := (σ − 1)+, we have

1
2
‖ f +(σ(t))‖2

H +

∫
Qt

f ′+(σ)|∇σ|2 + B
∫

Qt

f +(σ)(σ − σS) + C
∫

Qt

f +(σ)σh(ϕ) = 0,

where we have used the fact that f+(σ0) = 0. Since f+ is non-decreasing and h is non-negative,
we infer that the second and fourth terms on the left-hand side are non-negative so that

1
2
‖ f +(σ(t))‖2

H + B
∫

Qt

f +(σ)(σ − σS) � 0. (3.19)

Moreover, since σS � 1 by assumption A3, we have that

B
∫

Qt

f +(σ)(σ − σS) = B
∫

Qt∩{σ>1}
(σ − 1)(σ − σS) � 0.

Therefore, coming back to (3.19), we realize that f+(σ(t)) = 0 which gives us the upper bound
σ(t) � 1 a.e. in Ω, for every t ∈ [0, T], as desired. The lower inequality follows by a similar
argument testing by f−(σ) := − σ−.

3.5. Continuous dependence

Let us prove here the continuous dependence of theorem 2.2. To begin with, bearing in mind the
notation introduced in theorem 2.2, we set ϕ :=ϕ1 − ϕ2, μ :=μ1 − μ2, σ :=σ1 − σ2, ξ := ξ1 −
ξ2, ϕ0 :=ϕ1

0 − ϕ2
0, μ0 :=μ1

0 − μ2
0, σ0 := σ1

0 − σ2
0. Then, we consider the difference of system

(1.4)–(1.8) written for the two solutions to obtain

ε∂tμ+ ∂tϕ−Δμ = Pσh(ϕ1) + (Pσ2 − A)(h(ϕ1) − h(ϕ2)) in Q, (3.20)

μ = τ∂tϕ+ aϕ− J ∗ ϕ+ ξ + F′
2(ϕ1) − F′

2(ϕ2) − χσ in Q, (3.21)

∂tσ −Δσ + Bσ + Cσh(ϕ1) = Cσ2(h(ϕ2) − h(ϕ1)) − ηΔϕ in Q, (3.22)

∂nμ = ∂n(σ − ηϕ) = 0 on Σ, (3.23)
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μ(0) = μ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω. (3.24)

Next, we test the equation (3.20) by R−1(εμ+ ϕ), (3.21) by −ϕ, (3.22) by σ, and take the sum
to get, after integration on [0, t],

1
2
‖(εμ+ ϕ)(t)‖2

V∗ + ε

∫
Qt

|μ|2 + τ

2
‖ϕ(t)‖2

H

+

∫
Qt

[
a|ϕ|2 + ξϕ+ (F′

2(ϕ1) − F′
2(ϕ2))ϕ

]
+

1
2
‖σ(t)‖2

H +

∫
Qt

|∇σ|2

+

∫
Qt

(B + Ch(ϕ1))|σ|2

=
1
2
‖εμ0 + ϕ0‖2

V∗ +
τ

2
‖ϕ0‖2

H +
1
2
‖σ0‖2

H +

∫
Qt

(χσ + J ∗ ϕ)ϕ

+

∫
Qt

[Cσ2(h(ϕ2) − h(ϕ1))]σ +

∫
Qt

[μ+ Pσh(ϕ1)

+ (Pσ2 − A)(h(ϕ1) − h(ϕ2))]R−1(εμ+ ϕ) + η

∫
Qt

∇ϕ · ∇σ. (3.25)

Note that the last term on the left-hand side is non-negative due to the positivity of h. Hence,
using the monotonicity of ∂F1 and recalling assumption A5, we have∫

Qt

[
a|ϕ|2 + ξϕ+ (F′

2(ϕ1) − F′
2(ϕ2))ϕ

]
+

∫
Qt

(B + Ch(ϕ1))|σ|2 � C0

∫
Qt

|ϕ|2.

Moreover, under the assumption η = 0, we have, owing to (2.10) that σ2 ∈ L∞(Q) with
‖σ2‖L∞(Q) � 1 and that the last term on the right-hand side of (3.25) disappears. Let us estimate
the remaining terms on the right-hand side. First of all, recalling that K0 denotes the norm of
the inclusion H ↪→ V∗, by the Young inequality we have that, for every δ1, δ2 > 0,∫

Qt

[μ+ Pσh(ϕ1) + (Pσ2 − A)(h(ϕ1) − h(ϕ2))]R−1(εμ+ ϕ)

� δ1ε

∫
Qt

|μ|2 + δ2

∫
Qt

|ϕ|2 +
P2‖h‖2

L∞(R)

2

∫
Qt

|σ|2

+ K2
0

(
1

4δ1ε
+

1
2
+

(P + A)2‖h′‖2
L∞(R)

4δ2

)∫ t

0
‖(εμ+ ϕ)(s)‖2

V∗ ds.

Secondly, analogous computations yield

χ

∫
Qt

σϕ+

∫
Qt

[Cσ2(h(ϕ2) − h(ϕ1))]σ � δ2

∫
Qt

|ϕ|2 +
χ2 + C2‖h′‖2

L∞(R)

2δ2

∫
Qt

|σ|2.

Finally, we have that∫
Qt

(J ∗ ϕ)ϕ �
∫ t

0
‖J ∗ ϕ(s)‖V‖ϕ(s)‖V∗ ds � (a∗ + b∗)

∫ t

0
‖ϕ(s)‖H‖ϕ(s)‖V∗ ds

� δ2

∫
Qt

|ϕ|2 + (a∗ + b∗)2

4δ2

∫ t

0
‖ϕ(s)‖2

V∗ ds
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� δ2

∫
Qt

|ϕ|2 + (a∗ + b∗)2

2δ2

∫ t

0
‖(εμ+ ϕ)(s)‖2

V∗ ds

+
ε(a∗ + b∗)2K2

0

2δ2

(
ε

∫
Qt

|μ|2
)
.

Rearranging the terms we deduce that

1
2
‖(εμ+ ϕ)(t)‖2

V∗ + ε

∫
Qt

|μ|2 + τ

2
‖ϕ(t)‖2

H

+ C0

∫
Qt

|ϕ|2 + 1
2
‖σ(t)‖2

H +

∫
Qt

|∇σ|2

� 1
2
‖εμ0 + ϕ0‖2

V∗ +
τ

2
‖ϕ0‖2

H +
1
2
‖σ0‖2

H

+ Mδ1,δ2,ε

∫ t

0

(
‖σ(s)‖2

H + ‖(εμ+ ϕ)(s)‖2
V∗

)
ds

+

(
δ1 +

ε(a∗ + b∗)2K2
0

2δ2

)
ε

∫
Qt

|μ|2 + 3δ2

∫
Qt

|ϕ|2

for some positive constant Mδ1,δ2,ε depending on the data of the problem and ε, but independent
of τ . Now, it clear that the last two terms on the right-hand side can be incorporated in the
corresponding ones on the left provided to choose and fix δ1, δ2 > 0 such that

δ1 +
ε(a∗ + b∗)2K2

0

2δ2
< 1, 3δ2 < C0.

An elementary computation shows that this is possible if and only if

ε(a∗ + b∗)2K2
0

2
<

C0

3
,

which is indeed guaranteed since ε < ε0 and by the smallness assumption on ε0. The thesis
follows then by the Gronwall lemma.

3.6. Further regularity

This section is devoted to the proof of theorem 2.3, concerning regularity of weak solutions,
when ε, τ > 0. To begin with, we improve the regularity ofϕ and σ by showing that the approx-
imate solutions (ϕλ,μλ, σλ) to the system (3.13)–(3.16) satisfy further estimates uniformly in
λ. We proceed formally, to avoid a further regularization on the system based on time discretiza-
tions. First, we analyse the system (3.13)–(3.16) at the initial time t = 0 and let us claim that
there exists a unique pair (ϕ′

0,λ,μ′
0,λ, σ′

0,λ) ∈ H × V∗ × V∗ such that, in Ω,⎧⎪⎪⎨⎪⎪⎩
εμ′

0,λ + ϕ′
0,λ −Δμ0 = (Pσ0 − A)h(ϕ0),

μ0 = τϕ′
0,λ + aϕ0 − J ∗ ϕ0 + F′

λ(ϕ0) − χσ0,

σ′
0,λ −Δσ0 + B(σ0 − σS(0)) + Cσ0h(ϕ0) = −ηΔϕ0.

Indeed, the existence and uniqueness of σ′
0,λ is given by the third equation and the assumptions

(2.2), (2.12) and (2.13). It follows directly then from the second equation the unique definition
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for ϕ′
0,λ, and finally from the first equation the one of μ′

0,λ. Furthermore, from the second
equation and assumption (2.12) it follows that (ϕ′

0,λ)λ is uniformly bounded in H, which in
turn yields that (μ′

0,λ)λ is uniformly bounded in V∗.
Bearing this in mind, we test (3.13) by ∂tμλ, the time-derivative of (3.14) by −∂tϕλ, (3.15)

by ∂t(σλ − ηϕλ), and take the sum: after integrating in time we obtain

ε

∫
Qt

|∂tμλ|2 +
1
2
‖∇μλ(t)‖2

H +
τ

2
‖∂tϕλ(t)‖2

H +

∫
Qt

(a + F′′
λ(ϕλ))|∂tϕλ|2

+

∫
Qt

|∂tσλ|2 +
1
2
‖∇(σλ − ηϕλ)(t)‖2

H

=
1
2
‖∇μ0‖2

H +
τ

2
‖ϕ′

0,λ‖2
H +

1
2
‖∇(σ0 − ηϕ0)‖2

H

+

∫
Qt

(Pσλ − A)h(ϕλ)∂tμλ +

∫
Qt

(J ∗ (∂tϕλ) + (η + χ)∂tσλ) ∂tϕλ

+

∫
Qt

(B(σS − σλ) − Ch(ϕλ)σλ) (∂tσλ − η∂tϕλ). (3.26)

Now, the second term on the right-hand side is uniformly bounded in λ thanks to the remarks
above, and so is the first one by assumption. Hence, recalling again A5 we infer that

ε

∫
Qt

|∂tμλ|2 +
1
2
‖∇μλ(t)‖2

H +
τ

2
‖∂tϕλ(t)‖2

H + C0

∫
Qt

|∂tϕ|2

+

∫
Qt

|∂tσλ|2 +
1
2
‖∇(σλ − ηϕλ)(t)‖2

H

� M +
ε

2

∫
Qt

|∂tμλ|2 +
1
2ε

∫
Qt

|(Pσλ − A)h(ϕ)|2 + 1
2

∫
Qt

|∂tσλ|2

+

(
a∗ + (η + χ)2 +

η2

2

)∫
Qt

|∂tϕλ|2 +
3
2

∫
Qt

|B(σS − σλ) − Ch(ϕλ)σλ|2.

Taking the estimate (3.17) into account and using the boundedness of h and σS we infer that

‖ϕλ‖2
W1,∞(0,T;H) + ‖μλ‖2

H1(0,T;H)∩L∞(0,T;V) + ‖σλ‖2
H1(0,T;H) + ‖σλ − ηϕλ‖2

L∞(0,T;V) � M

for some M > 0 independent of λ. As we already know that (ϕλ)λ is uniformly bounded in
L∞(0, T; V) by (3.17), it is now a standard matter to pass to the limit as λ→ 0: recalling (2.3)
and (2.4) and using a comparison argument for the linear combination σ − ηϕ, we have

ϕ ∈ W1,∞(0, T; H) ∩ L∞(0, T; V), μ, σ − ηϕ ∈ H1(0, T; H) ∩ L∞(0, T; V),

σ ∈ H1(0, T; H) ∩ L2(0, T; V).

Moreover, note that (1.4) and (1.6) can be rewritten as

ε∂tμ−Δμ = f μ := (Pσ − A)h(ϕ) − ∂tϕ in Q, (3.27)

∂t(σ − ηϕ) −Δ(σ − ηϕ) = f σ := − B(σ − σS) − Cσh(ϕ) − η∂tϕ in Q, (3.28)

endowed with homogeneous Neumann boundary conditions and initial data μ0, σ0 − ηϕ0 ∈ V.
Since the forcing terms and the initial data satisfy fμ, fσ ∈ L2(0, T; H), the classical parabolic
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regularity theory yields

μ, σ − ηϕ ∈ L2(0, T; W),

completing the proof of theorem 2.3.

3.7. Strong solutions and separation principle

We focus here on the proof of theorem 2.5 concerning existence of strong solutions, separation
property, and magnitude regularity, still in the case ε, τ > 0. Let us stress that the separation
result will allow us to exploit the regularity of the linear combination σ − ηϕ to derive further
regularity for ϕ and σ.

First of all, by virtue of theorem 2.3 we realize that (3.27) consists of a parabolic equation in
the variable μ with source term fμ ∈ L∞(0, T; H), and with initial datum μ0 ∈ L∞(Ω) by (2.18).
Therefore, an application of [68, theorem 7.1, p 181] yields that

μ ∈ L∞(Q).

In a similar fashion, we notice that in (3.28) we have initial datum σ0 − ηϕ0 ∈ V ∩ L∞(Ω)
and forcing term fσ ∈ L∞(0, T; H) by virtue of theorem 2.3. Hence, an application of [68,
theorem 7.1, p 181] yields again

σ − ηϕ ∈ L∞(Q).

Furthermore, we claim that from assumption A7 we can deduce further regularity also for the
term J ∗ ϕ. Indeed, every kernel verifying definition 2.4 satisfy the following result, whose
proof can be found, e.g., in [5, lemma 2].

Lemma 3.1. Assume that the kernel J is admissible in the sense of the definition 2.4. Then,
for every p ∈ (1,∞), there exists a positive constant Cp such that

‖∇(∇J ∗ ψ)‖Lp(Ω)3×3 � Cp‖ψ‖Lp(Ω) ∀ ψ ∈ Lp(Ω). (3.29)

As a consequence, by taking p = 2 in (3.29), we deduce that

‖J ∗ ϕ‖L∞(0,T;H2(Ω)) � C2‖ϕ‖L∞(0,T;H),

which readily implies, thanks to the continuous inclusion H2(Ω) ↪→ L∞(Ω), that

J ∗ ϕ ∈ L∞(0, T; H2(Ω)) ∩ L∞(Q).

We are now ready to prove the separation property. To this end, note that, taking these
remarks into account, under the assumption A6 on F, we can rewrite equation (2.6) as

τ∂tϕ+ aϕ+ F′(ϕ) − χηϕ = f ϕ :=μ+ χ(σ − ηϕ) + J ∗ ϕ. (3.30)

Besides, we have already proved that fϕ ∈ L2(0, T; H2(Ω)) ∩ L∞(Q), so that there exists a
constant M > 0 such that

‖ f ϕ‖L∞(Q) � M.

Next, by A6 and (2.18) we infer the existence of r∗ ∈ (r0, �) such that

F′(r) − χηr � M ∀ r ∈ (r∗, �), F′(r) − χηr � −M ∀ r ∈ (−�,−r∗).
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We claim that this choice entails ϕ(t) � r∗ almost everywhere in Ω, for all t ∈ [0, T]. In fact,
by testing (3.30) by (ϕ− r∗)+ and integrating on [0, t], we immediately infer that

τ

2
‖(ϕ(t) − r∗)+‖2

H +

∫
Qt

aϕ(ϕ− r∗)+ =
τ

2
‖(ϕ0 − r∗)+‖2

H

+

∫
Qt

[
f ϕ − (F′(ϕ) − χηϕ)

]
(ϕ− r∗)+.

Now, since r∗ ∈ (r0, �) and ‖ϕ0‖L∞(Ω) � r0, the first term on the right-hand side vanishes.
Moreover, by definition of M and r∗ we have that∫

Qt

[
f ϕ − (F′(ϕ) − χηϕ)

]
(ϕ− r∗)+

=

∫
Qt∩{ϕ>r∗}

[
f ϕ − (F′(ϕ) − χηϕ)

]
(ϕ− r∗) � 0.

Recalling also A5, we infer that, for every t ∈ [0, T],

τ

2
‖(ϕ(t) − r∗)+‖2

H + a∗

∫
Qt∩{ϕ>r∗}

ϕ(ϕ− r∗) � 0.

Hence, since the second term on the left-hand side is non-negative, we deduce that

(ϕ(t) − r∗)+ = 0 ∀ t ∈ [0, T], i.e.

ϕ(t, x) � r∗ for a.e.x ∈ Ω ∀ t ∈ [0, T],

as required. The other inequality ϕ � −r∗ can be deduced analogously by testing by
−(ϕ+ r∗)− instead. Thus, we have shown that

sup
t∈[0,T]

‖ϕ(t)‖L∞(Ω) � r∗, with r∗ ∈ (r0, �).

Let us now show the L2(0, T; W)-regularity for σ and ηϕ. To this end, for an exponent p > 1
yet to be chosen, we test the gradient of (3.30) by |∇ϕ|p−2∇ϕ and integrate over Qt to obtain,
by assumption A5 and the Hölder and generalized Young inequalities, that

τ

p
sup

s∈[0,t]
‖∇ϕ(s)‖p

Lp(Ω) + C0

∫
Qt

|∇ϕ|p

=
τ

p
‖∇ϕ0‖p

Lp(Ω) + χη

∫
Qt

|∇ϕ|p −
∫

Qt

(∇a)ϕ |∇ϕ|p−2∇ϕ

+

∫
Qt

∇ f ϕ · |∇ϕ|p−2∇ϕ � τ

p
‖∇ϕ0‖p

Lp(Ω) + χη

∫
Qt

|∇ϕ|p + τ

2p
sup

s∈[0,t]
‖∇ϕ(s)‖p

Lp(Ω)

+
[4(p− 1)]p−1(b∗)p

pτ p−1
‖ϕ‖p

L1(0,T;Lp(Ω))
+

[4(p− 1)]p−1

pτ p−1
‖∇ f ϕ‖p

L1(0,T;Lp(Ω))
.

Owing to the already proved regularities fϕ ∈ L2(0, T; H2(Ω)) and ϕ ∈ L2(0, T; V), we deduce
in particular that ∇fϕ ∈ L2(0, T; V) so that, using the embedding V ↪→ L6(Ω), also ∇fϕ,ϕ ∈
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L2(0, T; L6(Ω)). Moreover, ϕ0 ∈ H2(Ω) also entails that ∇ϕ0 ∈ L6(Ω). Choosing then p = 6
and using the Gronwall lemma yields

ϕ ∈ L∞(0, T; W1,6(Ω)). (3.31)

Now, for brevity we proceed formally: a rigorous argument can be reproduced on suit-
able approximations. Applying the second-order differential operator ∂xi x j (i, j = 1, 2, 3) to
equation (3.30), testing it by ∂xi x jϕ, and integrating on [0, t] lead to

τ

2

∥∥∂xi x jϕ(t)
∥∥2

H
+

∫
Qt

(
a + F′′(ϕ)

)
|∂xi x jϕ|2 =

τ

2

∥∥∂xi x jϕ0

∥∥2

H

+

∫
Qt

∂xi x j f ϕ∂xi x jϕ+ χη

∫
Qt

|∂xi x jϕ|2 −
∫

Qt

[
∂xi a∂x jϕ+ ∂x ja∂xiϕ

+ (∂xix ja)ϕ+ F′′′(ϕ)∂xiϕ∂x jϕ
]
∂xi x jϕ.

Now, due to the already proved separation property ‖ϕ‖L∞(Q) � r∗ < �, and recalling that
F ∈ C3(−�, �) by A6, we have that F′′′(ϕ) ∈ L∞(Q). Hence, exploiting A5, using the Young
inequality, and summing on i, j = 1, 2, 3 we deduce, recalling that ϕ ∈ L2(0, T; V), that

τ

2
‖ϕ(t)‖2

H2(Ω) + C0

∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

� τ

2
‖ϕ0‖2

H2(Ω) + (2 + χη)
∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

+
1
2
‖ f ϕ‖2

L2(0,T;H2(Ω)) + 2
∫

Qt

|∇a|2|∇ϕ|2 + 1
2

∫
Qt

3∑
i, j=1

|∂xi x ja|2|ϕ|2

+
1
2
‖F′′′(ϕ)‖2

L∞(Q)

∫
Qt

|∇ϕ|4.

Moreover, ‖∇a‖L∞(Ω) � b∗ by A5, ‖a‖W2,p(Ω) � Cp for all p ∈ (1,+∞) by (3.29) and ϕ ∈
L∞(0, T; V), so that the Hölder inequality yields∫

Qt

|∇a|2|∇ϕ|2 � (b∗)2‖ϕ‖2
L2(0,T;V) � M

and, by the continuous embedding V ↪→ L4(Ω), also that

∫
Qt

3∑
i, j=1

|∂xi x ja|2|ϕ|2 � ‖a‖2
W2,4(Ω)‖ϕ‖

2
L4(0,T;L4(Ω)) � M′‖ϕ‖2

L4(0,T;V) � M

for certain constants M, M′ > 0. Using then (3.31), we are left with

τ

2
‖ϕ(t)‖2

H2(Ω) + C0

∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

� τ

2
‖ϕ0‖2

H2(Ω) + M

(
1 +

∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

)
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so that a Gronwall argument produces

ϕ ∈ L∞(0, T; H2(Ω)).

At this point, the equation for σ can be written also as

∂tσ −Δσ = f̃ σ := − B(σ − σS) − Cσh(ϕ) − ηΔϕ ∈ L∞(0, T; H),

with initial datum σ0 ∈ V ∩ L∞(Ω). Hence, by parabolic regularity theory and again [68,
theorem 7.1], we deduce that

σ ∈ H1(0, T; H) ∩ L∞(0, T; V) ∩ L2(0, T; W) ∩ L∞(Q).

Since we already know that σ − ηϕ ∈ L2(0, T; W), by comparison we also infer

ηϕ ∈ L2(0, T; W).

To conclude, we go back to equation (3.30) and note that, by difference, we have also the
regularity

∂tϕ ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)) ∩ L∞(Q)

which completes the proof of theorem 2.5.

3.8. Refined continuous dependence

We prove here the refined stability estimates contained in theorem 2.7 which is now possible in
light of the strong regularity result established by theorem 2.5. It is worth pointing out that both
the chemotaxis and active transport mechanisms are now included in the analysis. Employing
the same notation of subsection 3.5, we consider the system (3.20)–(3.24) and test (3.20) by
∂tμ, the time-derivative of (3.21) by −∂tϕ, (3.22) by ∂t(σ − ηϕ), and integrate over [0, t], to
obtain

ε

∫
Qt

|∂tμ|2 +
1
2
‖∇μ(t)‖2

H +
τ

2
‖∂tϕ(t)‖2

H +

∫
Qt

(a + F′′(ϕ1))|∂tϕ|2

+

∫
Qt

|∂tσ|2 +
1
2
‖∇(σ − ηϕ)(t)‖2

H

=
1
2
‖∇μ0‖2

H +
τ

2
‖ϕ′

0‖2
H +

1
2
‖∇(σ0 − ηϕ0)‖2

H

+

∫
Qt

[Pσh(ϕ1) + (Pσ2 − A)(h(ϕ1) − h(ϕ2))] ∂tμ

+

∫
Qt

[
(F′′(ϕ2) − F′′(ϕ1))∂tϕ2 + χ∂tσ + J ∗ ∂tϕ

]
∂tϕ+ η

∫
Qt

∂tσ∂tϕ

+

∫
Qt

[Cσ2(h(ϕ2) − h(ϕ1)) − Cσh(ϕ1) − Bσ] (∂tσ − η∂tϕ).

First of all, notice that ϕ′
0 is such that

μ0 = τϕ′
0 + aϕ0 − J ∗ ϕ0 + F′(ϕ1

0) − F′(ϕ2
0) − χσ0.
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Since the initial data satisfy (2.2), (2.12), and (2.18), for i = 1, 2 we have thatϕ′
0 ∈ V ∩ L∞(Ω).

Now, recalling that F ∈ C3([−r0, r0]), we have

‖ϕ′
0‖H � 1

τ

(
‖μ0‖H + 2a∗‖ϕ0‖H + ‖F′′‖C0([−r0,r0])‖ϕ0‖H + χ‖σ0‖H

)
.

Secondly, by the separation property for ϕ1 and ϕ2, we have ‖ϕi‖L∞(Q) � r∗ < � for i = 1, 2
and combined with F ∈ C3([−r∗, r∗]) we have F′′ ∈ W1,∞(−r∗, r∗), so that

|F′′(ϕ1) − F′′(ϕ2)| � ‖F′′′‖C0([−r∗,r∗])|ϕ1 − ϕ2| a.e. in Q.

Taking this information into account, using A5, and exploiting the regularities h ∈ W1,∞(R),
σ2 ∈ L∞(Q), and ∂tϕ2 ∈ L∞(Q), we invoke the Young inequality to infer∫

Qt

|∂tμ|2 + ‖∇μ(t)‖2
H + ‖∂tϕ(t)‖2

H +

∫
Qt

|∂tϕ|2 +
∫

Qt

|∂tσ|2 + ‖∇(σ − ηϕ)(t)‖2
H

� M

(
‖μ0‖2

V + ‖ϕ0‖2
H + ‖σ0‖2

H + ‖∇(σ0 − ηϕ0)‖2
H +

∫
Qt

(|σ|2 + |ϕ|2 + |∂tϕ|2)

)
, (3.32)

where the constant M > 0 may depend on ε, τ and on structural data. Now, we take the gradient
of (3.21) and test it by ∇ϕ, getting

τ

2
‖∇ϕ(t)‖2

H +

∫
Qt

(a + F′′(ϕ1))|∇ϕ|2

=
τ

2
‖∇ϕ0‖2

H +

∫
Qt

(
F′′(ϕ2) − F′′(ϕ1)

)
∇ϕ2 · ∇ϕ

+

∫
Qt

(∇μ+ χ∇σ + (∇J) ∗ ϕ− (∇a)ϕ) · ∇ϕ.

Using A5, along with the Lipschitz continuity of F′′ on [−r∗, r∗], and the identity

χ∇σ · ∇ϕ = χ(∇(σ − ηϕ) + η∇ϕ) · ∇ϕ,

and the Young inequality lead to

τ

2
‖∇ϕ(t)‖2

H + C0

∫
Qt

|∇ϕ|2 � τ

2
‖∇ϕ0‖2

H + ‖F′′′‖C0([−r∗,r∗])

∫
Qt

|ϕ‖∇ϕ2‖∇ϕ|

+

∫
Qt

|∇μ|2 + χ2
∫

Qt

|∇(σ − ηϕ)|2

+ (1 + χη)
∫

Qt

|∇ϕ|2 + 2(b∗)2
∫

Qt

|ϕ|2.

From the embedding V ↪→ L4(Ω), Hölder’s inequality and the regularityϕ2 ∈ L∞(0, T; H2(Ω)),
we find ∫

Qt

|ϕ‖∇ϕ2‖∇ϕ| � M′
∫ t

0
‖ϕ(s)‖V‖ϕ2(s)‖H2(Ω)‖∇ϕ(s)‖H ds

� M
∫ t

0
‖ϕ(s)‖2

V ds

for some constants M, M′ > 0. We deduce then that, possibly updating M, for every t ∈ [0, T],
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‖∇ϕ(t)‖2
H � M

(
‖∇ϕ0‖2

H +

∫
Qt

|∇μ|2 +
∫

Qt

|∇(σ − ηϕ)|2 +
∫ t

0
‖ϕ(s)‖2

V ds

)
. (3.33)

We now combine the estimates (3.32) and (3.33) to infer that, for all t ∈ [0, T],∫
Qt

|∂tμ|2 + ‖∇μ(t)‖2
H + ‖∂tϕ(t)‖2

H + ‖∇ϕ(t)‖2
H +

∫
Qt

|∂tσ|2 + ‖∇σ(t)‖2
H

� M

(
‖μ0‖2

V + ‖ϕ0‖2
V + ‖σ0‖2

V +

∫ t

0

(
‖∇μ(s)‖2

H + ‖σ(s)‖2
V

+ ‖ϕ(s)‖2
V + ‖∂tϕ(s)‖2

H

)
ds
)
.

Since the quantities ‖σ2‖L∞(Q), ‖∂tϕ2‖L∞(Q), and ‖ϕ2‖L∞(0,T;H2(Ω)) appearing implicitly in the
constant M can be in turn handled in terms on the norms of the initial data appearing in (2.2),
(2.12), and (2.18), we can close the estimate by the Gronwall lemma. Moreover, comparison
in equation (3.20) produces

‖Δμ‖L2(0,T;H) � M
(
‖ϕ‖H1(0,T;H) + ‖∂tμ‖L2(0,T;H) + ‖σ‖L2(0,T;H)

)
,

where all the terms on the right-hand side have already been estimated. Similarly, from (3.21)
we get

‖∂tϕ‖L∞(0,T;V) � M
(
‖μ‖L∞(0,T;V) + ‖ϕ‖L∞(0,T;V) + ‖σ‖L∞(0,T;V)

)
,

while from (3.22) we get

‖Δ(σ − ηϕ)‖L2(0,T;H) � M
(
‖σ‖H1(0,T;H) + ‖ϕ‖L2(0,T;H)

)
.

Collecting the above estimates, along with elliptic regularity theory, we deduce that

‖μ‖2
H1(0,T;H)∩L∞(0,T;V)∩L2(0,T;W) + ‖ϕ‖2

W1,∞(0,T;V)

+ ‖σ‖2
H1(0,T;H)∩L∞(0,T;V) + ‖σ − ηϕ‖2

H1(0,T;H)∩L∞(0,T;V)∩L2(0,T;W)

� M
(
‖μ0‖2

V + ‖ϕ0‖2
V + ‖σ0‖2

V

)
. (3.34)

To complete the proof, we need to show a stability estimate for ∂tϕ and σ also in
L2(0, T; H2(Ω)) and L2(0, T; W), respectively. In this direction, for any i, j = 1, 2, 3, we apply
the differential operator ∂xi x j to (3.21) and test the obtained equation by ∂xi x jϕ, getting

τ

2

∥∥∂xi x jϕ(t)
∥∥2

H
+

∫
Qt

(a + F′′(ϕ1))|∂xix jϕ|2

=
τ

2

∥∥∂xi x jϕ0

∥∥2

H
+

∫
Qt

∂xi x j(μ+ χ(σ − ηϕ) + J ∗ ϕ)∂xi x jϕ

+ χη

∫
Qt

|∂xi x jϕ|2 −
∫

Qt

(∂xi a∂x jϕ+ ∂x ja∂xiϕ+ (∂xi x ja)ϕ)∂xix jϕ

+

∫
Qt

[
(F′′(ϕ2) − F′′(ϕ1))∂xix jϕ2 + (F′′′(ϕ2) − F′′′(ϕ1))∂xiϕ1∂x jϕ2

]
∂xi x jϕ

−
∫

Qt

[
F′′′(ϕ1)∂xiϕ1∂x jϕ+ F′′′(ϕ2)∂xiϕ∂x jϕ2

]
∂xi x jϕ.
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We recall that, due to A6, F ∈ C4([−r∗, r∗]), so that F′′′ is Lipschitz continuous on [−r∗, r∗],
and as a consequence of the separation result, also F′′′(ϕi) ∈ L∞(Q), for i = 1, 2. Now, we use
the Hölder and Young inequalities and sum on i, j = 1, 2, 3: proceeding as in subsection 3.7
and exploiting assumptions A5 and A7, we get

τ

2
‖ϕ(t)‖2

H2(Ω) + C0

∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

� τ

2
‖ϕ0‖2

H2(Ω) + M
(
‖μ‖2

L2(0,T;W) + ‖σ − ηϕ‖2
L2(0,T;W)

+

∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

)
+ M

3∑
i, j=1

(∫
Qt

|ϕ|2
(
|∂xi x jϕ2|2 + |∂xiϕ1|2|∂x jϕ2|2

)
+

∫
Qt

(
|∂xiϕ1|2|∂x jϕ|2 + |∂xiϕ|2|∂x jϕ2|2

))
.

The first bracket on the right-hand side can be controlled using (3.34) and the Gronwall lemma,
while the sum-term can be estimated using the Hölder inequality and the continuous inclusions
V ↪→ L4(Ω) and H2(Ω) ↪→ L∞(Ω) by∫ t

0
‖ϕ(s)‖2

L∞(Ω)

(
‖ϕ2(s)‖2

H2(Ω) + ‖∇ϕ1(s)‖2
V‖∇ϕ2(s)‖2

V

)
ds

+

∫ t

0
‖∇ϕ(s)‖2

L4(Ω)

(
‖∇ϕ1(s)‖2

L4(Ω) + ‖∇ϕ2(s)‖2
L4(Ω)

)
ds

� M′
(
‖ϕ2‖2

L∞(0,T;H2(Ω)) + ‖ϕ1‖2
L∞(0,T;H2(Ω))‖ϕ2‖2

L∞(0,T;H2(Ω))

)
×
∫ t

0
‖ϕ(s)‖2

H2(Ω) ds + M′
(
‖ϕ1‖2

L∞(0,T;H2(Ω)) + ‖ϕ2‖2
L∞(0,T;H2(Ω))

)
×
∫ t

0
‖ϕ(s)‖2

H2(Ω) ds.

Taking these estimates into account and recalling the regularity ϕ1,ϕ2 ∈ L∞(0, T; H2(Ω)), we
conclude that

‖ϕ(t)‖2
H2(Ω) � ‖ϕ0‖2

H2(Ω) + M
(
‖μ‖2

L2(0,T;W) + ‖σ − ηϕ‖2
L2(0,T;W) +

∫ t

0
‖ϕ(s)‖2

H2(Ω) ds

)
so that Gronwall’s lemma along with the above estimates produces

‖ϕ‖2
L∞(0,T;H2(Ω)) � M

(
‖μ0‖2

V + ‖ϕ0‖2
H2(Ω) + ‖σ0‖2

V

)
.

The stability estimate for σ in L2(0, T; W) follows by comparison in (3.22) and elliptic reg-
ularity theory. Finally, by comparison in equation (3.21) we also infer the stability estimate for
∂tϕ in L2(0, T; H2(Ω)), concluding the proof of theorem 2.7.
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4. Asymptotics as ε ↘ 0

This section is completely devoted to discuss the asymptotic behavior of system (1.4)–(1.8) as
ε ↘ 0, when τ > 0 is fixed. Namely, we aim at proving theorems 2.8 and 2.9. Henceforth, let
us assume τ to be positive and fixed. Moreover, using the notation introduced by theorem 2.8,
we indicate with (ϕετ ,μετ , σετ , ξετ ) the unique weak solution to (1.4)–(1.8) with ε, τ > 0.

4.1. Uniform estimates

Proceeding as in subsection 3.2, we perform the analogous estimates that we used to deduce
(3.10). In particular, since the implicit constant M in (3.10) is independent of ε and τ , recalling
that we are assuming η = 0, we realize that

ε

4
‖μετ (t)‖2

H + (1 + 4caε)
∫

Qt

|∇μετ |2 +
τ

2

∫
Qt

|∂tϕετ |2 +
∫
Ω

F(ϕετ (t))

+
1
2
‖σετ (t)‖2

H +

∫
Qt

|∇σετ |2 + ca‖(εμετ + ϕετ )(t)‖2
H

+ 2caτ‖∇ϕετ (t)‖2
H + 2caC0

∫
Qt

|∇ϕετ |2

� 3
2
ε‖μ0,ετ‖2

H + (a∗ + 4ca)‖ϕ0,ετ‖2
H + 2caτ‖∇ϕ0,ετ‖2

H

+ ‖F(ϕ0,ετ )‖L1(Ω) +
1
2
‖σ0,ετ‖2

H

+ M

(
1 +

∫
Qt

|εμετ + ϕετ |2 +
∫

Qt

|ϕετ |2 +
∫

Qt

|σετ |2
)
+

χ2

2τ

∫
Qt

|σετ |2

+
1
2

∫
Qt

|∇σετ |2 + 8c2
aχ

2
∫

Qt

|∇ϕετ |2 +
∫

Qt

(Pσετ − A)h(ϕετ )μετ . (4.1)

All the terms referring to the initial data on the right-hand side are uniformly bounded in ε by
virtue of assumptions (2.24) and (2.25). Moreover, all the remaining terms can be handled using
the Gronwall lemma, except for the last one. To this end, note that by the Poincaré–Wirtinger
inequality (2.1), using the fact that h is bounded, and the uniform bound ‖σετ‖L∞(Q) � 1, we
have ∫

Qt

(Pσετ − A)h(ϕετ )μετ

�
∫

Qt

(Pσετ − A)h(ϕετ )(μετ − (μετ )Ω) +
∫

Qt

(Pσετ − A)h(ϕετ )(μετ )Ω

� 1
2

∫
Qt

|∇μετ |2 + M + (P + A)‖h‖L∞(R)t
1/2‖(μετ )Ω‖L2(0,t).

Furthermore, noting that (aϕετ − J ∗ ϕετ )Ω = 0, by comparison in equation (1.5) we get

(μετ )Ω = τ (∂tϕετ )Ω + (ξετ + F′
2(ϕετ ))Ω − χ(σετ )Ω,

so that thanks to assumption (2.22) implies that
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‖(μετ )Ω‖L2(0,t)

� τ‖∂tϕετ‖L2(Qt )
+ ‖ξετ + F′

2(ϕετ )‖L2(0,t;L1(Ω)) + χ‖σετ‖L2(0,t;H)

� M

(
1 + τ 2

∫
Qt

|∂tϕετ |2 + sup
s∈[0,t]

∫
Ω

F(ϕετ (s)) + sup
s∈[0,t]

‖σετ (s)‖2
H

)
,

for a certain constant M > 0, independent of ε. Putting this information together, we first
choose t ∈ [0, T0], where T0 ∈ (0, T] is fixed sufficiently small so that the term correspond-
ing to t1/2 can be incorporated on the left-hand side, for example by picking a T0 such that

(P + A)‖h‖L∞(R)T
1/2
0 <

1
2M

.

We then take supremum in t ∈ [0, T0] on the left-hand side of the inequality (4.1) and rearrange
the terms: the estimate can be closed on the time interval [0, T0] using the Gronwall lemma. As
the choice of T0 is independent of ε, τ , and of the initial data (it only depends on A, P, CF, h,
and χ), repeating the same argument we can close the estimate also on [T0, 2T0], and so on, so
that a classical patching argument guarantees the existence of a constant M > 0, independent
of ε, such that

‖ϕετ‖H1(0,T;H)∩L∞(0,T;V) + ‖σετ‖L∞(0,T;H)∩L2(0,T;V) � M, (4.2)

‖(μετ )Ω‖L2(0,T) + ‖∇μετ‖L2(0,T;H) + ε1/2‖μετ‖L∞(0,T;H) � M. (4.3)

From estimate (4.3), the Poincaré–Wirtinger inequality yields

‖μετ‖L2(0,T;V) � M. (4.4)

Lastly, by comparison in (1.6), we also deduce that

‖σετ‖H1(0,T;V∗) � M, (4.5)

while by comparison in (1.5) we have that

‖ξετ‖L2(0,T;H) � M. (4.6)

4.2. Passage to the limit

From the estimates (4.2)–(4.6) and classical compactness arguments, we infer the existence of
a quadruplet (ϕτ ,μτ , στ , ξτ ) with

ϕτ ∈ H1(0, T; H) ∩ L∞(0, T; V), μτ ∈ L2(0, T; V),

στ ∈ H1(0, T; V∗) ∩ L2(0, T; V), ξτ ∈ L2(0, T; H),

such that, as ε ↘ 0, along a non-relabelled subsequence, it holds that the weak, weak∗ and
strong convergences (2.26)–(2.31) are fulfilled. We are then left to show that (ϕτ ,μτ , στ , ξτ )
yields a solution to (1.4)–(1.8) with ε = 0 in the sense of theorem 2.8. In this direction, let
us exploit the strong convergence of the phase variable (2.31) along with the continuity and
boundedness of h, and Lebesgue convergence theorem, to deduce that, as ε ↘ 0,

h(ϕετ ) → h(ϕτ ) in Lp(Q) ∀ p � 1, F′
2(ϕετ ) → F′

2(ϕτ ) in C0([0, T]; H).
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Moreover, the strong–weak closure of ∂F1 (see, e.g., [4, corollary 2.4, p 41]) entails that ξτ ∈
∂F1(ϕτ ) almost everywhere in Q. Lastly, it is not difficult to pass to the limit in the weak
formulation of (1.4)–(1.8) to conclude that (ϕτ ,μτ , στ , ξτ ) solves (1.4)–(1.8) with ε = 0, as
we claimed. The maximum principle for στ can be then obtained repeating the argument of
subsection 3.4 leading to στ ∈ L∞(Q). This concludes the proof of theorem 2.8.

4.3. Error estimate

We focus here on the error estimate as ε ↘ 0 presented by theorem 2.9 under the additional
assumptions (2.32) and (2.33).

First of all, we need to deduce an additional estimate on ∂tμετ . Arguing as in subsection 3.6,
by considering (3.26) and multiplying it by ε1/2 (recall that η = 0), we obtain

ε3/2
∫

Qt

|∂tμετ |2 +
ε1/2

2
‖∇μετ (t)‖2

H +
τε1/2

2
‖∂tϕετ (t)‖2

H

+ C0ε
1/2

∫
Qt

|∂tϕετ |2 + ε1/2
∫

Qt

|∂tσετ |2 +
ε1/2

2
‖∇σετ (t)‖2

H

� ε1/2

2
‖∇μ0,ετ‖2

H +
τε1/2

2
‖ϕ′

0,ετ‖2
H +

ε1/2

2
‖∇σ0,ετ‖2

H

+ ε1/2
∫

Qt

(Pσετ − A)h(ϕετ )∂tμετ + ε1/2
∫

Qt

(J ∗ (∂tϕετ ) + χ∂tσετ )∂tϕετ

+ ε1/2
∫

Qt

(B(σS − σετ ) − Ch(ϕετ )σετ ) ∂tσετ .

The last two terms on the right-hand side can be easily handled as in subsection 3.6, using the
averaged Young inequality. Moreover, since ϕ′

0,ετ satisfies

μ0,ετ = τϕ′
0,ετ + aϕ0,ετ − J ∗ ϕ0,ετ + F′(ϕ0,ετ ) − χσ0,ετ ,

the first three terms on the right-hand side of the inequality above are uniformly bounded in ε
thanks to the assumptions (2.24), (2.25) and (2.33). As for the fourth term, this can be treated
using integration by parts in time and the boundedness of σετ in (2.10) as

− ε1/2P
∫

Qt

∂tσετh(ϕετ )μετ − ε1/2
∫

Qt

(Pσετ − A)h′(ϕετ )∂tϕετμετ

+ ε1/2
∫
Ω

(Pσετ (t) − A)h(ϕετ (t))μετ (t) − ε1/2
∫
Ω

(Pσ0,ετ − A)h(ϕ0,ετ )μ0,ετ

� ε1/2

4

∫
Qt

|∂tσετ |2 + ε1/2P2‖h‖2
L∞(R)‖μετ‖2

L2(0,T;H)

+ ε1/2(P + A)‖h‖W1,∞(R)

(
‖∂tϕετ‖L2(0,T;H)‖μετ‖L2(0,T;H) + 2‖μετ‖C0([0,T];H)

)
,

where the right-hand side is uniformly bounded in ε thanks to (4.2)–(4.6). Putting this
information together, we deduce that

ε3/4‖μετ‖H1(0,T;H) + ε1/4‖μετ‖L∞(0,T;V) � M, (4.7)

ε1/4‖ϕετ‖W1,∞(0,T;H) + ε1/4‖σετ‖H1(0,T;H)∩L∞(0,T;V) � M. (4.8)
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We are now ready to show the error estimate. Taking the difference between the unique solu-
tion (ϕετ ,μετ , σετ , ξετ ) to (1.4)–(1.8) with ε, τ > 0 and η = 0 and the solution (ϕτ ,μτ , στ , ξτ )
to (1.4)–(1.8) with ε = η = 0 obtained in subsection 4.2 leads us to

ε∂tμετ + ∂tϕ−Δμ = Pσh(ϕετ ) + (Pστ − A)(h(ϕετ ) − h(ϕτ )) in Q, (4.9)

μ = τ∂tϕ+ aϕ− J ∗ ϕ+ F′(ϕετ ) − F′(ϕτ ) − χσ in Q, (4.10)

∂tσ −Δσ + Bσ + Cσh(ϕετ ) = Cστ (h(ϕτ ) − h(ϕετ )) in Q, (4.11)

∂nμ = ∂nσ = 0 on Σ, (4.12)

ϕ(0) = ϕ0, σ(0) = σ0 in Ω, (4.13)

where the equations are intended in the usual variational setting, and where we have set
ϕ :=ϕετ − ϕτ , μ := μετ − μτ , σ :=σετ − στ , ϕ0 :=ϕ0,ετ − ϕ0,τ , σ0 := σ0,ετ − σ0,τ . Next, we
multiply (4.9) by τμ, (4.10) by μ− ϕ, (4.11) by σ, add the resulting equality and integrate
over Qt to obtain, thanks to assumption A5,∫

Qt

|μ|2 + τ

∫
Qt

|∇μ|2 + τ

2
‖ϕ(t)‖2

H + C0

∫
Qt

|ϕ|2 + 1
2
‖σ(t)‖2

H

+

∫
Qt

|∇σ|2 +
∫

Qt

(B + Ch(ϕετ ))|σ|2

� τ

2
‖ϕ0‖2

H +
1
2
‖σ0‖2

H −
∫

Qt

ε∂tμετ τμ+

∫
Qt

(μ+ χσ)ϕ

+

∫
Qt

Cστ (h(ϕτ ) − h(ϕετ ))σ + τ

∫
Qt

[Pσh(ϕετ ) + (Pστ − A)

× (h(ϕετ ) − h(ϕτ ))]μ+

∫
Qt

(
aϕ− J ∗ ϕ+ F′(ϕετ ) − F′(ϕτ ) − χσ

)
μ.

Let us estimate the terms on the right-hand side separately. The third and fourth ones yield,
thanks to the Young inequality and the refined estimate (4.7),

−
∫

Qt

ε∂tμετ τμ+

∫
Qt

(μ+ χσ)ϕ

� 1
2

∫
Qt

|μ|2 + τ 2ε2‖∂tμετ‖2
L2(0,T;H) + 2

∫
Qt

|ϕ|2 + χ2

4

∫
Qt

|σ|2

� Mε1/2 +
1
2

∫
Qt

|μ|2 + 2
∫

Qt

|ϕ|2 + χ2

4

∫
Qt

|σ|2,

for a certain constant M independent of ε. The fifth and sixth terms can be easily handled using
the Young inequality, the Lipschitz continuity and boundedness of h, and the uniform bound
‖στ‖L∞(Q) � 1, as

τ

∫
Qt

(Pσh(ϕετ ) + (Pστ − A)(h(ϕετ ) − h(ϕτ )))μ+

∫
Qt

Cστ (h(ϕτ ) − h(ϕετ ))σ

� 1
4

∫
Qt

|μ|2 + ‖h‖2
W1,∞(R)

(
(2τ 2P2 + C2)

∫
Qt

|σ|2 +
(

1
4
+ 2τ 2(P + A)2

)∫
Qt

|ϕ|2
)
.
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Moreover, the last term satisfies, thanks to the Young inequality and the growth assumption
(2.32), ∫

Qt

(aϕ− J ∗ ϕ+ F′(ϕετ ) − F′(ϕτ ) − χσ)μ

� 1
8

∫
Qt

|μ|2 + 12(a∗)2
∫

Qt

|ϕ|2 + 6χ2
∫

Qt

|σ|2 + CF

∫
Qt

(1 + |ϕετ |2 + |ϕτ |2)|ϕ‖μ|,

where, thanks to the inclusion V ↪→ L6(Ω) and the Hölder inequality,∫
Qt

(1 + |ϕετ |2 + |ϕτ |2)|ϕ‖μ|

�
∫ t

0

(
|Ω|1/3 + ‖ϕετ‖2

6 + ‖ϕτ‖2
6

)
‖ϕ(s)‖H‖μ(s)‖6 ds

� M
(

1 + ‖ϕετ‖2
L∞(0,T;V) + ‖ϕτ‖2

L∞(0,T;V)

) ∫ t

0
‖ϕ(s)‖H‖μ(s)‖V ds,

which yields, thanks to the estimate (4.2) and again the Young inequality, that∫
Qt

(1 + |ϕετ |2 + |ϕτ |2)|ϕ‖μ| � min{1/16, τ/2}‖μ‖2
L2(0,t;V) + Mτ

∫
Qt

|ϕ|2

for a certain constant Mτ > 0 independent of ε. Hence, collecting the above estimates we obtain

min{1/16, τ/2}‖μ‖2
L2(0,t;V) +

τ

2
‖ϕ(t)‖2

H +
1
2
‖σ(t)‖2

H +

∫
Qt

|∇σ|2

� M

(
ε1/2 +

τ

2
‖ϕ0‖2

H +
1
2
‖σ0‖2

H +

∫
Qt

|ϕ|2 +
∫

Qt

|σ|2
)

,

where the updated constant M depends on τ , and the initial data (ϕ0,τ , σ0,τ ). The error estimate
follows then by the Gronwall lemma.

Finally, it is not difficult to check that exactly the same argument performed here yields
uniqueness of the solution (ϕτ ,μτ , στ , ξτ ) for the system (1.4)–(1.8) at ε = 0, even without
assumption (2.33). This reality implies then that the convergences as ε ↘ 0 hold along the
entire sequence ε which completes the proof of theorem 2.9.

5. Asymptotics as τ ↘ 0

Let us now investigate the behavior of system (1.4)–(1.8) as τ ↘ 0 by proving theorems 2.11
and 2.12. Proceeding as before, notice that throughout this section we assume ε ∈ (0, ε0) to be
fixed.

5.1. Uniform estimates

Performing the same estimates as in subsection 3.2, and noting that the constant M in (3.9) is
independent of τ , ε, λ, and n, we infer that
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ε

2
‖μετ (t)‖2

H + (1 + 4caε)
∫

Qt

|∇μετ |2 + τ

∫
Qt

|∂tϕετ |2

+
1
2
‖σετ (t)‖2

H +

∫
Qt

|∇σετ |2 + 2ca‖(εμετ + ϕετ )(t)‖2
H

+ 2caτ‖∇ϕετ (t)‖2
H + 2caC0

∫
Qt

|∇ϕετ |2

� 3
2
ε‖μ0,ετ‖2

H + (a∗ + 4ca)‖ϕ0,ετ‖2
H + 2caτ‖∇ϕ0,ετ‖2

H

+ ‖F(ϕ0,ετ )‖L1(Ω) +
1
2
‖σ0,ετ‖2

H +
ca

2
‖ϕετ (t)‖2

H

+ χ

∫
Qt

σετ∂tϕετ + (η + 4caχ)
∫

Qt

∇σετ · ∇ϕετ

+ M

(
1 +

∫
Qt

|εμετ + ϕετ |2 +
∫

Qt

|ϕετ |2 +
∫

Qt

|σετ |2
)

+

∫
Qt

(Pσετ − A)h(ϕετ )μετ . (5.1)

First of all, note that all the terms on the right-hand side referring to the initial data are uniformly
bounded in τ due to assumptions (2.36) and (2.37). Moreover, since ε ∈ (0, 1

4ca
) we have a

bound from below on the left-hand side in the form

2ca‖(εμετ + ϕετ )(t)‖2
H +

ε

2
‖μετ (t)‖2

H

� 2ca‖(εμετ + ϕετ )(t)‖2
H + 2caε

2‖μετ (t)‖2
H

� (ca − ρ)‖ϕετ (t)‖2
H + 2ρε2‖μετ (t)‖2

H (5.2)

for every ρ ∈ (0, ca). Hence the corresponding term ca
2 ‖ϕετ (t)‖2

H on the right-hand side can be
incorporated on the left-hand side of (5.1), provided we choose ρ < ca/2. Furthermore, from
the boundedness of h the last term in (5.1) can be easily handled using the Young inequality
and the Gronwall lemma. Hence, we only need to estimate the terms involving χ and η. To
this end, we first use integration by parts and the equation (2.8) to deduce, thanks to the Young
inequality and the boundedness of h, that

χ

∫
Qt

σετ∂tϕετ = −χ

∫ t

0
〈∂tσετ (s),ϕετ (s)〉 ds + χ

∫
Ω

σετ (t)ϕετ (t) − χ

∫
Ω

σ0,ετϕ0,ετ

= χ

∫
Qt

∇σετ · ∇ϕετ + χ

∫
Qt

(B(σετ − σS) + Cσετh(ϕετ ))ϕετ

− χη

∫
Qt

|∇ϕετ |2 + χ

∫
Ω

σετ (t)ϕετ (t) − χ

∫
Ω

σ0,ετϕ0,ετ

� χ

∫
Qt

∇σετ · ∇ϕετ − χη

∫
Qt

|∇ϕετ |2 + M

(
1 +

∫
Qt

|ϕετ |2 +
∫

Qt

|σετ |2
)

+ δχ2‖ϕετ (t)‖2
H +

1
4δ

‖σετ (t)‖2
H , (5.3)
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for every δ > 0. Now, it is immediate to check that assumption (2.34) yields 1
2 < ca

2χ2 (with the

convention that 1
χ = +∞ if χ = 0): hence

∃ δ̄ ∈
(

1
2

,
ca

2χ2

)
such that δ̄χ2 <

ca

2
,

1
4δ̄

<
1
2

, (5.4)

so that we can incorporate the last two terms on the right-hand side of (5.3) on the left-hand
side of (5.1). Taking these remarks into account, we are left with

2ρε2‖μετ (t)‖2
H +

(ca

2
− ρ− δ̄χ2

)
‖ϕετ (t)‖2

H + (1 + 4caε)
∫

Qt

|∇μετ |2

+ τ

∫
Qt

|∂tϕετ |2 +
(

1
2
− 1

4δ̄

)
‖σετ (t)‖2

H +

∫
Qt

|∇σετ |2

+ 2caτ‖∇ϕετ (t)‖2
H + (2caC0 + χη)

∫
Qt

|∇ϕετ |2

� M

(
1 +

∫
Qt

|μετ |2 +
∫

Qt

|ϕετ |2 +
∫

Qt

|σετ |2
)

+ (χ+ η + 4caχ)
∫

Qt

∇σετ · ∇ϕετ , (5.5)

which holds for everyρ ∈ (0, ca/2). By choosing δ̄ such that (5.4) are fulfilled, it is also possible
to choose and fix ρ̄ ∈ (0, ca/2) such that

ca

2
− ρ̄− δ̄χ2 > 0.

Next, we use again the averaged Young inequality to obtain, for every κ > 0,

(χ+ η + 4caχ)
∫

Qt

∇σετ · ∇ϕετ � κ

∫
Qt

|∇σετ |2 +
(χ+ η + 4caχ)2

4κ

∫
Qt

|∇ϕετ |2

where the two terms on the right-hand side can be incorporated on the left-hand side of (5.5)
provided to choose κ such that

κ < 1,
(χ+ η + 4caχ)2

4κ
< 2caC0 + χη.

Easy computations show that this is possible if and only if

(χ+ η + 4caχ)2

4(2caC0 + χη)
< 1

which is verified owing to (2.34).
Therefore, after rearranging the terms and using the Gronwall lemma, we infer that there

exists a constant M > 0, which may depend on ε, but it is independent of τ , such that

‖ϕετ‖L∞(0,T;H)∩L2(0,T;V) + ‖μετ‖L∞(0,T;H)∩L2(0,T;V)

+ ‖σετ‖L∞(0,T;H)∩L2(0,T;V) � M, (5.6)

τ 1/2‖ϕετ‖H1(0,T;H) + τ 1/2‖ϕετ‖L∞(0,T;V) � M, (5.7)
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yielding in turn, by comparison in equations (1.4) and (1.6),

‖εμετ + ϕετ‖H1(0,T;V∗) + ‖σετ‖H1(0,T;V∗) � M. (5.8)

Testing equation (1.5) by ξετ and using the estimate (5.6), its is a standard matter to deduce
also that

‖ξετ‖L2(0,T;H) � M. (5.9)

5.2. Passage to the limit

The estimates (5.6)–(5.9) and classical compactness results (see, e.g., [80, section 8,
corollary 4]) ensure that there exists a quadruplet (ϕε,με, σε, ξε) with

ϕε,με ∈ L∞(0, T; H) ∩ L2(0, T; V), λε := εμε + ϕε ∈ H1(0, T; V∗) ∩ L2(0, T; V),

σε ∈ H1(0, T; V∗) ∩ L2(0, T; V), ξε ∈ L2(0, T; H),

such that, as τ ↘ 0 (on a subsequence) it holds that (2.38)–(2.43) and (2.44)–(2.45) are
satisfied, and also that

λετ ⇀ λε in H1(0, T; V∗) ∩ L2(0, T; V),

λετ → λε in C0([0, T]; V∗) ∩ L2(0, T; H).

Moreover, let us claim that the above strong convergences imply the strong convergences

μετ → με in L2(0, T; H), ϕετ → ϕε in L2(0, T; H). (5.10)

To this end, we argue as in [18, section 3], checking that the sequence {λετ}τ is a Cauchy
sequence in L2(0, T; H). Let us pick two arbitrary τ , τ ′ > 0 and take the difference of the cor-
responding equation (1.5) for τ and τ ′. Next, we multiply the resulting equation by ε, add to
both sides ϕετ − ϕετ ′ , test the resulting equation by ϕετ − ϕετ ′ , and integrate over Qt to obtain∫

Qt

|ϕετ − ϕετ ′ |2 + ε

∫
Qt

(
a(ϕετ − ϕετ ′ ) + ξετ − ξετ ′ + F′

2(ϕετ ) − F′
2(ϕετ ′)

)
× (ϕετ − ϕετ ′ ) �

∫
Qt

(
(λετ − λετ ′ ) − ε(τ∂tϕετ − τ ′∂tϕετ ′ ) + εχ(σετ − σετ ′ )

)
× (ϕετ − ϕετ ′ ) + ε

∫
Qt

J ∗ (ϕετ − ϕετ ′ )(ϕετ − ϕετ ′ ).

Owing to (2.38)–(2.43) and (2.44)–(2.45) we easily infer that the first term on the right-hand
side goes to zero as τ , τ ′ → 0. Moreover, on the left-hand side we have, thanks to assumption
A5, ∫

Qt

(
a(ϕετ − ϕετ ′ ) + ξετ − ξετ ′ + F′

2(ϕετ ) − F′
2(ϕετ ′ )

)
(ϕετ − ϕετ ′ )

� C0

∫
Qt

|ϕετ − ϕετ ′ |2,
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while the last term on the right-hand side satisfies∫
Qt

J ∗ (ϕετ − ϕετ ′ )(ϕετ − ϕετ ′ ) � a∗
∫

Qt

|ϕετ − ϕετ ′ |2.

Rearranging the terms leads us to

(1 + (C0 − a∗)ε)
∫

Qt

|ϕετ − ϕετ ′ |2

�
∫

Qt

(
(λετ − λετ ′ ) − ε(τ∂tϕετ − τ ′∂tϕετ ′ ) + χ(σετ − σετ ′ )

)
(ϕετ − ϕετ ′ )

where the right-hand side converges to 0 as τ ↘ 0. Since εa∗ < εC0 + 1 as a consequence of
the smallness assumption on ε0, this yields the second of (5.10) and by comparison also the
first one follows, as we claimed.

With the strong convergence of the phase variable at disposal it is now straightforward
to infer by combining the boundedness of h and the Lebesgue convergence theorem that, as
τ ↘ 0,

h(ϕετ ) → h(ϕε) in Lp(Q) ∀ p � 1, F′
2(ϕετ ) → F′

2(ϕε) in L2(0, T; H).

Hence, since ξε ∈ ∂F1(ϕε) by the strong–weak closure of ∂F1, it is a standard matter to
pass to the limit as τ ↘ 0 in the weak formulation of (1.4)–(1.8) and deduce that the limit
(με,ϕε, σε, ξε) yields a solution to (1.4)–(1.8) with τ = 0. Notice in particular that by differ-
ence in the limit equation (1.5) we deduce the further regularity ξε ∈ L2(0, T; V), while the last
assertion of theorem 2.11 follows as before by repeating the computations of subsection 3.4
completing the proof of theorem 2.11.

5.3. Error estimate

The last result of this section follows with few changes from the proof of the continuous
dependence estimate (2.11) established in theorem 2.2.

Indeed, we can repeat almost the same computations performed in subsection 3.5 with the
choices

(ϕ1,μ1, σ1, ξ1) := (ϕετ ,μετ , σετ , ξετ ), (ϕ2,μ2, σ2, ξ2) := (ϕε,με, σε, ξε).

Moreover, by setting ϕ :=ϕετ − ϕε, μ := μετ − με, σ := σετ − σε, ϕ0 :=ϕ0,ετ − ϕ0,ε,
μ0 := μ0,ετ − μ0,ε, and σ0 := σ0,ετ − σ0,ε, recalling that we are assuming η = 0 we infer from
(3.25) that

1
2
‖(εμ+ ϕ)(t)‖2

V∗ + ε

∫
Qt

|μ|2 + C0

∫
Qt

|ϕ|2 + 1
2
‖σ(t)‖2

H +

∫
Qt

|∇σ|2

� −τ

∫
Qt

∂tϕετϕ+
1
2
‖εμ0 + ϕ0‖2

V∗ +
1
2
‖σ0‖2

H

+

∫
Qt

(χσ + J ∗ ϕ)ϕ+

∫
Qt

[Cσε(h(ϕε) − h(ϕετ ))]σ

+

∫
Qt

[μ+ Pσh(ϕετ ) + (Pσε − A)(h(ϕετ ) − h(ϕε))]R−1(εμ+ ϕ).
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All the terms on the right-hand side, except the first one, can be handled in exactly the same
way as in subsection 3.5. As for the first one, we use the Young inequality and estimate (5.7)
to infer, for every δ > 0,

−τ

∫
Qt

∂tϕετϕ � δ

∫
Qt

|ϕ|2 + τ 2

4δ

∫
Qt

|∂tϕετ |2 � δ

∫
Qt

|ϕ|2 + Mδτ ,

so that the first term on the right-hand side can be absorbed on the left provided to choose
again δ small enough, which is indeed possible as we noted in subsection 3.5. We can now
argue as before and conclude using Gronwall’s lemma. Moreover, the same argument on the
limit problem yields uniqueness of solution for the system with τ = 0, hence also that the
convergences hold along the entire sequence and the proof of theorem 2.12 is concluded.

6. Asymptotics as both ε, τ ↘ 0

The last issue we are going to address here concerns the joint asymptotic limit as both ε, τ ↘ 0.
Let us recall that in this section we are supposing that η = 0.

6.1. Uniform estimates

Let us come back to estimate (3.9) with η = 0. We have

ε

2
‖μετ (t)‖2

H + (1 + 4caε)
∫

Qt

|∇μετ |2 + τ

∫
Qt

|∂tϕετ |2 +
∫
Ω

F(ϕετ (t))

+
1
2
‖σετ (t)‖2

H +

∫
Qt

|∇σετ |2 + 2ca‖(εμετ + ϕετ )(t)‖2
H

+ 2caτ‖∇ϕετ (t)‖2
H + 2caC0

∫
Qt

|∇ϕετ |2

� 3
2
ε‖μ0,ετ‖2

H + (a∗ + 4ca)‖ϕ0,ετ‖2
H + 2caτ‖∇ϕ0,ετ‖2

H + ‖F(ϕ0,ετ )‖L1(Ω)

+
1
2
‖σ0,ετ‖2

H +
ca

2
‖ϕετ (t)‖2

H + χ

∫
Qt

σετ∂tϕετ + 4caχ

∫
Qt

∇σετ · ∇ϕετ

+ M

(
1 +

∫
Qt

|εμετ + ϕετ |2 +
∫

Qt

|ϕετ |2 +
∫

Qt

|σετ |2
)

+

∫
Qt

(Pσετ − A)h(ϕετ )μετ , (6.1)

where the constant M > 0 is independent of both ε and τ . Now, all the terms on the right-hand
side referring to the initial data are uniformly bounded in both ε and τ thanks to assumptions
(2.47) and (2.48). Moreover, as done in (5.2), on the left-hand side we have

2ca‖(εμετ + ϕετ )(t)‖2
H +

ε

2
‖μετ (t)‖2

H � (ca − ρ)‖ϕετ (t)‖2
H + 2ρε2‖μετ (t)‖2

H

for every ρ ∈ (0, ca/2), so that the term on the right-hand side of the above inequality can be
absorbed on the left-hand side of (6.1). Furthermore, proceeding again as in subsection 5.1 and
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recalling that here η = 0, we have

χ

∫
Qt

σετ∂tϕετ = −χ

∫ t

0
〈∂tσετ (s),ϕετ (s)〉 ds

+ χ

∫
Ω

σετ (t)ϕετ (t) − χ

∫
Ω

σ0,ετϕ0,ετ

� χ

∫
Qt

∇σετ · ∇ϕετ + M

(
1 +

∫
Qt

|ϕετ |2 +
∫

Qt

|σετ |2
)

+ δχ2‖ϕετ (t)‖2
H +

1
4δ

‖σετ (t)‖2
H ,

for every δ > 0. Moreover, we can choose δ̄ such that (5.4) are satisfied, so that the correspond-
ing two terms on the right-hand side can be incorporated on the left. The remaining terms on
the right-hand side of (6.1) containing χ can be handled as, for every κ > 0,

(χ+ 4caχ)
∫

Qt

∇σετ · ∇ϕετ � κ

∫
Qt

|∇σετ |2 +
(χ+ 4caχ)2

4κ

∫
Qt

|∇ϕετ |2.

Again, the two terms on the right can be incorporated on the left-hand side of (6.1) provided
that we choose κ such that

κ < 1,
(χ+ 4caχ)2

4κ
< 2caC0,

which is indeed possible since (2.34) and the fact that η = 0 yield (χ+4caχ)2

8caC0
< 1. To close the

estimate, we only need to handle the last term on the right-hand side of (6.1): this can be done
exactly in the same way as in subsection 4.1. Indeed, on the right-hand side we have, thanks
to the boundedness of h and the fact that ‖σετ‖L∞(Q) � 1,∫

Qt

(Pσετ − A)h(ϕετ )μετ �
1
2

∫
Qt

|∇μετ |2 + M′
(

1 + T1/2
0 ‖(μετ )Ω‖L2(0,t)

)
for every t ∈ [0, T0] and T0 < T, where M′ only depends on P, A, and h. Furthermore, by
comparison in equation (1.5) and thanks to (2.22), since τ ∈ (0, 1), we have

|(μετ (t))Ω| � M′′
(

1 + τ

∫
Qt

|∂tϕετ (t)|2 + sup
s∈[0,t]

∫
Ω

F(ϕετ (s))

+ sup
s∈[0,t]

‖σετ (s)‖2
H

)
,

where M′′ > 0 only depends on CF and χ. Hence, using a patching argument as in subsec-
tion 4.1, we deduce the following uniform estimates

‖ϕετ‖L∞(0,T;H)∩L2(0,T;V) + ‖μετ‖L2(0,T;V)

+ ‖σετ‖L∞(0,T;H)∩L2(0,T;V) � M, (6.2)

‖F(ϕετ )‖L∞(0,T;L1(Ω)) � M, (6.3)

ε1/2‖μετ‖L∞(0,T;H) + τ 1/2‖ϕετ‖H1(0,T;H)∩L∞(0,T;V) � M. (6.4)
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Comparison then in the system gives us in particular that

‖ξετ‖L2(0,T;H) + ‖σετ‖H1(0,T;V∗) + ‖εμετ + ϕετ‖H1(0,T;V∗) � M, (6.5)

as well as

ετ 1/2‖μετ‖H1(0,T;V∗) � M. (6.6)

The uniform bound for σετ in L∞(Q) can be obtained as before using subsection 3.4.

6.2. Passage to the limit

The estimates (6.2)–(6.6) ensure, thanks to the classical compactness results, that there exists
a quadruplet (ϕ,μ, σ, ξ), with

ϕ ∈ H1(0, T; V∗) ∩ L2(0, T; V), μ ∈ L2(0, T; V),

σ ∈ H1(0, T; V∗) ∩ L2(0, T; V) ∩ L∞(Q),

0 � σ(t, x) � 1 for a.e. x ∈ Ω, ∀ t ∈ [0, T],

ξ ∈ L2(0, T; H),

such that, as (ε, τ ) ↘ 0 it holds that, along a non-relabelled subsequence, (2.49)–(2.55) are
fulfilled. In addition, setting λετ := εμετ + ϕετ , we have

λετ ⇀ ϕ in H1(0, T; V∗) ∩ L2(0, T; V),

λετ → ϕ in C0([0, T]; V∗) ∩ L2(0, T; H),

ξετ ⇀ ξ in L2(0, T; H).

In particular, by difference we deduce that

ϕετ = λετ − εμετ → ϕ in L2(0, T; H)

which readily implies that ξ ∈ ∂F1(ϕ) almost everywhere in Q, and that

h(ϕετ ) → h(ϕ) in Lp(Q) ∀ p � 1, F′
2(ϕετ ) → F′

2(ϕ) in L2(0, T; H).

It is then a standard matter to let (ε, τ ) ↘ 0 in the weak formulation of (1.4)–(1.8) to conclude.
Note in particular that by difference in the limit equation (1.5) we deduce the further regularity
ξ ∈ L2(0, T; V), which concludes the proof of theorem 2.14.

6.3. Error estimate

In this last subsection we prove the error estimate as both ε and τ go to zero.
The idea is to adapt the argument presented in subsection 4.3. First of all, we need to prove

a refined estimate: proceeding as in subsection 4.3, we know that

ε3/2
∫

Qt

|∂tμετ |2 +
ε1/2

2
‖∇μετ (t)‖2

H +
τε1/2

2
‖∂tϕετ (t)‖2

H

+ C0ε
1/2

∫
Qt

|∂tϕετ |2 + ε1/2
∫

Qt

|∂tσετ |2 +
ε1/2

2
‖∇σετ (t)‖2

H
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� ε1/2

2
‖∇μ0,ετ‖2

H +
τε1/2

2
‖ϕ′

0,ετ‖2
H +

ε1/2

2
‖∇σ0,ετ‖2

H

+ ε1/2
∫

Qt

(Pσετ − A)h(ϕετ )∂tμετ + ε1/2
∫

Qt

(J ∗ (∂tϕετ ) + χ∂tσετ )∂tϕετ

+ ε1/2
∫

Qt

(B(σS − σετ ) − Ch(ϕετ )σετ ) ∂tσετ . (6.7)

The first and third terms on the right-hand side are uniformly bounded in ε and τ due to assump-
tions (2.48) and (2.57). As for the second term on the right-hand side, using (1.5) we realize
that

μ0,ετ = τϕ′
0,ετ + aϕ0,ετ − J ∗ ϕ0,ετ + F′(ϕ0,ετ ) − χσ0,ετ ,

so that, multiplying both sides by ε1/4/τ 1/2 and squaring,

τε1/2
∥∥ϕ′

0,ετ

∥∥2

H
� 5

ε1/2

τ

(
‖μ0,ετ‖2

H + 2(a∗)2‖ϕ0,ετ‖2
H

+ ‖F′(ϕ0,ετ )‖2
H + χ2‖σ0,ετ‖2

H

)
,

from which we deduce by (2.57) that the second term on the right-hand side of (6.7) is uni-
formly bounded in ε and τ . Let us focus on the fourth term on the right-hand side: proceeding
as in subsection 4.3, this can be bounded using integration by parts and the Young inequality
by the quantity

ε1/2

4

∫
Qt

|∂tσετ |2 + Mε1/2
(
‖μετ‖2

L2(0,T;H) + ‖∂tϕετ‖2
L2(0,T;H) + ε1/2‖μετ‖C0([0,T];H)

)
for a positive constant M independent of ε and τ . The first term can be then incorporated on
the left-hand side, and the remaining others are uniformly bounded in ε and τ thanks to the
estimates (6.2), (6.4), and condition (2.58) on (ε, τ ). Finally, noting that

ε1/2
∫

Qt

(J ∗ ∂tϕετ )∂tϕετ � (a∗ + b∗)ε1/2
∫ t

0
‖∂tϕετ (s)‖H‖∂tϕετ (s)‖V∗ ds

� Mε1/2‖∂tϕετ‖2
L2(0,T;H),

the remaining terms on the right-hand side of (6.7) can be handled similarly, using the aver-
aged Young inequality, estimate (6.2)–(6.4), and condition (2.58). Thus, there exists M > 0,
independent of both ε and τ , such that

ε3/4‖μετ‖H1(0,T;H) + ε1/4‖μετ‖L∞(0,T;V) � M, (6.8)

τ 1/2ε1/4‖ϕετ‖W1,∞(0,T;H) + ε1/4‖σετ‖H1(0,T;H)∩L∞(0,T;V) � M. (6.9)

We are now ready to show the error estimate. Setting ϕ :=ϕετ − ϕ, μ :=μετ − μ,
σ := σετ − σ, ϕ0 :=ϕ0,ετ − ϕ0, and σ0 := σ0,ετ − σ0, we write the difference of the system
(1.4)–(1.8) with η = 0 at ε, τ > 0 and ε = τ = 0 to find that

ε∂tμετ + ∂tϕ−Δμ = Pσh(ϕετ ) + (Pσ − A)(h(ϕετ ) − h(ϕ)) in Q, (6.10)

μ = τ∂tϕετ + aϕ− J ∗ ϕ+ F′(ϕετ ) − F′(ϕ) − χσ in Q, (6.11)
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∂tσ −Δσ + Bσ + Cσh(ϕετ ) = Cσ(h(ϕ) − h(ϕετ )) in Q, (6.12)

∂nμ = ∂nσ = 0 on Σ, (6.13)

ϕ(0) = ϕ0, σ(0) = σ0 in Ω, (6.14)

where the equations have to be intended in the usual variational framework. We test (6.10) by
N (ϕ− (ϕ)Ω), (6.11) by ϕ− (ϕ)Ω, (6.12) by σ, integrate over Qt, add the resulting equalities
and use A5 to get

1
2
‖(ϕ− (ϕ)Ω)(t)‖2

V∗ + C0

∫
Qt

|ϕ|2 + 1
2
‖σ(t)‖2

H +

∫
Qt

|∇σ|2 +
∫

Qt

(B + Ch(ϕετ ))|σ|2

=
1
2
‖ϕ0 − (ϕ0)Ω‖2

V∗ +
1
2
‖σ0‖2

H − ε

∫
Qt

∂tμετN (ϕ− (ϕ)Ω)

+

∫
Qt

ϕ(χσ − τ∂tϕετ ) +
∫

Qt

μ(ϕ)Ω +

∫
Qt

(J ∗ ϕ)ϕ+ C
∫

Qt

σ(h(ϕ) − h(ϕετ ))σ

+

∫
Qt

(Pσh(ϕετ ) + (Pσ − A)(h(ϕετ ) − h(ϕ)))N (ϕ− (ϕ)Ω). (6.15)

Now, note that the Young inequality and the estimates (6.4) and (6.8) yield

− ε

∫
Qt

∂tμετN (ϕ− (ϕ)Ω) +
∫

Qt

ϕ(χσ − τ∂tϕετ )

� ε2‖∂tμετ‖2
L2(0,T;H) +

1
4

∫ t

0
‖N (ϕ− (ϕ)Ω)(s)‖2

H ds +
C0

4

∫
Qt

|ϕ|2

+
2

C0

(
τ 2‖∂tϕετ‖2

L2(0,T;H) + χ2
∫

Qt

|σ|2
)

� C0

4

∫
Qt

|ϕ|2 + M

(
ε1/2 + τ +

∫ t

0
‖(ϕ− (ϕ)Ω)(s)‖2

V∗ ds +
∫

Qt

|σ|2
)

,

for a certain constant M > 0 independent of ε and τ . Furthermore, using the boundedness and
Lipschitz continuity of h, and the fact that ‖σ‖L∞(Q) � 1, the last two terms in (6.15) can be
handled again by the Young inequality as

C
∫

Qt

σ(h(ϕ) − h(ϕετ ))σ +

∫
Qt

(Pσh(ϕετ ) + (Pσ − A)(h(ϕετ ) − h(ϕ)))

×N (ϕ− (ϕ)Ω) � C0

4

∫
Qt

|ϕ|2 + M

(∫
Qt

|σ|2 +
∫ t

0
‖(ϕ− (ϕ)Ω)(s)‖2

V∗ ds

)
for a certain M > 0 independent of τ and ε, and similarly we have the estimate∫

Qt

(J ∗ ϕ)ϕ � (a∗ + b∗)
∫ t

0
‖ϕ(s)‖H‖ϕ(s)‖V∗ ds

� C0

8

∫
Qt

|ϕ|2 + M
∫ t

0
‖ϕ(s)‖2

V∗ ds.
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Finally, as for the fifth term on the right-hand side of (6.15) we have, for a positive δ yet to be
chosen, ∫

Qt

μ(ϕ)Ω = |Ω|
∫ t

0
(ϕ(s))Ω(μ(s))Ω ds

� δ

∫ t

0
|(μ(s))Ω|2 ds +

|Ω|2
4δ

∫ t

0
|(ϕ(s))Ω|2 ds,

where, by comparison in equation (6.11) and by using the estimate (6.4),∫ t

0
|(μ(s))Ω|2 ds � M

(
τ +

∫ t

0
‖F′(ϕετ (s)) − F′(ϕ(s))‖2

L1(Ω) ds + χ2
∫

Qt

|σ|2
)
.

Next, owing to (2.32) and the Hölder inequality, we infer that∫ t

0
‖F′(ϕετ (s)) − F′(ϕ(s))‖2

L1(Ω) ds

� C2
F

∫ t

0

∥∥(1 + |ϕετ |2 + |ϕ|2)ϕ
∥∥2

L1(Ω)
ds

� M′
(

1 + ‖ϕετ‖4
L∞(0,T;L4(Ω)) + ‖ϕ‖4

L∞(0,T;L4(Ω))

)∫ t

0
‖ϕ(s)‖2

H ds

for some M′ > 0 independent of ε and τ , which yields in turn, due to assumption (2.56) and to
the previous estimates,∫ t

0
‖F′(ϕετ (s)) − F′(ϕ(s))‖2

L1(Ω) ds � M∗
∫

Qt

|ϕ|2

for a constant M∗ > 0 independent of ε and τ . Thus, collecting the above estimates and rear-
ranging the terms, we see that choosing δ > 0 sufficiently small, for example δ = C0

4MM∗ , we
are left with

1
2
‖(ϕ− (ϕ)Ω)(t)‖2

V∗ +
C0

8

∫
Qt

|ϕ|2 + 1
2
‖σ(t)‖2

H +

∫
Qt

|∇σ|2

� 1
2
‖ϕ0‖2

V∗ +
1
2
‖σ0‖2

H + M

(
ε1/2 + τ +

∫ t

0
‖(ϕ− (ϕ)Ω)(s)‖2

V∗ ds

+

∫
Qt

|σ|2 +
∫ t

0
‖ϕ(s)‖2

V∗ ds

)
. (6.16)

In order to conclude, we only need to handle the last terms on the right-hand side of (6.16).
To this end, note that integrating equation (6.10) on Ω and testing by (ϕ)Ω yields, using the
estimate (6.8), the Young inequality, the boundedness of σ and h, and the Lipschitz continuity
of h,

1
2
|(ϕ(t))Ω|2 =

1
2
|(ϕ0)Ω|2 − ε

∫ t

0
(ϕ(s))Ω(∂tμετ (s))Ω ds

+

∫ t

0
(Pσ(s)h(ϕετ (s)) + (Pσ(s) − A)(h(ϕετ (s)) − h(ϕ(s))))Ω(ϕ(s))Ω ds

� 1
2
‖ϕ0‖2

V∗ + M

(
ε1/2 +

∫ t

0
|(ϕ(s))Ω|2 ds +

∫
Qt

|σ|2
)
+

C0

16

∫
Qt

|ϕ|2. (6.17)
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Summing then (6.16) and (6.17), we infer that

‖ϕ(t)‖2
V∗ +

∫
Qt

|ϕ|2 + ‖σ(t)‖2
H +

∫
Qt

|∇σ|2

� M

(
‖ϕ0‖2

V∗ + ‖σ0‖2
H + ε1/2 + τ +

∫ t

0
‖ϕ(s)‖2

V∗ ds +
∫

Qt

|σ|2
)

for a certain constant M, independent of ε and τ . Therefore, we invoke the Gronwall lemma to
conclude. It is not difficult to check that the same argument performed here yields uniqueness
of solutions for the limit problem, even without assuming (2.48) and (2.57). This concludes
the proof of theorem 2.15.

7. Conclusions

Large part of the applied literature on tumor growth modeling agrees that relevant biological
mechanisms such as cell-to-cell adhesion are typically a non-local process. In this spirit, in
this paper we introduce and investigate from a mathematical perspective a wide class non-
local models of tumor growth capturing long-range interactions in cell-invasion. The analyzed
model contains two regularization coefficients ε and τ , which allow the investigation in very
broad scenarios such as the thermodynamically–relevant potentials and crucial mechanisms of
chemotaxis and active transport. Then, we perform a complete asymptotic analysis showing
how the parameters ε and τ may approach zero, both separately and jointly, allowing us to
establish well-posedness of the limiting systems obtained by formally setting to zero those
coefficients.
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pp 1–31

[4] Barbu V 2010 Nonlinear Differential Equations of Monotone Types in Banach Spaces (Springer
Monographs in Mathematics) (New York: Springer)

3247

https://orcid.org/0000-0001-6928-8944
https://orcid.org/0000-0001-6928-8944
https://orcid.org/0000-0001-7025-977X
https://orcid.org/0000-0001-7025-977X
https://doi.org/10.1002/mma.4548
https://doi.org/10.1002/mma.4548
https://doi.org/10.1002/mma.4548
https://doi.org/10.1002/mma.4548
https://doi.org/10.1016/j.jtbi.2006.05.030
https://doi.org/10.1016/j.jtbi.2006.05.030
https://doi.org/10.1016/j.jtbi.2006.05.030
https://doi.org/10.1016/j.jtbi.2006.05.030


Nonlinearity 34 (2021) 3199 L Scarpa and A Signori

[5] Bedrossian J, Rodríguez N and Bertozzi A L 2011 Local and global well-posedness for aggregation
equations and Patlak–Keller–Segel models with degenerate diffusion Nonlinearity 24 1683–714

[6] Bellomo N, Li N K and Maini P K 2008 On the foundations of cancer modelling: selected topics,
speculations, and perspectives Math. Models Methods Appl. Sci. 18 593–646

[7] Buttenschön A, Hillen T, Gerisch A and Painter K J 2018 A space-jump derivation for non-local
models of cell–cell adhesion and non-local chemotaxis J. Math. Biol. 76 429–56

[8] Byrne H et al 1999 Using mathematics to study solid tumour growth Proc. of the 9th General
Meetings of European Women in Mathematics (New York: Hindawi Publishing) pp 81–107

[9] Byrne H and Preziosi L 2003 Modelling solid tumour growth using the theory of mixtures Math.
Med. Biol. 20 341–66

[10] Cavaterra C, Rocca E and Wu H 2019 Long-time dynamics and optimal control of a diffuse interface
model for tumor growth Appl. Math. Optim. 269 1–49

[11] Chaplain M A J and Lolas G 2006 Mathematical modelling of cancer invasion of tissue: dynamic
heterogeneity Netw. Heterogeneous Media 1 399
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